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Abstract: 25 

Ticks can negatively affect their host by direct effects as blood feeding causing 26 

anaemia or discomfort, or by pathogen transmission. Consequently, ticks can have an 27 

important role in the population dynamics of their hosts. However, specific studies on 28 

the demographic effects of tick infestation on seabirds are still scarce. Seabird ticks 29 

have also the potential to be responsible for the circulation of little known tick-borne 30 

agents, which could have implications for non-seabird species. Here, we report the 31 

results of investigations on potential associations between soft tick Ornithodoros 32 

maritimus load and reproductive parameters of storm petrels Hydrobates pelagicus 33 

breeding in a large colony in a cave of Espartar Island, in the Balearic archipelago. We 34 

also investigated by molecular analyses the potential viral and bacterial pathogens 35 

associated with O. maritimus ticks present at the colony. Lower nestling survival was 36 

recorded in the most infested area, deep in the cave, compared to the area near the 37 

entrance. The parasite load was negatively associated with the body condition of the 38 

nestlings. One pool of ticks tested positive for West Nile virus and 4 pools tested 39 

positive for a Borrelia species which was determined by targeted nested PCR to have a 40 

99% sequence identity with B. turicatae, a relapsing fever Borrelia. Overall, these 41 

results show that further investigations are needed to better understand the ecology 42 

and epidemiology of the interactions between ticks, pathogens and Procellariiform 43 

species. 44 

 45 

Keywords: Borrelia, mortality, storm petrels, soft ticks, tick-borne pathogens, WNV.  46 
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Introduction  48 

Animals coexist with numerous parasite species with important ecological and 49 

evolutionary consequences (Hamilton and Zuk, 1982; Møller et al., 1993; Moore, 2002; 50 

Poulin, 2011). Hematophagous ectoparasites such as ticks, in particular, can damage 51 

their hosts directly by the fact of biting (i.e. dermatoid process) and blood-feeding (i.e. 52 

blood loss and associated anaemia) and/or indirectly through pathogen transmission 53 

(Jongejan and Uilenberg, 2004; Brites-Neto et al., 2015).   54 

Ticks are divided into two groups: hard ticks (Ixodidae) and soft ticks 55 

(Argasidae). Both families can potentially transmit numerous pathogens of medical and 56 

veterinary interest (Dietrich et al., 2011 and references therein). However, those 57 

transmitted by soft ticks have been less studied due to the specialization of Argasidae 58 

to hidden habitats (i.e. crevices) and the short time they spend for blood feeding on 59 

the host compared to hard ticks (Vial, 2009). Some of the most common worldwide 60 

diseases caused by pathogens transmitted by soft ticks include: human tick-borne 61 

relapsing fever (TBRF); viral encephalitis transmitted by ticks infesting seabirds, shore 62 

birds and roosting birds; the African swine fever virus (ASFV); fowl spirochetosis 63 

infections or anaplasmosis-like diseases and epizootic bovine abortion (Vial, 2009). 64 

Such pathogens can induce both lethal and sub-lethal effects on their hosts (Niebylski 65 

et al., 1999; Gray and Bradley, 2006). Organisms present a wide range of responses to 66 

tick-induced pathogens (Ramamoorthi et al., 2005). For instance, transmitted 67 

pathogens infecting the host might induce behavioral and/or physiological 68 

modifications which interfere with immunity response, gene expression or energy 69 

allocation, thus potentially affecting fitness. However, the effects of tick infestation 70 

and tick-borne diseases on host populations are often poorly understood and 71 
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quantifications of sub-lethal effects are hard to assess (Nemeth et al., 2006; Dietrich et 72 

al., 2011).  73 

Seabirds can be predictable hosts for ticks because they show colonial breeding 74 

habits resulting in large and dense aggregations, high nest site fidelity and extended 75 

breeding periods (Ramos et al., 2001; Schreiber and Burger, 2001). These breeding 76 

characteristics of seabirds facilitate transmission and contribute to the support of large 77 

and dense populations of ticks (Dietrich et al., 2011 and references therein). Severe 78 

infestations of seabird colonies by ticks can have heavy negative effects (Duffy, 1983; 79 

Ramos et al., 2001; Dietrich et al., 2011). For example, Duffy (1983) documented a 80 

large-scale nest desertion in Peruvian guano seabirds (cormorants, boobies and 81 

pelicans) due to Ornithodoros amblus soft tick infestation at breeding sites. Similarly, 82 

high densities of O. capensis s.s. seemed to be responsible for Sooty tern (Sterna 83 

fuscata) egg and newly hatched chick desertion at Seychelles in 1972 (Feare, 1976). 84 

Colony abandonment or dispersal could be used as a strategy to avoid the negative 85 

effects of parasites (Boulinier and Danchin, 1996). In fact, some cases of lethal effects 86 

of ticks (i.e. Ixodes uriae) on seabirds have been documented, especially for young 87 

nestlings (Boulinier and Danchin, 1996; Ramos et al., 2001) but very rarely in adults 88 

(Gauthier-Clerc et al., 1998). On the other hand, non-lethal but also negative effects 89 

have been documented on seabird body condition and/or nestlings’ growth rates (e.g. 90 

Bosch and Figuerola, 1999; McCoy et al., 2002; Hipfner et al., 2019). However, 91 

sometimes the effects of ticks are not evident until infestation levels are very high 92 

(Gauthier-Clerc et al., 2003; Hipfner et al., 2019) or may depend on the environmental 93 

conditions experienced by the hosts (McCoy et al., 2002). Although ticks can have an 94 

important role in seabird population dynamics, specific studies on the demographic 95 
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effects of tick infestation on seabirds are still scarce (Dietrich et al., 2011; Rodríguez et 96 

al., 2019). Moreover, the ultimate mechanisms responsible for lethal and sub-lethal 97 

effects of ticks (i.e. direct effect or indirect effect due to pathogen transmission) on 98 

seabirds remain largely unknow (Yabsley et al., 2012).  99 

Espartar Island, located on the Balearic archipelago, hosts the largest Spanish 100 

colony of Mediterranean storm petrel (Hydrobates pelagicus melitensis), estimated at 101 

750-1250 breeding pairs (Picorelli, unpublished data). Other seabirds (gulls and 102 

shearwaters) also breed in the island, but storm petrels mainly concentrate in cliff 103 

caves, sharing their breeding habitat with Balearic shearwaters (Puffinus 104 

mauretanicus). Balearic shearwaters breed in lower densities and start reproduction 105 

much earlier (i.e. February; Guilford et al., 2012) than storm petrels (i.e. May-June; 106 

Ramírez et al., 2016). A systematic monitoring of the breeding parameters of storm 107 

petrels breeding at the largest colony of the island, the cap de Migdia cave (~250 108 

breeding pairs) started in 2014 (Mínguez et al., 2015). During the first years of 109 

monitoring (2014-2016), we detected a high mortality of nestlings (see results) 110 

compared to other storm petrel Mediterranean colonies in which nestling survival 111 

typically varies between 90-95% (Sanz-Aguilar et al., 2009). Moreover, we experienced 112 

recurrent tick bites during the daylight monitoring of the cave, a very unusual fact 113 

when compared with our experience monitoring other storm petrel colonies. Ticks 114 

were identified as the soft tick O. maritimus (Vermeil and Marguet, 1967), included in 115 

the complex O. (Carios) capensis that includes eight described species that parasitize 116 

tropical and temperate colonial seabird species (Hoogstraal et al., 1979; Khouri, 2011; 117 

Dupraz et al., 2016). Identification of O. maritimus was performed by morphology (i.e. 118 

median dorsal line of mamillae disc short) and confirmed by an expert on the group 119 
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(Dupraz, M., personal communication). In addition, based on Dupraz et al., (2016) O. 120 

maritimus is mostly restricted to the West Paleartic Region where its presence 121 

parasitizing seabirds have been extensively reported (Dietrich et al., 2011). The species 122 

O. capensis s.s. is also present in the same region, but almost exclusively associated 123 

with pigeons and it can be morphologically separated from O. maritimus (Khoury et al., 124 

2011).  125 

Both bites to researchers and mortality of storm petrel chicks were especially 126 

evident in a particular area of the cave, the inner chambers. Consequently, in 2018 we 127 

evaluated the potential differences of O. maritimus load between different parts of the 128 

colony as a proxy of tick abundance and evaluated their effects on nestlings’ body 129 

condition. We used this information to infer the potential effect of ticks on the 130 

reproductive parameters of storm petrels. Moreover, we also used a high throughput 131 

real-time PCR system to test for the presence in O. maritimus ticks of the most 132 

common tick-borne infectious agents including bacteria, parasites and viruses 133 

potentially harboured by ticks. 134 

Methods  135 

Species, study site, field data and tick collection 136 

The Mediterranean storm petrel is one of the smallest seabirds of the Order 137 

Procellariiformes (average body mass, 28 g, Warham 1990). Storm petrels breed in 138 

caves, burrows, under boulders or in crevices where they lay a single egg directly on 139 

the floor (Fig. 1A). The egg is incubated by both partners for 40 days and chick rearing 140 

lasts for about 63–70 days (Scott, 1970; Mínguez, 1994). The earliest clutches are laid 141 

in the second half of April and the last eggs are laid in the first week of July (Ramírez et 142 

al., 2016). Most fledglings leave colonies in August (Mínguez, 1994). 143 
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The study was conducted on Espartar Island, a 20.5 ha island located within the 144 

Es Vedrà, Es Vedranell i els illots de Ponent Natural Reserve (38° 57′ 31″ N, 1° 11′ 44″ E, 145 

Fig. 2). Espartar Island has a characteristic steep relief with gentle slopes facing south 146 

and cliffs in the north. Storm petrels breed all around the island at low densities but 147 

concentrate at high densities in natural caves. Our study site was located in one of 148 

those caves, Cap des Migdia cave, that annually hosts around 250-300 storm petrel 149 

breeding pairs. The cave has two areas with different characteristics (Fig. 2): the 150 

entrance and the inner chambers. The entrance of the cave is a wide and illuminated 151 

area where nests are located in small cavities and rock debris. The inner chambers are 152 

narrow, dark and humid; in this area, nests are located in small cavities, rock debris 153 

and dusty soil (Fig. 1A). The inner chamber of the cave also hosts 12 pairs of breeding 154 

Balearic shearwaters.  155 

From 2014 to 2018, all accessible nests found in the study site (N = 312) were 156 

marked (Fig. 2A) and inspected every 2 weeks along the breeding season (May-157 

September) to record reproductive parameters: hatching success (No.eggs hatched/No.eggs 158 

laid), fledgling success (No.chicks fledged/No.eggs hatched) and breeding success (No.chicks 159 

fledged/No.eggs laid) (Mínguez et al., 2015). In addition, during the 2018 breeding season, 160 

we inspected for parasites some adults and all the nestlings located alive and alone in 161 

accessible nests at each monitoring visit. Given the extended breeding period of storm 162 

petrels and the mortality of some of the young nestlings inspected (N = 6), some 163 

nestlings were inspected once and others multiple times. In total we performed 62 164 

inspections of 23 nestlings reared at the entrance of the cave and 92 inspections of 37 165 

nestlings reared at the inner chambers. 28 breeding adults nesting at the entrance and 166 

24 nesting at the inner chambers were inspected once during the breeding season. We 167 
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did not capture the nestlings during the brooding period (i.e. when adults are covering 168 

the nestling) to avoid potential negative manipulation effects during this critical stage 169 

(Mínguez and Oro, 2003). We visually inspected nestlings and adults pushing aside the 170 

down and feathers and counted the number of tick larvae attached to their skin (Fig. 171 

1C). However, in order to avoid disturbance of breeding birds, inspections of adults 172 

were faster and less exhaustive than inspections to nestlings. We measured their wing 173 

length, tarsus and body mass using a ruler, a digital calliper and a digital balance. 174 

Handling time was reduced to the minimum possible. 175 

Assessing tick density in the cave is extremely challenging. O. maritimus ticks 176 

(Fig. 1B) are mainly nocturnal, feeding on the host rapidly at night in the nymphal and 177 

adult life stages (Vial, 2009). During the day, they are buried in the ground and located 178 

in small crevices and under stones (Vial, 2009). On the contrary, tick larvae can be 179 

attached for a much longer time on their hosts, their blood meal lasting from hours to 180 

several days (Vial, 2009). Therefore, in order to evaluate the potential differences in 181 

tick density on the different areas of the cave (i.e. entrance vs. inner chambers) we 182 

used the data on the larvae tick load (i.e. the number of tick larvae attached to the 183 

skin) of storm petrel nestlings (Fig. 2C) as a proxy of the amount of ticks on the two 184 

areas of the cave. At the end of the 2017 breeding season, ticks were searched on the 185 

ground of the cave, under stones and in crevices, and collected for molecular analyses. 186 

Ticks found together (i.e. under the same stone) were pooled. Until analysed, they 187 

were stored at -70°C. Note that adult ticks were only found in the inner parts of the 188 

cave (i.e. the chambers) although the entrance was also inspected. 189 

Statistical analyses 190 
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First, we evaluated the effect of the area of the cave on the parasite load (i.e. 191 

no. of attached tick larvae) experienced by the nestlings at each monitoring visit 192 

conducted in 2018. Based on field observations, we also accounted for nestling age as 193 

a predictor of parasite load. Nestling age was determined at first capture using the 194 

relationship between age and wing length (Age = (0.424*wing length) + 6.6102; R2 = 195 

0.95; Sanz-Aguilar, unpublished data) estimated at Benidorm Island (Spain), where an 196 

intense monitoring in 2015 allowed to establish the exact hatching date for 30 197 

nestlings. This analysis was carried out using a generalized linear mixed model GLMM 198 

with a Poisson distribution (log link function) and considering nestling identity as a 199 

random effect. 200 

Nestling and adult body condition was estimated individually using the 201 

residuals from a least squares (OLS) linear regression of body mass against the 202 

measure of wing (Owen and Cook, 1977). The residual indices were used as a proxy of 203 

body condition: the individuals with positive residual values were considered in better 204 

body condition than individuals with negative values (Jakob et al., 1996). We assessed 205 

the association between the nestling body condition and the nesting area (entrance vs. 206 

inner chambers) and the individual tick load (on a log scale). For tick load, we 207 

considered either the actual tick load (No. of tick larvae) presented by each individual 208 

at each monitoring or the maximum tick load, the maximum number of tick larvae 209 

recorded for a given individual during any of the monitoring visits carried out during 210 

the study period. As nestlings remain in the same nest during their development, this 211 

last fixed individual covariate may be related with the tick load in the nest and 212 

potentially experienced by the individual. This analysis was carried out using a GLMM 213 

with a normal distribution (identity link function) and considering nestling identity as a 214 



10 
 

random effect. Adults were only measured once during the study period and no tick 215 

larvae was found attached to them. Consequently, a GLM with a normal distribution 216 

(identity link function) was used to analyse the potential differences in their body 217 

condition between the entrance and inner chambers breeding areas. 218 

Finally, we evaluated the potential effect of the year and area of the cave on 219 

reproductive parameters: hatching success, fledgling success and breeding success. 220 

This analysis was carried out using a GLMM with a binomial distribution (logit link 221 

function) and considering nest identity as a random effect.   222 

Model selection was performed using the Akaike’s information criterion (AIC; 223 

Burnham and Anderson, 2002). We considered models to be equivalent when the 224 

difference in AIC with the best model (ΔAIC) was < 2 (Burnham and Anderson, 2002). 225 

RNA and genomic DNA extraction from the ticks  226 

After collection and storage, ticks were identified and used for DNA/RNA 227 

extractions. The extraction protocols used on the ticks followed those outlined in 228 

Michelet et al. (2014) and Gondard et al. (2018). All ticks were washed for 5 min in an 229 

ethanol bath, 10 min in two successive water baths and placed individually in sterile 230 

tube and crushed in 300 μl of Dulbecco’s modified eagle medium (DMEM) with 10% 231 

fetal calf serum using Precellys®24 Dual homogenizer (Bertin, France). The supernatant 232 

was divided in 3 fractions: 100 μl for the DNA extraction, 100 μl for the RNA extraction 233 

and the rest was used as back-up and conserved at -80°C. Genomic tick DNA was then 234 

extracted using the Wizard genomic DNA purification kit (Promega, France) according 235 

to the manufacturer’s instruction. Purified DNA and RNA were eluted into 50 μl of 236 

rehydration solution and 50 µl of RNase-free water, respectively, and conserved at -237 
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80°C. Tick DNA and RNA quality was assessed via the amplification of the ITS2 region 238 

and COI gene respectively (Michelet et al., 2014; Gondard et al., 2018). 239 

High throughput real-time PCR system 240 

Ticks were analysed for the most common tick-borne infectious agents using 241 

the BioMark real-time PCR amplification system. The DNA primer chip developed by 242 

Michelet et al. (2014) includes primers for detecting 28 bacterial species, 12 parasite 243 

species and the RNA primer chip developed by Gondard et al. (2018) includes 21 244 

viruses. Twenty-two ticks pooled in eleven pools of a maximum of five adult ticks and 245 

were analysed by both systems in duplicate. 246 

All RNAs were reverse transcribed into cDNAs using random primers and oligos 247 

(dT). The remaining methods followed those of Michelet et al. (2014) and Gondard et 248 

al. (2018). DNA and cDNA pre-amplifications were performed using the TaqMan 249 

PreAmp Master Mix (Applied Biosystems, France) according to the manufacturer's 250 

instructions. Primers for bacteria or viruses were pooled by combining equal volumes 251 

of each primer to have 200 nM of each. The pre-amplification was performed in a final 252 

volume of 5 μL containing 2.5 μL TaqMan PreAmp Master Mix (2x), 1.2 μL pooled 253 

primer mix (0.2) and 1.3 mL DNA. Thermal cycling conditions were as follows: one cycle 254 

at 95°C for 10 min, 14 cycles at 95°C for 15 s and 4 min at 60°C (Michelet et al., 2014; 255 

Gondard et al., 2018). 256 

The quantitative PCR reactions were then performed using 6-257 

carboxyfluorescein (FAM) and black hole quencher (BHQ1)-labeled TaqMan probes 258 

(Michelet et al., 2014; Gondard et al., 2018) with TaqMan Gene expression Master 259 

Mix, in accordance to the manufacturer's instructions (Applied Biosystem, France). PCR 260 

cycling comprised 5 min at 95°C, 45 cycles at 95°C for 10 s, 15 s at 60°C and 10 s at 261 
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40°C. Data were acquired on the BioMark real-time PCR system and analyzed using the 262 

Fluigdim real-time PCR Analysis software. The assays were performed in duplicate 263 

using two negative water controls per chip and Escherichia coli strain EDL933 was 264 

added in each run to control for internal inhibition (Michelet et al., 2014). 265 

A nested PCR using primers for the detected bacteria (targeting Borrelia gene 266 

fla; Loh et al., 2016) and a real-time PCR using primers for the detected virus (targeting 267 

the NS5 region from all flavivirus; (Weissenböck et al., 2002) were used to confirm the 268 

presence of the detected infectious agent in the samples. Amplicons were sequenced 269 

by Eurofins MWG Operon (Germany) and assembled using the BioEdit software (Ibis 270 

Biosciences, Carlsbad). An online BLAST (National Center for Biotechnology 271 

Information) was used to identify the sequenced organism. 272 

Results 273 

Tick infestation  274 

We did not find tick larvae attached to adult birds. In the case of nestlings, we 275 

observed that tick larvae were mainly attached to the skin under the wings, the head 276 

and the neck, which are the areas with lower density of down and feathers (own 277 

observation). 80% of the nestling inspected at the inner chambers (N = 37) and 43% of 278 

the nestling inspected at the entrance (N = 23) presented at least one tick larvae 279 

during the study period. The percentage of nestlings infested by at least one tick larvae 280 

showed temporal variations and decreased at the end of the study period, especially at 281 

the entrance (Table 1).  282 

Tick larvae load (i.e. No. of tick larvae on storm petrel nestlings) was higher in 283 

the inner chambers (mean 4.18 ± 0.69 SE) of the cave than at the entrance (mean 1.13 284 

± 0.85 SE), and decreased as nestlings became older (Table 2, Fig. 3). The age-related 285 
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decrease in tick load was more rapid at the entrance of the cave (Fig. 3). Six of the 286 

nestlings inspected died (one at the entrance and 5 at the inner chambers). Nestlings 287 

found dead presented high numbers of tick larvae on them at the last alive inspection 288 

(mean = 20.8; range 2-40). We documented the mortality of 10% of the nestlings 289 

detected as infested by ticks at the entrance (No.dead/No.infested= 1/10) and the 290 

mortality of 17% of the nestlings infested by ticks in the inner chambers 291 

(No.dead/No.infested= 5/30).  292 

Body condition 293 

Adults showed no differences in body condition at the entrance and the inner 294 

chambers (Table 3). For nestlings, differences in body condition were mainly related 295 

with individual tick load (either the actual or the maximum tick load) and not with the 296 

effect the zone per se (Table 2). The best model indicated that nestlings with the 297 

highest tick larvae recorded during any of the monitoring visits (i.e. the maximum tick 298 

load) experienced lower body condition (Table 2, Fig. 4).  299 

Reproductive parameters of storm petrels 300 

Individuals breeding in the entrance of the cave showed higher mean 301 

performances in breeding parameters, especially regarding the fledging success (Table 302 

4; HSentrance = 0.771 ± 0.025 SE; FSentrance = 0.903 ± 0.021 SE; BSentrance = 0.682 ± 0.028 SE) 303 

than individuals breeding in the inner chambers (HSchambers = 0.646 ± 0.018 SE; FSchambers 304 

= 0.516 ± 0.025 SE; BSchambers = 0.320 ± 0.018 SE). Hatching success and fledgling 305 

success varied over time and between zones, the additive models being preferred over 306 

the models with interactions (Table 4). The differences between zones were higher for 307 

fledgling success (i.e. nestling survival) than for hatching success (Fig. 5). Breeding 308 
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success showed the lowest temporal variation, the constant model being preferred 309 

over the temporal models (Table 4, Fig. 5).  310 

Molecular analyses 311 

The West Nile virus (WNV) was detected in duplicate on one tick pool over the 312 

11 that were analysed with the design targeting the genotype 3 of this virus (known to 313 

be transmitted by ticks). Although the Pan-Flavivirus real-time PCR did not succeed to 314 

confirm this result, nor the attempt of viral isolation into mammalian cell culture, this 315 

may be expected if the concentration of the virus is low. This was the only virus 316 

detected among the 21 that were searched. Four pools of ticks tested positive for a 317 

Borrelia sp. which was determined by targeted nested PCR to have a 99% sequence 318 

identity with B. turicatae, a relapsing fever Borrelia (GenBank accession number: 319 

MK732470). 320 

Discussion 321 

In this study, we show spatially explicit differences of infestation by the soft tick 322 

O. maritimus of nestling storm petrels in a large cave on Espartar Island. Tick 323 

infestation was higher in the cave chambers and less so in the entrance. The within-324 

colony differences in parasite density may be related to different and not exclusive 325 

factors as the presence of Balearic shearwaters breeding in the inner parts of the cave 326 

and the per se characteristics of the cave (Dietrich et al., 2011 and references therein). 327 

First, tick population dynamic parameters (notably survival) are known to depend on 328 

local climatic conditions such as temperature and humidity (Sonenshine and Roe, 329 

2013). The studied colony is located inside a cave where environmental conditions 330 

(especially deep in the cave) are expected to be quite stable. Moreover, humidity is 331 

higher at the inner chambers than at the entrance (own observation). These factors 332 
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can facilitate oviposition and tick survival, especially in the inner chambers (Vial, 2009. 333 

Second, although parasites and infectious agents responsible for diseases are often 334 

strongly host-specific, Ornithodoros spp. show indiscriminate host feeding and short 335 

time for feeding completion compared to hard ticks (Vial, 2009). Balearic shearwaters 336 

start to visit the colonies in November and the last chicks fledge in June (Guilford et al., 337 

2012). Storm petrels start to visit the colonies in March and the last chicks fledge in 338 

late September (Ramírez et al., 2016). Moreover, storm petrels show asynchronous 339 

breeding: the first eggs are laid at the end of April and the last at the beginning of July 340 

(Mínguez, 1994). Reproductive asynchrony of storm petrels may promote the 341 

reproduction of ticks (Møller et al., 1993). Consequently, hosts can be available in the 342 

cave during 11 months per year and seabird nestlings during 4-5 months, favouring the 343 

production of several tick generations per year and high local population densities 344 

(Vial, 2009). 345 

 Nestling body condition was negatively correlated with tick load, which may 346 

explain the higher nestling mortality in the inner parts of the colony. Our results agree 347 

with other studies on seabirds that have detected high nest desertion and/or nestling 348 

mortalities of individuals infested by ticks or in areas with high tick densities (e.g. 349 

Feare, 1976; Duffy, 1983; Ramos et al., 2001; Reeves et al., 2006; Descamps 2013). In 350 

addition, nestling mortality in the inner parts of the cave, where tick prevalence was 351 

higher and ticks were more abundant, was very high (48%). We cannot directly analyse 352 

the effect of tick infestation on nestling survival due to our reduced sample size of 353 

nestlings inspected before dying (i.e. for which we had counted the number of tick 354 

larvae attached to them when alive). This is because the majority of the mortalities 355 

occurred during the first two weeks after hatching and many nestlings were born and 356 
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died between our monitoring visits (own observation). However, the low survival of 357 

storm petrel nestlings located in the inner parts of the Espartar’s cave matches with 358 

the high mortality estimates provided for other seabird species nestlings infested by 359 

ticks (Feare, 1996; Ramos et al., 2001). For example, Ramos et al. (2001) documented a 360 

mortality of 63% of roseate terns (Sterna dougallii) infested by hard ticks Amblyomma 361 

loculosum versus a nestling mortality of 17% of non-infested nestlings during a harsh 362 

breeding season with food shortage. On the contrary, during a breeding season with 363 

benign environmental conditions, only 24% of the tick-infested nestlings died (Ramos 364 

et al., 2001).  365 

In fact, environmental conditions may influence the effect of parasites on hosts 366 

(Ramos et al., 2001; McCoy et al., 2002). At Espartar’s colony, during our 5 years of 367 

monitoring the fledgling success showed annual variations that may be related with 368 

differential tick densities or environmental conditions affecting storm petrels and or 369 

interacting with their parasites (McCoy et al., 2002), factors that should be studied in 370 

the future. However, mortality in the inner chambers of the cave was always very high. 371 

On the contrary, at the entrance of the cave, nestling mortality showed the usual low 372 

levels (~10%) estimated at other storm petrel colonies (Sanz-Aguilar et al., 2009) 373 

where tick prevalence is lower (Merino et al., 1999). For example, in Benidorm Island 374 

only one of the 34 storm petrel nestlings inspected by Merino et al. (1999) in 1996 375 

presented a single Ornithodoros spp. tick larvae. Additionally, a tick larvae was 376 

detected only on 4 out of 27 storm petrel nestlings inspected at Benidorm Island on 377 

25th June 2019 (tick larvae prevalence of 15%; own unpublished data). Monitoring of 378 

tick infestation could be conducted to explore potential increase over time, such as 379 

that reported as a function of warmer winter temperature in an arctic population of 380 



17 
 

Brünnich’s guillemots (Uria lomvia) (Descamps, 2013). Prevalence of ticks infesting 381 

seabirds has been shown to be very variable among seabird species, breeding colonies 382 

and/or years ranging 0% and > 70% (Feare, 1974; Merino et al., 1999; Ramos et al., 383 

2001; Descamps, 2013; Hipfner et al., 2019). However, the effects of ticks on hosts 384 

depend also on the tick load, the host species, the age of the host (e.g. the effects can 385 

be different for nestlings and adults), and/or the environmental conditions, as 386 

explained above (Feare, 1974; Merino et al., 1999; Ramos et al., 2001; McCoy et al., 387 

2002; Descamps, 2013; Hipfner et al., 2019). For example, Feare (1976) documented a 388 

67% of tick prevalence on Sooty terns and high mortality effects, while Hipfner et al. 389 

(2019) documented tick prevalence > 60% for two species of auklet nestlings without 390 

relevant survival effects.     391 

Although we cannot determine the ultimate cause of nestlings’ death, there are 392 

several non-exclusive possibilities (Dietrich et al., 2011; Yabsley et al., 2012). First, 393 

anaemia caused by blood loss could be lethal for young nestlings infested by high 394 

numbers of ticks (Wanless et al., 1997). In fact, several studies have evidenced 395 

negative effects of ticks on nestlings’ body condition, at least during harsh 396 

environmental conditions or high parasite loads (Morbey, 1996; Bosch and Figuerola, 397 

1999; McCoy et al., 2002; Hipfner et al., 2019). Given their very small body size (< 10 g 398 

when hatching, Davis, 1957), storm petrel nestlings could be more susceptible to 399 

ectoparasites as ticks than larger seabird species (Merino et al., 1999). In fact, no 400 

mortality was recorded for nestlings of Balearic shearwaters (adult weight ~500 g) at 401 

the study site during the study period. In this vein, Hipfner et al. (2019) did not find 402 

negative effects of tick infestation on survival or nestlings growth of two medium size 403 

seabird species (adult weight 150-500 g), Cerorhinca monocerata and Ptychoramphus 404 
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aleuticus, at normal tick I. uriae loads; but they found negative effects at very high tick 405 

loads, in accordance with other evidences in other seabird species (Descamps, 2013). 406 

In agreement with our results, they also documented a reduction in tick load with 407 

nestling age, being essentially zero at fledging (Hipfner et al., 2019). However, contrary 408 

to hard Ixodes ticks, soft Ornithodoros nymph and adult ticks are only attached to their 409 

hosts for very short blood meals, at night (Vial, 2009), making it difficult to establish 410 

the actual tick load experienced by the hosts. We could only count the larvae ticks 411 

feeding on nestlings during the monitoring visits, while adults and nymphs were likely 412 

also feeding on both adult and chick storm petrels. However, adults breeding in both 413 

areas showed similar body condition, which suggest that ticks may have higher 414 

negative effects on nestlings than on adults.  415 

Second, the low survival of nestlings in the inner part of the cave may be a 416 

consequence of a massive adult abandonment of young nestlings as a result of high 417 

parasite load, as shown in other species (Feare, 1976; King et al., 1977; Duffy, 1983; 418 

Reeves et al., 2006). However, we think that this possibility is highly improbable. Some 419 

field observations using camera trapping indicates that the adults came back to feed 420 

the chicks when they were already dead. Moreover, neighbours of already dead chicks 421 

continued incubating or rearing their surviving chicks (Fig. 1A). 422 

Finally, ticks may be hosting infectious agents pathogenic for their seabird 423 

hosts, at least for young nestlings. Our study shows that two tick-borne agents known 424 

for their pathogenic potential for vertebrates were detected among the 11 pools of 425 

ticks that were analysed. We detected RNA from WNV genotype 3, which suggests that 426 

the virus is circulating in the storm petrel population, possibly relatively independently 427 

from other cycles of that virus in the area. West Nile virus can cause high mortality in 428 
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birds, particularly in naïve populations (George et al., 2015), and neurological disorders 429 

in horses and humans. Moreover, the virus could also cause sub-lethal unknown 430 

negative effects (Nemeth et al., 2006). The major vector species of WNV are 431 

mosquitoes, in particular ornithophilic species such as Culex pipiens (Calistri et al., 432 

2010; Brugman et al., 2018). To date, little information is available on the mosquito 433 

species associated to nesting areas of storm petrels, as well as the possible role of soft 434 

ticks in the virus circulation. WNV genotype 3 have been previously isolated from O. 435 

maritimus (Hoogstraal et al., 1976) and proved to be transmitted in laboratory by 436 

other soft tick species, such as O. moubata and O. capensis (Lawrie et al., 2004; 437 

Hutcheson et al., 2005). Consequently, the O. capensis complex may act as a reservoir 438 

of this genotype of WNV (Lawrie et al., 2004) and deserve to be further investigated. 439 

Moreover, DNA from a Borrelia sp. very similar to relapsing fever B. turicatae was 440 

detected. It may appear surprising to detect DNA of such as bacteria in ticks from 441 

storm petrel because B. turicatae has been mostly reported in the southern USA and 442 

Latin America (Schwan et al., 2005). Nevertheless, relapsing fever Borrelia has also 443 

been detected in ticks from a storm petrel and shearwater colony in Japan (Takano et 444 

al., 2009), in African penguins (Spheniscus demersus) (Yabsley et al., 2012), in brown 445 

pelicans (Pelecanus occidentalis) (Reeves et al., 2006) and recently in ticks from Yellow-446 

legged gull (Larus michahellis) nests in Algeria (Lafri et al., 2017). The detection of 447 

those Borrelia with a very similar sequence to B. turicatae thus suggests that further 448 

investigations are required to understand how widespread are relapsing fever Borrelia 449 

in seabird ticks (Kim et al., 2016). In addition, considering the lack of host specificity of 450 

Ornithodoros spp. and the pathogenic potential of relapsing fever Borrelia for other 451 

vertebrates, including humans, the question of the extent of the circulation of such 452 
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bacteria arises. Given the growing interest in relapsing fever Borrelia in America and 453 

the biomedical tools that may become available to detect the past exposure of hosts 454 

by tracking antibody levels (Lopez et al., 2013), investigations could rely on the 455 

detection of the Borrelia in ticks, but also sometime more efficiently by detecting 456 

antibodies in the vertebrate host (Armstrong et al., 2018). 457 

Conclusions 458 

In conclusion, our study provides evidence that O. maritimus may directly or 459 

indirectly be the responsible of the extremely high mortality of storm petrel nestlings 460 

observed at the study site. Our results open exciting questions that need to be 461 

addressed for a better understanding of the ecology and epidemiology of the 462 

interactions between soft ticks and breeding Procellariiform species. Is the case of 463 

Espartar unique among storm petrel colonies? What is the ultimate cause of nestling 464 

mortality? Will the colony persist under such high levels of parasite infestation and 465 

nestling mortality? Is it possible to detect any sub-lethal effects of ticks or pathogens 466 

on adults? How do tick population dynamics work? Are the tick-borne virus and 467 

bacteria circulating in the storm petrel population relatively independently from other 468 

vertebrate host populations? Understanding how these host–parasite systems 469 

function in space and time will require further challenging but potentially rewarding 470 

multidisciplinary collaborations (taxonomy, ecology, and epidemiological studies). 471 
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Table 1. Prevalence of O. maritimus larvae on storm petrel nestlings during the 682 

monitoring period at the entrance and the inner part of the colony (sample size in 683 

parentheses).   684 

 

03/07/19 12/07/19 19/07/19 02/08/19 23/08/19 

Entrance 100% (3) 57% (7) 28% (18) 5% (21) 0% (13) 

Inner chambers 100% (6) 78% (9) 89% (19) 52% (33) 8% (25) 

 685 

  686 
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Table 2. Model selection of the effects of zone and age on tick O. maritimus load of 687 

Storm petrel nestlings in Cap des Migdia Cave. df, degrees of freedom; Dev, Deviance; 688 

ΔAIC, Akaike’s information criterion difference with the best model; “+”, additive 689 

effect.  690 

 691 

Effect df  Dev  ΔAIC 

Chick age*Zone 5 613.204 0 

Chick age+Zone 4 634.002 18.797 

Chick age 3 648.081 30.877 

Zone 3 927.631 310.426 

Null model 2 939.427 320.222 
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Table 3. Model selection of the effects of the zone, the individual tick O. maritimus 694 

larvae load and the maximum tick larvae load recorded for each individual during the 695 

monitoring period on body condition index of storm petrel nestlings and adults. Note 696 

that for adults, only the zone is tested as no tick larvae were found attached to them. 697 

Notation as in Table 1.  698 

 699 

Group Effect df  Dev  ΔAIC 

Nestlings Log(Maximum No. ticks +1) 3 -34.232 0 

Nestlings Log(Maximum No. ticks +1)+Zone 4 -34.246 1.986 

Nestlings Log(No.ticks +1)*Zone 5 -35.808 2.424 

Nestlings Log(No.ticks +1) 3 -31.538 2.694 

Nestlings Log(Maximum No. ticks +1)*Zone 5 -34.268 3.964 

Nestlings Null model  2 -28.061 4.172 

Nestlings Log(No.ticks +1)+Zone 4 -31.779 4.454 

Nestlings Zone 3 -29.136 5.096 

Adults Null model  1 0.446 0 

Adults Zone 2 0.440 1.627 
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Table 4. Model selection of the effects of year and zone on the reproductive 702 

parameters: Hatching success (HS), Fledgling success (FS) and Breeding Success (BS) of 703 

storm petrels breeding in Cap des Migdia Cave. Notation as in Table 1. 704 

 705 

Parameter  Effect df Dev ΔAIC 

HS Year+Zone 7 1180.305 0 

HS Year*Zone 11 1178.445 6.141 

HS Zone 3 1197.818 9.513 

HS Year 6 1194.097 11.793 

HS Null model 2 1210.125 19.820 

FS Year+Zone 7 661.359 0 

FS Year*Zone 11 654.552 1.193 

FS Zone 3 679.188 9.829 

FS Year 6 734.838 71.480 

FS Null model 2 756.804 85.446 

BS Zone 3 1130.221 0 

BS Year+Zone 7 1127.815 5.595 

BS Year*Zone 11 1120.786 6.565 

BS No effect (constant) 2 1203.073 70.852 

BS Year 6 1200.250 76.029 
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Figure 1. A) Inner chambers of the storm petrel colony at Espartar Island. In the 707 

photograph can be observed one incubating adult, three alive nestlings and two dead 708 

nestlings; B) adults soft tick (O. maritimus) and C) larvae of soft tick (O. maritimus) on a 709 

storm petrel nestling.  710 

 711 

Figure 2. A) Map of the study area and the studied species; B) Infographic of Cap des 712 

Migdia Cave study areas: Entrance and inner chambers. Representation is informative 713 

but not topologically accurate. 714 

 715 

 716 
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Figure 3. A) Relationship between tick O. maritimus larvae load and storm petrel 719 

nestlings age. Dotted lines are the individuals’ predictions and solid lines the mean 720 

prediction, Table 2, with grey and black lines representing the entrance and the inner 721 

chambers of the colony respectively. B) Boxplot showing the distribution of the 722 

number of tick O. maritimus larvae per storm petrel nestlings at the entrance and the 723 

inner chambers of the colony. 724 
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Figure 4. A) Relationship between body condition index of storm petrel nestlings and 727 

the maximum tick O. maritimus load (log scale) detected for each individual (Table 3), 728 

the black line represent the estimate of the model and the grey area the SE. Points 729 

indicate the individual predictions.  730 

731 
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Figure 5. A) Annual mean (and 95% CI) of hatching success (HS), B) fledgling success 733 

(FS) and C) breeding success (BS) of storm petrels breeding in the entrance (grey) and 734 

the inner chambers (black) of Cap des Migdia Cave between 2014 and 2018. Estimates 735 

from the model including the additive effects of zone and year (Table 4).  736 

 737 


