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Abstract 
Energetic metabolism reprogramming is critical for 
cancer and immune responses. Current methods 
to functionally profile the global metabolic 
capacities and dependencies of cells are 
performed in bulk. We designed a simple method 
for complex metabolic profiling called SCENITH, 
for Single Cell ENergetIc metabolism by profilIng 
Translation inHibition. SCENITH allows for the 
study of metabolic responses in multiple cell types 
in parallel by flow cytometry. SCENITH is 
designed to perform metabolic studies ex vivo, 
particularly for rare cells in whole blood samples, 
avoiding metabolic biases introduced by culture 
media. We analyzed myeloid cells in solid tumors 
from patients and identified variable metabolic 
profiles, in ways that are not linked to their lineage 
nor their activation phenotype. SCENITH ability to 
reveal global metabolic functions and determine 
complex and linked immune-phenotypes in rare 
cell subpopulations will contribute to the 
information needed for evaluating therapeutic 
responses or patient stratification. 

Introduction 
Energetic metabolism (EM) comprises a series of 
interconnected biochemical pathways capable of 
using energy rich molecules to produce ATP. In 
the presence of enough oxygen, cells can produce 
ATP either by oxidative phosphorylation 
(OXPHOS) and/or by performing glycolysis. 
Glycolytic metabolism in the presence of non-
limiting concentration of oxygen is called aerobic 
glycolysis and is characteristic of proliferating 

cells. Aerobic glycolytic metabolism not only 
supports proliferation but also cell survival in 
hypoxic conditions. Immune cells are specially 
adapted to migrate into peripheral tissues and 
change of microenvironment. Their energetic 
metabolism profile is known to correlate with the 
microanatomical localization, activation, 
proliferation or functional state(O’Sullivan et al., 
2019; Russell et al., 2019). Activation and 
proliferation drives the differentiation of long lived 
quiescent naïve into effector T cells. This process 
is tighly linked to a metabolic switch from 
OXPHOS to aerobic glycolysis(Pearce et al., 
2009; Roos and Loos, 1973). Interestingly, naïve 
cells re-circulate between the blood and lymph 
nodes while blood circulating effector cells need to 
reach peripheral tissues (i.e. infection site or 
tumors). Supporting the idea that metabolic profile 
is pre-adapted and is related to cell function, post-
mitotic blood immune cells whose function is to 
rapidly migrate into hypoxic/damaged tissues, 
such as circulating neutrophils and monocytes, 
are already engaged in aerobic glycolysis in the 
blood. Altogether, the current paradigm suggests 
that a particular metabolic profile of the cells in the 
blood and tissues is associated to their 
competence to migrate, proliferate and exert their 
effector functions in target tissues. However, due 
to technical limitations and the heterogeneity of 
cell types, it is not clear which subsets of immune 
cells rapidly adapt to changing environments or 
which have predefined metabolic profile. 
Competition for glucose within the tumor 
microenvironment influences cancer progression 
and the anti-tumoral immune response by 
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regulating EM in both tumoral cells and tumor-
infiltrating lymphocytes (TILs), consequently 
influencing their function(Chang et al., 2015). The 
presence of effector immune cells into target 
tissue has clinical relevance and is a well 
accepted predictive parameter to determine 
response to immunotherapy(Galon et al., 2006). 
The success of immunotherapies (e.g. checkpoint 
inhibitors) is restricted to a relatively small 
proportion of patients that require a functional and 
metabolically competent immune system to 
respond to treament(Antonia et al., 2018; Wolchok 
et al., 2017). Consequenly, the need of better and 
accessible tools for patient immuno-metabolic 
profiling as a strategy for stratification, and 
monitoring responses to immunotherapies is 
strongly needed. The metabolic profile of innate 
and adaptive immune cells correlates with the 
type of cytokines they produce , and from this 
point of view metabolic profiles represent a read-
out for functional states.  
Current methods to determine EM profiles can be 
classified in three groups. The first group 
epitomized by Seahorse® (Agilent technologies), 
uses metabolic inhibitors (i.e. 2-
DeoxyGlucose/”DG” and Oligomycin A/”O”) during 
monitoring of the extracellular acidification rate 
(ECAR), as well as oxygen consumption rate 
(OCR) of a large amount of cells in culture, to 
establish the dependency and metabolic 
capacities of the cells on different EM pathways. 
The second group, also a bulk measurement, 
quantifies the activity of enzymes implicated in 
particular metabolic pathways in fixed cells or 
lysates(Miller et al., 2017). Finally, the third group 
uses mass spectometry and mass-spectrometry 
imaging to measure the levels of different 
metabolites produced by EM pathways(Palmer et 
al., 2016). Very recently, CyTOF-based 
quantification of different metabolic enzymes was 
used in parallel to histology to correlate 
expression of metabolic enzymes with the 
microanatomical localization of mouse and human 
T cells(Ahl et al., 2020; Hartmann et al., 2020; 
Levine et al., 2020).  
Current methods need large numbers of highly 
purified cells(Zhang et al., 2012), and dedicated 
equipments, and thus cannot be applied to 
establish functional EM profiles of heterogenous 
and scarce living cell populations obtained from 
human samples or biopsies(Llufrio et al., 2018) 
(Table 1). Given the unpredictability of functional 
metabolism by phenotyping the levels of a 
relatively small subset of enzymes in different cell 
types, we focused on developing a method that 
functionally quantifies energetic metabolism. 

Approximatively half of the total energy that 
mammalian cells produce by degrading glucose, 
aminoacids and/or lipids is immediately consumed 
by the protein synthesis machinery(Buttgereit and 
Brand, 1995; Lindqvist et al., 2018; Schimmel, 
1993). The tremendous energetic cost associated 
with mRNA translation offers a methodological 
opportunity of determining the protein synthesis 
levels as a measure of global EM activity, and its 
response to environmental cues or different 
metabolic inhibitors. We took advantage of the 
drug puromycin, whose incorporation is a highly 
reliable readout for measuring protein synthesis 
levels(Andrews and Tata, 1971; Miyamoto-Sato et 
al., 2000; Nemoto et al., 1999; Wool and Kurihara, 
1967), combined to a novel anti-puromycin 
monoclonal antibody, to develop a reliable method 
to perform EM profiling with single cell level 
resolution based on protein synthesis intensity as 
read-out. We termed this method SCENITH, with 
reference to our previous SUnSET(Schmidt et al., 
2009) and SunRiSE(Argüello et al., 2018) 
methods for studying translation. SCENITH was 
used to deconvolve the complex energetics of 
blood T cells and human tumors-associated 
myeloid cells, with a much-needed resolution for 
analysing these highly heterogenous samples, 
from which the circuitry for metabolism, 
particularly amongst immune cell subsets, has 
remained inaccessible. 
 
Results 
Characterizing the energetic metabolism 
profile by monitoring changes in protein 
synthesis levels in response to metabolic 
inhibitors. 
To test whether the level of protein synthesis (PS) 
and the pool of ATP are tightly kinetically coupled, 
we measured in mouse embryonic fibroblasts 
(MEF), on the one hand ATP levels using the 
CellTiter-Glo® luminescence based system, and 
on the other hand PS levels via puromycin 
incorporation and staining, after blocking ATP 
production (Fig. 1a). To completely inhibit ATP 
production, we treated cells with a mix of inhibitors 
that block both glycolysis and oxidative 
phosphorylation (OXPHOS); 100mM 2-Deoxy-D-
Glucose (DG), 1μM FCCP and 1μM Oligomycin A 
(O) (Fig. 1a). To further optimize the signal to 
noise ratio of puromycin intracellular detection, we 
developed a novel monoclonal anti-puromycin 
antibody (clone R4743L-E8, Rat IgG2a) 
specifically adapted to intracellular flow cytometry. 
Both protein synthesis levels (Fig. 1b,d) and ATP 
levels (Fig. 1c) dropped within 5-10 minutes after 



Argüello RJ et al.   Single Cell Metabolism by SCENITH 

6 
January 12, 2020 

Main Tables 96 
Table 1. Comparative table of methods to profile metabolism. 97 

Method 
CyTOF (e.g. 
Met-Flow, 
scMEP) 

MSI Seahorse
®
 SCENITH™ 

Output Metabolic 
phenotype 

Metabolomic 
profile (unbiased) 

Metabolic 
capacities and 
dependencies 

Metabolic 
capacities and 
dependencies 

Functional profile of the 
cells (# of treatments)  NO NO YES (4) YES  (non-limited) 

Cell purification required NO NO YES NO 

Single cell resolution YES YES NO YES 

Phenotypic analysis YES NO NO YES  
Compatible with cell 

sorting NO NO NO YES
*
 

Ex vivo application YES YES NO YES 

Metabolic Readout 
Levels of 

markers (min 10 
channels) 

Metabolite 
levels 

Changes in 
extracellular pH 

and [O2] 

Changes in protein 
synthesis levels 
(one channel) 

Time (Hs) from sampling 
to profiling 0-1 0-1 24 0-1 

# cells required in 
subsets 500 200 1,000,000 2000 

Equipment needed CyTOF 
cytometer 

Any Imaging 
Mass cytometer Seahorse Analyser 

Any Flow 
cytometer#  

* Not shown 98 
# SCENITH has also the potential to be analyzed by CyTOF, MSI, Microscopy using heavy 99 
metal coupled and oligonucleotide labeled antibodies (not shown)  100 
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blocking ATP synthesis, with a strikingly similar 
slope, showing that changes in ATP levels and PS 
levels are tighly correlated (Fig. 1e; r 0.985; 
P<0.0001). To test the relationship between ATP 
consumption and translational and transcriptional 
activities, we treated cells with the same inhibitors 
to block de novo ATP synthesis, together with 
translation and/or transcription inhibitors. 
Altogether, our results confirmed that protein 
synthesis is one of the most energy consuming 
metabolic activities (Supplementary fig. 1), and 
most importantly, it represents a stable and 
reliable readout to evaluate rapidly the impact of 
metabolic pathways inhibition on the cell.  
As both ATP and PS levels are kinetically coupled, 
puromycin fluorescence (measuring PS) can act 
as a surrogate for energetic status in the context 
of flow cytometry. The principle of SCENITH is 
thus to incubate a given sample in parallel with 
specific inhibitors of known EM pathways. If a cell 
population is energetically dependent on a 
particular pathway, its ATP content will  
immediately drop, and so will its protein synthesis 
levels. The latter will be established using 
puromycin incorporation and its detection with 
fluorescent anti-puromycin antibody (Fig. 1f and 
Supplementary fig. 1b). SCENITH allows EM 
profiles to be measured in heterogenous cell 
populations at single cell resolution by combining 
cell identification and puromycilation detection by 
multiparametric flow cytometry (FCM) (Fig. 1g). 
Using PS levels, the level of glucose dependence 
(Gluc. Dep.) can be calculated to quantify the 
proportion of the PS, and therefore of ATP/GTP  
production, dependent on glucose oxidation (Fig. 
1f, see Materials and Methods). The mitochondrial 
dependence (Mitoc. Dep), namely the proportion 
of PS dependent on oxidative phosphorylation, 
can be similarly established. Two additional 
derived parameters, “Glycolytic capacity” (Glyc. 
Cap.) and “Fatty acids and amino acids oxidation 
capacity” (FAAO Cap.) can also be calculated. 
Glycolytic capacity is defined as the maximum 
capacity to sustain PS when mitochondrial 
OXPHOS is inhibited (Fig. 1f, see statistic in 
Materials and Methods section). Conversely, 
FAAO Capacity is defined as the capacity to use 
fatty acids and aminoacids as sources for ATP 
production in the mitochondria, when glucose 
oxidation is inhibited (Glycolysis and Glucose 
derived Acetyl-CoA by OXPHOS) (Fig. 1f and 
Supplementary fig. 1b). 
 
SCENITH recapitulates Seahorse® EM profiling 
of steady state and activated T cells.  

The metabolic switch of T cells to aerobic 
glycolysis upon activation was originally 
documented in the 1970s(Roos and Loos, 1973) 
and more recently confirmed using the Seahorse® 
technology (van der Windt et al., 2012; Van Der 
Windt et al., 2013). To benchmark our method, we 
monitored the variations in EM observed in 
isolated bulk human blood T cells at steady state 
or upon activation by Seahorse® in parallel to 
SCENITH (Fig. 2a). Upon activation, an increase 
in the glycolytic capacity of T cells was measured 
with both methods (Fig. 2b and 2c, respectively) in 
excellent agreement (correlation Spearman r 
squared 0.85, P<0.01) (Fig. 2d). We observed a 
significant decrease in the spare respiratory 
capacity in bulk T cells upon activation with 
Seahorse® (Supplementary fig. 2a and 2b). 
Interestingly, an increase in oxygen consumption 
rate (OCR) by Seahorse® , was paralleled with a 
strong increase in the global level of PS measured 
by SCENITH although to a larger extent (Fig. 2e 
and 2f, respectively). Overall, the EM profiles of T 
cells upon activation obtained by Seahorse® and 
by SCENITH were therefore very consistent. The 
level of translation (Fig. 2f) correlated with the 
global metabolic activity of the cells, and changes 
in the response to inhibitors confirmed the 
metabolic switch towards aerobic glycolysis that 
occurs upon T cell activation. However, SCENITH 
showed two main advantages over Seahorse® 

measurements. First, the magnitude of the 
change in the glycolytic capacity and the standard 
error of the measurements with SCENITH were 
superior (Fig. 1b vs 1c, 1e vs 1f). Second, 
SCENITH analysis was performed with 10 fold 
less T cells (1,2.105 in triplicates vs. 1,2.106 cells, 
respectively). Moreover, SCENITH could 
incorporate a full spectrum of T cell markers in the 
analysis allowing to study in parallel the different 
CD3+ T cells subpopulations present into the bulk 
sample (Fig. 2), encompassing naïve, memory 
and effector CD4+ or CD8+ T cells subsets. 
 
Metabolic deconvolution of blood T cell 
subsets by SCENITH identifies a memory CD8+ 
T cells subset constitutively displaying high 
glycolytic capacity. 
To expand upon the ability to deconvolve T cell 
subpopulations, we next applied SCENITH to 
mixed populations that due to heterogeneity are 
inaccessible to EM monitoring by Seahorse®. We 
took advantage of CD45RA, IL7RA (CD127), 
CCR7, CD45RO, CD57, PD1, and Perforin 
expression to identify and analyse the naïve and 
memory CD4+ and CD8+ T cell subsets present 
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Technology 

Figure 1. SCENITH design based on dynamic changes in protein synthesis levels upon 1 
blockade of different metabolic pathways. 2 

(A) Blocking ATP production and kinetics of ATP and Translation levels.  3 

(B) Visualization of protein synthesis after puro incorporation and staining with a new 4 
monoclonal anti-puro (clone R4743L-E8). Histogram PS level by flow cytometry in MEFs after 5 
blocking both mitochondrial respiration and glucose oxidation for different amounts of time. 6 

(C, D and E) Measurement in MEFs upon blocking ATP synthesis versus time of ATP levels 7 
(C), PS by flow cytometry (D) and correlation of both (E). Dot represents the means and bar 8 
the standard deviation (R=0.985, P<0.0001, N=3). 9 

(F) Schematic representation of a sample that contains three cell types with different 10 
metabolism profiles (Aerobic glycolysis, Glycolysis/OXPHOS, FAO and AAO/OXPHOS). 11 
Treating the mix of cells with specific drugs (DG or O) will affect each cell subset in a different 12 
way.  13 

(G) Examples of metabolic monitoring using SCENITH. The glucose dependence and FAO 14 
and AAO capacity; and the mitochondrial dependency and glycolytic capacity can be 15 
calculated from the MFI of puro in the different treatments following the formulas (see materials 16 
and methods). 17 

(H) Description of SCENITH procedure. Extract the sample, divide it and treat each with the 18 
inhibitors (e.g. DG, O, DG+O, H) and puro. After staining and flow cytometry, the profile of 19 
response of the different cells subsets is analyzed. The profile reveals the metabolic capacities 20 
and dependencies of the cells (i.e. high glucose dependence “pop 1”; and high glycolytic 21 
capacity profile “pop 2”). 22 

  23 
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in total human blood draws. Immunodetection of 
these nine markers yielded six phenotypically 
distinct clusters/subpopulations with different 
abundances (Fig. 3a and 3b). The metabolic 
profiles of non-activated naïve T cells (CD8 or 
CD4), as well as memory (EM and CM) CD4 and 
highly differentiated CD8 (HDE) showed a 
medium-high degree of mitochondrial 
dependence (Fig. 3c), consistet with what was 
previously reported on their metabolic 
activity(Pearce et al., 2009). In contrast, the less 
abundant cell subsets such as CD8 early effector 
memory (EEM) and Natural Killer (NK) cells (that 
co-purfied with T cells and represented just 5% of 
the cells) showed higher glycolytic capacity. To 
determine if similar metabolic trends are observed 
in other species and preparations, we performed 
SCENITH on resting and activated mouse splenic 
T cells (Supplementary fig. 3a and 3b) and human 
blood central memory CD4 T cell subsets 
(Supplementary fig. 3c), demonstrating a 
consistent switch towards high glycolytic capacity 
and high glucose dependence in both mouse and 
human T cells upon activation (Supplementary fig. 
3). During bulk analysis, naïve cells represented 
42%, (the majority out of 78%) of the T cells and 
thus likely dominate the EM monitoring performed 
by Seahorse® (Fig. 2e and Fig. 3c). Consequently 
Seahorse® measurements indicate a rather low 
“mean” glycolytic rate/capacity and high “mean” 
oxygen consumtion rate (Fig. 2b) and is thus in 
accordance with the metabolism of naïve T cells 
determined by SCENITH (Fig. 3c, 3d). However, 
the presence of CD8+ EEM that display high 
glycolytic capacity, but represent no more that 5% 
of the T cells present in the sample (2000 cells) 
remained completely masked during Seahorse® 
analysis. 
Another important feature of the multiparametric 
SCENITH resolutive power is the possibility to 
feature single cell behaviors according to their 
sensitivity to metabolic inhibitors independently of 
their phenotype. This allows to identify functional 
metabolic heterogeneity first, and to determine the 
phenotype or sort different cells afterwards. As a 
proof of concept, resting purified T cells were 
treated with Oligomycin to inhibit mitochondrial 
respiration prior to translation monitoring. The 
histogram plotting translation levels showed two T 
cell subpopulations, one with high and one with 
low levels of translation (Fig. 3d). The population 
that showed high level of translation upon 
mitochondrial inhibition were labeled as 
“Glycolytic” (Fig. 3d, in red) and the cells with 
blocked translation as “Mitochondrial dependent” 
(in, blue). As shown using t-distributed stochastic 

neighbor embedding (t-SNE), the phenotype of 
Glycolytic and Respiratory T cells recapitulated 
our previous results (Fig. 3a-c) and showed that 
the expression of CD45RA, mostly present in 
naïve T and NK cells, correlated well with 
“Mitochondrial dependence” (Fig. 3d). In 
conclusion, we found that SCENITH allows for 
both the measurement of the EM profile of known 
non-abundant cell subsets of interest, but also the 
sorting and identification of “unknown” cells with 
specific metabolic profile present within an 
heterogenous sample. 
 
Metabolic profiling of mouse and human 
myeloid cell subsets. 
Compared to T cell subsets, the metabolism 
profile of myeloid cell subsets from human and 
mouse tissue origins has been far less 
studied(Saha et al., 2017). Among myeloid cell 
subsets, dendritic cells (i.e. DC1, DC2, DC3 and 
pDCs) are non-abundant professional antigen 
presenting cells (APCs) which serve as sentinels 
for the immune system. Each subset expresses a 
particular set of microbial pattern recognition 
receptors and are specialized in activation of CD8+ 
(i.e. DC1), CD4+ (i.e. DC2 and DC3) T cells and 
antiviral cytokine production (pDCs). For instance, 
Lipopolysaccharide (LPS) detection by TLR4 on 
DC2 and DC3 promotes activation by triggering a 
series of signaling cascades resulting in changes 
in gene expression, in membrane traffic and in 
energetic metabolism(Amiel et al., 2012; Everts et 
al., 2012; Krawczyk et al., 2010). Dendritic cells 
patrol all tissues emanating from the blood stream 
where they represent a very small fraction of the 
PBMC, making the isolation of millions of DC1, 
DC2 or pDC from the same donor very 
challenging. We therefore decided to use 
SCENITH to perform EM profiling of blood myeloid 
cell subsets from heathly donors as well as of 
mouse bone marrow- and spleen-derived DCs 
stimulated or not to generate a detailed metabolic 
atlas of the myeloid cell populations present in 
mouse or human blood24. 
Following deconvolution, we first ranked myeloid 
cells by glucose dependency, finding that classical 
monocytes (Mono1, CD14+CD16-) were the most 
glucose dependent, whereas the DC precursors 
(DC5) were the least (Fig. 4a). These populations 
then lay near the extremes of mitochondrial 
dependence, where DC5 display the highest and 
Mono1 the lowest. However, we also observed 
examples of cell subsets (e.g. pDC and Mono2) 
that were highly glucose dependent as well as 
mitochondrial dependent and had only moderate 
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Figure 2. Parallel Seahorse and SCENITH metabolic analysis of resting and activated T 24 
cells. 25 

(A) Scheme of the experiment for analysis of resting and activated T cells.  26 

(B and C) Metabolic profile of T cells from three healthy donors (P1, P2, P3) analyzed with 27 
Seahorse (B) and SCENITH (C). ECAR and translation levels of non-activated and activated 28 
T cells (P1) and glycolytic capacity from both method is shown (*P<0.05; **P<0.01, 29 
***P<0.001, N=3 each in triplicates). 30 

(D) Correlation between the changes in glycolytic capacity of steady state and activated T 31 
cells from three donors measured by Seahorse and SCENITH (Pearson r=0,92; R2=0,85; 32 
P<0.01, N=3). 33 

(E) Basal Oxygen Consumption Rate (OCR) in non-activated (non-Act) and activated T cells. 34 
Each bar represents the mean of P1, P2, and P3 (in triplicates).  35 

(F) Basal translation levels (anti-Puro gMFI) in non-activated (non-Act) and activated T cells 36 
(aCD3/CD28). Bars represent the mean of P1, P2, and P3. 37 

(G) SCENITH metabolic profile of whole blood directly treated with inhibitors with or without 38 
pre-incubation (1:4 V/V) in DMEM 10% FCS during 3hs. Data represents pooled whole blood 39 
from three mice (in duplicates) from three independent experiments. Two-way ANOVA, 40 
multiple comparisons. 41 
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glycolytic capacity. In contrast, some (DC1 and 
DC2) displayed relatively high glycolytic capacity 
and moderate glucose dependency, suggesting a 
certain degree of metabolic plasticity. Cells ranked 
in opposite order for FAAO capacity compared to 
glucose dependency, consistent with the idea that 
cells with low glucose dependence can sustain 
translation and energy production by free-fatty 
and amino acids oxidation. 
To test whether a rapid metabolic switch occurs 
upon TLR4 activation in human myeloid cells, we 
used an antibody panel for analyzing Mono1, 
Mono2, DC1, DC2 and pDCs in PBMCs treated 
with LPS. Most subsets did change their metabolic 
profile, while Mono1 maintained their glycolytic 
profile but increased their global level of 
translation (Supplementary fig. 4a). The only 
subset that changed its metabolic profile were the 
DC1 that showed a mild increase in glucose 
dependence and a moderate decrease in 
mitochondrial dependence (Supplementary fig. 
4a). 
To gain insight into the metabolic profile of mouse 
DC populations, we analyzed the metabolism 
profile of mouse bone marrow-derived DC1, DC2 
and pDC (FLT3L-BMDC) at steady state and upon 
activation with LPS (Fig. 4b). In accordance to 
what was observed in steady state human blood 
DCs, mouse DC2 subset showed the highest 
glycolytic capacity, followed by DC1 and pDC. 
While Glucose dependence was relatively high in 
DC1 and DC2 from human and mouse (40-55% 
vs. 80-100%, respectively), an important 
difference was observed in the glucose 
dependency of mouse versus human pDCs (15% 
vs 60%). LPS treatment shifted EM profile towards 
lower mitochondrial dependence of DC1 and DC2. 
However only DC2, showed an increased global 
level of protein synthesis, probably reflecting the 
abundant TLR4 expression in this DC subset.. 
Considering that we analyzed DC isolated from 
human blood and derived in-vitro from mouse 
bone marrow, SCENITH EM profiles are 
surprisingly consistant. These results confirm that 
SCENITH allows to identify different cell 
populations sharing similar EM profile and that EM 
in DCs varies according to their state of activation. 

 

Profiling the metabolic state of human tumor-
associated myeloid cells.  
Immunotherapies are a game changer in oncology 
yet only a fraction of patients shows complete 
immune-mediated rejection of the tumor. The 

variations observed in patients responses to 
treatment have created a strong need for 
understanding the functional state of tumor-
associated immune cells (immunoprofiling)(Galon 
et al., 2006). We thus used SCENITH to perform 
paralleled phenotypic and metabolic profiling of 
human tumor samples, and investigate the 
heterogeity of immune cell subsets by comparing 
tumors of diverse origins with tumor-free adjacent 
tissue. We analyzed PBMCs from healthy donors, 
explanted meningioma, brain metastasis 
(originated from a breast cancer), as well as renal 
carcinoma tumors and renal juxtatumoral tissue. 
In the case of renal cancer, both SCENITH and 
single cell RNA seq analysis were performed in 
parallel on the same sample.  
We observed 8 different myeloid populations in 
meningioma and 6 different subset in renal 
carcinoma (Fig. 5a and 5b, respectively; 
Supplementary fig. 5a and 5b)), that were all 
profiled by SCENITH (Fig. 5c). Upon clustering of 
the different cell subsets based on EM profiling, 
two groups emerged, a “Glycolytic cluster” and a 
“Respiratory cluster” (Fig. 5c and Supplementary 
fig. 5c). Mono1 and Neutrophils displayed 
glycolytic metabolism profiles in all blood samples 
and tumors tested (Fig. 5d). In contrast, Mono2, 
DC1 and DC2 showed relatively high glycolytic 
capacity when isolated from kidney tumor and 
juxtatumoral tissues, while these subsets showed 
high respiratory metabolism profile in the two brain 
tumors. Conversely, tumor-associated 
macrophages (TAM), showed high mitochondrial 
dependence, while juxta-tumoral macrophages 
displayed high glycolytic capacity (Fig. 5d), 
suggesting that tumor microenvironment modifies 
TAM EM. The decrease of glycolytic capacity in 
TAM as compared to juxta-tumoral macrophages 
was previously associated with increased 
immunosuppression in the tumor environment, 
tumor progression via both nutritional and 
immunological cues, and poor patient 
survival(Vitale et al., 2019). These results 
demonstrate again the analytical capacity and 
descriminative power of SCENITH, that reveals 
that in addition to the cancer type, the tumor 
anatomical origin could influence the metabolism 
of immune subsets, introducing an additional layer 
of heterogeneity in the tumor environment.  

 

Linking scRNA-seq and energetic metabolism 
profile in tumor-associated myeloid cells. 
We decided to link the descriminative power of 
SCENITH with single cell RNA-seq (scRNAseq) to 
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Figure 3. Metabolism profile of resting human blood T cells by SCENITH identifies 43 
different metabolic profile of human T cells subsets. 44 

(A) SCENITH analysis pipeline of T cells purified from human blood (95% pure). 45 
Dimensionality reduction (t-SNE) based on phenotypic markers is performed to the 46 
concatenated treated cells (Co, DG, O, and DGO). 47 

(B) Heatmap showing the level of expression of each marker (gMFI) in each cluster/subset 48 
from the t-SNE after dimensionality reduction. 49 

(C) Metabolic profile of the T cells subsets identified (Naïve CD4 and CD8 T cells in green, 50 
memory CD4 and HDE CD8 T cells in orange, EEM CD8 T cells in red and NK cells in blue) 51 
after SCENITH analysis. Representative translation level (anti-Puro gMFI) (P1) is shown 52 
(N=3). Black line represents background level obtained after DG+O treatment. 53 

(D) Two distinct metabolic profiles in human blood T cells after O treatment (left panel) 54 
revealing glycolytic and mitochondrial dependent T cells subsets. Histogram show the level of 55 
translation in all T cells (light grey line) upon mitochondrial inhibition, indicating the presence 56 
of “glycolytic” cells subsets (in red) and “mitochondrial dependent” cells (in blue). Gating them 57 
into the t-SNE plot (right panel) to identify the phenotype of “glycolytic” and “mitochondrial 58 
dependent” cells (blue). The marker of antigen experience CD45RA, lost in cells that have 59 
been previously exposed to TCR stimulations correlates with the metabolic profile. 60 

(E) Metabolic changes induced by short-term incubation of blood with cell culture media. 61 
Metabolic parameters of cell types when blood is pre-incubated with DMEM 10% FCS (0, or 62 
3hs) or directly incubated with the inhibitors (i.e. Co, DG, O, DGO or Harringtonine) and puro. 63 
Data from pooled whole blood from three mice (in duplicates) from three independent 64 
experiments is shown (N=3). Statistical significance between both conditions T-test (** 65 
p<0.005). 66 
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potential clinical interest. The activation of human 
and mouse myeloid cells with LPS, showed that 
only cells expressing the LPS receptor/co-
receptor (TLR4, CD14) show an increase in the 
global level of protein synthesis (human Mono1 
and mouse DC2). In contrast, DC1 that do not 
respond to LPS, also showed a change in their 
metabolic profile, suggesting that bystander 
activation of DCs by Mono1 or DC2 derived 
cytokines can induce a change in EM profile, 
independently of TLR triggering.  
Importantly, SCENITH can establish the metabolic 
profile of very scarce cells, as exemplified by the 
analysis of early effector T cells that represent 
around 5% of the total T cells isolated from blood 
(500 cells), thus representing a gain of sensitivity 
of aproximatively 800 fold compared to 
Seahorse® measurements. This gain was even 
more dramatic, when the metabolism profile of DC 
cell subsets was established from human tumor 
biopsies, in which they constituted aproximately 
0,5% of the myeloid cell population. These results 
demonstrate the analytical capacity and 
discriminative power of SCENITH and its potential 
in analysing how the anatomical and tissue 
context could influence energetic metabolism of 
immune cell subsets, thus introducing an 
additional layer of heterogeneity in the healthy 
tissues and tumor environment. Thus, SCENITH 
is a powerful technique that: (1) allows to rapidly 
establish metabolic profile of several populations 
of cells in an heteregenous sample by flow 
cytometry, (2) does not require a large amount of 
cells and thus avoids their expansion in culture 
and (3) can be combined with scRNA-seq to 
establish a full map of EM profile of cells. Given 
the direct relationship between EM and the 
functionality of lymphoid effector cells and myeloid 
cells, SCENITH analysis could be used to define 
the ‘immune EM contexture’ and complement the 
establishment of an immunoscore that’s defines 
immune fitness of tumours and predicts and 
stratifies patients for tailored therapies, aiming at 
manipulating metabolic pathways to improve anti-
tumoral immune effector functions. 
 
 
Materials and Methods 

Cells and Cell Culture 
Mouse splenocytes from WT C57BL/6J (Jackson) 
or PERK KO C57BL/6J background mice (Zhang 
et al., 2002) were cultured in DMEM containing 
5% of Fetal Calf Serum (FCS) and 50 μM of 2-

Mercaptoethanol (Mouse cells culture media, 
MCCM) at 37 ºC 5% of CO2. GM-CSF BM-derived 
dendritic cells (GM-bmDCs) were differentiated in 
vitro from the bone marrow of 6–8-week-old male 
mice, using GM-CSF, produced by J558L cells. 
Bone marrow progenitors were plated at 
0.8.106 cells/ml, 5 ml/well in 6-well plates, and 
cultivated with RPMI (GIBCO), 5% FCS (Sigma-
Aldrich), 20 µg/ml gentamycin (Sigma-Aldrich), 
50 µM β-mercaptoethanol (VWR), and GM-CSF. 
The medium was replaced every 2 days; BM-
derived DCs were used for experiments at day 6. 
Similarly, FLT3L BM-derived dendritic cells 
(FLT3L-bmDCs) were differentiated by adding 
FLT3L to RPMI, 10% of Fetal Calf Serum (FCS) 
and 50 μM of 2-Mercaptoethanol (Mouse cells 
culture media, MCCM) during 6 days at 37 ºC 5% 
of CO2. To obtain splenocytes, eight weeks old 
wild type C57BL/6J mice were sacrificed by 
cervical dislocation and splenectomized. Single 
cells suspentions from the spleens were 
generated and cultured in MCCM as previously 
described. Mononuclear cell enriched from blood 
of healthy donors was submitted to Ficoll-paque 
plus (PBL Biomedical Laboratories). PBMCs and 
Whole blood were cultured in the absense (non 
stimulated) or in the presence of LPS for 4hs. 
Immune cell stimulations were performed in the 
absence (Control) or presence of 0,1 μg/ml of 
extrapure Lipopolysacharide (Invivogen LPS, Cat. 
tlrl-3pelps), 10 μg/ml Poly I:C (Invivogen, Cat. No. 
tlrl-pic), CpG-A ODN 2216 (Invivogen, Cat. No. tlrl-
2216) or PMA (5 ng/ml; Sigma, Cat. no. P-8139) 
and ionomycin (500 ng/ml; Sigma, cat. no. I-0634) 
over night for T cell stimulations and 4 hours for 
Dendritic cells. T cells from different human 
donors (P1, P2, P3) were isolated using the 
RosetteSep™ negative isolation method and 
activated (using BD Human T cell activator beads 
coated with anti-CD3 and anti-CD28) or not. 

ATP measurement 
2.104 MEFs were seeded in 100ul of 5% FCS 
DMEM culture media ON in opaque 96 well plates. 
Cells were incubated with the inhibitors for the 
times indicated in the Figure. After, 100ul of Cell 
titer-Glo luminiscence ATP reconstituted buffer 
and substrate (Promega, Cat. No. G7570) was 
added to each well and Luminiscence was 
measured after 10 minutes following manufacturer 
instructions. A standard curve with ATP was 
performed using the same kit and following 
manufacturer instructions. 

Metabolic flux analysis (Seahorse®) 
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Figure 4. Metabolic profile of human blood DCs and monocytes, and mouse bone 68 
marrow derived DCs using SCENITH. 69 

(A) Metabolic profile of human blood monocytes and DC subsets obtained by SCENITH. (N=5 70 
independent healthy donors). Statistical significance two-way ANOVA comparing all columns 71 
was performed (* p<0.05; ** p<0.005; ****p<0.0001). The pDC, the Mono2 or Mono1, showed 72 
statistically significant differences against DC1 or DC5. 73 

(B) Metabolic profile of mouse bone marrow derived DCs (FLT3L-DC) obtained by SCENITH 74 
(N=3) in non-treated vs LPS treated cells two-way ANOVA * p<0.05; ** p<0.005; ****p<0.0001. 75 

(C) Metabolic profile of blood monocytes from human (N=4) or mouse (N=9, 3 mice pooled, in 76 
duplicates, three independent experiments). Statistical significance between human and 77 
mouse monocytes by T-test (* p<0.05). 78 
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support our results regarding the cellular 
complexity of the tumor environment and correlate 
EM profiling with gene expression. We compared 
in each individual population, the functional EM 
profile obtained by SCENITH with a metabolic 
gene expression pattern obtained by scRNAseq. 
We first identified expression signatures of 
specific glycolytic and respiratory genes that 
correlated with the functional metabolism profiles 
of different blood myeloid cells (Supplementary 
Fig. 5d). We then tested the expression of these 
glycolytic and respiratory metabolic genes (mRNA 
levels) in the different tumor-associated myeloid 
populations (CD45+Lin-HLA-DR+). Sorted cells 
from the renal carcinoma and juxtatumoral tissue 
were subjected to scRNAseq using 10X 
Genomics Chromium paired with deep 
sequencing (Fig. 5e and Supplementary Fig. 5e). 
Analysis of 12,801 cells for the tumor and 2,080 
for the juxta tumoral tissue yielded 6 and 5 high 
quality population clusters respectively. To 
rigourously identify the myeloid populations, we 
verified the expression of characteristic markers of 
these populations(Villani et al., 2017) and 
assigned cellular identities in the t-SNE 
representations (Supplementary Fig. 5e). We 
focused on 5 monocytes and macrophages 
clusters expressing MAFB and/or CSF1R, that 
were present both in tumor and juxta-tumoral 
tissue (Supplementary Fig. 5f). Expression of 
classical surface markers like FCGR3A/CD16 and 
CD14 (Supplementary Fig. 5g), confirmed that 
clusters 0 and 1 represent CD14+CD16- classical 
monocytes. Cluster 2 represents CD14-CD16+ 
non classical monocytes (Mono2), while co-
expression of CD14 and CD16 for the clusters 3 
and 4 corresponds to macrophage-like 
populations. We performed differential expression 
(DE) unsupervised analysis for each of the 
myeloid cluster versus all the other clusters 
identified in the tumor bed and generated 
heatmaps for the top 5 most differentially 
expressed genes in the tumor (Supplementary 
Fig. 5h) and the juxta tumoral tissue 
(Supplementary Fig. 5h, right). In addition to 
highlighting key genes that contributed to the 
unbiased segregation of these populations in both 
tissue, we confirmed the high expression of 
macrophage specific genes by cluster 3 and 4, 
such as APOE, C1QC and RGS1. We next 
overlayed on the t-SNE plots our two EM gene 
signatures. Strongly correlating with SCENITH 
profiles, monocytes clusters (0,1,2) presented an 
enrichement in glycolytic genes signature both in 
tumor and juxta tumoral tissue. Conversely 
macrophages (cluster 3) showed high expression 
of the respiratory signature in the tumor, while, as 

predicted by SCENITH, this was not detectable in 
juxta-tumoral tissue (Fig. 5e). Monocytes-derived 
dendritic cells differently from macrophages, 
presented an enrichment in glycolytic genes 
signature both in tumor and juxta tumoral tissue 
(Supplementary Fig. 5i). 
Altogether, these results indicate that tumor 
micro-environment specifically modifies functional 
EM of Macrophages by durably affecting 
metabolic gene expression. By correlating the 
results of scRNAseq analysis and SCENITH 
profiling on different blood myeloid cell subsets 
(Fig. 5f), we identify a functional gene signature 
(Supplementary Fig. 5d) that can be used to 
metabolically profile a variety of cell types and 
tissues, using gene expression. 
 
Discussion 
SCENITH is a flow cytometry-based method to 
establish simultaneously the phenotypic and 
energetic metabolism profiles of multiple cell types 
in parallel. The method is rapid, highly sensitive 
and consistent with other established techniques, 
including Seahorse®. As the treatments with 
different inhibitory drugs are performed in parallel, 
SCENITH can be used to monitor cellular 
responses to a variety of metabolites, inhibitory 
compounds and their combinations. Given that 
flow cytometers are available in most research 
institutes and hospitals, SCENITH represents an 
accessible method to perform functional EM 
profiling. Compared to other methods (see Table 
1), its sensitivity, accessibility, single cell 
resolution, stability of the readout, short 
experiment time, compatibility with fixation and 
sorting, makes of SCENITH, an unrivalled 
aproach for studying energy metabolism in tissues 
and complex populations.  
The resolutive power of SCENITH highlighted 
important variations amongst subsets of the same 
cell population. During our analysis of human 
blood myeloid subsets, we monitored myeloid 
subpopulations that are known to be precursors of 
DC1, pDC and DC3. The precursor of DC1 and 
pDC, called DC5, showed an EM with 
intermediate characteristics between DC1 and 
pDC, that are both metabolically polarized. Mono1 
are precursors of DC3 and even if the metabolic 
profile is similar, Mono1 EM is more glycolytic. Our 
results suggest that changes in metabolism is 
embedded in the myeloid differentiation program 
and indicate that modulating metabolism in 
dendritic cells precursors might influence the 
generation of different dendritic cells subsets with 
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Figure 5. Paralleled SCENITH and scRNAseq in human tumor and juxta-tumoral 80 
samples identifies conserved metabolic profiles.  81 

(A and B) Myeloid subsets observed in the human meningioma tumor sample (A) and Renal 82 
carcinoma (B). Myeloid cells gated on CD45+/CD3-CD20-CD19-CD56-/Live-dead-/singlets. 83 
Number in the t-SNE represents the percentage of the population. 84 

(C) Heatmap of the metabolic profile (columns) of each myeloid cell subset from each type of 85 
tissue (rows). Unsupervised hierarchal clustering of subsets by metabolic profile identifies 86 
respiratory (blue bar) and glycolytic (red bar) clusters. 87 

(D) Reordering of the rows by cell type based on (B) to identify changes in metabolism profile 88 
in the same cell subset in the blood, the tumors and juxta-tumoral tissue. 89 

(E) Clusters of myeloid cells identified in the renal carcinoma and juxta-tumoral tissue by 90 
scRNAseq (left panel). Expression of glycolytic and respiratory gene signatures in all cells 91 
extracted from the tumor. Summary of the results obtained by SCENITH and scRNAseq in 92 
tumor and juxta-tumoral myeloid cells. Populations named with numbers in the t-SNE and 93 
described in table. 94 

  95 
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OCR and ECAR were measured with the XF24 
Extracellular Flux Analyzer (Seahorse 
Bioscience). 4.105 cells with αCD3/αCD28 beads 
or not, were placed in triplicates in XF medium 
(nonbuffered Dulbecco’s modified Eagle’s 
medium containing 2.5 mM glucose, 2 mM L-
glutamine, and 1 mM sodium pyruvate) and 
monitored 25 min under basal conditions and in 
response to 10mM Glucose, 1 μM oligomycin, 100 
mM 2-Deoxy-Glucose. Glycolytic capacity was 
measured by the difference between ECAR level 
after add oligomycin and before add glucose. 
OCR, ECAR and SRC parameters was analyzed 
and extract from Agilent Seahorse Wave Desktop 
software. Glycolytic capacity was obtained by the 
difference between ECAR level after add 
Oligomycin and before add Glucose. 

SCENITH  
Cells were plated at 1.106 cells/ml, 0,5 ml/well in 
48-well plates. Experimental duplicates/triplicates 
were performed in all conditions. After 
differentiation, activation or harvesting of human 
of cells, wells were treated during 30 minutes with 
Control, 2-Deoxy-D-Glucose (DG, final 
concentration 100mM; Sigma-Aldrich Cat. No. 
D6134), Oligomycin (Oligo, final concentration 
1μM; Sigma-Aldrich Cat. No.75351), or a 
combination of the drugs at the final 
concentrations before mentioned. As negative 
control, the translation initiation inhibitor 
Harringtonine was added 15 minutes before 
addition of Puromycin (Harringtonine, 2 μg/ml; 
Abcam, cat. ab141941). Puromycin (Puro, final 
concentration 10 μg/ml; Sigma-Aldrich, Cat. No. 
P7255) is added during the last 15 minutes of the 
metabolic inhibitors treatment. After puro 
treatment, cells were washed in cold PBS and 
stained with a combination of Fc receptors 
blockade and fluorescent cell viability marker, 
then primary conjugated antibodies against 
different surface markers (see FACS material and 
methods) during 30 minutes at 4ºC in PBS 1X 5% 
FCS, 2mM EDTA (FACS wash buffer). After 
washing with FACS wash buffer, cells were fixed 
and permeabilized using BD Cytofix/Cytoperm™ 
(Catalog No. 554714) following manufacturer 
instructions. Intracellular staining of Puro using 
our fluorescently labeled anti-Puro monoclonal 
antibody was performed by incubating cells during 
1 hour (1:800, Clone R4743L-E8, in house 
produced and conjugated with Alexa Fluor 647, to 
obtain 10 times better signal to noise ratio than 
commercially available monoclonal antibodies) at 
4ºC diluted in Permwash. For SCENITH 
troubleshooting see Table 2.  

Patients and samples.  
The renal carcinoma patient enrolled in this study 
provided written and informed consent to tissue 
collection under a University of California, San 
Francisco (UCSF) institutional review board (IRB)-
approved protocol (UCSF Committee on Human 
Research (CHR) no. 13-12246). The meningioma 
and brain meastasis patients enroled in this study 
provided written and informed consent in 
accordance with institutional, national guidelines 
and the Declaration of Helsinki. This protocol was 
approved by institutional review board (AP-HM 
CRB-TBM tumor bank: authorization number AC-
2018-31053, B-0033-00097). 

Processing of and mouse solid tumors 
SCENITH  
0,2-0,4 grams of solid tumor tissue was partially 
dissociated using chirurgical scissors or tissue 
chopper (McIlwain Tissue Chopper® Standard 
plate) to generate “tumor explant suspention”. 
Tissue explants suspention, containing tissue 
cubes of approximately 400μm of cross section, 
were put in suspention in complete RPMI media 
and incubated directly with control or metabolic 
inhibitors, and with Puromycin following the 
SCENITH protocol. Next, tumor explants were 
dissociated using Tissue Liberase and DNAseI 
with the help of a Gentle Macs (Miltenyi) following 
manufacturers instructions. Cell suspentions were 
washed, counted and 2-5.106 total cells were seed 
in triplicates before proceeding with lived dead 
and FC block staining. Next, cells were stained for 
surface makers, fixed and permeabilized 
(ThermoFisher, FOXP3 fixation kit) and stained 
for nuclear and cytoplasmic markers as 
mentioned above.  

Human single cell RNA-sequencing 
Live CD3-CD19/20-CD56- cells were sorted from 
renal carcinoma tumor and juxta tumoral tissue 
using a BD FACSAria Fusion. After sorting, cells 
were pelleted and resuspended at 1.103 cells/μl in 
0.04%BSA/PBA and loaded onto the Chromium 
Controller (10X Genomics). Samples were 
processed for single-cell encapsulation and cDNA 
library generation using the Chromium Single Cell 
3’ v2 Reagent Kits (10X Genomics). The library 
was subsequently sequenced on an Illumina 
HiSeq 4000 (Illumina). 

Single cell data processing 
Sequencing data was processed using 10X 
Genomics Cell Ranger V1.2 pipeline. The Cell 
Ranger subroutine mkfastq converted raw, 
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Illumina bcl files to fastqs which were then passed 
to Cell Ranger’s count, which aligned all reads 
using the aligner STAR (Dobin et al., 2013)ref 
against GRCh38 genomes for human cells. After 
filtering reads with redundant unique molecular 
identifiers (UMI), count generated a final gene-
cellular barcode matrix. Both mkfastq and count 
were run with default parameters. 

Cellular Identification and Clustering 
For each sample, the gene - barcode matrix was 
passed to the R (v. 3.6.0) software package 
Seurat(Satija et al., 2015) 
(http://satijalab.org/seurat) (v3.1.1) for all 
downstream analyses. We then filtered on cells 
that expressed a minimum of 200 genes and 
required that all genes be expressed in at least 3 
cells. We also removed cells that contained > 5% 
reads associated with cell cycle genes(Kowalczyk 
et al., 2015; Macosko et al., 2015). Count data 
was then log2 transformed and scaled using each 
cell’s proportion of cell cycle genes as a nuisance 
factor (implemented in Seurat’s ScaleData 
function) to correct for any remaining cell cycle 
effect in downstream clustering and differential 
expression analyses. For each sample, principal 
component (PC) analysis was performed on a set 
of highly variable genes defined by Seurat’s 
FindVariableGenes function. Genes associated 
with the resulting PCs (chosen by visual 
inspection of scree plots) were then used for 
graph-based cluster identification and subsequent 
dimensionality reduction using t-distributed 
stochastic neighbor embedding (tSNE). Cluster-
based marker identification and differential 
expression were performed using Seurat’s 
FindAllMarkers for all between-cluster 
comparisons. 

Flow cytometry 
Flow cytometry was conducted using BD 
Symphony and BD LSR Fortessa X-20 machine 
(BD Biosciences™) and data were analyzed with 
FlowJo (Tree Star™) or FLOWR-software 
(Guillaume VOISSINE, 
https://github.com/VoisinneG/flowR). The 
antibodies used to stain mouse splenocytes were 
anti-Puro-Clone R4743L-E8, rat IgG2A in house 
produced and (conjugated with Alexa Fluor 647 or 
Alexa-Fluor 488), anti-Ki67 PE-eFluor-610 
(eBioscience™, Catalog No. 61-5698-82) CD4-
APC-eF780 (eBioscience™, Catalog No. 47-
0042-82), CD8-APC (eBioscience™, Catalog No. 
17-0081-83), CD80-PercPCy5.5 (Biolegend™, 
Catalog No. 104722), anti-B220-BV421 
(Biolegend™, Catalog No. 103251), anti-MHC-II-

AF700 (eBioscience™, Catalog No. 56-5321-82), 
LIVE/DEAD™ Fixable Aqua Dead Cell Stain 
(Invitrogen™, Catalog No. L34957). The following 
anti-Human antigens antibodies were used for 
staining whole blood and PBMCs upon SCENITH 
protocol application. Alexa Fluor-488 Mouse Anti-
Human Axl (Clone 108724, R&D Biosystems, Cat. 
No. FAB154G), BUV395 Mouse Anti-Human 
CD11c (Clone B-ly6, BD Bioscience, Cat. No. 
563787), BUV737 Mouse Anti-Human CD86 
(Clone FUN-1, BD Bioscience, Cat. No. 564428), 
BV510 Mouse Anti-Human CD19 (Clone HIB19, 
BD Bioscience, Cat. No. 740164), BV510 Mouse 
Anti-Human CD3 (Clone HIT3a, BD Bioscience, 
Cat. No. 564713), BV510 Mouse Anti-Human 
CD56 (Clone B159, BD Bioscience, Cat. No. 
740171), BV605 Anti-Human HLA-DR (Clone 
L243, BioLegend, Cat. No. BLE307640), BV650 
Mouse Anti-Human CD16 (Clone 3G8, BD 
Bioscience, Cat. No. 563692), BV711 Mouse Anti-
Human CD14 (Clone M5E2, BD bioscience, Cat. 
No. 740773), BV785 Mouse Anti-Human CD45RA 
(Clone HI100, BioLegend , Cat. No. BLE304140), 
Live Dead Fixable Aqua Dead Cell Stain Kit (Life 
Technologies, Cat. No. L34957), PE Rat Anti-
Human Clec9A/CD370 (Clone 3A4, BD 
Bioscience, Cat. No. 563488), PE-Cy7 Mouse 
Anti-Human CD22 (Clone HIB22, BD Bioscience, 
Cat. No. 563941), AF488 Mouse Anti-Human 
CD38 (Clone HIT-2, BioLegend, Cat. No. 
BLE303512). 

Animal studies 
Wild type C57BL/6 mice were purchased from 
Charles River and maintained in the animal facility 
of CIML under specific pathogen-free conditions. 
This study was carried out in strict accordance 
with the recommendations in the Guide for the 
Care and Use of Laboratory Animals the French 
Ministry of Agriculture and of the European Union. 
Animals were housed in the CIML animal facilities 
accredited by the French Ministry of Agriculture to 
perform experiments on alive mice. All animal 
experiments were approved by Direction 
Départementale des Services Vétérinaires des 
Bouches du Rhône (Approval number A13-543). 
All efforts were made to minimize animal suffering.  

Statistical analysis 
Statistical analysis was performed with GraphPad 
Prism software. When several conditions were to 
compare, we performed a one-way ANOVA, 
followed by Tukey range test to assess the 
significance among pairs of conditions. When only 
two conditions were to test, we performed 
Student’s t-test or Welch t-test, according the 
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validity of homoscedasticity hypothesis (* P<0.05, 
** P<0.01, *** P<0.005). 

Calculation and meaning of SCENITH derived 
parameters 
To quantify the different energetic metabolism 
parameters that constitute the metabolic profile of 
a cell, such as pathways dependency, we used 
simple algorithms that quantifiy the relative impact 
of inhibiting a given pathway compared to a 
complete inhibition of ATP synthesis (Fig. 1f). 
While SCENITH allow the use of any combination 
of metabolic or signalling inhibitors, herein we 
focused on inhibitors of glycolysis and of 
mitochondrial respiration to derive metabolic 
parameters. The percentual of glucose 
dependence (Gluc. Dep.) quantifies how much the 
translation levels are dependent on glucose 
oxidation. Gluc. Dep. is calculated as the 
difference between PS levels in 2-Deoxy-D-
Glucose (DG) treated cells compared to control 
(Co), divided by the difference in PS upon 
complete inhibition of ATP synthesis (DG, FCCP 
and Oligomycin A, combined; treatment Z) 
compared to control cells (Fig. 1f). In a similar 
fashion, percentual mitochondrial dependence 
(Mitoc. Dep) quantifies how much translation is 
dependent on oxydative phosphorylation. Mitoc. 
Dep. is defined as the difference in PS levels in 
Oligomycin A (“O”, mitochondrial inhibitor) treated 

cells compared to control relative to the decreased 
in PS levels upon full inhibition of ATP synthesis 
inhibition (treatment Z) also compared to control 
cells (Fig. 1f). Two additional derived parameters, 
“Glycolytic capacity” (Glyc. Cap.) and “Fatty acids 
and amino acids oxidation capacity” (FAAO Cap.) 
were also calculated. Glycolytic capacity is 
defined as the maximum capacity to sustain 
protein synthesis levels when mitochondrial 
OXPHOS is inhibited (Fig. 1f, see statistic in 
Materials and Methods section). Converserly, 
FAAO Capacity is defined as the capacity to use 
fatty acids and aminoacids as sources for ATP 
production in the mitochondria when glucose 
oxidation is inhibited (Glycolysis and Glucose 
derived Acetyl-CoA by OXPHOS) (Fig. 1f and 
Supplementary fig. 1b). While the total level of 
translation correlates with the global metabolic 
activity of the cells, the dependency parameters 
underline essential cellular pathways that cannot 
be compensated, while “capacity”; as the inverse 
of dependency, shows the maximun 
compensatory capacity of a subpopulation of cells 
to exploit alternative pathway/s when a particular 
one is inhibited (Fig. 1f and Supplemenary Fig. 
1c). 
For standard deviation calculation of SCENITH, 
we followed the propagation of error that is 
required when the means of means are used into 
a formula:  

For error calculation: 
Co= GeoMFI of anti-Puromycin-Fluorochrome upon Control treatment  

DG= GeoMFI of anti-Puromycin-Fluorochrome upon 2-Deoxy-D-Glucose treatment 

O= GeoMFI of anti-Puromycin-Fluorochrome upon Oligomycin A treatment  

Z= GeoMFI of anti-Puromycin-Fluorochrome upon DG+O treatment 
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(𝐶𝐶𝐶𝐶−𝑍𝑍)2

�
2

× 𝑆𝑆𝐷𝐷𝐶𝐶𝐶𝐶2� + ��� 100 
𝐶𝐶𝐶𝐶−𝑍𝑍

�
2

× 𝑆𝑆𝐷𝐷𝑂𝑂2� + ���100 (𝐷𝐷𝐺𝐺−𝐶𝐶𝐶𝐶)
(𝑍𝑍−𝐶𝐶𝐶𝐶)2

�
2

× 𝑆𝑆𝐷𝐷𝑍𝑍2�  
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𝐹𝐹𝐹𝐹𝑂𝑂 𝑜𝑜𝑜𝑜𝑑𝑑 𝐹𝐹𝐹𝐹𝑂𝑂 𝐺𝐺𝑜𝑜𝑑𝑑𝑜𝑜𝐺𝐺𝑀𝑀𝑀𝑀𝐺𝐺 (𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂 𝐶𝐶𝑜𝑜𝑑𝑑. ) =  100− �
100 (𝐹𝐹 − 𝐷𝐷𝐷𝐷)

(𝐹𝐹 − 𝑍𝑍) � 

𝑆𝑆𝐷𝐷𝐹𝐹𝐹𝐹𝑂𝑂 𝑐𝑐𝑎𝑎𝑑𝑑 𝐹𝐹𝐹𝐹𝑂𝑂 𝐺𝐺𝑐𝑐𝑑𝑑. = ���
100 (𝑍𝑍 − 𝐷𝐷𝐷𝐷)

(𝐶𝐶𝐶𝐶 − 𝑍𝑍)2 �
2

× 𝑆𝑆𝐷𝐷𝐶𝐶𝐶𝐶2� + ���
100 
𝐶𝐶𝐶𝐶 − 𝑍𝑍�

2

× 𝑆𝑆𝐷𝐷𝑂𝑂2� + ���
100 (𝐷𝐷𝐷𝐷 − 𝐶𝐶𝐶𝐶)

(𝑍𝑍 − 𝐶𝐶𝐶𝐶)2 �
2

× 𝑆𝑆𝐷𝐷𝑍𝑍2� 
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Figure S1, Related to Figure 1. Translation, transcription and time of blood SCENITH. 1 

A) Impact of simultaneous block of ATP synthesis, translation (CHX), transcription 2 
(Actinomycin D, ActD) or both translation and transcription in the levels of ATP in MEFs (* 3 
p<0.05, ** p<0.01, N=3). 4 

(B) Representative scheme of SCENITH metabolic profile (left) and five metabolic 5 
parameters/measurements that can be extracted from the graph (right) using DG and O as 6 
inhibitors. 7 

(C) Level of puro staining from whole blood or whole blood mixed 1:4 with DMEM 10% FCS 8 
and incubated with puro for different amounts of time. Right panel, shows the translation levels 9 
(Y-axis) as a function of time of incubation with puro measured in different immune cells (N=3, 10 
each in duplicates).  11 
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Figure S2, Related to Figure 2. Seahorse metabolic parameters in non-activated and 12 
activated purified human T cells and SCENITH in whole blood. 13 

(A) Seahorse maximal oxygen consumption rate (OCR, upon FCCP) in non-activated or T 14 
cells stimulated over night with CD3/CD28 activator beads (N=3).  15 

(B) Seahorse spare respiratory capacity in non-activated or T cells stimulated over night with 16 
CD3/CD28 activator beads (N=3).  17 
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Figure S3, Related to Figure 3. Changes in SCENITH EM profile in mouse and human T 18 
cells upon activation.  19 

(A) Mouse splenic T cells analyzed using SCENITH. Anti-Puro gMFI is indicated in 20 
CD3+CD8+CD4- non-activated, left or PMA/Ionomycin-treated right (N=3, *** p<0.001)  21 

(B) EM profiles calculated from the values shown in (A). 22 

(C) EM profile of non-stimulated or stimulated human blood central memory CD4 T cells 23 
(CD3+CD4+CD45RO+CCR7+) from two subjects (P4 and P5) using the SCENITH  method. 24 
N=3, ANOVA on at least 2 independent experiments (* p<0.05; ** p<0.005; ***p<0.0005). 25 

(D) Effect of short-term incubation of whole blood with cell culture media in the translation 26 
levels in immune cells. Pooled whole blood from three mice was pre-incubated with DMEM 27 
10% FCS (0, or 3hs) or directly incubated with Co, DG, O, DGO or Harringtonine (translation 28 
initiation inhibitor) and Puro. Anti-Puro gMFI (experimental duplicates) is shown in the cell 29 
types comparing the response when treatments were applied directly on whole blood (0hs, 30 
left), on whole blood diluted in cell culture media (0hs, DMEM 10% FCS) or pre-incubated 31 
during 3hs with cell culture media (3hs DMEM 10 % FCS). Results shown are representative 32 
from one of the three independent experiments performed. 33 

 34 

  35 
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Figure S4, Related to Figure 4. Metabolic profile of human and mouse myeloid cells. 36 

(A and B) SCENITH metabolic profile of human blood mononuclear cells (A) and mouse in 37 
vitro bone marrow derived (FLT3L-DC) (B) stimulated 4 hours or not with LPS. For both, DC1 38 
are: CD11c+MHC-II+SIRPa-CD24+SiglecH-, DC2: CD11c+MHC-II+SIRPa+XCR1-CD24-39 
SiglecH-, pDC: CD11c+MHC-II+SIRPa-CD24-SiglecH+ Mono1:Lin-CD14+CD16-MHC-II+/- and 40 
Mono2: Lin-CD14+CD16+MHC-II+ (N=3, each in triplicates, two-way ANOVA, * p<0.05; ** 41 
p<0.005; ***p<0.0005). 42 

(C) Mouse splenocytes were treated for 4 hours with or without TLR ligands (LPS, 100ng/ml; 43 
Poly (I:C) 10ug/ml) or PMA/ionomycin (10 ng/ml PMA; 2.5 µM Ionomycin). SCENITH was 44 
performed and the resulting profile of protein synthesis levels in DC1 (top) or DC2 (bottom) 45 
are shown (N=3 independent spleens) (* p<0.05; ** p<0.005; ****p<0.0001). 46 

 47 
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Figure S5, Related to Figure 5. Composition, phenotype and metabolic profile of 49 
multiple immune cells populations can be analyzed in parallel in human tumors, ex vivo 50 
both by SCENITH and scRNAseq. 51 

A and B) t-SNE graph showing the myeloid cells analyzed by SCENITH in the meningioma 52 
(A), and renal carcinoma (B). Number in t-SNE means the percentage parent for each 53 
subpopulation and dot plot under t-SNE means the phenotype in each subpopulation (N=4). 54 

(C) Clustering and identification of two distinct metabolic clusters of cells. The metabolic profile 55 
of each subset from each tissue was used to cluster cells. Two clusters were observed with 56 
different metabolic profile, and were name accordingly as Glycolytic cluster and Respiratory 57 
cluster of cells (N=4).  58 

(D) Heatmap of metabolic gene expression and SCENITH functional metabolic profile in 59 
myeloid cells from human PBMC (N=5). 60 

(E-G) Far left, t-SNE display and graph-based clustering of CD3-CD19-CD20-CD56-, HLA-61 
DR+/- myeloid cells sorted from Renal carcinoma (top) or Juxta tumoral tissue (bottom) 62 
biopsies and processed for scRNAseq. From left to right, level of expression of (grey=low, 63 
red=high) gene signatures of blood myeloid cell types (E) (Villani et al. 2017); level of CSF1R 64 
and MAFB (F) and CD14 and CD16 (G) in myeloid cells clusters observed in tumor (upper 65 
line) and juxta-tumoral tissue. 66 
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Figure S6, Related to Figure 5. 69 

(A) Heatmap displaying top 5 differentially expressed genes for each cluster of monocytes 70 
and macrophages present in renal carcinoma (left) or in juxta-tumoral tissue (right) when 71 
comparing cluster 0 through 4 in renal carcinoma (ranked by log fold change). 72 

(B) SCENITH derived Glycolytic (left) and Respiratory (right) gene signature expression 73 
distributed across t-SNE plot of myeloid cells sorted from renal carcinoma (top) or juxta-74 
tumoral tissue (bottom) with DC clusters circled.   75 
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Table S1, Related to Table 1. Comparative table of methods to profile metabolism. 76 

Method 
CyTOF (e.g. 
Met-Flow, 
scMEP) 

MSI Seahorse
®
 SCENITH™ 

Output Metabolic 
phenotype 

Metabolomic 
profile 

(unbiased) 

Metabolic 
capacities and 
dependencies 

Metabolic capacities 
and dependencies 

Functional profile of the 
cells (# of treatments)  NO NO YES (4) YES  (non-limited) 

Cell purification required NO NO YES NO 

Single cell resolution YES YES NO YES 

Fixation compatible Yes YES NO YES 

Stability of the readout High Variable Low High 

Phenotypic analysis YES NO NO 
YES (including 

Metabolic 
phenotype) 

Metabolite profiling NO YES NO NO 

Compatible with cell 
sorting NO NO NO YES

*
 

In vivo application NO NO NO NO 

Ex vivo application YES YES NO YES 

In vitro application YES YES YES YES 

Metabolic Readout 
Levels of 

markers (min 10 
channels) 

Metabolite 
levels 

Changes in 
extracellular pH 

and [O2] 

Changes in Protein 
synthesis levels 
(one channel). 

Time (Hs) from sampling 
to metabolic profiling NA NA 24 0-1 

Total time 6 6 24 4-7 

# cells required in 
subsets 500 200 1.000.000 2000 

Accessibility Low Low Low High 

Equipment needed CyTOF 
cytometer 

Any Imaging 
Mass cytometer 

Seahorse 
Analyzer Any Flow cytometer#  

* Not shown 77 
# SCENITH has also the potential to be analyzed by CyTOF, MSI, Microscopy using heavy 78 
metal coupled and oligonucleotide labeled antibodies (not shown)  79 
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Table S2, Related to STAR Methods SCENITH. Troubleshooting table. 80 
Problem Potential cause Suggestion 

Signal for 
translation 

(Puro MFI) is too 
low or lower 

signal in control 
treatment 

Cells were not kept at 
37°C during treatments. 

Prepare al reagents and equilibrate the temperature. 
Neither put cells on ice, nor keep them at room 

temperature. 
Puro stock was not 

correctly stored. Avoid exposure to light and freeze thawing cycles. Use 
small aliquots of puro and discard after each use. 

An inappropriate 
concentration of puro 

was used 
Puro concentration can be cell dependent and should 
be determined experimentally for each sample being 

tested. too high, or too low concentrations result in low 
staining. 

The incubation time with 
puro was insufficient Do a kinetic experiment of puro incubation time ranging 

from 5-15-30-45 min. 
Contaminated cells Obtain fresh culture with fresh medium to prevent 

contamination. 1% Penicillin (not streptomycin) can be 
used 

Puro resistance in your 
cells Change antibiotic resistance into the construct to be 

compatible with SCENITH™. 
Cell culture medium was 

depleted of nutrients. Change media 2~8 hr before the experiment.  
Too many cells during 

staining Do not stain in each tube more than 5 million cells. 
Adapt the volume of antibody. 

Signal for 
translation 

(Puro MFI) is too 
high 

Commercially available 
clones can show 

substantial background.  
Ask for the SCENITH™ kit containing the R4743L-E8 

mAb clone. www.scenith.com  

Signal for 
translation 

(Puro MFI) is 
higher in my 
cells treated 
with inhibitor 

than the control 

Some metabolic 
inhibitors make cells to 
switch to other sources 

to compensate. The 
activation of this 
compensatory 

mechanism might result 
in higher levels of 

translation than the 
control. 

If cells show increased translation upon treatment 
when calculating the metabolic dependency, the 

formula would result in a negative dependency value. 
Conceptually a negative dependency is equal to no 

dependency (0). 
As the inhibitor induce an increase in the translation 
levels and cells are only relying on the compensatory 

pathway, then the formula will reveal a percentual 
metabolic capacity that is over 100%. Meaning that 
cells have the metabolic capacity to sustain even 

higher levels of translation than control cells. 
Signal of cell 

surface markers 
decrease after 
treatment with 

inhibitors 

An inappropriate time of 
treatment with inhibitors 

was performed 

Time of treatment with inhibitors depends on the 
metabolic activity of the cells and have to be 

determined experimentally. Reduce the time of DGO 
treatment (i.e. 10min DG, then add O for 5min, then 

Puro). Use H treatment as negative control present in 
the kit. 

Perform intracellular staining of internalized markers. 
Signal is 

present in DGO 
(all inhibitors)  

Oligomycin acts faster 
than DG (competitive 
inhibitor of glucose). 

Treat cells 10min with 2DG and then add the 
Oligomycin for 5min before puro treatment, and use 

that measure as DGO treatment. 
High background from 

cells Use Fc block, Fcs 2% or BSA 1-3% during staining can 
reduce background 

Signal doesn’t 
change with any 

kind of 
treatment 

Inhibitor doesn’t work Use inhibitors at 37°C to have powerful effect 
The concentration and/or 
time of treatment are not 

optimized 
Inhibitors concentration can be cell dependent and 

should be determined experimentally for each cell line 
being tested. 

Lot of doublet 
cells during 

FACS 
acquisition 

Cells were aggregated Obtain a single cell suspension by using 2mM EDTA in 
FACS buffer 

  81 
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