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In this paper, we investigate how an interactive version of the membership function of the Fuzzy Logic Theory can be used to categorize quantitative data. This function is simple and similar to a line chart and provides an explicit mapping of the categorization process. We first review the requirements for such quantitative values partitioning process and provide the mathematical foundations in Fuzzy Logic related to the membership function. We then report on the implementation of the interactive function for several quantitative datasets case studies (e. g., age, temperature, speed). We expect this interactive function to provide more control over the categorization process, as well as a way to make the categorization process more explicit.

INTRODUCTION

When reasoning on quantitative values-like people's age-analysts tend to use categories like YOUNG and OLD. Such a categorization process aims at mimicking the logic of human thoughts and reasoning [START_REF] Clifford | An introduction to numerical classification[END_REF]. In the situation where such categories are not in the dataset, it is likely they are subjective, from the analyst's head, based on familiarity with the domain or prior knowledge. Such a process raises the following issues:

• An explicit mapping of those categories is missing: the mapping function between quantities and categories should be clearly defined. • The mapping properties may vary across analysis sessions and analysts: the mapping should be consistent and may not change. • The transfer between analysts and a user should be possible: by some means of communication like a legend or a visual representation.

As an alternative to analysts categorization, there are clustering methods. Those methods categorize quantities based on the distribution of quantitative values: KNN [START_REF] Cover | Nearest neighbor pattern classification[END_REF], K-Means (Mac-Queen et al., 1967), DBSCAN (Ester et al., ). However, these approaches do not provide enough control over the mapping process to let humans customize them according to their prior knowledge.

In this paper, our goal is to address those issues with an interactive visualization that captures such knowledge. It relies upon Fuzzy Logic Theory, created back in the 1960s to model domains with imprecise information [START_REF] Zadeh | Fuzzy sets[END_REF][START_REF] Pedrycz | Fuzzy systems engineering: toward human-centric computing[END_REF] which we argue provides the theoretical framework to address the above issues. In particular, we rely upon a visual representation from this theory called membership function which is a line chart of the mapping function between a quantitative scale and categories, which makes this mapping explicit, which captures various points of view using a confidence factor and finally which visual can easily be transferred.

Our main contribution is that we design an interactive version of fuzzy membership function as an interactive chart (Fig. 1), which is able to help users categorize quantitative values with confidence belonging to categories. We provide an implementation that demonstrates how it supports the categorization of multiple datasets. Our implementation exposes many parameters of the function that can be adjusted to generate new shapes of membership function for fine-grained categorization. The generated categories from this membership function can be assigned names that are then used as category names in the updated dataset. We conclude with an experimental design for further evaluation of this tool to validate its usability. We expect this technique to be not only used as a categoriesgeneration tool but also as an interactive legend [START_REF] Riche | Understanding interactive legends: a comparative evaluation with standard widgets[END_REF] to communicate the generated categories properties and let the user adjust them dynamically when analyzing a visual representation.

This paper focuses on how to categorize quantities with fuzzy logic theory and quantify those generated categories with a membership degree. In this section, we review papers in probabilistic classification, fuzzy visualization, and uncertainty visualization.

Visualization of Probabilistic

Classification [START_REF] Alsallakh | Visual methods for analyzing probabilistic classification data[END_REF] proposed a visual interactive analysis tool to evaluate the effectiveness of classifiers to help machine learning experts finding out the possible reasons for incorrect classification. This tool is able to emphasize the classification probabilities of items and make relations with false negative and false positive. Similar to Alsallakh's study, Cao and Lin proposed UnTangle Map [START_REF] Cao | Untangle map: Visual analysis of probabilistic multi-label data[END_REF][START_REF] Lin | Untangle: visual mining for data with uncertain multi-labels via triangle map[END_REF] by the web of the connected triangles, which are able to make the efficient relation between data items and their probabilistic labels. Based on RadViz, Seifert proposed a visual system to help understand the process of classification and results, which handles multiple classes, nominal and numeral data format [START_REF] Seifert | A novel visualization approach for data-mining-related classification[END_REF]. Zhao conducted an experiment to evaluate the effectiveness and efficiency of fuzzy cluster analysis, objective questionnaires are designed to compare the accuracy and subjective questionnaires are designed to collect the experience of a user based on using four-dimensional visualization technique [START_REF] Zhao | Evaluating multi-dimensional visualizations for understanding fuzzy clusters[END_REF]. [START_REF] Rheingans | Visualizing highdimensional predictive model quality[END_REF] is designed to visualize high-dimensional predictive results with richer representation, e.g., classification accuracy and confusion matrices to help a user understand highdimensional data space.

Fuzzy Visualization

There exist alternatives to the membership function to capture categorization. Fuzzy representations are suitable solutions like the Disk diagrams (Park and Park, 2010a;[START_REF] Park | Interactive visualization of fuzzy set operations[END_REF] proposed by Yeseul Park, to visualize fuzzy set operations. It can describe the complexity of fuzzy sets by showing the degree among sets with the layout of star coordinates. [START_REF] Zhu | Visualizing fuzzy sets using opacity-varying freeform diagrams[END_REF] extended the circular disk diagram layouts to improve sets membership analysis, by using color opacity and optimized layout to convey fuzzy sets membership and reveal the uncertain owner-member relationship. Besides, they also designed a computational framework by combining physical simulation and geometric interpolation. However, those works focus on communicating categories rather than supporting their creation.

Uncertainty Visualization

Research on uncertainty visualization also offers some solutions for the presentation of ambiguity while categorization. In this field, works related to uncertainty visualization provide guidance on advanced properties in the data, i. e. incorrectness, incompleteness, and ambiguity [START_REF] Dressel | Certainty in heisenberg's uncertainty principle: revisiting definitions for estimation errors and disturbance[END_REF]. Brodlie [START_REF] Brodlie | A review of uncertainty in data visualization[END_REF] reviewed state of the art in uncertainty visualization according to different data, for example, point data, scalar data, multi-field scalar data, and vector data. At the same time, they also concluded the uncertainty visualization in the various dimensional datasets. Skeels proposed a classification of uncertainty [START_REF] Skeels | Revealing uncertainty for information visualization[END_REF] for information visualization. [START_REF] Dong | Uncertainty visualizations: Helping decision makers become more aware of uncertainty and its implications[END_REF] designed an interactive tool to help users recognize the situations and comprehend the ambiguity, which is able to evaluate the domain-dependent decision support system (DSS). The challenge we tackle is the explicit mapping between quantities and categories. While most visualization techniques and tools usually address it during the visual encoding of data, it remains internal-or at best using a legend-without providing a fully explicit set of properties for this mapping.

DEFINING CRISP AND FUZZY MEMBERSHIP FUNCTIONS

To present our approach, we progressively introduce the definitions by first stating our challenge as finding the relationship between Q (Quantitative) and C (Categories) as a mapping function:

Quantity → Category (1)
Quantities are the measures of counts or values, expressed by numbers and also can be compared in terms of "more", "less", or "equal", like attribute Age showed in Table . 1. On the contrary, categories are measures of type and can be expressed by a symbol, name, or label, which is categories, like attribute Age group in Table . 1. Mapping function connect quantities (Q) and categories (C), e. g., the quantity "age" is separated into ordinal range, showed as [0, :] →< Y OUNG, ADULT, OLD >. Thus the transformation from quantities to categories is defined as Eq. ( 2):

x →    Y OUNG i f age(x) ≤ 20 ADULT i f 20 < age(x) ≤ 60 OLD i f 60 < age(x).
(2)

We implemented a prototype 1 of the mapping function above from quantitative scales to a domain of user-defined categories. Fig. 2 illustrates the user interface that represents the mapping of each value to categories. A user can change the value parameter n by adjusting the slider, which is able to change the number of bars of the mapping function. A user can also drag the vertical bars using circles so he can adjust the categories. A table below of Fig. 2 indicates the categorization result for each category.

This mapping relates to the classical sets theory, where the categorization is a crisp process that splits quantities into categories with a binary function: accepting or rejecting the object belonging to a category [START_REF] Massad | Fuzzy logic in action: Applications in epidemiology and beyond[END_REF]). An element x either belongs to a category or not. Those are strict parameters and each element only belongs to a single category. Such a mapping function can be combined using intervals that often converts a whole range of values. If there is a set W that is not empty and a set S ⊂ W , the characteristic function of S will be shown as follows:

1 https://observablehq.com/d/4560d69baca4663c 

S (x) = 1 i f x ∈ S 0 i f x / ∈ S (3) f S (x) is the function, the domain of which is W . The value of f a (x) is included in set {0, 1}. With f S (x)
= 1, it means element x belongs to set S; if f S (x) = 0, it illustrates element x does not belong to set S so that this mapping function f S (x) → {0, 1} are able to completely represent the relationship between element x and set S.

However, previous mapping function has a limitation on splitting ambiguous sets. For example, it can not represent the children, adolescent and adult, because adolescent normally has overlap with children and adult. Thus, it is not any more suitable for separating quantitative values when there is ambiguity or there is more than one quantitative scale. In order to solve the problem that does not have sharp boundaries while categorizing, Zadeh proposed the membership degree that means an element can partially belong to a set [START_REF] Zadeh | Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers[END_REF].

In order to implement the fuzzy membership function into interactive categorization, we implemented the second prototype 2 to map quantities to categories based on fuzzy logic. Fig. 3(a) shows the interface for a user to adjust parameters. In this figure, the x-axis represents quantitative values and the y-axis shows the distribution of membership degree(µ). Compared to the first prototype, this one is able to be adjusted among fuzzy logic parameters core and n by manipulating the sliders. Besides, a user also can adjust core by dragging small black circles on the fuzzy membership function and make them different from other fuzzy categories. Finally, he can also define the name of generated categories by inputting texts so that a user can generate any fuzzy categories that they want with membership values and specific names. The membership values and names are illustrated in Fig. 2(b).

Fuzzy category is defined with relaxing belonging constraints, which proposes an intermediate membership value as interval [0, 1]. This value represents the degree how many possibility element x belongs to set A. Thus, the membership function can be described as f a (x) → [0, 1]. The value of f a (x) means the membership degree of membership function. With f a (x) = 1, it represents the complete belongingness while f a (x) = 0 shows the complete non-belongingness. Let X = {x 1 , x 2 , ..} denote the set X of elements x i . A fuzzy category is then a pair (X, µ). So fuzzy category is denoted as {µ(x 1 )/x 1 , . . . , µ(x n )/x n }. The core and support respectively represent all elements that belong to a set are denoted Core(A) = {x ∈ X|A(x) = 1} and all the elements which membership degree is > 0 such as Supp(A) = {x ∈ X|A(x) > 0}.

Any function f a (x) → [0, 1] is membership function framework, instead of accurate representation. The real membership function depends on its shapes. Those membership functions with specific shapes are composed of specific properties and they are chosen based on different data and applied fields, e. g., triangular, trapezoidal, Gaussian and sigmoidal functions. In this paper, we chose the trapezoidal membership function and it is given by:

f (x) =          0 i f x < a (x -a)/(b -a) i f a ≤ x < b 1 i f b ≤ x < c (d -x)/(d -c) i f c ≤ x < c 0 i f x > c (4)
Where, a, b, c, d are the parameters of the trapezoidal membership function. The membership func-2 https://observablehq.com/d/b887da8c1dfdb975 tions can be displayed over a line chart in which the x-axis is the quantitative value and the y-axis is the membership degrees. Each line is a category, and their membership degrees are from 0 or 1.

INTERACTIVE MEMBERSHIP FUNCTION 4.1 Interaction

We introduce how to use the interactive membership function in this section. There are two general parameters of membership function: n and core showed in the sliders in Fig. 1. In this visual tool, a user can adjust the two parameters to generate different shapes of the membership functions. By adjusting parameters in the control panel, all categories generated would be changed with the same value of core.

If a user would like to operate it more specifically, he can build a new shape of membership function by dragging those little circles showed in Fig. 4(a), for example, A user can change the parameter core of specific categories by dragging black circle showed in the left of Fig. 4(a). And then, the membership function is able to be changed as the right of Fig. 4(a), the first category in this membership function is changed. Finally, this membership function also offers the naming method. By inputting texts in the input fields shown in Fig. 4(b), the categories are able to be related to input labels and appear as new categories in the underlying dataset.

Implementation Details

This membership function is implemented in Observable, using library D3 (Bostock et al., ) and is bundled as a JavaScript ES6 module compliant with modern Web standards. An online prototype3 is available along with the datasets described in this paper. Additional datasets can be added using a JSON file specification that captures the configurations that a userdefined. The parameters of configurations include the parameters of specific membership function and categories' names are showed as follows:

{ "title": "Temperature", "attribute": "0", "parameters": [{ "n": "3", "Core": "13.6", "Support": "27.2", "names": [ "Cold", "Warm", "Hot" ]}]} Such configuration enables the rapid export and sharing of the parameters, so they can be used in a different tool and can further be analyzed to understand the categorization process of multiple users. 

CASE STUDIES

In this section, we introduce three typical quantitative datasets and the categorization we generated using our interactive visual tool. The datasets we used include age datasets, temperature datasets, and taxi speed datasets.

Case Study with Age Dataset

A typical age dataset consists of a semi-bounded interval and rounded values, there exists a minimum value but no fixed maximum value. The dataset we used, in this case, is The Simpsons, a popular U.S. TV Series. The dataset includes 24 characters with an age attribute. Age range from 0 to 90. The dataset is shown in Fig. 5 where ages are represented on the x-axis. The y-axis shows the membership degree for every category so that a user can easily check categories and their membership degrees. The table list below of Fig. 5 shows the categories and their properties. Membership values and the range of categories are shown in the table in Fig. 5(b), which is corresponding to the membership function and has 5 categories. We can see that the membership degrees of category 1 and category 3 are equal to 0.5, and other categories are equal to 1. The name of every category is shown on the table where each character now has an age category.

Case Study with Temperature Dataset

We use the Earth temperatures dataset in this second case study. As such temperature value does not have a clear maximum value and minimum value, the data is non-bounded and continuous. The dataset we used consists of temperatures from 357 divisions in the USA for 12 months. The categorization is shown in Fig. 6. 

Case Study with Taxi Speed Dataset

We conduct the third case using a taxi speed dataset.

The speed data are semi-rounded and continuous values types. Traffic analysts usually are interested in characterizing taxi drivers' characteristics, which is helpful for them to identify driving behaviors. Obviously, speed is a very essential parameter to define categories, as it reflects many characteristics of drivers. The prototype of taxi speed is showed in Fig. 7(a) and the table list is showed in Fig. 7(b). In this case, speed is separated into five categories and their main categories are Low, Middle and High. Besides, there are two fuzzy categories with membership degrees less than 1, named Low-Middle and Mid-High. Other categories, more domain-specific, could have been used, e.g. Slow, Fast by editing the label input field in the prototype.

DISCUSSION AND PERSPECTIVES

In this paper, we designed an interactive tool to categorize quantities into categories. By using Fuzzy Logic, it enables splitting quantitative values into categories with a degree called membership degree. We are able to present uncertainties with membership degrees to better capture user knowledge and demonstrated its application using three datasets included in an interactive prototype.

The summary of case studies is shown in Table 2. The results suggest that, in most situations, users are likely to categorize quantities into 3 -5 categories with particular names for each category. First, naming generated categories is usually based on social basic knowledge, e. g., the name of age categories, which includes Children, Adult and Old. But when the categories are complicated, the name of categories tend to be Very ... or Super ... There is also another naming method, which combines the basic categories, e. g., the name Mid-High is derived from Middle and High in speed data. Our tool supports an extensive number of categories, up to several dozens. Beyond this number, it may however become difficult to read the categories' names and interact with them.

We identified the following limits in our current work. It does not consider the distribution of quantitative values. The trapezoid membership function can not consider the real distribution of the dataset, instead of building a membership function based on the maximum value, minimum value, and the number of categories. The distribution is not considered in this method. Only categorize dataset with clear maximum value and minimum value. Currently, we can only use the maximum value existed in the dataset or dataset with a clear boundary. For example, in the age dataset, the maximum value is 90, so the maximum value in this prototype is 90, it is totally based on the range of the dataset. Limitation in categorizing quantities with rounded values: When we categorize age dataset, the results of categories are not integers, which leads to the abnormal categories e. g., category Children is from 0.99 years old to 17.97 years old.

Our main perspective is to validate our approach using a formal evaluation process to assess how the fuzzy membership function helps a user categorizing quantities. The evaluation includes three steps: 1) manual categories creation; 2) using fuzzy membership function and 3) post-study questionnaire.

In manual categories creation, investigating How does a user create categories for datasets such as the characters in The Simpsons would be a major question to be answered as in this paper we only reported on manually created to illustrate our approach. In this evaluation step, a user will be asked by questionnaire to focus on the number of categories, the intervals, and the name of categories, and we will log the results for remote analysis.

Our study protocol will be as follows (using the prototype shown in Fig. 3

(a)):

Step 1: we introduce FUZZYCUT to participants and tell them how to use and operate FUZZYCUT which will last 10 minutes. In this part, the user is able to know how to change parameters of fuzzy membership function and interact with FUZZYCUT to generate and adjust categories.

Step 2: those parameters, categories, and their intervals are saved remotely by recording every interaction.

Step 3: all those information collected from a user are organized and analyzed to support a formalized function, which is very important for future work to develop specific mapping function because the collected information will be the major proof of mapping specific quantities. A post-study questionnaire will collect feedback, the content of which aims to illustrate if this tool influences participants' original intent, and how those categories change after using this tool.

CONCLUSION

This paper introduced an interactive visualization technique to assist a user in categorizing quantities into categories. We relied upon a well-known function, the fuzzy membership function from Fuzzy Logic Theory, which we implemented as an interactive prototype. We illustrated its use for 3 case studies: age, temperature, and taxi speed data. As the prototype enables an explicit mapping of the categorization function, we plan to use it to trace the process a user follows when creating categories. In particular to understand if there is a consensus between groups of users regarding the choice of categories values interval, labeling, and confidence. We also plan to use other interactive functions to communicate this mapping, e. g., as an interactive legend [START_REF] Park | Interactive visualization of fuzzy set operations[END_REF] for both visual communication and exploration of datasets.
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 1 Figure 1: Manipulation of the interactive membership function. By adjusting the parameter core, the membership function is changed along with the new value of core, which is shown as the red dot line; Another interaction is defining the name of categories by inputting action and it is shown as the green dot line.

Figure 2 :

 2 Figure 2: Categorization using crisp membership function, there are three crisp categories generated from the crisp membership function showed in (a) and the detail information of categories in (b).
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Figure 3 :

 3 Figure 3: The mapping function based on fuzzy logic theory generates both crisp categories and fuzzy categories in (a) and all those categories and its information are in (b).

Figure 4 :

 4 Figure 4: The top circles on membership function are able to be dragged to change the parameter core of a specific category in (a); The labels of categories are defined by inputting texts in the input field in (b)

Figure 5 :

 5 Figure 5: The age data are from 0 to 90, there are three main categories with name Chidren, Adult and Old. Meanwhile, two fuzzy categories created and they are named with Teenager and Less old.

Fig. 6

 6 (a) represents the fuzzy membership function and Fig. 6(b) is the table list of categories. In Fig. 6(a), temperature degrees are distributed along with the xaxis and the y-axis are membership values for each category. In this prototype, temperature values are separated into three categories, which are from -12.98 to 68.56. The name of those three categories are Cold, Warm and Hot. But the Warm category is derived from Cold and Hot, membership degree of which is 0.5.

Figure 6 :

 6 Figure 6: Temperature data are separated with two main categories Cold and Hot. The intermediate category Warm is created.

Figure 7 :

 7 Figure 7: Taxi speed are separated with three main categories and two fuzzy categories. Those two categories are named Low-Middle and Mid-High.

Table 1 :

 1 Dataset with quantities and categories.

	Name	Age	Group	Profession
	Lisa	8	Children	Student
	Barney	39	Adult	Engineer
	Smithers	33	Adolescent Professor
	Mr. Burns	90	Senior	Retired

Table 2 :

 2 Summary of case studies illustrating interesting configurations constructed in the three case studies datasets.

	Data	FUZZYCUT	# of sets	Name	Interval
	Age		5	Children, Teenager, Adult, Less old, Old	[0.99, 90.90]
	Temperature		3	Cold, Warm, Hot	[-12.98, 68.58]
	Speed		5	Low, Low-Middle, Middle, Mid-High, High	[0,104.04]

https://observablehq.com/d/12575cfbd09fe8e8
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