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Abstract
Agricultural decision-making is crucial for future yields. In the context of
smart farming, grower combine information from sensors located close to
their crops with agronomic models to help them to better understand their
crops. Irrigation management is therefore based on extrapolation of data
and/or agronomic model responses. This problem can be seen as a learning
task for which machine learning techniques have proven their relevance in
many and diverse applications. In this paper we place ourselves in the con-
text of potato farming, a crop for which irrigation plays a crucial role. We
model the problem of soil water potential prediction as a learning problem
solved by supervised leaning algorithms. The problem appears to be diffi-
cult since there are several potential inputs, and several outputs to predict.
Experiments are conducted on several scenarios with data acquired during 3
years. We demonstrate the possibility of applying feature selection method
to automatically design models with features relevant to the problem at hand
while having good performances. We have also demonstrated the relevance
of the machine learning for this kind of problem, since the methods are able
to correctly predict the next water potential values.
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1. Introduction

Developments in agricultural technologies are leading to its fourth revo-
lution. The latter puts forward four essential requirements: increasing pro-
ductivity, allocating resources reasonably, adapting to climate change, and
avoiding food waste [1, 2].

One of the main challenges is to improve water resources management [3].
Smart irrigation directly affects crop performances and can lead to qualitative
and quantitative improvements in vegetable production [4]. In the context
of large scale agriculture, sprinkler irrigation (water cannon) remains the
most widespread method of irrigation [5]. Unfortunately, this technique is
expensive, time-consuming and water-consuming. Nowadays, growers need
to capitalize as much information as possible in order to better understand
their environment, and, to be able to be advised in their decision-making pro-
cess. Two aspects are essential: first, knowledge of the current soil moisture
is the most critical element in this process [6]. This value is dynamic, which
means that daily monitoring is required to analyze global trends. One of the
indicators used to conduct a cultivation campaign is the Soil Water Potential
(SWP). This metric corresponds to the effort that the plant must develop
in order to extract water from the soil. The higher this value is, the more
difficult it is for the plant to extract water and therefore the risk of hydric
stress occurs. Cultivators can directly used this information to manage their
campaign [7] or can be transformed into Soil Water Content (SWC) using
Van Genuchten’s equation [8], if the soil characterisation is well known. This
value is acquired via a tensiometer implant at the depth where you wish to
observe. Generally sensors are located at the root level. From this value,
thresholds can be established and characterize the soil water status (satura-
tion, comfort, vigilance and stress) depending on the soil type. From there
a grower can have a knowledge about the water reserves currently present
in his soil. Second, being able to predict short-term evolutions of this infor-
mation with a weekly vision is a major benefit for planters, since they can
planning more efficiently their irrigations in terms of water input quantity or
number of irrigations. Concerning soil moisture data acquisition, numerous
methods have been proposed to acquire these information:

• Direct measurement or gravimetric method [9] remains the most reli-
able way to obtain these data and it is therefore essential for calibrat-
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ing instruments used in the indirect methods. However these methods
are extremely expensive, require numerous batteries of laboratory tests
and destructive measurements taken in the field which lead to a high
manpower cost, time consuming and potential handling problems.

• Indirect or sensor measurement methods are good alternatives, allow-
ing measurements without sampling [9]. Many sensor models exist
(tensiometer, capacitive, resistive, hygrometric, …), their measurement
methods differ but also allow to access to the knowledge of the soil
moisture. However, the quality of the measurements is highly depen-
dent on the quality of the sensors used. Indeed the sensors are subjected
to climatic conditions (wind, rain, temperature) for a period of several
months in the open field, which can lead to a degradation in their ac-
curacy and reliability [10]. Tensiometers are often preferred to other
types of substrate moisture sensors due to their low cost, simplicity of
use, and direct measurement of matric potential, and also, they are not
influenced by temperature and soil osmotic potential [1, 11].

In a context of connected agriculture, the methods of data acquisition by
sensor benefit from the advantages of IoT and can therefore upload data
frequently in order to allow a monitoring up to a quarter of an hour. The
proposed methodologies to make forecasts are based on the previously col-
lected data. Latter are used as inputs into mathematical models, for in-
stance: Jhonson [12], STIC [13], AQUACROP [14], WEEDRIQ [15], water
balance [16], Penman [17]. This approach has proved its relevance and ro-
bustness, unfortunately mathematical models introduce biases and biological
simplifications. Moreover, they are parametric which means they have to be
calibrated in order to use them optimally [18, 19, 20].

The natural or biological phenomena under study involves features with
a relationship among them that may be non-linear. Moreover, when the
conditions of the phenomenon change, the relationships may also be modi-
fied. However, collected data may include similarities, natural symmetries,
patterns and thus; designing a data-driven model able of approximating the
relationships between the different elements is suitable. One way to deal
with the data-driven approach is the Machine Learning (ML). In recent
years, Machine Learning methods have been successfully applied to many
real world applications, and in particular [21, 22, 23] demonstrate the rele-
vance of modeling complex biological phenomena such as evapotranspiration
by transformation into a supervised learning problem solved by algorithms
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as Neural Network (NN), Random Forest (RF) or Support Vector Machine
(SVM). [24] pointed out that ML approaches, in most cases, outperformed
parametric approaches for the prediction of biomass and soil moisture from
satellite data.

In the context of agriculture, [25] successfully applied machine learning
approach to predict weekly evapotranspiration for orchards crop and there-
fore the water needs. On the subject of potato cultivation in farmland,
various topics are highlighted and well-documented. Methods using machine
learning algorithms are successfully applied to provide a solution on these
topics such as predicting leaf water potential [26], modeling root develop-
ment [27], tuber growth [28], daily evapotranspiration prediction [29, 30, 31],
etc. The issue of evapotranspiration prediction is well documented, however
concerning the SWP, to our knowledge, a methodology for weekly predic-
tion of this indicator using a connected sensor-powered ML approach has
not been proposed. In most studies involving sensors inserted in the ground,
only one depth is considered. However, observing at several depths allows
us to capture information relating to water exchanges between the different
layers, for instance: percolation, capillary upwelling, etc.

In most cases, the proposed resolution methods are developed with small
experimental plots, and because of this, they are given for a particular cli-
matic, geographical and soil type context. Thus they may not be applied
directly in commercial agricultural fields [32]. Thus, it is still necessary to
develop simple models that are executable in the practice of irrigated agri-
culture and at the same time are developed for large areas of agricultural
crops [32].

There are many approaches but 2 main approaches are used:

• model-based, in this case a reference model (e.g. Penman-Monteith [31,
33] or AquaCrop [14, 34, 27],…) are used, generally an optimization is
performed to improve the quality of predictions.

• Data-driven approach uses, as described above, machines learning al-
gorithms to generate models from observations obtained directly on
fields [30]. These approaches have shown their relevance and robust-
ness.

The literature is very well documented on the methods and possible ap-
proaches for solving the above mentioned problems. In this study we have
chosen to follow one of the methodologies commonly used to solve learning
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processes. Initially, features are defined either by experts in the field or by bi-
ological model equations. These characteristics represent the data necessary
for learning the phenomenon or for its use in the equations. Then, data are
collected through the use of sensors, and sometimes data sampling, allowing
the collection of several historical campaigns aggregated together in order
to generate the observation base. In the learning stage, the latter is then
divided into 2 parts: learning and validation database. A strong constraint
on the creation of the bases is the non division of a campaign. Indeed, if
data from a campaign in the validation database are available for learning,
then the model has a knowledge of the validation data and therefore loses its
relevance. Eventually, the validation of the method consists in comparing
the predictions made with a model (already existing reference model or gen-
erated by a learning algorithm previously learned on the learning database)
with the response of a comparison model or with a validation database (un-
known observations) made with the collected data.

In this paper, we are interested in potato cultivation, for which irrigation
plays a crucial role to avoid water stress (negative balance of water supply
compared to plant transpiration). This can lead to a collapse of yields [35].
Using quality sensors can be a limiting factor for a large majority of farmers
due to their expensive prices. In order to democratize these techniques we
propose in this paper the use of low-cost sensor sets. Using affordable ten-
siometers is a good compromise between the accuracy of the measurements
and the feasibility of being used by a large number of farmers. Moreover, it
becomes possible in the long term to generate a database that is certainly
inaccurate, but which can cover different types of soil, crops, climatic condi-
tions, etc, which is crucial for a production start-up. Finally, it is possible
to install sensors at different depths and thus modeling the evolution of the
SWP at several layers as well as possible capture exchanges between them.
We model the problem of predicting water potential as a learning problem.
Since real data are difficult to obtain, we propose to aggregate the values of
several type of sensors (tensiometer, rain gauge, temperature) into inputs.
We take into account the values of the tensiometers at 3 depths. We de-
sign the inputs for use in the learning process. The water potential value
will be used as a label (output) in order to solve this problem by supervised
learning algorithms like NN, RF and SVM. The learning process does not
necessarily need all the features to find a relationship that best explains the
phenomenon. Thus, judiciously choosing the most proper features leads to a
model that may be easier and faster to learn, more robust and/or more expli-
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cable. In addition, later on, if other features are used to improve the existing
model, the feature selection method will be able to keep them or reject them
automatically if they are not relevant. The novelty of this work is to propose
a methodology to forecast SWP trends at several depths up to week (which
is a important metric for crop management and decision-making,), thanks
to a learning process in a potato growing context fed by remote sensors. we
also propose to use feature selection method to automatically design models.
To our knowledge there is no similar work. Contributions of this work can
be summarized as follows:

• We model the soil water potential prediction problem as a learning
problem solved by supervised learning approach and low-cost sensors
for data collection.

• We predict the water potential of a potato crop farmland for up to a
week at 3 different depths .

• We use feature selection methods, in order to automatically design
model with the most relevant features.

• We compare performances of models (with and without feature selec-
tion) of different machine learning algorithms under different climatic
conditions.

The scope of this contribution is limited for the moment to one type of soil:
”sandy clay loam”. The goal is indeed to put aside, for this study, the influ-
ence of the soil composition on the evolution of the soil water potential.

The rest of the paper is organized as follow: Section 2 detail the study
area and data and explains the different supervised learning methods used
in this work. Section 3 explains the feature selection used in this work.
Section 4 details the methodology used to address the issue. Then, we present
performance evaluation and experimental results in Section 5. Finally we
conclude and present our future work in Section 6.

2. Materials and methods

2.1. Study area and data
The predictive model is built using sensor data from historical potato

growing campaigns. The test crops used are close to each other and are
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located in the north of France, on the seafront. The climate is oceanic,
which characterizes variable, windy weather, moderate summer tempera-
tures, prominent humidity, and abundant but low precipitation. We assume
from experts that crops have the same type of soil.

Soil moisture acquisition is carried out by tensiometers. In this study 3
depths are considered: 20, 30 and 40 cm depth. As, in general, potato’s roots
depth do not exceed 35-40 cm in this region. These depths are appropriate
in order to predict the water potential, since it is at these depths that the
plant collect the water it needs. We use 3 measurement points per depth
(i.e. 9 measurements) since the sensors are not accurate (because we used
cheap sensors, see section 1), the average of 3 measurement points is an
acceptable compromise. The weather is provided by weather stations which
are located less than 5 km away from the crops. The measurement campaign
covers a period of 3 years (2016, 2018 and 2019) over the months of April
to September. The year 2016 is characterized by heavy precipitation and
2019 by low precipitation. Over these 3 years, we have data from 3 or 4
crops per year, resulting in 10 time series in total. Each day of measurement
is considered as an independent observation and are our learning database.
The growing time for potato cultivation is short, averaging 90 days, however
we had to remove the days where sensor values are not usable. There are
different reasons why values are not correct, for instance, during the sensor
calibration period, or because of technical problems or sensor displaced due
to tractors passing…. After this preprocessing, the number of measurement
points is about 750. A measurement point corresponds to the information
provided by the sensors for a given day. All the characteristics to be taken
into account in this phenomenon have been provided by the agronomists and
are listed in Tab. 1.

For each example, we have the weather of the past 3 days and the weather
forecast of the next 7 days. The total number of features is then 45. The
database includes the daily average values of the tensiometer at 3 depths
of the different crops, from planting to defoliating, as well as water inputs,
irrigation, rainfall and temperature for the weather.

the input data are normalized in order to remove the scaling effect of raw
data. The normalization process can be done by applying Eq. 1 on the raw
data.

xnorm =
x− xmin

xmax − xmin

(1)
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Table 1: The 5 features we used in the experiments presented in this paper.

Feature Description
Water_Pressure Water pressure applied to the sensor in Kpa

(3 depths in this work)
Mean_Temperature Current average temperature in Celcius of the day
Rainfall Current rainfall and irrigation in mm of the day
AGE Age of a plant expressed in degree Celcius per day

resulting from the sum of degrees above a threshold
(for potato 6 degree Celcius)

Dry Indicate if Drought, i.e if water pressure is above 140 Kpa

where xnorm is the normalized data, x is the raw data, xmax is the maximum
value of input vector and xmin is the minimum value of the input vector.
Fig. 1 shows the correlation matrix of the different features at our disposal.
We have the 5 previously defined features among the time range studied:

• Water pressure: P1, P2, P3 and P_day_* or all previous and next
days.

• Mean temperature: T_mean_* for all previous and next days.

• Rainfall: Rainfall_* for all previous and next days.

• Age: Age_day_* or all previous and next days

• Dry: Dry_P1, Dry_P3, Dry_P3 binary value that states whether the
sensor is out-of-threshold.

Some features are more correlated than others: rainfalls and irrigations fore-
cast (i.e. water inputs) have a serious negative correlation with the water
Pressure (P1, P2 and P3), which is expected since water inputs is in this
study the only, a priori, possible way for this value to decrease. However,
these features have a stronger influence on the upper ground layer than the
others, which seems expected, since the water input will reach the first layer
first. Age and Temperature also seems to have an impact, which is also
expected.
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Figure 1: Correlation matrix of the 5 features used in this study, among the time period
studded (see text).
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(a) Simplified neural schema, with inputs xi, bias
w0, a transfer function φ and an output y.

(b) Example of a feed-forward
neural network fully connected
with one hidden layer and one
output unit.

2.2. Neural Network
A neural network [36] is a computational system inspired by biological

neural networks. It is able to learn, without the need of prior knowledge,
specific tasks using examples. Fig. 2a represents a neural schema. A network
is made up of neurons. Each neuron is defined by several weighted inputs,
and a bias. Equation 2 explains the neuron computation. The sum of inputs
xi multiplied by their corresponding signals wi, including the bias w0, is
given to a transfer function φ which can be for example a sigmoid, a relu,
or a hyperbolic tangent function. Formally, the final output value y of the
neuron with p inputs is computed following:

y = φ

(
p∑

i=0

xiwi

)
(2)

Neurons are often grouped into layers: an input layer, one or more hidden
layers and an output layer. Thus, neurons of the same layer share the same
inputs but there are not connected to each other. The output values of the
neurons in one layer are used as inputs to the neurons in the next layer. In
this paper, the considered neural network is a feed-forward fully connected,
which means that every unit belonging to each layer is connected to every unit
belonging to the adjacent layer without any loop or cycle. Thus the informa-
tion is transferred from input layer to output layer through each hidden layer
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(see Fig. 2b). The output layer consists of several neurons representing the
different desired predictions (see Section 2.1), and the transfer function used
for this layer is a simple linear function. Predicting with a neural network
involves a learning phase. During this phase, the learning process is super-
vised. Thus, thanks to a set of examples with expected output information
(predictions), the model can be trained using an optimization process.The
more various examples there are, the better the prediction of the model may
be. In our case study, we predict the soil moisture, that is a continuous
value. This problem is known as a regression problem. During the learning
stage,its ability to generalize is tested on a test base, i.e. an unknown set of
examples (see Section 5). We use a standard backpropagation algorithm [37].
The error between predicted value and the sensor value is back propagated
to the input layer adjusting the weights and biases in each layer thanks to an
optimization algorithm. In the context of low data there is a risk of overfit-
ting: the model can learn the statistical noise of small data set, which leads
to poor performance in generalization (i.e. on unseen examples). Combining
many networks with different topologies on the same database reduces this
problem but in practice it is quite difficult to use. One regularization method
to prevent overfitting is the dropout [38]. The idea behind this approach is
to simulate many network topologies from a single network.

2.3. Random Forest
A Decision Tree is a machine learning algorithm which is invariant under

scaling and various other transformations of feature values. It is robust to
inclusion of irrelevant features, and produces understandable models. How-
ever, they are rarely accurate, and if the decision tree grows too much and
there is a risk of overfitting. The first designation of the Random Forest [39]
is a combination of Breiman’s bagging idea and random selection of features
introduced by Ho [40]. Random Forest is an ensemble learning which com-
bines the concepts of random subspaces and bagging. The random forest
algorithm performs training on multiple decision trees trained on different
subsets of data in parallel. The construction of decision trees is done us-
ing the boostrap method to randomize the use of variables and data. In
the context of regression, the prediction of unseen samples is made by the
mean of the output. This approach improves the performance of decision
trees because it decreases the variance of the model, without increasing the
bias. RF algorithm can be defined as described in algorithm 1. This algo-
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Algorithm 1: Random Forest
Input: S: training set (x1, y1), . . . (xn, yn) ; F : set of features ; B:

number of trees in forest.
Output: H: set of trees (random Forest regressor)

1 begin
2 H ← {}
3 for i ∈ 1 . . . B do
4 Si ← A bootstrap sample from S
5 hi ← RandomizedTreeLearn(Si, F )
6 H ← H ∪ {hi}
7 return H

rithm has several parameters. The 3 main parameters free to be tuned in
our implementation are:

• Minimum sample leaf

• Number of decision trees

• Maximum feature attributes

In this study we use the scikit-learn [41] library to implement RandomForest.

2.4. Support Vector Machine
Originally developed for classification tasks [42], this algorithm is used for

regression [43] (called Support Vector Regression or SVR). This algorithm
can be applied for many machine learning problems and can, depending on
the data, have performance similar or superior to the Neural Network and
RandomForest. Its advantage is to be able to work with large data sizes
while having a low number of hyperparameters to tinned and it is known
to have good results in practice. The concept of its approximation function
is based on the Statistical Learning Theory [44] plus a set of normalized
input/output examples. In context of regression, let be a training sample
X = {(x1, y1), . . . , (xn, yn)}, the goal is to find an f(X) as close as possible
using the form given in Equation 3 [45]:

f(X) = W.ϕ(X) + b (3)
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Where ϕ(X) is a matrix with high-dimensional space. To estimate coefficients
W and b a regularised risk function is used [46]. Although we consider that if
the loss is zero it implies that f(xi) explains yi, ∀i ∈ X. SVR assumes that we
can accept a maximum ϵ deviation between f(x) and y. The underlying idea
is to avoid overfitting by accepting an error’s margin. Thus, SVR calculates
the loss when the absolute value of the difference between f(x) and y is
greater than ϵ. During the training, if a point is predicted within an area
centered on y and with width of ϵ then the point is considered correct. The
impact of the error margin is therefore a crucial parameter to tune in order to
have good performance in generalization: a too small margin allows a better
learning at the risk of over-learning while a too large margin can have poor
performance in generalization. To implement the SVR, we use the scikit-learn
library1. 2 parameters are free for adjustment:

• ϵ, which is the width of the acceptance band.

• C, a regularization parameter. The strength of the regularization is
inversely proportional to C. It must be strictly positive.

3. Feature Selection

Feature selection is a preprocess method of dimensionality reduction . Its
objective is to generate a lighter model by excluding some of the features that
contribute the least to explaining a phenomenon while limiting the degra-
dation of model performance. In context of several outputs to predict, each
output must be considered independently, since it is impossible that the
same features contribute the best to all outputs. In this case the resulting
lightweight models can be seen as a unique collection of features from the
list of selected features for each output (possibility of features redundancy).
From a set of examples containing inputs and outputs, the algorithm uses

a metric using the correlations/relationships between features to establish a
ranking order based on their contribution to explain the output. There are
several methods of feature selection with different strategies such as Recur-
sive Feature Elimination (RFE) or Filter Method (FM), Forward Selection
(FS), …. Each method needs a metric to classify the features in order of
importance. Thus a estimator is used to provide them with this informa-
tion. All algorithms that can generate this metric can be used, for instance,

1https://scikit-learn.org/stable/
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Random Forest (RF), Support Vector Machine (SVM) with a linear kernel,
LASSO, …. One of the advantages of these methods is that they do not
require any prior knowledge to select the features that best explain the prob-
lem. However, a major drawback of this approach is the weighting issue.
Indeed, the ranking of features is established prior to the training based on
the available data (train database). If an unknown observation disagrees
with the learning base, then the ranking can be questioned and may lead
the algorithms to exclude one or more relevant features and thus penalize
the generalization of the light model. In this study, 2 methods of features
selection are studied:

• Filter method [47, 48] : A estimator is used to to assign a score for each
feature and rank them in order of importance. The selection of the best
a priori parameters is made according to a threshold. All features with
a score greater than or equal to the threshold are preserved. The value
of the threshold is a hyper parameter which is provided by the user.
Higher the threshold is, the fewer features are kept.

• Recursive Elimination Feature [49]: From the available set of features
and a Given external estimator that assigns weights to features (e.g.,
the coefficients of a linear model), the goal of recursive feature elimina-
tion , is to recursively pruned a feature that contributes the least to the
explanation of the output. First, the estimator is trained on the initial
set of features and the importance of each feature is made. The feature
which contribute the least is pruned and this procedure is recursively
repeated on the pruned set until K best features is eventually reached.
The value of the hyper parameter K is provided by the user. Feature
selection strategies can therefore be very different. For example, RFE
uses an iterative process while FM uses a one-shot approach. When the
number of features to be estimated is important, RFE can take more
time to calculate than FM. In case of several output to consider, the
process cannot be directly applied to all of them. Indeed the methods
are used to capture the relationships between the inputs and 1 output.
In order to tackle this problem, it is necessary to decompose the prob-
lem with X outputs into X problems with 1 output. Each of them has
the same inputs. In this way the feature selection methods are able to
select specific features for each output.

Algo 2 and Algo. 3 describe the feature selection methods used in this study.
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Here again we have used the scikit-learn library for both these approaches.

Algorithm 2: Filter Method
Input: α: acceptance limit ; X: training set {(x1, y1), . . . , (xn, yn)};

F : set of features {f1, . . . , fn}; R: regression method.
Output: I: a set of most important features

1 begin
2 M ← fit(R, X)
3 foreach f ∈ F do
4 if ScoreImportanceM(f) > α then
5 I ← I ∪ {f}

6 return I

7 .

4. Processing modeling

The problem of soil water potential prediction is similar to the problems
described in section 1, and recently in Yamacc [31] which proposes a compar-
ison of different learning algorithms to estimate the daily evapotranspiration
value for the potato crop over 4 scenarios against an FAO equation. Thus
the methodology used in this work follows the same principles:

• All available features used for the learning process are given by agronomists.

• Data collection is carried out using sensors.

• Historical campaigns are divided into 2 databases (learning and vali-
dation) without introducing knowledge of one into the other.

• Models are generated using supervised learning algorithms.

• Validation is carried out by measuring the model prediction error on
test campaigns.

Moreover, like [31, 50, 33] we compare different learning algorithms, in our
case NN, RF and SVR which have proven their relevance for solving similar
problems (see section 1). However, we choose to predict SWP and not evapo-
transpiration and those over a larger time window, namely 7 days (like in [25])
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Algorithm 3: Recursive Feature Elimination.
Input: K: number of features to select ̸= 0; X: training set

{(x1, y1), . . . , (xn, yn)}, R: regression method; F : a set of all
features

Output: F : a set of most important features
1 Function RFE(K, F , X)
2 if K ̸= 0 then
3 M ← fit(R, X)
4 f ∗ ← argmin

F
ScoreImportanceM

5 F ← F − {f ∗}
6 return RFE(K − 1, F , X)
7 else
8 return F

in the future in our study compared to 1 day proposed in most of the studies
mentioned above, which is important to note. Compared to other studies,
we assume that the sensors used here are not necessarily very accurate, be-
cause the objective is to be able to test the relevance of their use to collect
data to learn the phenomena in a production context (i.e. with all sources
of uncertainty, technical problems, …).Moreover, the choice of features is an
important point to take into account in learning problems [51, 52, 53]. There-
fore,we add to our methodology a feature selection step, with the intention
to automatically generate lighter or robust models but also to select the
most suitable features and thus make the models resistant to the insertion
of non-essential features as they will be automatically excluded. Indeed,
it is possible that not all features are necessarily useful to the algorithms
to explain the observations. Thus, we investigate 2 approaches of feature
selection: Recursive Feature Elimination (RFE) [54, 50] and Filter Method
(FM). To the best of our knowledge, this work is new in the field of potato
cultivation. In this study, we assume the weather forecasts are correct, and
with a perspective to a production release, we limit the forecast to 7 days
due to the reliability of our current weather models. The data set is divided
into 2 parts:

• the training set, which is the available data to design a predictive
model.
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• the test set, that corresponds to an entire growing campaign on a crop
that is not in the training set. This is the cleanest way to have a
independent test set, and to be sure not to introduce any bias. Indeed,
since the data are from a few time series, using random sampling on
all of them may lead to testing the forecasting on points close to those
it has already learned (i.e. not be fully independent).

We perform a leave-two-out cross validation: two crop are removed from the
available data set to serve as the test set and the others 8 crops corresponds to
the current the training set, and then, we loop on all fields. This design choice
is a compromise between the low amount of learning data, and the statistical
accuracy to be able to interpret the results. Thus, the number of test folds
in cross-validation method becomes N = 45 where N = (numberOfCrop ∗
(numberOfCrop− 1))/2 since we have numberOfCrop = 10 which is large
enough to be statistically significant. Our problem is not trivial as there are
21 outputs to predict, i.e 3 depths to predict over 7 days.
Thus, we design 2 sets of experiments:

• For the first experiment, we are interested in the impact of the feature
selection method in the creation of lighter model as well as their per-
formances. As these methods need a estimator to generate a metric
for scoring the contribution to the output, we are also interested in the
influence of the algorithm used. Finally we study the importance of
the threshold value.

• For the 2nd experiment, we compare both the best lightweight models
for each algorithm and models with all available features. We are inter-
ested in the global performances as well as in the evolution of the error
according to the i-th day to be predicted in front of different metrics.

Additionally, we present the predictions of our decision support tool on par-
ticular test campaigns. The interest here is to provide readers with a visual of
what will be proposed for tiller as well as difficulties related to this issue. The
weather (in particular the precipitation) and the irrigations have a strong im-
pact on the soil moisture between the depths of 0 and 20 cm, corresponding
to the area above the upper sensor. It is important to keep in mind that it is
difficult to model what happen between the ground surface and the measure
of the upper sensor (the same difficulty appears between where the water is
directly usable by the roots. The unit used by sensors is the Kpa and the
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range of values stands between 0 kpa (rainoff soil) and 200 kpa (drought).
It should be noted that values between 0 and 20 kpa (soil saturated) and
above 150 kpa (soil very dry), can not be measured accurately by sensors.
In this work, the proposed neural network consists of a feed forward neural
network developed thanks to the Keras library2. The network is composed
of 1 hidden layer of 600 neurons using a sigmoid activation function and 1
output layer of 21 outputs using a linear activation function. The reason
for the number of output is explained in the section 2.1. In addition, we
use a dropout at 0.2 in order to avoid overfitting. The proposed topology is
the result of an empirical study of different topologies. We present here the
one that has obtained the best results at the moment. For Random Forest,
after a grid search study we set the number of decision trees to 500 and the
number of maximum attributes for a tree equal to the number of available
features, which gives experimentally the best results. All other parameters
are the default ones in the scikit library. For SVR, we use the ’linear’ kernel,
other kernels were tested but this one had best results the C-value is set to
5, and ϵ-value to 10−1 which gives experimentally the best results.

5. Results and discussion

This section presents the different experiences that have been made as
well as an interpretation of the results.

5.1. Performances evaluation
To evaluate the accuracy of our models, we consider the Mean Absolute

Error (MAE) (see eq 4), the Root Mean Squared Error (RMSE) (see eq 5)
and the R squared (R²) (see eq 6).

MAEdepth(j) =
1

n

n∑
i=1

| yi,j − ŷi,j | (4)

RMSEdepth(j) =

√√√√ 1

n

n∑
i=1

(yi,j − ŷi,j)2 (5)

R2
depth(j) = 1−

∑n
i=1(yi,j − ŷi,j)

2∑n
i=1(yi,j − ȳi,j)2

(6)

2https://keras.io/
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where n is the number of examples, yi,j the real tensiometer value for
the day i at depth j, ȳi,j average of the measurements and ŷi,j the model
prediction for the day i at depth j. Since we have 3 depths to consider each
day, for a given day the MAE, RMSE and R2 criteria to minimize, is then
average the errors over the 3 depths:

MAE =
1

3

3∑
j=1

MAEdepth(j)

RMSE =
1

3

3∑
j=1

RMSEdepth(j)

R2 =
1

3

3∑
j=1

R2depth(j)

Please note that for the models resulting from the feature selection stage are
grouped together and their performance is thus measured in the same way
as for global models, i.e. with all outputs to be considered at the same time

5.2. Feature selection comparison
For the first experience, Figs 2, 3, and 4 show the impact of the hyper

parameter of the two feature selection methods (Threshold for Filter method
(FM) and k, the number of features to keep, for RFE) in front of different
metrics defined by Eqs 5.1 after a leave-two-out cross-validation has been
performed. As explained in section 4 using a leave-two-out cross validation
allows us to have statistically significant performances and so we can compare
the means.

For the FM, on the x-axis, high threshold values mean that a small num-
ber of features are selected. On the opposite, for the RFE, high values mean
that a large number of features are retained. On these graphs are represented
the various estimators used to select the features: SVR with a linear kernel
(SVRL), LASSO with cross validation (LASSO) and Random Forest Regres-
sor (RF). Other estimators can be considered. Concerning the results, first,
the performances of the feature selection methods are quite similar between
the learning algorithms. The rapid decrease of the error (MAE and RMSE)
when the hyper parameter is low (up to 10 for LASSO and 15 for RF and
SVRL) for RFE indicates that from this value the models have enough fea-
ture to be able to learn the phenomenon properly. According to the results,
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Figure 2: Hyper parameter tuning of the feature selection methods with Random Forest
Regressor learning algorithm according to several metrics. The higher the k parameter
(RFE), the more parameters per output are retained. A high Threshold (FM) indicates
that only parameters with a significant contribution score per output will be retained.
Except for R2, lower is better.
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Figure 3: Hyper parameter tuning of the feature selection methods with Support Vector
Regressor learning algorithm according to several metrics. The higher the k parameter
(RFE), the more parameters per output are retained. A high Threshold (FM) indicates
that only parameters with a high contribution score per output will be retained. Except
for R2, lower is better.
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Figure 4: Hyper parameter tuning of the feature selection methods with Neural Network
learning algorithm according to several metrics. The higher the k parameter (RFE), the
more parameters per output are retained. A high Threshold (FM) indicates that only
parameters with a high contribution score per output will be retained. Except for R2,
lower is better.
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LASSO is able to select the most relevant parameters when the hyper pa-
rameter is very low whatever the learning algorithm. Then its performance
is comparable to SVRL. about RF, for the Feature Selection,According to
the results, for RFE, higher the k parameter is, the better the prediction
is. Indeed, both the MAE and the RMSE are decreasing while R2 slightly
increase which is expected. Concerning the estimator, although the perfor-
mances of RF and SVRL are equivalent, Lasso with cross validation has a
better dynamic. We can notice that LASSO find a consistent set of parame-
ter with k = 10 which is much better than RF and SVM whatever the metric.
Beyond this value the MAE and RMSE performances converge but the R2

score remains slightly higher than SVRL and higher than RF. This suggests
that LASSO has succeeded in selecting the most important features. It can
also be argued that the resulting model has lower extreme deviations (lower
RMSE) than the other methods, which should also explain the higher corre-
lation coefficient. As explained in section 3, since several outputs have to be
taken into account, there are k features selected per output, but since these
outputs are not identical, the combination of all these outputs forms a larger
set. For instance, for RF using a RFE method with LASSO as an estimator
with hyper parameter k = 10. the resulting models so use 10 features by
output but the overall unique collection set is 30 features, i.e. about 25%
less than the model with all features. On his side, for FM, the strategy is
different. Higher the threshold is, lower the number of feature is kept. But
Only those with an importance score greater than or equal to the threshold
are retained. Thus there is no guarantee about a constant number of fea-
tures per output. Here, LASSO and SVRL have similar performance while
RF shows a degradation from Threshold = 7. This suggests that RF score
less effectively the features. Here, the best setting of the hyper parameter
is reached for LASSO and SVRL when Threshold = 16 for these value, the
number of unique feature is then 43 (up to 33 features by output).

As SVR’s performances are identical, the conclusions are therefore the
same. The number of features per output depending on the selection method
and the estimators are the same. Finally for NN, for RFE, according to the
errors, MAE is higher than for RF or SVR. But RMSE and R2 are better,
with respective values of 13.7 and 0.78 achieved with SVRL as estimator and
K = 20. The resulting models use 20 features by output and the unique
collection set of features is then 33. These results indicate that on aver-
age NN has lower extreme errors. About the estimators, RF has the worst
performances whatever the feature selection method. This echoes what has
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been said before. For the FM, Apart from RF, SVRL and LASSO also have
similar performances. Since the impact of the threshold and estimator is low,
if we look at threshold = 25, then the number of features per output is at
most 29 for a total of 35 unique features.

For feature selection method, first, at that point, reformulate a problem
with several outputs into several problems with 1 output using a feature
selection method allows us to automatically design models with the most
pertinent features for each output. The estimator used to score features
have a significant impact on the resulting model in terms of performances,
while the feature selection method impact the number of features kept. For
RF, SVR using RFE as feature selection with the LASSO method with cross
validation as estimator offers the most interesting models, a priori, since it
has a low error while maintaining a higher R2 than the other methods. For
NN, usign RFE with SVRL provides the best results in terms of R2 and
RMSE.

Common features between the different methods tested and the different esti-
mators used. The values of the tensiometers and the future precipitation are
always selected. This seems obvious, but it is interesting to note that these
feature selection methods validate these features as values that are crucial
for learning process. Then, come the temperature values and the age of the
plant. The Age feature was not necessarily expected, but indeed, there is a
correlation between the age of the plant and the increase in Water Pressure
(the greater the age, the more developed the plant is and the greater its water
needs). These observations matches with the correlation matrix 1.

Performance comparison. The Fig. 5 shows the boxplots colorized according
to the machine learning algorithm used (RF, SVR and NN) and grouped
according feature selection method. Each boxplot of a group corresponds
respectively to :

• Without a selection method, i.e. using all available features (None).

• Recursive Feature Elimination method (RFE).

• Filter Method (FM).
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The best set of parameters of each feature selection method according to the
metrics has been used. For RF and SVR for RFE, the k parameter is 10 and
for FM the Threshold parameter is 16. Both of them use LASSO as esti-
mator. For NN, for RFE the k parameter is 20 and for FM the Threshold
parameter is 25. The estimator used for RFE and FM is SVRL First of
all, within a learning method (with or without feature selection), apart from
SVR, the means are quite similar whatever the metrics. For MAE and RMSE,
maximum errors are lower (which is especially the case for NN) when the fea-
ture selection is used. In contrast, the minimum values of R2 are higher. This
is an interesting point since it shows that the lighter models are able to do
as well than the model with all feature. In addition, SVR’s performance is
significantly improved when the feature selection is used. Now, If we com-
pare machine learning algorithms with each other, when no feature selection
is used RF has the best average performance. NN, however, has a higher
minimum R2 value. But when the feature selection is used, SVR has similar
performance to RF. NN has a higher mean error, but lower maximum values
for MAE and RMSE. Dispersion is also lower. For R2, the minimums are
higher for NN, than RF.

Table 2: Lower is better. Details of the performance of the leave-two-out cross validation
for Neural Network in front of different feature selection method.

NN NN_FM NN_RFE
Mean 7.94 8.14 7.73
Minimum 1.15 1.15 1.30
Maximum 27.64 27.64 27.13
25 % 4.32 4.11 4.54
50 % 6.65 7.02 6.40
75 % 10.01 10.18 9.78

Tables 2, 3 and 4 details respectively the performance of Figs 4, 2 and
3.The results confirm the analysis of the boxplots.

Now if we disaggregate the overall performance in order to detail the
evolution of the error according to the number of days to be predicted for
each depth (P1, P2 and P3), Figs 6, 7 and 8 show this evolution according
the same metrics (MAE, RMSE and R2). Here, The same hyper parameters
are kept. Thus the graphs show another point of view. For RF, SVR and
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Table 3: Lower is better. Details of the performance of the leave-two-out cross validation
for Random Forest in front of different feature selection method.

RF RF_FM RF_RFE
Mean 6.84 6.86 6.84
Minimum 0.28 0.29 0.28
Maximum 32.15 32.04 32.15
25% 2.25 2.28 2.24
50% 4.35 4.29 4.39
75% 9.18 9.08 9.36

Table 4: Lower is better. Details of the performance of the leave-two-out cross validation
for Support Vector Regressor in front of different feature selection method.

SVM SVM_FM SVM_RFE
Mean 6.86 6.88 6.85
Minimum 0.27 0.28 0.28
Maximum 32.76 32.10 32.76
25% 2.24 2.23 2.25
50% 4.33 4.40 4.36
75% 9.27 9.33 9.03

26



Figure 5: Cross validation error for each feature selection approach. Learning is done
using the best set of hyper parameters for each method. Except for R2, lower is better.
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Figure 6: Evolution of the metrics according the number of day to predict in front of
different method of feature selection method or not. Except for R2 lower is better.
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Figure 7: Evolution of the metrics according the number of day to predict in front of
different method of feature selection method or not. Except for R2 lower is better.
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Figure 8: Evolution of the metrics according the number of day to predict in front of
different method of feature selection method or not. Except for R2 lower is better.
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NN, predict 1 day ahead achieve great performance with R2 score above 0.92
whatever the feature selection method used. This accuracy is equivalent to
the performance of other studies on evapotranspiration (Soil Water Potential
here). When the number of days to be predicted increases the performance
remains correct up to 4 days and then deteriorates beyond that. At 7 days the
error increases sharply, but remains correct. However the R2 score collapses,
which indicate that the prediction seems more uncertain. If we focus on the
different depths, we notice that the evolution of the error is not the same
according to the depth. At 20 cm the error increases faster than for 30 and
40 cm. This can be explained by a greater water dynamic at 20 cm than
at 30 and 40 cm. Another possible explanation is that both the learning
and test base has few number of observation with severe tensiometer values
(close to 200 Kpa) at these depths. Eventually if we focus on feature selection
method, the different algorithms have similar performances when the feature
selection is used but different from the model with all features (NONE). It
is noticeable that the latter learns the first depth (P1) better than the other
two (P2 and P3) regardless of the number of days to predict, unlike models
with feature selection which learns the different depths more equally. The R2

scores are significantly less spread with the selection method (and better for
P2 and P3) than with the none feature selection. This behaviour is confirmed
with the other metrics. So if we take into account all depths, up to 5 days, it
is preferable to use the model with feature selection (RFE or FM). Beyond
that, if we are interest only by P1, it is more appropriate to use the all feature
(NONE). These results are interesting since it highlights the fact that the
global model (NONE) can focus on 1 depth (rather than the others) while
the feature selection is able to efficiently select the most important features
for each output since each output have the most relevant ones.

Discussion. The results are encouraging as they show that feature selection
methods are suitable to generate such high-performance models. More, the
automatic lightweight model design process is relevant in view of the encour-
aging results since the differences are (at least) quite small compare to the
model with all feature, more the spread out is lower. It is also interesting
to point out that the models have less discrepancies regarding performance
between depths (whatever the metrics).
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Figure 9: 7th-day forecasting over a cloudly campaign

Figure 10: 7th-day forecasting over a rainy test campaign

Figure 11: 7th-day forecasting over a hard drought test campaign
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5.3. Short-term weekly soil moisture predictions
Irrigation tool. Since NN is the learning method with the lowest extreme
errors (max bound), we will select it. Indeed, on land of several hectares, the
variation of the SWP between 2 areas of the plot can then be higher than 10
kpa (i.e higher than the error made by the algorithms). Thus it is preferable
to choose an algorithm that behaves better when the prediction conditions
are unfavourable i.e. to predict global trends as accurately as possible and
with reduced extreme errors. Figs. 9, 10, and 11 show some output of our
predictive tool, representing a complete test campaigns using neural network
learning algorithm. These curves represent a solution proposed to grower to
address the problem of weekly SWP prediction. The black line illustrates
the tensiometer values while the black dotted line represents the 7th-day
forecast values by our neural network, in other words the most difficult long
range prediction. Fig. 9 is the field corresponds to the campaign on which
our model had the best performances. Here, visually the 7-th Day forecast
over the whole campaign is very close to the ground truth. Fig. 10 represents
a campaign where rainfall was abundant. On the first 2 depths (20 and 30
cm) the performances are also more than correct. The predictions at the
last depth seem more chaotic but one must take into account the scale of the
graph. Indeed here, the error is about 5 Kpa, which is not significant for field
areas of several hectars. Eventually, fig. 11 correspond to the field with the
worst performance. These campaigns are affected by dry spell and the soil
was often drought. The learning databases include few samples covering these
conditions. This explain the relative poor forecasting, in extreme conditions,
in particular at the beginning (before 20 days) and at the end (after 70 days)
of the campaign. The fall of Kpa that occurred around day 64 was due to the
rain that the rain gauge measured but the sensors in the ground did not see
it. One possible explanation is that the rain sensor was located at a certain
distance from the plot, so rain could have really happened but outside the
plot.

Discussion. As report on figures, the model (neural network here) is able
to learn the trends of each campaign, even if the prediction quality can be
heterogeneous. These figures provide a visualization of the prediction model.
Eventually the proposed tool will present this type of information to the
planter in order to give them a trend for the coming days.
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6. Conclusion

In this paper, we model the problem of Soil Water Potential into a su-
pervised learning problem. The problem is not trivial since there 21 outputs
to predict (3 depths for each day and 7 days to predict) In addition, we use
feature selection methodology in order to automatically design lighter models
using the most suitable features. This work is a step forward, as we directly
work with farmers, and the goal is to help them in decision making pro-
cess, in an economical and ecological points of view. We use the information
provided by low-cost tensiometers in order to make its use as democratic as
possible.

As a result, the leave-two-out cross validation, allows us to present statis-
tically significant results. The similar performance between the feature selec-
tion methods indicates that a lighter model can achieve close performance,
which is an important point. In addition, if new features are introduced this
method will automatically reject the least significant features and therefore
be more robust. However, these methods require the tuning of the hyper
parameters. About the methods, using a machine learning approach is rele-
vant.With a larger database we will be able to improve the performance of
algorithms.

For future work, we will increase the number of fields monitored and thus
increase the current database. Few shot learning algorithms are also a way to
explore since they are able to learn from a (very) limited number of examples.
The interest of this approach is a good compromise compared to parametric
models, or expensive destructive sampling. However, there is still room for
improvements, with more data we could test current and new approaches on
other type of soil, kind of crops or other weather. Since feature selection
methods have an important impact on the model’s design process, it would
be pertinent to explore other approaches. Using a time series approach such
as recurrent networks (RNN) or Long Short Time Memory (LSTM) could
also be convenient too [55]. Their ability to learn from natural symmetries,
patterns or other similarities related to temporal phenomena should improve
current performance. In these case, a performance comparison with other
temporal approach like ARIMA (the next value is predicted using previous
values an autoregressive model, and a moving average model) method could
also be investigated.

34



Declaration of Competing Interest

This work was supported by WEENAT company, who’s funding Amaury
DUBOIS’s thesis.

The other authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgements

The authors would like to thank the WEENAT company for the use of
their data which made this article possible. Experiments presented in this
paper were carried out using the CALCULCO computing platform, sup-
ported by SCOSI/ULCO (Service COmmun du Système d’Information de
l’Université du Littoral Côte d’Opale).

References

[1] F. F. Montesano, F. Serio, M. Carlo, S. Angelo, P. Angelo,
S. Pietro, Tensiometer-based irrigation management of subirrigated soil-
less tomato: Effects of substrate matric potential control on crop per-
formance, Frontiers in Plant Science 6 (2015) 1150.

[2] Z. Zhai, J. F. Martínez, V. Beltran, N. L. Martínez, Decision support
systems for agriculture 4.0: Survey and challenges, Computers and Elec-
tronics in Agriculture 170 (2020) 105256.

[3] M. Francesco, Parente, L. Nicola, T. Mladen, Trotta, Modern technolo-
gies, strategies and tools for sustainable irrigation management and gov-
ernance in Mediterranean Agriculture, 2015.

[4] M. D. Dukes, L. Zotarelli, K. T. Morgan, Use of irrigation technologies
for vegetable crops in florida, HortTechnology 20 (1) (2010) 133–142.

[5] FAO, Sprinkler irrigation.

[6] eos, soil moisture control is an essential farming constituent (2019).

35



[7] K. T. Kassaye, J. Boulange, V. T. Lam, H. Saito, H. Watanabe, Mon-
itoring soil water content for decision supporting in agricultural water
management based on critical threshold values adopted for andosol in
the temperate monsoon climate, Agricultural Water Management 229
(2020) 105930. doi:https://doi.org/10.1016/j.agwat.2019.105930.

[8] M. T. Van Genuchten, A closed-form equation for predicting the hy-
draulic conductivity of unsaturated soils 1, Soil science society of Amer-
ica journal 44 (5) (1980) 892–898.

[9] D. C. Erbach, Measurement of soil bulk density and moisture, Transac-
tions of the ASAE 30 (4) (1987) 922–0931.

[10] F. S. Zazueta, J. Xin, Soil moisture sensors, Soil Sci 73 (1994) 391–401.

[11] M. Thalheimer, Tensiometer modification for diminishing errors due to
the fluctuating inner water column, Soil Science Society of America Jour-
nal 67 (3) (2003) 737–739.

[12] K. Johnson, S. Johnson, P. Teng, Development of a simple potato growth
model for use in crop-pest management, Agricultural Systems 19 (3)
(1986) 189 – 209.

[13] N. Brisson, C. Gary, E. Justes, R. Roche, B. Mary, D. Ripoche, D. Zim-
mer, J. Sierra, P. Bertuzzi, P. Burger, F. Bussière, Y. Cabidoche, P. Cel-
lier, P. Debaeke, J. Gaudillère, C. Hénault, F. Maraux, B. Seguin,
H. Sinoquet, An overview of the crop model stics, European Journal
of Agronomy 18 (3) (2003) 309 – 332, modelling Cropping Systems:
Science, Software and Applications.

[14] D. Raes, P. Steduto, T. C. Hsiao, E. Fereres, Aquacrop—the fao crop
model to simulate yield response to water: Ii. main algorithms and
software description, Agronomy Journal 101 (3) (2009) 438–447.

[15] E. Ramat, B. Vandoorne, Plant growth model for decision making sup-
port, Tech. rep., Université du Littoral Côte d’Opale, and ISA Lille
(2002).

[16] R. G. Allen, L. S. Pereira, D. Raes, M. Smith, et al., Crop
evapotranspiration-guidelines for computing crop water requirements-
fao irrigation and drainage paper 56, Fao, Rome 300 (9) (1998) D05109.

36



[17] T. Howell, S. Evett, The penman-monteith method (01 2004).

[18] D. Chen, Y. Ma, Optimized algorithm for estimating parameters by
solving van genuchten equation based on stochastic particle swarm op-
timization, Nongye Gongcheng Xuebao(Transactions of the Chinese So-
ciety of Agricultural Engineering) 22 (12) (2006) 82–85.

[19] S. Sorooshian, Q. Duan, V. K. Gupta, Calibration of rainfall-runoff mod-
els: Application of global optimization to the sacramento soil moisture
accounting model, Water Resources Research 29 (4) (1993) 1185–1194.
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/92WR02617.

[20] A. Dubois, F. Teytaud, E. Ramat, S. Verel, Automatic calibration
of a farm irrigation model: a multi-modal optimization approach, in:
L. Idoumghar, P. Legrand, A. Liefooghe, E. Lutton, N. Monmarché,
M. Schoenauer (Eds.), Artificial Evolution, Springer International Pub-
lishing, Mulhouse, France, 2019, pp. 192–204.

[21] H. Chen, J. J. Huang, E. McBean, Partitioning of daily evapotranspi-
ration using a modified shuttleworth-wallace model, random forest and
support vector regression, for a cabbage farmland, Agricultural Water
Management 228 (2020) 105923.

[22] Y. Feng, N. Cui, D. Gong, Q. Zhang, L. Zhao, Evaluation of ran-
dom forests and generalized regression neural networks for daily ref-
erence evapotranspiration modelling, Agricultural Water Management
193 (2017) 163 – 173.

[23] M. Kumar, N. Raghuwanshi, R. Singh, W. Wallender, W. Pruitt, Es-
timating evapotranspiration using artificial neural network, Journal of
Irrigation and Drainage Engineering 128 (4) (2002) 224–233.

[24] I. Ali, F. Greifeneder, J. Stamenkovic, M. Neumann, C. Notarnicola,
Review of machine learning approaches for biomass and soil moisture re-
trievals from remote sensing data, Remote Sensing 7 (12) (2015) 16398–
16421. doi:10.3390/rs71215841.

[25] R. Torres-Sanchez, H. Navarro-Hellin, A. Guillamon-Frutos, R. San-
Segundo, M. C. Ruiz-Abellón, R. Domingo-Miguel, A decision support
system for irrigation management: Analysis and implementation of dif-
ferent learning techniques, Water 12 (2) (2020). doi:10.3390/w12020548.

37



[26] R. Zakaluk, R. S. Ranjan, Artificial neural network modelling of leaf wa-
ter potential for potatoes using rgb digital images: a greenhouse study,
Potato Research 49 (4) (2006) 255–272.

[27] D. Delgoda, S. K. Saleem, H. Malano, M. N. Halgamuge, Root zone soil
moisture prediction models based on system identification: Formulation
of the theory and validation using field and aquacrop data, Agricultural
Water Management 163 (2016) 344 – 353.

[28] J. G. Fortin, F. Anctil, L.-É. Parent, M. A. Bolinder, A neural network
experiment on the site-specific simulation of potato tuber growth in
eastern canada, Computers and Electronics in Agriculture 73 (2) (2010)
126–132.

[29] A. Sabziparvar, H. Tabari, Comparison of artificial neural network mod-
els and non-linear regression methods for estimation of potato crop evap-
otranspiration in a semi-arid region of iran, in: The international con-
ference on intelligent network and computing, Nov, 2010, pp. 26–28.

[30] H. Tabari, C. Martinez, A. Ezani, P. H. Talaee, Applicability of support
vector machines and adaptive neurofuzzy inference system for modeling
potato crop evapotranspiration, Irrigation science 31 (4) (2013) 575–588.

[31] S. S. Yamaç, M. Todorovic, Estimation of daily potato crop evapotran-
spiration using three different machine learning algorithms and four sce-
narios of available meteorological data, Agricultural Water Management
228 (2020) 105875.

[32] R. Filgueiras, T. S. Almeida, E. C. Mantovani, S. H. B. Dias, E. I.
Fernandes-Filho, F. F. da Cunha, L. P. Venancio, Soil water content
and actual evapotranspiration predictions using regression algorithms
and remote sensing data, Agricultural Water Management 241 (2020)
106346. doi:https://doi.org/10.1016/j.agwat.2020.106346.

[33] M. Y. Chia, Y. F. Huang, C. H. Koo, Support vector machine enhanced
empirical reference evapotranspirationestimation with limitedmeteoro-
logical parameters, Computers and Electronics in Agriculture 175 (2020)
105577.

[34] R. Linker, I. Ioslovich, G. Sylaios, F. Plauborg, A. Battilani, Optimal
model-based deficit irrigation scheduling using aquacrop: A simulation

38



study with cotton, potato and tomato, Agricultural Water Management
163 (2016) 236–243.

[35] C. D. van Loon, The effect of water stress on potato growth, develop-
ment, and yield, American Potato Journal 58 (1981).

[36] P. J. Werbos, The roots of backpropagation: from ordered derivatives
to neural networks and political forecasting, Vol. 1, John Wiley & Sons,
1994.

[37] P. Werbos, Beyond regression:” new tools for prediction and analysis in
the behavioral sciences, Ph. D. dissertation, Harvard University (1974).

[38] Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya
Sutskever and Ruslan Salakhutdinov, Dropout: A simple way to prevent
neural networks from overfitting, Journal of Machine Learning Research
15 (2014) 1929–1958.

[39] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and regres-
sion trees (1984).

[40] T. K. Ho, Random decision forests, in: Proceedings of 3rd international
conference on document analysis and recognition, Vol. 1, IEEE, 1995,
pp. 278–282.

[41] scikit learn, random forest regressor (2020).

[42] V. N. Vapnik, The nature of statistical learning theory (1995).

[43] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, V. Vapnik, Support
vector regression machines, in: Advances in neural information process-
ing systems, 1997, pp. 155–161.

[44] V. Vapnik, The nature of statistical learning theory, Springer science &
business media, 2013.

[45] J.-Y. Lin, C.-T. Cheng, K.-W. Chau, Using support vector machines
for long-term discharge prediction, Hydrological Sciences Journal 51 (4)
(2006) 599–612.

39



[46] Q. Li, Q. Meng, J. Cai, H. Yoshino, A. Mochida, Applying support
vector machine to predict hourly cooling load in the building, Applied
Energy 86 (10) (2009) 2249–2256.

[47] scikit learn, Feature selection (2020).

[48] I. Guyon, A. Elisseeff, An introduction to variable and feature selection,
Journal of machine learning research 3 (Mar) (2003) 1157–1182.

[49] scikit learn, Recursive feature elimination (2020).

[50] J. You, S. A. [van der Klein], E. Lou, M. J. Zuidhof, Application of
random forest classification to predict daily oviposition events in broiler
breeders fed by precision feeding system, Computers and Electronics in
Agriculture 175 (2020) 105526.

[51] F. Löw, U. Michel, S. Dech, C. Conrad, Impact of feature selection on
the accuracy and spatial uncertainty of per-field crop classification using
support vector machines, ISPRS journal of photogrammetry and remote
sensing 85 (2013) 102–119.

[52] C. Chu, A.-L. Hsu, K.-H. Chou, P. Bandettini, C. Lin, A. D. N. Initia-
tive, et al., Does feature selection improve classification accuracy? im-
pact of sample size and feature selection on classification using anatom-
ical magnetic resonance images, Neuroimage 60 (1) (2012) 59–70.

[53] H. X. Zhao, F. Magoules, Feature selection for support vector regression
in the application of building energy prediction, in: 9th IEEE Inter-
national Symposium on Applied Machine Intelligence and Informatics
(SAMI 2011), IEEE Computer Society, Smolenice, Slovakia, 2011, pp. –.

[54] P. M. Granitto, C. Furlanello, F. Biasioli, F. Gasperi, Recursive fea-
ture elimination with random forest for ptr-ms analysis of agroindus-
trial products, Chemometrics and Intelligent Laboratory Systems 83 (2)
(2006) 83 – 90.

[55] A. Kamilaris, F. X. Prenafeta-Boldú, Deep learning in agriculture: A
survey, Computers and Electronics in Agriculture 147 (2018) 70 – 90.

40


