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Abstract

We consider the one-dimensional nonlinear Schrodinger equation with
a nonlinearity of degree p > 1. On compact manifolds many probability
measures are invariant by the flow of the linear Schrodinger equation (e.g.
Wiener measures), and it is sometimes possible to modify them suitably and
get invariant (Gibbs measures) or quasi-invariant measures for the non lin-
ear problem. On R, the large time dispersion shows that the only invariant
measure is the § measure on the trivial solution u = 0, and the good notion
to track is whether the non linear evolution of the initial measure is well
described by the linear (non trivial) evolution. This is precisely what we
achieve in this work. We exhibit measures on the space of initial data for
which we describe the non trivial evolution by the linear Schrédinger flow
and we show that their nonlinear evolution is absolutely continuous with
respect to this linear evolution. Actually, we give precise (and optimal)
bounds on the Radon-Nikodym derivatives of these measures with respect
to each other and we characterise their LP regularity. We deduce from this
precise description the global well-posedness of the equation for p > 1 and
scattering for p > 3 (actually even for 1 < p < 3, we get a dispersive prop-
erty of the solutions and exhibit an almost sure polynomial decay in time
of their LP*! norm). To the best of our knowledge, it is the first occurence
where the description of quasi-invariant measures allows to get quantitative
asymptotics (here scattering properties or decay) for the nonlinear evolution.
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CHAPTER 1

Introduction and results

1.1. General introduction

Let p > 1. In this paper we study long time dynamics for the one-
dimensional nonlinear Schrodinger equation

{z‘(‘)SU +OU =|UP'U, (s,y) ERxR,

NLS.
( p) U ’8:80: U07

where Up is a random initial condition, with low Sobolev regularity. The
distribution of Uy will be given by a Gaussian measure and we will study
its evolution under the nonlinear flow of (NLS,), denoted by (s, sg), and
compare it with the evolution under the linear flow Wy, (s, sg) = ¢i(s=50)5

When working on compact manifolds M instead of R, there exists nat-
ural Gaussian measures p supported in some Sobolev spaces H? (M) which
are invariant by the flow X, (s) of the linear equation (Wiener measures,
see Section 3 for more details). At some particular scales of regularity these
measures can be suitably modified (Gibbs measures) to ensure that they are
invariant by the nonlinear flow [9], or only quasi-invariant (renormalized
energies) [43, 34, 35, 33|. In our context, and more generally on ]Rg, the
situation is different, since dispersion prohibits the existence of measures
invariant by the flow of the linear or nonlinear Schrodinger equation (see
Proposition 3.1.1, Proposition 3.1.2 and Proposition 3.1.3). The purpose of
the present work is twofold. First we define mesures on the space of initial
data for which we can describe precisely the non trivial evolution by the
linear flow (notice that even this first step is non trivial). Second, we prove
that the nonlinear evolution of these measures is absolutely continuous with
respect to their (explicit) linear evolutions (we actually prove a precised
quantitative version of the absolute continuity, characterizing the integra-
bility of the Radon-Nikodym derivative, see Theorem 2.2.4); and finally we
get benefit from this precise description to prove almost sure scattering of
our solutions of (NLS),) for p > 3. Let us emphasize that these precise
quantitative estimates for the quasi-invariance are the key point to the proof
of almost sure scattering. We refer to Section 2 for complete statements.
To the best of our knowledge, the results in the present article are the first
ones giving insight, in a non compact setting on the time evolution of the
statistical distribution of solutions of a nonlinear PDE (see also Ammari-
Nier [1, 2, 3] in a completely different context). They also are the first
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2 1. INTRODUCTION AND RESULTS

ones providing scattering for NLS for large initial data without assuming
decay at infinity: our solutions are essentially in L?, but they actually miss
the L? space by a logarithmic divergence both in space and in frequency,
namely they are in the Besov space BS,OO(R) built on the harmonic oscil-
lator (see Appendix A.2.2). Finally, we are not aware of any other results
using the existence and description of invariant or quasi-invariant measures
to describe the large time behaviour of solutions to PDE’s going beyond the
globalisation argument from Bourgain [8, 9] and the elementary Poincaré
recurrence theorem.

1.2. Measures with non trivial linear evolution

We shall define families of measures supported essentially on L*(R)
(modulo a logarithmic divergence, see Appendix A.2.2) for which one can
get a good description of the (non trivial) linear evolution, and prove that
the nonlinear evolution of the measure is indeed quasi-invariant with respect
to this linear evolution.

We denote by

H=-0?+2%,
the harmonic oscillator in one space dimension, and by (e,)n>0 the Hermite
functions its L?-normalised eigenfunctions, He,, = /\%en = (2n+1)e,,. Recall
that the family (e,,),>0 forms a Hilbert basis of L?(R).
For o > 0, denote by

(12.1)  H'(R)={uec L*R): (1-A)"?uec L*R),|z]°u e L*(R)},
and for o > 0, H79(R) is its dual space. We shall denote by

XOR) = (N H“(R).
e>0
Notice that L*(R) ¢ X°(R).

We start with a typical Gaussian measure. Consider a probability space
(Q,F,p) and let (gn)n>0 be a sequence of independent complex standard
Gaussian variables. Let ¢ > 0, we define the probability Gaussian mea-
sure pg on H ¢(R) as the law of the random variable ~y

Q — HE(R)

1.2.2 =< - -1
( ) W s 70.1 — Z (CU) Ho poYy

The measure y satisfies po(L?(R)) = 0 and po (X 0 (R)) = 1.

REMARK 1.2.1. Choosing a measure built of the eigenfunctions of the
harmonic oscillator to study the linear Schrodinger equation (without har-
monic potential) may seen odd at first glance. However this choice is ex-
plained by a nice feature of these measures which is that their evolution by
this linear Schodinger equation (still without harmonic potential) can be de-
scribed explicitly by using the lens transform (see Section 2.2). The choice
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of the normalisation /\%L in (1.2.2) is motivated by the fact that we obtain

the (invariant) Gibbs measure of the linear Schrodinger equation (with har-
monic potential) i0;u — Hu = 0. Such a measure exists since the operator H
has a discrete spectrum and, using the explicit transform given by the lens
transform, we are able to link the dynamics of NLS,, to the dynamics of a
nonlinear Schrodinger equation with harmonic potential, see Section 2.3.

The following theorem gives a flavour of our results in this paper.

THEOREM 1.2.2. Let p > 1 and assume that so = 0 in (NLSp). For
po—almost every initial data Uy € X°(R), there exists a unique, global in
time, solution U = ¥(s,0)Uy to (NLS,). Furthermore, the evolution of
the measure g by this nonlinear flow, V(s,0)xpuo is absolutely continuous
with respect to the evolution by the linear flow, Wi, (s,0)upmo. Finally, the
solution takes the form

U(s,0)Uy = % Uy +V,
where V' satisfies for some C, K >0 and all s € R
IV ($) ey < Cls)™,
and where o < gy can be chosen arbitrarily close to
bL ifl<p<?
oo =
5 ifp=2

In the sequel, we will see that for all s € R, Wy;,(s,0)4p0 is given by an
explicit time-dependent Gaussian measure. Moreover, we will see that these
measures are supported in the Besov space Bgm(R) based on the harmonic
oscillator. We refer to Section 2.2 and Appendix A.2 for more details.

The values of gy in Theorem 1.2.2 will play a key role in the proof
of the scattering result (Theorem 1.3.1) for which we need the embedding
H° C LP*! to control the nonlinearity. Let us however mention that the
value of og obtained in Theorem 1.2.2 in the case 1 < p < 2 is not optimal,
and a slight modification in the proof may improve it.

1.3. Scattering results

Using a quantified version of the absolute continuity, we are able to go
beyond the usual easy consequences (global existence, Poincaré recurrence
theorem, logarithmic bounds on the time evolution of the complexity of so-
lutions...). Namely, we shall use the precise knowledge of the nonlinear
evolution of our measures to prove almost sure scattering properties of so-
lutions of (NLS,) for p > 3 (notice that quasi-invariance without estimates
does not even imply Poincaré recurrence).

THEOREM 1.3.1. Assume that p > 1. Then the solutions to (NLS))
we have constructed in Theorem 1.2.2 disperse: for po—almost every initial
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data Uy € X°(R), there exists a constant C > 0 such that for all s € R

-~

CUHoEN T ey gy o 5
11
19(s, 000l oy <8 77
e e Ip=5
S

Assume now that p > 3. Then there exist o,C,n > 0 and Wy € H(R) such
that for all s € R

(13.1) (s, 0)Uo — €% (Up + W)l sy < Cs) ™",
and
(1.3.2) le= %W (s,0)Up — (U + W) oy < Cs) ™.

In the case p > 5, we can precise the result: for all o < % there exist C,n > 0
such that for all s € R

(1.3.3) 19(s,0)Up — €% (Uy + W) || oy < Cs) ™",

Notice that since e=*% does not act on 17 (R), the properties (1.3.1)
and (1.3.2) are different. Actually we prove a more general result. We
construct a four-parameter family (uq) of Gaussian measures on X°(R),
for which the previous statement holds true (see Theorem 2.2.4 and Theo-
rem 11.2.1).

In our previous work [12] we performed part of the program above,
namely we proved the scattering result in the particular case p > 5. In
this case monotonicity properties allow to greatly simplify the proof and a
fine description of the nonlinear evolution of the measures was unnecessary
to get scattering properties. We emphasize that the convergence in (1.3.3)
holds in the usual Sobolev space H? but not in the weighted space H?
(the statement (1.3.1) is a corrected version of [12, Theorem 1.2]). This
is due to a lack of continuity of the lens transform in the H? spaces (see
Lemma A.1.1).

In the case p < 3, Barab [4] showed that a non trivial solution to (INVLS))
never scatters, thus even with a stochastic approach one can not hope for
scattering in this case. Therefore the condition p > 3 in Theorem 1.3.1 is
optimal. Notice however that in the case p = 3 a modified scattering result
can by proven for small initial data, see [26, 28]. We believe that the present
framework might be a good setting to study large data modified scattering.
In [44], Tsutsumi and Yajima proved a scattering result in L2(R%), d > 2
but assuming additional H!—regularity on the initial conditions.

We refer to [38, Theorem 1.4] for an almost sure scattering result for
the two-dimensional NLS. In this latter case, one could use a probabilistic
smoothing property on the Hermite functions which only holds in dimension
d > 2. For other almost sure scattering results for NLS, we refer to [23,
30]. In particular, the results in this paper were recently generalised by
Latocca [32] in the multi-dimensional case, in the radial setting. See also
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Nakanishi [31] for deterministic scattering results for (NLS,) in Sobolev
spaces H? for o > 1, and we refer to Colliander-Holmer-Visan-Zhang [20]
for scattering results in Sobolev spaces H? with ¢ < 1.

1.4. Plan of the paper

The plan of the paper is the following. In Chapter 2 we define the mea-
sures, state our main results precisely and prove some properties about the
measures (description of the linear evolution, absolute continuity...). In
Chapter 3 we prove elementary results on the non existence of invariant
measures for the Schrodinger equation on R, recall some tools of functional
analysis and give a characterization of weak L regularity of Radon-Nikodym
derivatives. Chapter 4 is devoted to the estimate of the time evolution of the
measures under the Galerkin approximations of the nonlinear flow. This is
where the key result of this article (Proposition 4.2.1) is proved. The proof
is a careful handling of a differential equation (notice that in view of the
applications of this result in Chapters 9 and 10, the values of the constants
is important). In Chapter 5 we prove the main nonlinear estimates that we
need in the sequel. This part is technical but follows well established lines. A
difficulty is induced by the low regularity of our nonlinearity F(u) = |u[P~1u
which is not C? for p < 2. In Chapter 6 we introduce the spaces in which
we are able to prove the local (and later global) well-posedness. Here, an-
other classical difficulty is that due to a lack of smoothness of our initial
data, the spaces for the initial data (Y”), and the solutions (X?) are dif-
ferent. For the initial data, we exploit some probabilistic smoothness while
for the solution we gain some deterministic smoothness. A main difference
with respect to previous works on the topic which exploited the smoothing
effect for the Schrodinger evolution, is a new set of probabilistic smoothing
effects, see Section 7.2. These new probabilistic bounds allow to avoid a
large part of the subtle estimates in previous works (see [23] for smoothing
effects and [7, 25] for multilinear dispersive estimates). Actually, previous
versions of the analysis involved also multilinear estimates which are very
well suited to the implementation of a nice local Cauchy theory, but we were
unable to develop in this context the quasi-invariance arguments and had
eventually to resort to these new probabilistic estimates. In Chapter 7 we
show that almost surely our initial data are indeed in the spaces Y€ and we
prove large deviation estimates. In Chapter 8 we develop a suitable Cauchy
theory for the nonlinear problem. In Chapter 9 we prove the almost sure
global well-posedness. Finally in Chapter 10 we prove the quasi-invariance
properties of our measures (Proposition 10.1.1 which is the extension to NLS
of the family of estimates obtained for the Galerkin approximations in the
key Proposition 4.2.1), while in Chapter 11 we use this quasi-invariance to
prove decay for p > 1 and scattering for p > 3. We gathered in an appendix
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some technical results, including in Section A.4 some new weighted L9 esti-
mates for Hermite functions which are at the heart of our new probabilistic
smoothing effect.

1.5. Notations

In this paper ¢, C > 0 denote constants the value of which may change
from line to line. These constants will always be universal, or uniformly
bounded with respect to the other parameters. We denote by H = —9? +
22 the harmonic oscillator on R, and for ¢ € R we define the Sobolev
space H?(R) by the norm |jullyew) = HHU/2u||L2(R). More generally, we
define the spaces W??(R) by the norm [|ul|yyo.rg) = HH"/zuHLp(R) (see also
Section 3.2 for more details and notations). The Fourier transform is defined
by Ff(§) = [pe ™ f(x)dz, for f € #(R). The Fourier multiplier D is
defined as a tempered distribution F(D2 f)(&) = [¢|*F(f)(§) for f € S'(R).



CHAPTER 2

The measures, linear analysis

2.1. Definition of the Gaussian measure
Consider a system of real, independent, centered, L?—normalized Gaus-

sians (hn(w), En(w))n>0 on a probability space (2,7, p), and define

gn(w) = hp(w) + b, (w).
Notice that with this definition g, ~ N¢(0,2). Therefore the density distri-
1
bution of 9 Nc(0,2),2) is given by
n
AN DL
2 o= lunl guy,, iy = Zn o= (@40 da,, db,, Up = Qp + by,
2m 2m

and where du,du, is the Lebesgue measure on C. Denote by uy the distri-
bution random variable

Let € > 0, then (yn)ny>o0 is a Cauchy sequence in L?(€;H~¢(R)) which
defines

as the limit of vy. Now the map w — 7(w,x) defines a Gaussian measure
on H~¢(R) which we shall denote by po. Notice also that the measure pg
can be decomposed into

(2.1.1) o = pn @ pl
+oo 1
where ' is the distribution of the random variable Z )\—gn(w)en(x)
n=N-+1 n

on E]%, In other words

duy = ® Nc(0,2)\7_z2), d,uN = ®N(C(07 2/\;2)7

0<n<N n>N
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and the measure po can be represented (rather informally) by

/\2
dpo = ®NC(0, 2/\;2) = ® 2;6__|un‘ dupdit,

n>0 n>0

= (A /H e 2Vl gy, dm,,
n>0

where we decompose u = Y une, and hence identify #~* which supports
the measure po with CY, and similarly

2
(2.1.2) / I 5 Mo s WVH ) g0 g
Ao<n <N

Finally we define
=(H®)
e>0
so that s is a probability measure on X°(R).

2.2. Evolution of the Gaussian measures /i

In this section we define a four-parameter family of Gaussian mea-
sures (uq), which relies on the symmetries of the linear Schrodinger group.
The space dilations u — Agu = $/2u(B-), time translations

. 2
u = Wi (s, so)u = el(s_so)ayu,

space translations u — Tpu = u(- — ), and homotheties u — Myu = au
are invariances of the Schrédinger flow and their actions on L?(R) define a
four-parameter family of measures. Set

Q:=RxC*" xR} xR, q=(s,a,3,0) € Q,
and define the family of Gaussian measures

(221) (\Ijlin(sv 0) oM, o AB o TG)#MO = H(s,0,8,0) = Hq >
given by

11q(A) = 1(s,0,5,0)(A) = 110 ((Y4in(s,0) 0 My 0 Ag o 79) 1 A).
In the particular case q = (0,1,1,0) we have pq = po. Notice that since in
the definition (1.2.2), the law of complex random variables g, is invariant by
the multiplication by any complex number of modulus 1, we have p( o 5,0) =
H(s,|al,8,6)- Notice also that it is a direct consequence of the definition that

Wiin (51 + 50, 50) 8 K(s0,0,8,0) = (€ 00) 4 150,006,0) = Li(s1-+50,0,5,0)-

For all ¢ € Q and all € > 0, the measure pq is supported on H~“(R)
while ,uq(Lz(R)) = 0. More precisely, we can prove that pg is supported
in the Besov space BS’OO (R) based on the harmonic oscillator (see Proposi-
tion A.2.4).

The following result is proved in Section A.2.3.
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PROPOSITION 2.2.1. Let j = 1,2 and q; = (s, ,055,0;) € Q, then the
measures g, and fiq, are absolutely continuous with respect to each other if
and only if

(51, |oal, B1,01) = (s2,]azl, B2, 02).

When the measures are not absolutely continuous with respect to each
other, they are mutually singular (supported on disjoint sets of H™¢(R),
e > 0). Actually, thanks to the Hajek-Feldman theorem [6, Theorem 2.7.2],
two Gaussian measures on the same space are either equivalent or mutually
singular.

We can now state precisely our main results. We assume that sg = 0
in (NLSp).

THEOREM 2.2.2. Let p > 1 and q9 = (so,a0,50,00) € Q. Let q5s =
(s + 0,0, 80,00). There exists a set S C X°(R) of full pg,—measure such
that for all Uy € S, there exits a unique, global in time, solution to (NLS))
i the class

% Uy + CO(R; H7(R)),

bl ifl<p<2
ifp>2.
Denote by V(s,0) the flow such defined on S and denote by Sy = ¥(s,0)S.

Then the set Sy is of full jiq,—measure and there exists K, > 0 such that
fgo—almost surely there exists C' > 0 such that we have the estimates

where o < og can be chosen arbitrarily close to oy = {

D=

U(s,0)Up = €% Uy + V, IV (8) |30y < C{s)Mre.

We emphasize that the exponent M, , > 0 which appears in the previous
estimate is deterministic, and depends only on p > 1 and ¢ > 0. Only the
constant C' > 0 is probabilistic.

REMARK 2.2.3. In most of the previous works in which almost sure exis-
tence results are obtained for nonlinear dispersive equations, with arguments
relying on invariant measures, it is possible to show that the corresponding
set S of initial data is invariant by the flow, namely S; = S for all s € R.
In our situation we were not able to prove the invariance of S by the non-
linear flow. In some sense, since S has full y4, measure, while S, has full
g, —measure and jiq, and g, are singular to each other for any s # 0, i.e.
supported on disjoint sets, this non invariance is natural.

We can now state precisely our scattering result.

THEOREM 2.2.4. Letp > 1 and qo € Q. Denote by ¥(s,0) the flow on S
defined in Theorem 2.2.2. We have a fine description of the time evolution
of the measures g, .

e For all s € R, the measures W(s,0)4ptq, and Wi, (s,0)ppq, are
equivalent (they have the same zero measure sets);
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e For all s' # s, the measures W(s,0)xpq, and ¥(s',0)xpq, are mu-
tually singular.
More precisely, in the particular case qo = (0,1,1,0), denoting
by

(14452
pPs = ¢€ p+1

p+1

Lp+1:u'flsa s = (3717170)7
we have for all 0 < |§'| < |s] < 400 and all A C S,

[l

ps (U(s',0)A) fl<p<5s
(2.2.2)  ps(¥(s,0)4) < (1+4(S,)2)Lfg
(psr (T(s,0)A) )\ 154 ifp>5
and
1+4(s))2 e
(oo (¥(s,004) ) T p1<p<s
(22.3)  py(T(s',0)4) <
ps(¥(s,0)A) ifp>5.
o There exists piq,—almost surely a constant C' > 0 such that for all
seR
O UHogleN ) ey g o
(224) | W(s,0)U0]| ormy < e
T__1_ if p>5.
(s)2 PH

o Assume moreover that p > 3. Then the solutions to (NLS)) con-
structed above scatter pg,—almost surely when s — +oo : there
exist Cyo,n >0, and Wy € H(R) such that for all s € R

19 (s,0)Up — % (Up + W) |3y < C )77,

and
2

le™% W (s,0) Uy — (Up + W) |lpger) < C{s) 7.

(Notice that since 5% does not act on H7(R), the two estimates
above are different.)
e In the case p > 5, we can precise the result: for all o < % there

exist C;n > 0 such that for all s € R
(s, 0)Up — €% (Up + W) | oy < Cs) 7,

Assume that 1 < p < 5, then the equation (NLS,) is globally well-
posed in L%(R), see [17, Section 4.6]. In the case p = 5, the equation is
L?—critical, and global well-posedness and scattering in L?(R) has been
proved by Dodson [22]. Let p > 1, then (NLS,) is globally well-posed
in H'(R) by [24]. In [45], Visciglia shows moreover that for any Uy €
H'(R), and any 2 < r < 400, [|[¥(s,0)Up|l gy — 0, when s — +o0.
Therefore (2.2.4) gives a similar rate of decay for rough but random initial
conditions.
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For large times |s| > 1, the bound (2.2.4) is up to the logarithmic term,
the decay of linear solutions. Namely, recall that for all ¢ € . (R) we have
the classical dispersion bound

52 C
1€%% || o1y < — el et @) s #0,
s[3 77
therefore, the power decay in s is optimal. With the arguments developed
in the present paper one could show that the logarithm can be removed
for some p < 5 close to 5, but we do not now what happens for general
1 < p< 5. For s =0, the bound (2.2.4) is a consequence of the fact that

the measures pq are supported in ﬂ L"(R), see Section 7.

r>2
It is worth mentioning that the powers appearing in (2.2.2) and (2.2.3)

are optimal. Actually, any improvement in these exponents would imply
stronger decay in (2.2.4), which is impossible.

COROLLARY 2.2.5. Let qo = (0,1,1,0) and denote by

_ (144s%)
Ps =€ p+1

p+1

LPtl g qs = (s,1,1,0).

[l

Assume that 0 < |s'| < |s| < +00. The measures U(s',s)ups and py are
absolutely continuous with respect to each other and satisfy

(1+4(s’)2)i£
U(s',8)ups < psty psr < (WS, 8)pps)\ 1H052 if1<p<5b
p—>5
, (1+4(s’)2)—4— , )
(s 73)#/)8 < (ps’) s ) ps < V(s 73)#/)5 if p> 5.

As a consequence, from Proposition 3.3.1, if one denotes by fy , the Radon-
Nikodym derivative of W(s', s)ups with respect to py, we have

’ / 5-p
fss € Loo,fs_/i c Lﬁ](s 75)7 1 _q1_ (1+4(s )2) e ifl<p<5b

p(s’,s) 1+4s2
p SI7S 1 1+4 2, P=5 -1 .
oo € N s =1 — (BT pil e ifp>5,

where LY, is the weak LY space.

2.3. From (NLS,) to (NLSH))

As in [41, 12], we use the lens transform which allows to work with
the Schrodinger equation with harmonic potential. More precisely, suppose
that U(s,y) is a solution of the problem (NLS,). Then the function u(t, x)
defined for |t| < 7 and z € R by

(2.3.1) wu(t,x) =Z2U)(t, x)

o 1 tan(2t) T,
- cos%(2t)U( 2 7005(275))

_ ix2tan(2t)
2

=4U |S:%)(x)
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where

1
(2.3.2) BG)) = 76

X _ ixztan(2t)
2

cos(2t))e ’

solves the problem
—5 e
iOu — Hu = cos T (2t)[ulP~ u, |t| < 7€ R,

(NLSH,)
’LL(O, ) = Uy,

where H = —02 + 2. Similarly, if U = eis0y Up is a solution of the linear
Schrédinger equation, then u = e~ *H Uy = £(U) is the solution of the linear
harmonic Schrodinger equation with the same initial data. In other words,
if we denote by ¥(s,s’) the map which sends the data at time t' to the
solution at time ¢ of (NLSH,), the family (iﬂt)\t|<§ conjugates the linear
arctan(2s)’ S(t) _ tan(2t)

and the nonlinear flows: with ¢(s) =

2 )
(2.3.3) Lysy 0 € = DTN o o
and
(2.3.4) Lis) 0 U(s,8") = B(t(s), t(s)) © Lys1)-

As a consequence, precise description of the time evolutions of our mea-
sures on the harmonic oscillator side (for the functions u(¢,z) solutions
to (NLSH,)) will imply precise descriptions of the evolution on the NLS
side (for the functions U(s,y) solutions to (NLS))).

Denote by qs = (s,1,1,0), then for all s € R

(2.3.5) L7 10 = o,

Actually, set Wy, (¢, ) = e~ H  then by (2.3.3) and (A.2.3), for all
measurable set A € H™¢

Ho ("%(S)A) = Mo ((I)lzn(t(s)7 O)\I/l_wlz(sa O)A) = Ho (\Ill_lrlL(37 O)A) = Hqs (A)7
hence the result.



CHAPTER 3

Measures and functional analysis

3.1. On invariant measures

Assume that M is a compact manifold and denote by Ajs the corre-
sponding Laplace-Beltrami operator. Then there exists a Hilbert basis of
L%(M), denoted by (hy,)n>0, composed of eigenfunctions of Ay and we write
~Aprhy = A2 hy, for all n > 0.

Consider a probability space (£, F,p) and let (g,)n,>0 be a sequence of
independent complex standard Gaussian variables. Let (a,)n>0 and define
the probability measure p via the map

“+oo
w ’Yw = Zangn(w)hn'
n=0

Then, by the invariance of the complex Gaussians (gy,)»>0, by multiplication

with z, such that |z,| = 1, for all ¢+ € R, the random variable e®*M~% =

+oo
Z ozne_it)‘%tgn(w)hn has the same distribution as v*“. In other words, the
n=0
measure p is invariant under the flow of the equation
i0sU + Ay U =0, (s,y) € Rx M.

The same remark holds when M is replaced by R, and Ay by H = —92 + 22
(in which case, the (hy),>0 are the Hermite functions and A2 = 2n + 1).

Without some compactness in phase-space, the situation is dramatically
different, as shown by the next elementary result.

ProrosiTION 3.1.1. Let 0 € R and consider a probability measure p
on H?(R) (endowed with the cylindrical sigma-algebra). Assume that p is
tmwvariant under the flow Xy, of equation

i0,U + 02U =0, (s,y) ERxR,
U(0,-) = Up.

Then = dg.

The spacial decay assumption implicit in the choice of the space H? in
Proposition 3.1.1 is crucial, because without it there are other nontrivial
invariant measures under the linear Schrodinger flow. For instance, the

13
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white noise measure g on R can be defined via the map
“+oo
o =Y g
n=0

where (gn)n>0 is a sequence of independent complex standard Gaussian vari-
ables, and (h,,),>0 can be any Hilbert basis of L?(R). Since ¢/ is an isom-
etry in L?(R), we deduce that the white noise is invariant under the linear
Schrédinger flow. Actually one can prove that the white noise measure pg
satisfies p((z)H1(R)) = 1 (see [29, (2.11)]), but po(H?(R)) = 0 for any
o eR.

PROOF. Let o € R and assume that u is a probability measure on H?(R)
which is invariant. Let x € C§°(R). By invariance of the measure, for all
t € R we have

ocala [ St (8l 1
XUNET ) = d(u),
Lmu+mma“) o 1+ TSt @l )

and by unitarity of the linear flow in H?, we get
o 2 ; t o
Ho®) L+ [l Ho®) 1+ |ullme
We now prove that the right hand side of (3.1.1) tends to 0 when ¢ — +o0.
This will in turn imply that ||xu|ge = 0, p—almost surely, and therefore
we will have, since the cut-off x € C§°(R) is arbitrary, that u = 0 on the
support of u, namely u = dg.
By continuity of the product by x in H? and unitarity of the linear flow
in H?, we have
IS @ule _ IS @ula _ ol _
L+ J|ullze 1+ Jlull e 1+ J|ull e
Let w € H?(R). For all § > 0, there exists us € C§°(R) such that |lu —
ugs||ge < 6 and we have
(3.1.2) IXEtin O)ull e < CllZ0n () (w = us) || + 11X B0 (H)us | o -
The first term in the previous line can be bounded as follows
B0 () (u = us) | e < Cllu — us| e < C6.
For the second term we distinguish the cases ¢ > 0 and ¢ < 0. If o <0,

(3.1.3) IXZtin ()| e < X Bin Ousll Lz < (x| 24l Ztin (s 14
Now we use the classical dispersion inequality
51 (t)us ]| za < CE*ug]| 1/,

which proves, together with (3.1.2) and (3.1.3) that ||[xX,(t)u|ge — 0,
when ¢t — oo. We conclude with the Lebesgue dominated convergence
theorem. Now assume that ¢ > 0. Then by the fractional Leibniz rule

IxZiin (Ous|ge < Ixllweos X )usllwos,
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and the dispersion inequality ||y, (£)us||ye.s < Ct™4|us|lyroass, allows to
conclude similarly. O

The previous argument can be adapted to the case of a nonlinear equa-
tion, provided that one has a suitable global existence result with scattering
on the support of the measure. Let us illustrate this with the (L?—critical)
quintic Schrodinger equation.

PROPOSITION 3.1.2. Consider a probability measure ji on L*(R). As-
sume that p is invariant under the flow ¥ of the equation

10,U 4+ 02U = |U|*U, (s,y) e R xR,
(3.1.4) i ) U] (s,9)
U(Ov ) = UO'

Then = dg.

Notice that again the spacial decay assumption implicit in the choice
of the spaces H? is important as the white noise is also (at least formally)
invariant by the non linear flow. We also refer to [10] in which an invariant
Gibbs measure on the line is constructed, and to [15] in which the case of
NLS with a spacial cut-off is considered.

PROOF. By [22], the equation (3.1.4) is globally well-posed in L?*(R),
and we denote by X its flow. Moreover, the solution scatters: for all Uy €
L%(R) there exists Uy € L?(R) such that

(3.1.5) IS(5)Up — €% U || 2my — 0, when s — +oc.

We follow the same strategy as in the proof of Proposition 3.1.1. Assume
that p is a probability measure on L?(R) which is invariant by ¥ and let
x € C§°(R). By invariance of the measure, for all s € R we have

(3.1.6) /L ellez gy =

2wy 1+ [lufl 22
x2(s)ul|r2 x2(s)ul|r2
r2®) 1+ [12(s)ull 2 2wy 1+ |lull2
where we used the conservation of the L?—norm. Since
IxX(s)ull 2 < Cllul| Lz,
we can use the Lebesgue theorem to show that (3.1.6) tends to 0, provided
that we show a punctual decay. Actually,
IS (s)ullze < Ixe™ut e + [x(S(s)u — =Pt

< |xe®Put|| g2 + x|l [ S(s)u — e P5ut]| 2,

where u™ is chosen as in (3.1.5). The first term can be treated as in the
proof of Proposition 3.1.1 and the second tends to 0 by (3.1.5). O
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Let us state a third result which shows that in the previous argument
scattering can be replaced by the decay of the nonlinear solution in some L"
norm, r > 2.

PROPOSITION 3.1.3. Consider a probability measure p on H'(R). Let
p > 1. Assume that p is invariant under the flow X of the equation

i0,U + 02U = [UP7U, (s,y) € R x R,
(3.1.7) { Y vl (5,9)

U(0,-) = Up.
Then = dg.

PROOF. The equation (3.1.7) is globally well-posed in H'(R), by [24],
and we denote by ¥ its flow. Under these assumptions, we do not know
whether the solution scatters, but in [45], Visciglia shows that when u €
H'(R), then for all 2 < r < 400,

(3.1.8) [2(s)ullpr@y — 0, when s — +o0.

Assume that p is a probability measure on H'(R) which is invariant by %
and let x € C§°(R). By invariance of the measure, as in (3.1.6), for all
s € R, we get

ol
3.1.9 / ——=—du(u
CA9 ey T Tl P

By - LT Py g L TS
HY (R

m®) L+ [12(s)ul 2 y L+ [Jullg2
On the one hand we have the bound

IXE(s)ullzz _ [xllz<B(s)ullrz _ Iz llullze
Lt fullz = T4 flulle Lt flullz =

and on the other hand, by (3.1.8)

xE(s)ullzz _ [Ixllzzl[3(s)ull Lo
Ltflulle = T4 flulle

— 0,

when s — +00. By the Lebesgue theorem, every term in (3.1.9) cancels,
which implies that p—a.s. |xu|r2 =0, hence (since x is arbitrary) the
result. O

REMARK 3.1.4. The main ingredient in all these results is the knowledge
that locally in space, the solutions of the PDE (linear or nonlinear) tend to
0 when t — +o0. It would be an interesting question to know whether this
is true in the simplest case of (NLS)), for 1 < p < 5 and for general initial
data in L2.
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3.2. Some functional analysis

3.2.1. The harmonic oscillator. Let us recall some elementary facts
concerning H = —0? + 22 (we refer to [36] for more details). The operator
H has a self-adjoint extension on L?(R) (still denoted by H) and has eigen-
functions (e, )n>0, called the Hermite functions, which form a Hilbert basis
of L?(R) and satisfy He, = e, with A, = v/2n + 1. Indeed, e, is given
by the explicit formula

29 d” g2 1 i n 1
en(z) = (=1)"cp e” /2da:—"(e v ),w1tha = (n!)?22 7.

3.2.2. Projectors. We define the finite dimensional complex vector

space En by
Exn = spang(eg, €1, ...,eN).
Then we introduce the spectral projector Iy on En by

+o00 N
HN( E Cnen) = E Cnn ,

and we set IIV = I —TIy. Let x € C§°(—1,1), so that x = 1 on [—%, %] and
0 < x < 1. Let Sy be the operator

o= X 41 H | &
(3.2.1) SN(nZ:%C"e”) = ,;)X(2N+ 1)cnen = X(QN—I— 1)(1;0“6”) .

It is clear that ||Sn | zz2w)) = 1IN | z(z2®)) = 1 and we have
SyIy =1x Sy =Sy, and Sy = Sn.

The smooth cut-off Sy is continuous on all the L? spaces, for 1 < ¢ < 400
(see [12, Proposition 4.1]),

(3.2.2) 1SNl z(zay) < C,
uniformly with respect to N > 0. Such a property does not hold true for I1.

3.2.3. Usual Sobolev and Besov spaces. The Sobolev spaces on R
are defined for c € R, p > 1 by

WP = WoP(R) = {u € &' (R), (1 — A)7?u € LP(R)},
and
H? = H°(R) = W2,
These spaces are endowed by the norms [|u||yor®) = [|(1 — A)U/2UHLP(R).
We consider a partition of unity on R

“+oo
(323) 1= (&), Vi=1 x;(6=x27¢), XGCSO(%J),
j=0
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and we define the Fourier multiplier Aju = x;(v1— A)u. Let ¢ € R and
1 < p,q < +oo. Then the Besov spaces are defined by
B, = BY,(®) = {uc #'(R), |2 Kjull ) € 4},

and we equip them with the natural norm

1
(3.2.4) lullzg, = (31277 Agulldmy ) -
Jj=0
Moreover, one can check that B, = H7.
Assume that 0 < 0 < 1 and 1 < p,q < +oo. Then by [42, Theorem 2,
p. 242], the spaces Bj , can be characterized by
(3.2.5)

By, = {ue P®).ul+ ([

[t]<1

u(-+1t) — u(')H%P(R)
|t[1+oq

1
dt) < +oo},
and the corresponding norm is equivalent to (3.2.4).

3.2.4. Sobolev and Besov spaces based on the harmonic oscil-
lator. Similarly we define the Sobolev spaces associated to H for o € R,
p=1by

WP = WOP(R) = {u € LP(R), H"*u € LP(R)},
and
H7 = HI(R) = W2
These spaces are endowed by the norms |[ullyyer®) = [[H 7/2y)| Lr(r)- It turns

out (see [46, Lemma 2.4]), that for 1 < p < 400, and up to equivalence of
norms we have

(3.2.6) lullwes = [H?ul| e = |(=2)ull o + | ()7 ull 1.

In particular, we recover the characterization (1.2.1). Recall that we also
+oo

have the following description of the H* norm: if u = Z Cnen, then |Jul|3,s =

n=0
+oo
> Xlenl.
n=0
We consider a partition of unity on R as in (3.2.3) and we define the

Hermite multiplier ﬁju = Xj(\/ﬁ Ju. Then the Besov spaces based on the
harmonic oscillator are defined by

(3.2.7) Bg, =B, (R) = {ue 7 (R),[|277Ajull rg € €4},

and are endowed with the natural norm

" 1
lulsg,, = (32127 Bl ) "

J=0
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In particular, one can check that B, = H?. Moreover, for any 1 < p,q <

+00, and any p > 0, one has the continuous embedding By, C Bp, (see
Lemma A.5.1).

3.3. Radon-Nikodym derivatives

In the sequel we shall give quantitative estimates on the quasi-invariance
of measures transported by linear or nonlinear flows. The next result shows
that the bounds on the measures that we will obtain in Proposition 4.2.1
are actually equivalent to bounds on the Radon-Nikodym derivative.

PROPOSITION 3.3.1. Let p,v be two finite measures on a measurable
space (X, T). Assume that

(3.3.1) n <L v,
and more precisely
(3.3.2) J0<a<l, JC>0, VAeT, upll) <Cvr(A)“.

By the Radon-Nikodym theorem, assumption (3.3.1) implies that there exists
a f € LY(dv) with f >0, such that du = fdv. We call f = fl—’; the Radon-
Nikodym derivative of the measure p with respect to the measure v.

(i) The assertion (3.3.2) is satisfied with 0 < o < 1 4ff f € L, (dv)NL(dv)
with p = ﬁ In other words, f € L*(dv) and
v({z:|f(x)| > A}) <C' (NP, YA>0.
(ii) The assertion (3.3.2) is satisfied with o = 1 iff f € L>=(dv) N L*(dv).
Recall that the weak LP spaces, denoted by L%, satisfy
LP (dv) N LY (dv) C LY(dv), Y1<q<p.

ProOOF. The first part of the statement is the classical Radon-Nikodym
theorem, see e.g. [16, Theorem 10.22] for a proof.

(1) Assume that there exist a € (0,1) and C' > 0 such that pu(A) <
Cv(A)®. Let A > 0, then with A = {f > A} we get

W(F2X) < [ pdv=p(r=0) < Cu(f 2 X"
{f>X}
which implies V(f > )\) < eAV(1=9) which was the claim.

Assume now that f = Z—fj € Li(dv) N L'(dv) with p = -, and let
A € T. Then

(3.3.3)  u(A) :/ fdl/+/ fdv §/ fdu+/\/ dv.
{f=AnA {F<apna {f=x} A

Now we claim that for any f € L%, (dv) and any E € T such that v(F) <
+00,

p 1-1/p
3.4 < —v(FE
(3:3.4) [ g < LB g,
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where || f|| 1z (4 is defined by HfHLp () = = sup {Nv(f > \)}. For A >0,
A>0

/Efdl/ = /O+OOV(1Ef > )\)d)\

A +oo
:/ l/(]_Ef> )\)d/\—l—/ 1/(1}3f>/\)d/\
0 A

+o0o
V(E)A+Hf|!”p /A APd

- V(E) ”f”LP (dv) ATPHL

we write

Finally, we choose A = V(E)_l/prHLﬁ}(dl,) which implies (3.3.4).
We apply (3.3.4) with E = {f > A} and together with (3.3.3) we get

p(A) < Co(f > NP 4 au(A) < CAPH 4w (A).

Now we optimize the previous inequality with A\ = v/(A4)~1/7.

(14) Assume that f ¢ L°°(dv). Then for all M > 0, there exists A € T
such that f > M on A and v(A) > 0. Then pu(A) = [, fdv > Mv(A) which
is the contraposition of (3.3.2).

If f € L>®(dv), then for all A € T, u(A) < ||fllree@)v(A), which
is (3.3.2). O



CHAPTER 4

Evolution of the Gaussian measure

4.1. Hamiltonian structure of the approximate problem
Recall the definition (3.2.1) of the operator Sy and that
Eyn = spang(ep,e1,...,enN).

We consider the truncated equation

(4.1.1) {iatu — Hu=cos"2 (2t)Sn(|SnulP " Syu), [t < %, z € R,

u\t:s E EN'
For v € Eyn, write

N
U= chen = Z (an +ibp)en, ap,b, € R.
n=0

Then we have the following result.

LEMMA 4.1.1. Set

Vul? 2 2t
JN(t,m:/(‘ il IS Pt )do

2 p+1
:JN(t ag,...,an,bo,...,bn)
cos(2t) al 1
, +
== Z A2(a2 +b2) + 7“51\,(;)(% + an)en> [y

The equation (4.1.1) is a Hamiltonian ODE of the form

) oJy 0JN
n — 5 bn - - 5 0 < < N.
= b, day, "
Remark that Jy is not conserved by the flow of (4.1.1), due to the time
dependance of the Hamiltonian Jy, however the mass

N

lull 72 = D (an +b7)

n=0

is conserved under the flow of (4.1.1). As a consequence, (4.1.1) has a well-
defined global flow @y because it is actually an ordinary differential equation
for n < N and a linear equation for n > N.

21
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Set

cos’z (2t)

En(t,ult)) = %Hx/ﬁu(t)\lim PN

ISnul) 175 @)
A direct computation shows that along the flow of (4.1.1) one has

(5 — p) sin(2t) cos" T (2t)

1
o ISnu®l g,

d
(412)  Z(Ewltu(t) =
Observe that actually we have
1
En(t,u(t)) = En(t, 1y (u(t))) + §H\/EHN(U(75))H%2,
and the last term is constant along the evolution given by ® .

4.2. Evolution of measures: a first result

Recall that the measures puy and p are defined in (2.1.1), then we
define the measure vy ; on En by

p—>5
_cosT(Qt) T T
dvy, = e = ISNu ”LP‘H(R)CZM VYN >1, 7 <t< T

and notice that vy has finite total mass but is not a probability measure.
In view of (2.1.2), we have

2
v u(B) = ) T i,

and consequently, vy is the Gibbs measure associated to the truncated
equation (4.1.1). Notice that since the Hamiltonian Jy is time dependent,
this Gibbs measure is not invariant by the flow of (4.1.1). The key point in
this article is that, despite this time dependence, we are still able to describe
quite precisely its time evolution.

This definition implies that for all measurable set A C En, t € (=%, %),

UNt(A) < pun(A).

Similarly, we define the measures v, and vy; = vn ¢ ® ,uN by

-5
_cosgr(Qt) II ”p
th —e p+1 p+1(R)du 0,
(4.2.1) -
~ —s = T m
dVN,t —e p+1 ||SNU||LP+1(R)dM _Z <t< Z

PROPOSITION 4.2.1. For all s,t € (—%,7%),

(4.2.2) (I)N(t, S)#,UN L Uy K q)N(t, S)#,LLN.
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More precisely, for all 0 < |s| < |[t| < 7,

VN,s(4) 5 if1<p<5
I/N’t(¢N(t, S)A) S (cos(Qt))LQ_d

[vn,s(A)] Voot if p>5,

and .
(cos(2t)))¥
v (P (t,s)A)| if1<p<5

o ) < vve(@n(t)4)] fl<p<

VNt ((I)N(t, S)A) if p>5.
Another way to state the previous result is :
e for1<p<5 s

(cos(Zt) ) 2
[VN7S(A)] cos(2s) < UNt ((I)N(t, S)A) < VN78(A).

e forp>5

p—>5
cos(2t)) 2

vN,s(A) < vng (q)N(t, S)A) < [VN,S(A)] (Cos(2s)

7r7r)

PROOF. By definition we have, for all ¢t € (=%, 7
UN K VNt and Unt < AN,
and in particular
(4.2.4) un < v and Vo <K [N -
This will imply (4.2.2) thanks to (4.2.4). By (4.1.2), if we write u(t) =

DN (t, s)ug, we have

il/Nt(q)N(t S)A)

dt
p—>5
_d o BIVE I = =Sl
dt v6<I>N(t,s)A
p—>5
(4.2.5) = i/ e_%”\/ﬁu(t)HQLQ(R)_COSpTH*@t)||SNU(t)||§E1(R)du0
dt upg€EA
p—7
p—95)sin(2t) cos 2 (2t _
_ / ( ) ]E—i_)l ( ) ”SNU( )”I[);z_il SN(t,u(t))duO
A
=(p-5) tan(Zt)/ a(t,u(t))e_gN(t’“(t))duo,
A
where
p—5 N
cos 2 A2
at,u) = T(l)HSNuHIlel(R v = Zvnen, dv = H —dvndvn,
n= 0

and to pass from the first line to the second line we used that according
to Liouville Theorem (see Appendix A.3) the Jacobian of the change of
variables v = ® (¢, s)ug — ug is equal to 1.
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In the following, we assume that 0 < s <t < 7. If 1 < p <5 the r.h.s.
of (4.2.5) is non positive and we get by monotonicity

VN,t ((I)N(t, S)A) S VN78(A).
When p > 5 by the Holder inequality, for any & > 1,

d
—I/N’t((I)N(t, S)A) <

dt
<(p—5) tan(2t)(/ ak(t,u)e_gN(t’“(t))duo)%(/ e_gN(t’“(t))duo)l_%
A A
—a(tu)—3 u(t)]|? 1
=(p—5) tan(2t)(/ of (t,u)e () =5 IVH (t)||L2(R)du0)’1“
A

1
=3

(vNa(@n(t,s)A))
We use that o (t,u)e=*®%) < kFe=F then
d k _1
=N (PN (t5)A) < (p— 5) tan(2t) - (vn i (D (t,5)A)) %,
We now optimize the inequality above by choosing
k = —log (VN7t((I)N(t, s)A)),

which gives

%VNJ((I)N(Z?, s)A) < —(p—5)tan(2t) log (VNJ (PN (t, s)A))VN,t (PN (t,s)A).

This in turn implies

(4.2.6) — %log ( — log (vna(P(t, S)A))>

(p ; 5) % log(cos(2t))

< (p—>5)tan(2t) = —

and consequently

| Dot AN > 1 A cos(2t) (5
~log (vu(®(t,9)4)) > —log (ves(4) (S5 ) 7
Therefore, for all 0 < s <t < 7, -
(cos(2t))T
VN,t (®N(t7 S)A) S |:VN75(A)] cos(2s)

The reverse inequality is obtained by backward integration of the estimate
and reads similarly when p > 5

UN,s(A) < vne(Pn(t, s)A),
and when 1 < p <5 we get

E

Uns(A) < [VN,t(cpN(t, s)A)} ,

which concludes the proof. O
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REMARK 4.2.2. We can extend the flow ® 5 to be the flow of

10w — Hu = COS?(2t)SN(|SNu|p_1SNu), |t] < %, xr € R,

u|t:s € H_€7
where the extension on Ex = Vect{e,,n > N} is given by the linear flow
e~ "Hy,. Using that UNt = UNt ® ,uN and in the decomposition

H = FEyn x Ex;

the flow takes the form
(4.2.7) Dy =Dy @e M

Since the measure p”V is invariant by the flow of e, we get that with
this extension, Proposition 4.2.1 is still true with vy replaced by vy, see
definition (4.2.1).

itH






CHAPTER 5

Non linear estimates

5.1. Strichartz estimates
To begin with, we recall the Strichartz estimates for the harmonic oscil-
lator. A couple (q,7) € [2, +00]? is called admissible if
1 1

2,11
qg r 2
and if one defines
7§ = L>([-T,T); H°(R)) N L*([-T,T]; W™ (R)),
then for all 7> 0 there exists Cr > 0 so that for all ugp € H7(R) we have
(5.1.1) lle™* ol zg < Crlluollse m)-

We will also need the inhomogeneous version of the Strichartz estimates: for
all T' > 0, there exists Cp > 0 so that for all admissible couple (¢q,r) and
function F € LY ((T,T); W% (R)),

t
—i(t—s)H
(5.1.2) H/O e F(S)dsHZ% < CrlIF || o (myome (m))

where ¢’ and ' are the Holder conjugate of ¢ and r. We refer to [37] for a
proof.

In the sequel, we will also need similar estimates in Besov spaces (recall
definition (3.2.7)).

PROPOSITION 5.1.1. Assume that (q,r) is admissible and p > 0. Then
there exists Cp > 0 such that

(5.1.3) ||€_itHU0HLq((—T,T);BgZ) < Crlluoll2er,
and
t
(5.1.4) H/O e_z(t_S)HF(S)dsHLq((—T,T);Bf,z) < Or|[EFllr (-mry00) -

PRrROOF. For the inequality (5.1.3), we use the Minkowski inequality (be-
cause ¢ > 2) and (5.1.1)

le™ uoll pa—r,ryme ) = 127756~ gl .27 <

< (270 Ajuoll 2 oy < ClI27PAjuolle < Cluollae,

27
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which was the claim. The inequality (5.1.4) follows from (5.1.3) and the
Minkowski inequality. U

Let
F(u) = ulPtu.
In the following, the analysis of the Cauchy problem will be different accord-

ing whether p > 2 (the nonlinearity is C?) or 1 < p < 2 (the nonlinearity is
only C1).

5.2. Fractional Sobolev estimates

In this section we prove the main estimates allowing to perform a fixed
point to establish the local existence for our nonlinear equations. When
p < 2, the lack of smoothness of the nonlinearity F(u) = |u[P~!u forces
us to prove a priori estimates in strong norm (see Proposition 5.2.3) and
contraction in weak norm (see Proposition 5.2.4). As a consequence, in
Section 8 we shall in this case perform a quasi-linear type fixed point.

5.2.1. Basic estimates. The starting point is the following set of re-
sults from Christ-Weinstein [19]. In the sequel, D%u is defined as a tempered
distribution using the Fourier transform: F(Dgu)(§) = [£|*F(u)(§).

PROPOSITION 5.2.1 ([19, Proposition 3.1]). Assume that G € C*(C;C),
and let 0 < a < 1, 1 < p,q,r < +oo, v~ = p~ L + ¢ L. Assume that
u € W and G'(u) € LP, then G(u) € W*", and

IDZG W)l < CIG (w)] L | DS ul| o

PROPOSITION 5.2.2 ([19, Proposition 3.3]). Let0 < a < 1,1 < rp;,q <
+oo,i=1,2, and r~' = p; ' +q;'. Assume that f € LP*, D f € LP?, and
g€ L2 D% € L. Then D$(fg) € L™ and

1D2(F9) e < C (I o DEglzas + D3 fllw gl ).

From the previous results we deduce

ProOPOSITION 5.2.3. Let p > 1 and p,o > 0. Then
o -1
(521) ”F(U)HH’)( < CH< > HWP 4(R) H< > 71““24(;;—1)(]1%)’

Assume moreover that 1 < p < % Then for any 2 < r < there

exists C' > 0 such that, with s = 2(p 1) “(>1)

1- 2(p 1)’

(5.2.2) 1F () g2 ) < Cllullwer @) l[ull7s -
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PROPOSITION 5.2.4. Let p > 2 and p,o > 0. Then there exists C > 0
such that

(5.2.3)
|F () = F)llo(ry < Cll o <> e (1) 7Tl P2t + 1) P10l )
+ Cl@) 7T (u — )| paco—ny (1) Tl ) + [z >%vufgzé ))
(H< > HVVP _+“< > ”VVP4)

Let 1 < p < 2, then for any r > 2, there exists C' > 0 such that, with

2(p—1)r
§= (5—2)
(5.24) | F(u) = F©) 2@ < Cllu— oll -y (1l gy + 1017 g))-

PROOF OF PROPOSITION 5.2.3. Let us first show (5.2.1). According
0 (3.2.6) we get

1E(w)llage ) ~ () F (u)l| L2 ®) + [ DFF (u)l| 22 ()-
The contribution of the first term is bounded by
(5.25) [(z)’F (U)Hm <
1

< (=) 5 > ozl @) P 1 <CH< G by | 2) Tl

while the contribution of the second term is bounded using Proposition 5.2.1
with the choice G(z) = |2|P~!z which is C! because p > 1 (it is clearly C*
away from (0, 0) and its differential is homogeneous of degree p—1 in (z,y),
hence vanishing at (0,0)). Therefore we obtain

— -1
(52.6)  [IDZF (w2 < O DRullpall[ul’ ™ pe < Cllullwealfullf gy

which is the result with ¢ = 0. In order to treat the general case o > 0, we
introduce a partition of unity
(5.2.7)

+

. » 1
L= xi(@), Vi>1x@)=x(27x), suppx C {z5 <o <2},

and choose x; equal to 1 on the support of x;. Then by (5.2.6)

1 ()3 <
<D IGF@ e = Y I F (Rl
7>0 7=>0

2 1) 2 1)
< CZ ”XJUHWP‘lHX]u”L(Aﬁp n = CZ I1X; 2N”wp4H2]p 1Xju”L(zﬁp -
J=0 j>0
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Therefore we get

1
|F(u HHP<G(ZHXJ ) (Zm el )
j >0

< Cllys Byeall (@)7 fluHLﬁ,,lf),
which gives (5.2.1). To get (5.2.2), we use Proposition 5.2.1 to estimate
IDZF@)l12 < CIDZul o[l =] 2e, < Clullwer fulf
which was the claim. (]

PROOF OF PROPOSITION 5.2.4. Let us now turn to the proof of (5.2.3).
By the Taylor formula,

1
(5.2.8) F(u) — F(v) = (u—wv) / O:F(v+6(u—v),7+60(u—v))di+
0
1
+ (u— v)/ OzF (v +6(u—v),5+ 0(u—v))df.
0
On the first hand, since |0F(z,%)| < C|z[P~!, we deduce

(529) @) (F(w) ~ F(0)lz2 <
< Cllyz (@7 = )l ([P Tul oy + @ FToli )

On the other hand, according to Proposition 5.2.2, with r = 2, (p1,q1) =

(4(p — 1), 42(5:;)), (p2,q2) = (4,4), we have, using again the same partition
of unity (5.2.7),

(5.2.10)  [[F(u) — F(v)|3

~ S G (F@) = Fo)IEe = S Ih(F F0) 2

>0 720

Next, for all 7 > 0, we compute
(5.2.11)

D200 [ 0P (oo +0u =) %+ 0= )b <
< Cllx;(u = )l pae-n

‘Dp/ O-F (%j(v+ 0u—0), %@ + 0= 0))) || 19y

4 )DL — )| | /0 0.F (% (v + 0(u — v), T, (0 + (@ =0)))db| ..
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The second term in the r.h.s. of (5.2.11) is easily bounded by (recall that
|0.F| < ClP~)
(5.2.12)

1
Hpggjm_v)umu/o 0.F (%;(v + 0(u — v)), 5 (0 + B@=70)))db)| ., <

1
< || DA (u — U)HL4/0 18- F (Xj (v + 0(u = ), X; (0 + 0(u—0))) | 20

~ ~ -1 ~ -1
< HDQX]'(U - U)HL4<HXJ'U”I£4(;F1) + ”Xjuwzzx(pﬂ))

To bound the first term in the r.h.s. of (5.2.11), we apply Proposition 5.2.1
with the choice of functions G(u) = 8. F(u,u) which is C! (because p > 2
and the second derivative which is defined away from (0,0) is homogeneous

of degree p — 2, hence vanishing at (0,0)). We get with the choice (r,p,q) =

4(p—1) 4(p—1
Gzt ),

1
(5.2.13) Hpgg/o O-F (X0 + 0u =), X (0 + 0w =) dd| sy <

1
S/ HDQ’@ZF(%(U—I—H(U—v)),;Zj(ﬁ+0(u—v)))HL4(2:1> do

<c / IRt + 0 = P21 sy 1D (0 + 0 = )14

< C (Il + ||xjvuL4<,,,1>) (1D2%;ull s + DRl )-
From (5.2.11), (5.2.12) and (5.2.13) we deduce

1
Hpg(gj(u—v)/ 0-F (%30 + 0(u— 0)), X (0 + 0= 10)))d8) | 12 <

~ -1 ~ -1 ~
< CIDEX; (u = )| La (X501 ooy + X5l a-ry) + ClIXG (w = 0)]| aco-1y
—2 ~ p=2 ~ ~
(X5l sy + IX501 s ) (IDEXull Lo + |1 DEXvll £a) -
Putting the weights (x) and using that these weights are essentially constant
on the support of x;, we get the estimate for the contribution of the first
term in the r.h.s. of (5.2.8). The estimate for the second term is similar.

This concludes the proof of (5.2.3). Finally (5.2.4) follows from (5.2.8) and
the Holder inequality. O

5.2.2. Estimates for the contraction.

ProOPOSITION 5.2.5. Let § <p<2andp,cg>0. Then
o -1
(5.2.14) [[F(u) — F(0)|lae®) < CH< G > sz, ) 12 P=7 (w = W) 1T

+ O < > HBZZ(H<x> Tl oy + 1@ o)
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Let1l <p< 3 5 and p > 0. Thenforcmy2<r<%, there exists C > 0
such that, with s = 2(p 1) > 2

(5215) [[F(w) ~ F0)llrm) <
~1 ~1 ~1
< Cllu— vl ge, (Il + Nl + Cllolge, oyl — o=
PROOF. We only prove (5.2.14), the proof of (5.2.15) being similar. We

first consider the case ¢ = 0. Since 0 < p < 1, we can use the characteriza-
tion (3.2.5) of the usual H?(R) norm, namely

x — g(z)|?
(5.2.16) 191270 (z) = ||9H%2(R)+/t|<1 lg( Ttgpﬂg( W i
F(u)(z) — F(u
- ) —uly /3F —u(y)), w(x) + 0(u(z) — uly)))do

+(u(z) - u(y))/ 0z F (u(@)+0(u(z)—u(y)) (=), u(z)+0(u(z) — u(y)))do.

0

We deduce

(5.2.17) (F(u)(x) — F(u)(y)) — (F(v
= ((u—v)(@) = (u—2)(y))

N—
.
IS
N—
|
!
—
(o4
=
Ve

Ned
&
SN—

Recall that, assuming 1 < p < 2, we have 0,F(2,Z) = p—;rl]z\p_l and
0:F(2,Z) = &5 1|z|p 22 which satisfy (see e.g. [18, (2.26) & (2.27)])
(5.2.18)

||z1|p_1—|z2|p_1| < Clzy—zP7H, “Zl|p_221—|22|p_222‘ < Clzy—zP7h
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From (5.2.17) and (5.2.18) we deduce
|(F)(@) = Fu)(y)) - (F<v><x> ~ F0)(y)] <
< Cl(u—0)@) ~ (u—0)w)| (Jul (@) + ul(w) + ol(@) + olw))
(@) = o) (lu = ol(@) + Ju — ol()"".
)

Plugging this estimate into (5.2.16) we get (notice that the roles of x and y
are symetric)

1F(w) = F ()30 ) < (@) (F(w) = F©))I[72 @)
+ /| | (F(u) — F(v))(z + t) — (F(u) — F(v))(2)]

|t|2p+1

+C’|v

dxdt

[(u —v)(z +t) — (u—v)(2)

< )P (F(uw) = F(o) 72z + C TEGE

[t|<1
(Jul(2) + |o|(z) + ul(2) + |o](2))* PV dzdt

lo(z+1t) —v

+C |t|2p+1

z)[? _
lt|<1 ) (!u—v\(az+t)+]u—v[(x))2(p Yitda.

The first term, [[(z)?(F (u) — F(v))||r2(r) is easily bounded by

-1 -1
(5.2.19)  [[{@)” (u — ) pa ([l Fagos) + [0l ag-n)) <
-1 -1
< Cllu = vlwea ([ull¥ i1y + 10l ag-1))-
Using the Cauchy-Schwarz inequality for the x integral and (3.2.5), the
contributions of the second and third term are bounded by
-1 -1 -1
Cllu— U”B” (Hu”iﬂpfl) + ”U”IL)A(pfl)) + C”U”Bi2 [|u— UHPZ/J:(pfl)'

This proves (5.2.14) for o = 0 with B}, instead of B} ,. To conclude (when
o =0) we apply Lemma A.5.1.
To get the result for any o > 0, we follow the same method as in Sec-

tion 5.2 using the partition of unity. Finally, the proof of (5.2.15) is simi-
lar. O






CHAPTER 6
Functional spaces Y and X |

In this section we define the spaces required to develop our Cauchy
theory. The rule of the game is the following: the spaces for the initial data
must be of full measures, while the spaces for the solutions must be strong
enough to perform fixed points, and to ensure that after solving, the final
data is controlled in the space of the data. Last but not least, to be able to
show the decay properties of the LPT! norms, all the norms involved must
control the L>°; LP™! norm (and its variation during the fixed point).

In the sequel we will work on the interval

Ityr = (to — 7, to +7) C (—%, %)
In the next sections, we define the spaces Y€ of the initial conditions, and
the solution spaces ng. Before we define precisely these spaces, let us
state the main properties they need to satisfy:
e The space Y€ is of full pg—measure and large deviation estimates
are available (see Proposition 7.2.2).
e The space Y€ is invariant by the linear flow: if u € Y€, then for
all t € R we have e"®y € YP€ and |le” ™ ullype = ||ullyr.e
e The spaces (Y#),50.>0 are included in each other, with compact
embeddings: if 0 < p < p/ and 0 < € < ¢, then Y?¢ C YP*.
e We have the continuous embedding H” C Y€ (see Lemma 6.5.1).
e There exists 6 > 0 such that for u € Y€ we have
—itH

le™" ull oo (= mywirtry < Cllullyee.

This will be proved in Proposition 7.1.1.

e The solution space Xt’fw is the usual Strichartz space at H” regular-
ity for the Schrodinger equation with harmonic potential and data
in H”, and including a Besov-norm when F' is not regular enough
(1<p<2).

The definitions of these spaces depend whether 1 < p < % or % <p<2
or p > 2. This is due to the regularity of the nonlinearity F' and is a
consequence of the results of Section 5.
Set
11 p—1
PR 1 2ty

35
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then we have the Sobolev embedding H”° C LP*! and for all p > pg
(6.0.1) HP C Wrmroptl

In the following we will also need the notation

1 1 :
() Oq = 1 1 .
€+3_q 1fq24,

and we refer to Proposition 7.1.1 for a justification of this parameter.

6.1. Spaces for p > 2

Let maX(O,% — m,po) <p< % Denote by 7 = min(%52, 0,41),
where 0,41 is defined in (6.0.2). For 0 < € < 7, we define the spaces for the
initial data Y€

YPe = {u e H ety e [3-1) ((—m,m); )/\)2(@7{1)’4(1”_1))7

. 1 .
ey, € CO([—m, m]; Wh—eptL), B e My, € L8((—7r,7r); W”’4)},
and we equip them with the natural norm
_ —itH
[ullyee = llullz-< + [le u”Ls(pfl)((—ﬂJr);Wz(Tpfl)’4(1)71))
. 1 .

—itH —itH

+ e ull poe (= mppym-ertny + | <x>p/26 ! Ul| L8 (= )00ty -

We define X?

t,.~ the spaces for the solutions by

tio,T = CO(Ito,T; Hp) N L4(It0,7’; Wp’oo)’
equipped with the natural norm

[ullxg, = lull Lo g 00y + el Lagryg -owee)-

6.2. Spaces for % <p<2

We can check that for all % < p < 2 we have max(0, %,po) <

p%l and we consider max(0, %,po) < p < p—gl. We denote by n =

min(252 0p41). Let 0 < e < 1, and define the spaces for the initial data
YPe by

VP = {u € H™ e~y € L3O (—, m), WD 1Dy

1

—itH O/r_ . n—eptly -
e ueC ([ 7T77T]aW )7 <x>(2p—3)/4

e Mty e Ls((—ﬂ', ); Wp’4) },

and the spaces Xgm by
XP

to, 7 CO(Itoﬂ'; HP) n L4(Itoﬂ'; Wp’oo) n LS(Itoﬂ'; 82,2)'
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All spaces are equipped with their natural norms (recall that the Besov
spaces are defined in (3.2.7)).

3
6.3. Spaces for 1 <p < 3

Let po < p < p%l. Similarly to the previous cases, denote by n =

min(252, 0y 1). Then for £ > 0 small enough, we consider the Strichartz-

admissible couple (¢,7) = (zﬁ, 2—?%

are given by

(6.31) Y7 i={ueH

e € L%((—m, m)yH) N LI((—m, m) W) N OO, )y W)}

where 0 < € < n, and the spaces for the solutions X{;J are given by
XP o= C¥(Lyy s HP) N L (L1 7 W) N L1y 75 BL).

All spaces are equipped with their natural norms.

Define s = 2(5’ :;)T = 12)9’1__1[1 We shall choose p < p%l arbitrarily close

). The spaces for the initial data

to 7%1, then chose x > 0 small enough so that 2 < s < r, and then for e > 0
small enough, since ¢ > 8, we have

(6.3.2) e ul| g5 mpvery < e ull pa(mmpwery < lullyoe.

Observe also that by Sobolev embedding, the previous line implies that there
exists C' > 0 such that

(6.3.3) le™ ™ ull 15 ((—rmyizey < Cllullyoe.

6.4. The space X,%J

In the sequel, we will also need the space

Xy r = LIty L) N L (I 73 L)
6.5. Further properties of Y€

As a consequence of the Strichartz inequalities, we have

LEMMA 6.5.1. Let p > 1. Under the above assumptions on p, we have
for all € > 0 small enough
(6.5.1) HP C YPe.
Namely, there exists Cy > 0 such that for all u € Y€

lullyne < Collulle.

As a consequence,
(6.5.2) X{ , CL®(Iyy 73 YP),
and for all v € X{ |

(6.5.3) [Vl (1 -iveey < Collvllxg, -
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PrROOF. e Case p > 2. The bound

”e_itH’LL”LOO((—T('JF);W??iE'p*»l) S CHUHHP

is a direct consequence of (6.0.1). On the other hand, the couple (8,4) is
admissible which implies

1 —i —1
| BTN ol s —mmywedy < Clle™ ™ )l s (rmyweay < Cllulle

To bound the last term, we use the Strichartz inequality (5.1.1) and get

; 1 1 1
—itH _
(6.5.4) e uHLS(Pfl)((—nﬂr);WPﬂ“) < Cllullae, -9 m

It remains to check that by Sobolev embeddings, we have
Wpyr C WZ(TP*D"l(p_l)’

which follows from

1 1 p—2
6.5.5 > =
655) P23 -55,=3 " 2p=3
1 1 1 1 1
Sl ——)> = o1
T T el S TP

e Case % < p < 2. The proof follows the same lines. To bound the last

term, it is enough to check here the Sobolev embedding

(656) var C W%A(l)_l)
which holds true under the condition
4 St o r 1 . e p

Ap—1) —r Ap-1) 2 20p-1)
We conclude with (6.5.4).
e Case 1 <p< % Recall that (¢,7) = (zﬁ, 2—?%
couple. From the Sobolev embedding (6.0.1) we obtain

) is an admissible

—itH —itH

le™"  ull oo (—m,mywm—entty < €™l oo (o mywe—roptty < Cllullae.
The bound

le™ ™ ]l a((—m.myery < Cllullzee,
is given by the Strichartz estimate (5.1.1). Finally, the embedding (6.5.2)

follows from the fact that X} . C L*(I, -;H*) and (6.5.1). O

to,T
As a consequence of (3.2.2), we can show

LEMMA 6.5.2. Assume that €,p > 0 and 0 > 0. There exists C' > 0 such
that for any N > 1, and any v € Y?¢ and any v € X _,

[Snullyee < Cllullyee, — [[Snvllxg < Cllvllxg -

We also have the following statement.
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LEMMA 6.5.3. Let p > 0 and € > 0. Then for any u € Y”€ and N > 1,
11 = Sn)ullyre = o1 1oo-

Assume moreover that 0 < p < p' and 0 < ¢ < e. Then for any u € Y* ¢
and N > 1,

(6.5.7) 11 = Sn)ullyre < CN7mE =Py .

One can easily see that the analysis above implies that Syu is a Cauchy
sequence in L2(£; Y?¢) and thus we may see the measures jo and v; as finite
Borel measures on Y€,

The property (6.5.7) will be used to obtain uniform bounds for the ap-
proximate flow (see Lemma 10.1.2), which is a key ingredient in the proof
of the quasi-invariance result (Proposition 10.1.1). Notice in particular
that (6.5.7) implies that, for 0 < p < p/ and 0 < € < ¢, the embedding
yre cyPe s compact.

PROOF. Notice that the assumptions p < p’ and € < € gain some posi-
tive power in H (hence positive powers of N > 1), and consequently com-
pactness in the space variable because powers of H control both powers of
D, and of x. On the other hand, since the second and the third term in
the definition of Y”¢ are defined in terms of the free evolution, we may
exchange some saving derivatives in H for some time derivatives and hence
some compactness in time. We omit the details. O






CHAPTER 7

Large deviation bounds

7.1. Classical large deviation

We start by recalling the following large deviation bound, which is a
variation around results obtained in [41, 12], leading to an improvement in
the time variable.

PROPOSITION 7.1.1. Assume that (o, q) satisfy o < o4, where

11 ,
oo 27 g if2<qg<4
q = .

%4—% if q > 4.

Then

(711) ,U(]({’LL(] S XO(R) . He_itH’LLOHLoo((_ﬂJr);Wo,q) > R}) < CB_CRQ.
PRrROOF. From [41, Theorem 2.1, (00, 2,1)] and [12, Lemma A.§],

_1
(71.2) leallzz =1, llenllzs < Clogi(A)An®,  lenllzoe < CAL°.

=

We deduce by Holder inequality

Oqg— 0

5 1H 2 enllza = [IA7enllzs < CALS.

(7.1.3) Vo <04 de=

We now revisit the proof of [13, Proposition 4.4], see also [14, Section 3]
and [41, Proposition 6.2], with a slightly different treatment of the time
variable. To begin with, observe that

D?E_ZtHUO _ Hae_ZtH’LL(],
as can be checked by a decomposition in Hermite series together with a

Fourier transform in time.

41
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Next, let s > 7 > 2 > g, let y € C*(R) equal to 1 on [-%,%Z]. By the
Minkowski inequality we have

(D i e s (3 fen@)

Lo (@Q);Lr (Re); L (Ry) =

n>0
<D - mEasx _Zt)\nen(:p)gnHL‘I(RI);L"(Rt);LS(Q)
n>0
1/2
< C\/_H(Z YN2T2|\ (¢ )\2’%‘2(1’)) HL‘?(Rx);LT(Rt)
n>0
1/2

< C\/§<Z<)\n>e+20_2||X(t)6n($)H%q(Rx);LT(Rt))

n>0
SOV ) N < OV

n>0

where we used that for i.i.d normalised Gaussian random variables

| ZBHQH”LS(Q) < C\/E(Z ’/Bn’2)1/27

n>0 n>0

and in the last line we used (7.1.3) and the fact that A\, = v/2n + 1.

The Bienaymé-Tchebychev inequality and an optimisation with respect
to the parameter s > 1 (see e.g. [13, (4.5) & (4.6)]) gives
(7.1.4)

,UQ({UQ S XO(R) : HX(t)<Dt>iH%G_itHUOHLr(Rt);Lq(Rx) > R}) < CG_CR2.

Finally, to get (7.1.1), we just remark using Sobolev embedding in the time
variable (recall that & > 1)

_itH g _itH
le™" o || oo ((—rmyweay = |1HZ e ug| poo (e w3y <
P £ P
< HH4€ ZtHUOHLg;LOO(—W,ﬂ) < ||X(t)Dt4H4e ZHJUOHLZ;LT(]&)a
which together with (7.1.4) yields the result. g

7.2. New probabilistic smoothing effects
We shall also need the following result

PROPOSITION 7.2.1. Assume that 0 < v < %. Then for any p < % + 7,
there exist ¢,C > 0 such that

MO({UO € XO H| |'y _ZtHuOHLoo((—W,ﬂ);WPA) 2 R}) < Ce_CRQ'

PRrOOF. The proof follows the same lines as the proof of Proposition 7.1.1
after replacing the bound (7.1.2) by the bound (A.4.1) in Appendix A.4. O

We can now proceed to show that pg—almost every function is in Y €.
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PROPOSITION 7.2.2. Assume that p,e > 0 satisfy the assumptions in
Sections 6.1, 6.2, 6.3. Then

J¢,C>0;  po({ue€ X (R) : ||lullyre > R}) < Ce R

PROOF. e Case p > 2. Recall that
yPe — {’LL T e—itHu e LS(p—l)((_ﬂ_’ﬂ_); Wig(pp,l) ,4(17—1))’

. 1 .
—itH (s AN —€E,p+1 —itH 8(( NP4
e "y e CV([-m, ;W ) <x>p/2e we L¥((—m,m); W )}
Since p < %, we have p < % + &. Therefore, we can apply Proposition 7.2.1

with v = § < %, which allows to control the last term in the definition of
Y#€. To control the other terms, it is enough to check

I
2p—1) Y T 6(p— 1)
(7.2.2) N—€< Opti.

(7.2.1)

The inequality (7.2.2) holds true because we made the choice

= w2 ) >0

and e > 0 is small enough. Condition (7.2.1) follows from the fact that p > 2
and p < %
e Case % < p < 2. Recall that

voe = fue W7 ety € L0 (=, m); Wit APy

1

—itH O/r_ . n—e,p+1
e u € C¥([—m,7|; W )’7@)(21”_3)/4

ety ¢ L8((—7T, ); Wp’4) }

In this case we apply Proposition 7.2.1 with v = 2%_3 < % and p < %—i—% =

’%1. Then, we have to check the conditions
2p —3 o _ 2p-3
Ap—1) D T gy - 1)

1N —€<0pt1,

which both hold true.
e Case l < p< % Recall that
(723) Y ={ueH " :
ety e L>®((—m,m); H™ )N LY((—m, m); W) N CO([—T(', |; W”_E’p"'l)},
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with 0 < p < E1. and where (¢,7) = (ﬁ,ﬁ) is a Strichartz-

admissible couple. Here, the conditions to check are

pcop i Lt _pTZlok
2 r 2
n—e< Op+1,
and there are both satisfied if €, x > 0 are small enough. O

REMARK 7.2.3. As a consequence of the proof (namely the proof of
Proposition 7.1.1), all the results in this section remain true if we replace
H~¢ by Enx and pg by py, with the same constants (hence uniform with
respect to N > 1).



CHAPTER 8

The local Cauchy theory

We consider the equation

iau—Hu:cos¥ 2t up_lu, t,x) € —E,E x R,
5.0.1) { (2t)]ul (t2) € (5. 5)

u‘t:to = Uup.

Recall that F(u) = |u/P~u, then (8.0.1) admits the Duhamel formula
t _5 . .
u=e Tty z/ cospT(23)6_’(t_8)HF(e_’(s_tO)Huo + v(s))ds,

to

and consequently setting u = e~ “t=%0)Hy5 4 4 the function v must satisfy
v = K(v) with

t
(8.0.2) K(v) := —i/ cosg(23)e_i(t_s)HF(e_i(s_tO)Huo + v(s))ds.
to

For to,t € (=7, %), thanks to a fixed point argument, we will prove that
equation (8.0.1) admits, on the interval Iy, » = (to — 7,to + 7), a solution of
the form u = e~ ¥t Hy 4 ¢ where v € Xg),r' The idea of performing a
fixed point on v which is more regular than wug is classical in the field and is
known as the Bourgain trick [9] or the Da Prato-Debussche trick [21].

The main result we shall need to prove for the a.s. global existence is
the following.

PROPOSITION 8.0.1. Let p > 1 and tg € (=%, ). Let

L ifl<p<2
p <
5 ifp>2

chosen sufficiently close to 7%1 or % respectively so that the assumptions in
Section 6 are satisfied. Let € > 0 chosen small enough in the definition of
the space YP€. There exist ¢ > 0 and k,0 > 1 such that for any R > 0,

setting

(8.0.3) T<{dTW%—um5 ifl<p<b

cR* ifp>5

45



46 8. THE LOCAL CAUCHY THEORY

for any uy € YP© such that |ug|yee < R, there exists a unique solution
u=e " "Hyy 4+ v, with v € ng, to the equation(8.0.1) on the interval
LIiy+ = (to — 1, t0 + 7),
which satisfies
1
”UHXth < o’ [vllLoe (1 - vee) < 1,

where Cy > 0 is the constant in (6.5.3).
Furthermore, for two such initial data ug, ug € Y7 such that

[uol[yee, [tollyre < R,
we have
llu — EIHX?O,T < Cllug — upllyee ifl<p<2
(8.0.4) [lu — ﬂ||tiO,T < Ollug — uo||%p.  for some >0 if 1 <p<2
lu—llxp =< Clluo—ollyee ifp>2

and for any t € (to — 7,t0 + 7),
(8.0.5)
{Hu(t) —a(t)|lyee < Cllug — o, for some 6 >0if 1 <p<2

[u(t) = u@)llyre < Cllug —uollyee  if p>2.

In addition, after possibly taking smaller ¢ > 0, and larger d,x > 1, the
solution satisfies
(8.0.6) sup lu(t) — uo||pptr < 1.
te(to—7,to+7)
Finally, let o > p, € < € and assume in addition that ug € Y*¢', then
there exists M > 0 such that

||u||L°°((t0—7—,t0+7—);Yp’,e’) S MHuOHYﬂ’,s’y

8.0.7 i
8.0.) u=e Mg +o, ol < Juollype
07

REMARK 8.0.2. Proposition 8.0.1, holds for the equation
{i@tu — Hu = cosp_f(2t)SN(|SNu|p_1SNu), (t,z) € (—%, %) x R,
Ult=t, = U0 € En,

with uniform estimates with respect to the parameter N > 1. This is a
direct consequence of the proof of Proposition 8.0.1 and the boundedness of
Sy on L(R) spaces for 1 < g < 400 (see (3.2.2) and Lemma 6.5.2).

ProOOF OF PROPOSITION 8.0.1. We will show that the operator K, de-
fined in (8.0.2), has a unique fixed point v in the closed ball of radius
1/Cy centered around ug = e~it=to)Hy o in X{ . (here Cy > 0 is defined
in (6.5.3)).
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Step 1: the operator K maps a ball of Xt’fw into itself. We have to dis-

tinguish several cases with respect to p > 1.
e Case p > 2. From (5.2.1) applied with o = p/2, we get

1 1
HF(ug +”)Hm < C(HWUSHWM + ”WU”WM)

() T Iy + @) T T ol ).

Taking the L} norm and using Hélder inequality gives,
f
(8.0.8) ||F(uf +v) HL%O )
1 1
< Crz~ (”< >p/2 0”L8(It0 S WP + ”<>—p/2UHL8(ItO,T;Wp,4))

(H( >2(p 1)u0HL8(p D Iy LAP=1)) + ||{z >2(p 1)UHLg(p D) (I 7 LAG— 1)))

< CTs (HUQ”YPe + ”'U”le )p.

T

— Subcase 2 < p < 5. First, notice that for all |t| <7
0<cos'Z (275) < C(— - |t|)

Therefore, since 7 < $(Z — [to|), for all t € Iy, -, we have T — [t| > T — |to| —
T > (2 — |to]), hence

Vte I, cos = (275) < C’(— - |t0|)
and together with (8.0.8) we deduce
p=5
H cos 2 (28)F(ug+U)HL1(ItoyT;Hp) < Cre (— - |750|) (HUOHY“ + ||U||X” )p-
Thus we get, using the inhomogeneous Strichartz estimates (5.1.2)

(8.0.9) K )lxp < CTs(Z —ltol) = (HUOHYM +llvllxg )"

T

As a consequence, in (8.0.3), taking k,d > 1 large enough and ¢ > 0 small
enough shows that the operator K maps the unit ball of Xt[zw into itself.

— Subcase p > 5. In this case, we simply use that 0 < COS?(Qt) <1
and get

3
(8.0.10) IK@)lxg, , < Cr8 (luollyee +llollxg, )

and conclude similarly.
e Case % < p < 2. We can proceed as in the previous case, but here we

apply (5.2.1) with o = %. In particular we get the estimate

HCOSPQ;S(ZS)F(UO +wv HLl(ItOTHP) < C’TS(——|750|) (HU0||YP€+||U||X” )p-
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With the inhomogeneous Strichartz estimates (5.1.2) we deduce
(8.0.11) I W)lxe . =< Crs (Z ~1tol) T (uollyee + ollxp )"

Hence we get, as before, taking in (8.0.3) the parameters x,d > 1 large
enough and ¢ > 0 small enough, that the operator K maps the ball of
radius 1/Cp of X{ _ into itself.

e Case 1 <p< % We now use (5.2.2), and get

1F ) +0) |0y < C b llwor + [ollwoer) (g llze + loll2s)

and using the Holder inequality in time, the bounds (6.3.2) and (6.3.3), we
get

p—5
(8.0.12) ||cos = (28)F(U5+U)HL1 (g 42 ()
s—p T
<Crs (Z B |t0|) (||U0HL8 (trg.rwrr) T [0l 1 r0m))
—1
(T (it + ¥l 9)”
87
<Cr s (— — \toy) (”UOHYP€ +lvllxe, e

With the inhomogeneous Strichartz estimates (5.1.2) we deduce

8—p
(8.013) K@)y, <C7 (— ~ 1t0]) = (luollye + ollxg )",

and conclude similarly.

Step 2: the operator K is a contraction. Let v,w € Xt[z),r be such that
||lv]] Xp ||w]| Xt < 1/Cy. The contraction argument depends on whether
p>2 or p < 2. 7

e Case p > 2. We follow the same lines as in Step 1, but using (5.2.3)
instead of (5.2.2). We get

| cos™s* (25) (F(uf + ) = Flud + )| <

~1
< Crs (— —~ [to]) 7 o - wlxp (luollyee +vllxg )
which implies according to the inhomogeneous Strichartz estimates (5.1.2),
-1
1 (v) = K (w)llxp <CT$(——!t0D 7 [lv- wlixy (luollyee+llvllxp )*

and we get the contraction by choosing x,d > 1 large enough and ¢ > 0
small enough in (8.0.3).

e Case 2 5 < p < 2. We shall prove that K it is a contraction in a weaker
norm. Recall that Xp = = L*(Iy, - L*) N L*(Iy, -; L>). From Proposi-
tion 5.2.4 we get
(8.0.14)

|7 (uf + ) = F(uf +w)]| 2 < Cllo = wllgz (luollz= + [[oll o + [fw o)
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and as previously we get

|| cos™z *(2 s)(F(u) +v) — F(u5+w))“L1(lto,T;L2) =
3T
8

<Or P

G = 1to)"= o = wllxp_(luollyee +Iollxz + ol

Taking in (8.0.3) the values k,0 > 1 large enough, ¢ > 0 small enough we
get (since [v]|xp < 1/Cp and [[w]lx» < 1/Co),
07 07

1 (v) = K (w)lxg —Hv — wl[xo

T to.7
The map K sending the ball of radius 1/Cy of X
a contraction for the Xto’T topology has a unique fixed point in the ball of
radius 1/Cp of Xf _

e Case 1 <p< % The proof is similar to the previous case, but using
(5.2.4) with the parameter r > 2 appearing in the definition of Y instead
of (8.0.14).

Step 3: Regularity of the fluctuation. To conclude the proof of the first
part of Proposition 8.0.1, it remains to prove that

f . into itself and being

NS C((to—T,to—l—T);Hp(R)).

Since v = K (v), we get

v(ta) —v(t1) = —i/ ’ COSPT{)(2S)6_’U_S)HF(U£(S) +v(s))ds.

t1

Then, as in (8.0.9) (resp. (8.0.10), (8.0.11) and (8.0.13)) we get
lo(t2) — v(t1) l3e < Clta — ta3 (— =t (luollyee + llvllxg )"

with 7 = max (5%‘”, 0), hence the result.
This concludes the proof of the first part in Proposition 8.0.1 (existence,
uniqueness, and regularity of the solution).

Step 4: proof of (8.0.4) and (8.0.5). Consider two solutions u = u(]; + v

and u = ﬂg + v of the equation (8.0.1).
e Case p > 2. To prove (8.0.4), we again use (5.2.3) and get

H cos%(Zs) <F(u(’; +v) — F(ﬂg + ) >HL1 (Iig - 7M7)

< 073 (5 = Ito) "7 [ +v) — (@ + DIy,

~ ~ —1
(luollyee + [Follvoe + lollxy + Tl )7
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which implies, choosing again k,d > 1 large enough and ¢ > 0 small enough,

(8.0.15) | Ky (v) — Ky @)1y _ <

to,T
3, p=5 0 v
< 3 — Jtol) "= (Juo — Tollyee + o~ Tllxp )

~ ~ —1
(luollyne + Gollvee + ollxy +[Flx )7

1 - ~
< 5(”“0 — tollyee + [[v— UHXfO’T)'

Since for the two solutions Ky, (v) = v, Kg,(v) = v, we get
o= lxg . = 1Ky (0) = Koy @l . < lluo — ol

Coming back to the solutions u = e~ t—t0)Hyg 4 7 = e~/ -1 Hy) 17, we
get
lu—allxp =< Clluo —uollyee.

Finally, to prove (8.0.5), we only use that, since v — v = K, (v) — Ky, (v),
we have from (8.0.15)

[0 =Bl oo 11y, -i240) < o = To [y
together with

[w(t)=T(t) |y re < [le™ O (wg—p) |y o+ [|v(8) —T(t) e < 2|luo—To ||y e

e Case % <p<2 Letu= ug + v and u = ﬂg + v. With the arguments
of Step 2, we get the bound [jv — v[[xo < Cllug — tUo|[yec. Then by
07T

interpolation of this bound with [[v]lxs ,|[v]|xp < 1/Co, we deduce that
07 0.7
forall 0 < p” < p

Z

- - P
(8.0.16) [ =3l < Cllug = tolf$rpe,  0=1—"—.
to,T p
We are going to follow a strategy inspired from [18]. According to (5.2.14)
with o = 2%_3, we get that for all ||ug|lye.e, |[|uo|yee < R

Flul +v) = F@@ +7 <
|| (ug 5

) HLl(ItO,T;HP)
— -1 ~p—1 U v
< MR 4 ol + " ) (o — Follyne + 1o — il )+
<
4(1)*1)) -
< ORI (Huo —ollyee +[lv a;HXfw) +CRllv =3[, |

to,T

~p—1
+C(R+ ”U”Xfto)H’U—U”p 2p—3
s Ls(pfl)(ltoﬂ_;wﬁlzp—l_j’
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for some 4%‘” < p" < p, by (6.5.6). Now, we use (8.0.16) together with
Proposition 5.1.1, and get

o~ Flxg . <

T p=s _ N
< CRP I(Z = [tol) = 7" (lluo = Uollyre + v =Tl xp )

+CR(T — [to])'> =g — i | 22TV

Thus, choosing CR(% — lto]) 2 TR < 3, gives

lo=3llxp . < lluo = diollyne + luo — wolSh .

which proves (8.0.4) when % <p<2

e Case 1l <p< % The proof in this case is similar to the previous one,
by replacing (5.2.14) in Proposition 5.2.5 by (5.2.15). We do not write the
details.

Step 5: proof of (8.0.7). Finally, to prove (8.0.7), we revisit the first step.
We detail for example the case 1 < p < % Starting from (8.0.12), with p
replaced by p’ > p, and the same choice of 7 > 0, we get

HF(“g +U)HL1(ItO T;HP'( ) =

< CT (H“(J)[”Ls(lto,f;wrﬂf) + |’U|’L8(It0,-r;WP"T))
1
(H%IHLs(ItO,T;Ls) + ol sy .i0e))”

8 p
5 ([luolly,r e + H’UHXQ;’T) (lluolly.e + llollx

.

We deduce with the previous choice of 7 > 0 (possibly choosing a smaller
¢>0in 1),

ol
- —1
<Cr (7 = 1to) "= (Juollyws + 10l ) (uollyee +llvllxg, )"
1
< 5 (lollywc + ol )

which implies

Coming back to u gives (8.0.7).
Step 6: proof of (8.0.6). Again, we detail for example the case 1 < p < %

We study the contributions of u = e~*~t0)Hyq and v = K(v). Since the
Y€ norm controls the L>; W1=¢P+1 norm of ey, we have

(8.0.17) lle™ ¢t H g — u|lypm—emtr < 2R.
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On the other hand, since

(8.0.18) He_i(t_to)Huo — uonn,e,Zz,H
t
= H/ OS(G_i(S_tO)HUO)dSHwnfs,g,pﬂ < RJt — to| < RT.
to

Interpolating between (8.0.17) and (8.0.18) gives

—i(t—to)H

ey g, < 2R

for some ¢y > 0, and a suitable choice of ¢, d, xk > 0 ensures that
1
ug = g || pr1 < 5
Let us now turn to the analysis of the contribution of v. Replacing in (8.0.12)
the interval Iy, » by (t',t), we get

He—i(t—to)H

Jo0d) — (¢ e < [ 052 (251 (e~ =My -+ () 1 e
< Clt =t (G — lto) = RV,
Now according to the Sobolev embeddings H” C LPT!, which implies
lot) = vt < Clt = #1755 = to]) "= R?

and a suitable choice of ¢, d, xk > 0 ensures that

9

N | —

[t =t <7 = Jlu(t) — w(t)ll o <

hence the result. O



CHAPTER 9

Global existence for p > 1

In this section, we assume qo = (0,1,1,0), i.e. pq, = pro. We show
that the problem (N LS,) is globally well-posed on a set of full yp—measure
(Theorem 1.2.2). We start with a result on the harmonic oscillator side.

ProrosiTIiON 9.0.1. Let p > 1 and consider
Lifl<p<2
p <

: ifp>2

chosen sufficiently close to p%l or % respectively so that the assumptions in

Section 6 are satisfied. Let € > 0 chosen small enough in the definition of
the space YP€. There exists a set X2 of full uo—measure such that the local
solution u of (8.0.1) with initial condition ug € ¥ is defined on

oD i1<p<s
R ifp>5

and we shall denote it by

w=®(t, to)ug = e Oy 4y,
Moreover, for every ug € X and for any n > 0, there exists C > 0 such that
C(1+(F-1)T"), Vee(-5.5) #l<p<5

[®(t, to)uollyee < )
C’<1+log§(1—|—|t|)), Vvt e R if p>5.

Furthermore, we have an additional smoothness property: there exist
K,v > 0 such that for all ug € 3, there exists C' > 0 such that
(9.0.1)
CO+G-1) ), vte(-5.5)  ifl<p<s
lo(t) e < )
C(1+t))(1+1log2(1+[t])", VteR ifp>5.

We emphasize that the constants K, > 0 which appear in the previous
statement are deterministic, and depend only on p > 1 and p > 0. They
are obtained by an iteration of the local well-posedness result on small time
intervals (see the proof of Proposition 9.1.1).

We proceed in three steps. First we prove bounds (independent of N >
1) on the solution of the approximate equation (4.1.1), then we pass to the
limit N — 400 to get well-posedness for (8.0.1) on the interval I. Finally,

53
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we prove the quasi-invariance result. For simplicity, in the proofs, we only
address the existence for positive times.

9.1. Uniform estimates
ProrosITION 9.1.1. Let p > 1 and consider
bl ifl<p<?
p <
3 ifp>2

chosen sufficiently close to p%l or % respectively so that the assumptions in

Section 6 are satisfied. Let € > 0 chosen small enough in the definition of the
space YP€. Let n > 0, then for all i, N € N*, there exists a puy—measurable
set va C En so that there exist ¢,C,eq > 0 with

pun (Ex\Sly) < Cem
and for all ug € f]’N
(9.1.1)

-5

P24+ (E )T, Ve (-I,T) ifl<p<5

[®n (¢, to)uollyre < ¢ . .
i+2+log2(1+[t]), VteR ifp>5.

Moreover, there exist K,,7, > 0 such that for all ug € S , setting vy =
DN (t,to)ug — e‘i(t_tO)Huo, there exists C' > 0 such that
(9.1.2)

Cli+2+ (5 —|t) %), vte(-3,I) ifl<p<b

lon () l2r < L "
CA+[t)(i+2+1og2(1+t]))™”, VteR ifp>5.

9.1.1. The case 1 < p < 5. It is enough to consider the case ty = 0.
We set, for 7,7 > 1 integers,
BY :={u€ Ey : ||ullyre <i+j}.

Let0 < a < 5%;)' For any t' € (—%—i—j%, %—j%), thanks to Proposition 8.0.1,
there exist ig € N and v > 1, which only depends on p > 0 and p > 1, such
that

(9.1.3) T=c(i+7)"
for every t € (t' —7,t' +7), i > i,
(9.1.4) On(t,t)(BY) c{ue By : |[ulyee <i+j+1}.

Namely, the time of existence of Proposition 8.0.1 is c(i 4+ j)™%(Z — t/)? >
c(i+j)77 for v = k + da. In the sequel, [x] stands for the integer part of
x € R. Remark that for k| < [(§ — ]%)/T], and since for i > iy large enough
we have a <, then

= k7'<%—27',

Y

2 o
(/<;+2)T§%—j—a+2c(z+j) T <
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and similarly

—% + 27 < kT.
Let
(5 —7%)/7]
BY* =an(kr,007Y(BY), == N By

k=—[(F—7)/7]
Notice that thanks to (9.1.4), we obtain that the solution of (4.1.1) with
data ug € Eﬁ\’,] satisfies

2
‘j_a .
Indeed, for t < § — j%, we can find an integer |k| < [(§ — J%)/T], and 11 €
[—7,7] so that ¢t = k7 + 71 and thus u(t) = ®n (kT + 71, k7) (PN (kT,0)uo).
Since uy € X}/ implies that ®x(k7,0)ug € B}, we can apply (9.1.4) and
get (9.1.5).

By Proposition 4.2.1, the measure vy is quasi-invariant by the flow ®y
and more precisely from (4.2.3) with s =0

(9.1.5) |®n(t,0)ug |y, <i+j+1, t<

=1

5—p
cos™2Z (2kT)

vn0(EN\BR™) < vngr (@n (k7 0) (Bx\BY) )

< v (En\BR)™ *

5—p
) cos™2Z (2kT)

< un(En\BY

Now, since

T 2
1 cos(2kt) > ; a < 5

by the large deviation bound of Proposition 7.2.2 and Remark 7.2.3, we have

4 4
kT S -,
«

(p=5)a

< Ce—cliti)?i 2

LN (EN\B;L\,[]')COSO_E_Z) (2kT) < Ce—cl(i-l'j)éo 7
where g = 2 + ap_gs > (0. We deduce
(9.1.6) VN0 (EN\E;,’]) <C(i _|_j)“/e—0'(i+j)50 < Qe+

Next, we set
+oo
(9.1.7) =)=V
j=1

Thanks to (9.1.6),
(918) VN,O(EN\E%}\[) < Cze_cﬁ(i+j)eo 4 Cze_cll(i+j)eo < Clo—ci0.

J<i J>i
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In addition, using (9.1.5), we get that for every i > ig, every N > 1, every
ug € E’]'V, every 0 <t < 7,

7T
¢

|@n(t,0uoly,. <i+2+(F -5
1

Indeed, for 0 <t < 7 there exists j > 2 such that G= < T-t< ]% and we

apply (9.1.5) with this j > 2. Choosing o < % but arbitrarily close to 5%;)

proves (9.1.1). To prove (9.1.2), for uy € Zé\’,j, we apply Proposition 8.0.1
with Remark 8.0.2 which implies that on each interval [k7, (k+1)7], we have

SHRDHy | oy, o ()|l < 1

u=e
Iterating this estimate between 0 and ¢ leads to (recall that 7 = ¢(i 4 j)™7)
O (t,0)uo = e ug + o, [on(®)lwe < CG+35)7,

and for uy € ¢ , choosing again ﬁ <i-t< %a gives

; g
D (1, 0u = g o, fow ()l < O(i+ (5 —7E),
which proves (9.1.2).

9.1.2. The case p > 5. We revisit the proof above, taking benefit
from the better estimate in Proposition 8.0.1 and (4.2.3). Thanks to Propo-
sition 8.0.1, there exist i9p > 1 and v = k > 0 (only depending on p > 0 and
p > 5) such that if we set

T=c(i+j)7, v =K,

for every ty € R and for every t; € (tg — 7,t0 + 7), @ > i,

(9.1.9) Oy (tr,t0)(BY) C {u€ Ex : |lulyee <itj+1}.
Let €9 > 0 to be fixed later and
Byt =aey(kr,0071(BY), == () By
k=—[2¢072 /7]

where [2€03° /7] stays for the integer part of 2907° /7. Notice that thanks to
(9.1.9), we obtain that the solution of (4.1.1) with data uy € X}/ satisfies

(9-1.10) [®n(t,0)uollyp. <idj+1, ¢<207,

Indeed, for ¢ < 27° we can find an integer k = [t/7] < 299°/7, and 7, €
[—7,7] so that ¢t = kT + 71 and thus u(t) = ®n (kT + 71, k) (PN (kT,0)uo).
Since uy € XY/ implies that ®x(k7,0)ug € B}, we can apply (9.1.9) and
get (9.1.10).
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Now we apply Proposition 4.2.1 with s = 0, and from (4.2.3) we deduce

UN,0 (EN\BJi\’,J"k) < VN7kT(¢N(kT,0)(EN\BJi\’,J"k))
< VN,kT(EN\BJi\}j)
< un(En\BY).
Then, by Proposition 7.2.2 and Remark 7.2.3 we have
pun (EN\BY) < Cem e’
which in turn implies
(9.1.11) uno(Bx\ZY) < C(i + j)r2e0r e+’ < 0= ()7

if €9 < ¢/2. Next, we set
~ . +m ..
(9.1.12) ==V
j=1

Thanks to (9.1.11),

2

VN,O(EN\iév) < CZ o~ (i+3)? < Ce 7,
j=1

In addition, using (9.1.10), for every i > ig, every N > 1, every ugy € f]’N,

every t > 0,
1@t 0)uo |y <+ 2 +log? (14 2).

Indeed for ¢ > 1 there exists j > 1 such that 9€0(i—1) <t< 2€03* and we
apply (9.1.10) with this j > 1. This proves (9.1.1). To prove (9.1.2), for
ug € 23\’,], we apply Proposition 8.0.1 with Remark 8.0.2 which gives that

on each interval [kT, (k + 1)7], we have

—i(t—kT

u=e Mo iegr +on, [lon(®)]le < 1.

Iterating this estimate between 0 and t on each interval [k7, (k + 1)7] leads

to (recall that 7 = ¢(i 4+ j)™")
D (t,0)ug = e_itH’LL() +on, |lon@)|ne < CA+1)(@+5)",

and for ug € i’N, choosing again 2001 < ¢ < 205 gives

O (t,0)uo = ¢ ug +vn,  on (@)l < C(1+ 1) (i +log2 (1 +1))",

which proves (9.1.2).
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9.2. Passing to the limit

In this section we pass to the limit in the sequance of approximate sys-
tems. For integers i > i and IV > 1, we define the cylindrical sets

(9.2.1) 2y = {ue X°R) : Tyu e i},
where iﬁv is defined in (9.1.7) or in (9.1.12). Next, for i > ip, we define
= {ue X°(R) : HN’“’kEToo N, = 400,
Juy, € zévk,kgrfw 1SN, un,, — ullyee =0}

Let us prove that X¢ is a closed subset of Y€, The closedness property
is clear, it is enough to show that ¥ C Y€ Assume that there exists
un, € vak such that limy_, 4o [|[Sn, un, — ||y = 0. Then for any P € N,
as soon as N > P, we have

1Sp(uny, — w)llyee = [SP(Snun, — w)llyee < CllSN,un, — ullyeec — 0.
As a consequence, using (9.1.1) (with ¢ = tp = 0) and Lemma 6.5.2, we
deduce

|Spullyee <limsup ||[Sp(un,)|lyee < C>i+1)
k—+o00
and passing to the limit P — 400, we deduce that v € Y€ and
lu|lyee < C(i +1).

Next, we prove we have the following inclusions

+oo 400 .
(9.2.2) limsup XY = ﬂ U PN L C X
N—+o0 —1 N =

Indeed, if u € lim sup E’N, there exists IV, — +o00 such that
N—+o00

Iy, u e iﬁvk,
and the same proof as above shows that
uwe P ullyee <C>i+1).
Now, we clearly have

[Snu — ullyee = 0(1)n— 400,

and since S, (II,,u) = Spu, the sequence up, := Iy, u is the one ensuring
that u € ¥%. This proves (9.2.2).
Consider
1 1 1
Gn(u) = eXp(_mHSNUHIZ;ﬂ(R))a G(u) = ex (_—H ||IE-;+1 )

and recall that
dvy = G(u)duy, dvn,o = Gy (u)duo.
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As a consequence of (9.2.2), we get the inequality

(9.2.3) vo(2Y) > v (limsup ZY).
N—+o00
Using Fatou’s lemma, we get
(9.2.4) vo(limsup ¥%) > limsup vp(ZY) .
N—+o00 N—oo

We have (because the set E’]'V is cylindrical),
w(Ey) = [ Glu)dpuo(u),
XN
and

vnvo(E) = [ Gy(wdun(u) = [ G (u)dpuo(u).
Yy Yy
We deduce

(=)~ rva(E)| < [ 1G() = Galw)ldio(w) = oo soc

where we used the dominated convergence theorem and the fact that pg—a.s.
u € LP*! and consequently po—a.s

Nl_l)liloo Gy (u) = G(u).

Therefore, using Proposition 9.1.1, we obtain

lim sup vo(XYy) = limsup VN,O(%V)

N—oo N—o00
> limsup (vxo(Ew) = Ce™") = vy(X"(R)) = Ce™ ™.
N—o0
Collecting the last estimate, (9.2.3), and (9.2.4), we obtain that
(9.2.5) vo(2Y) > v(XO(R)) — Ce™ ™.

Now, we set

[e.e]
=
=10
Then, by (9.2.5), the set ¥ is of full yp—measure (and hence also of full
ptp—measure). It turns out that one has global existence for any initial
condition ug € ¥. Recall that ® ~ stands for the extension of the flow @y

on H™¢(R), see (4.2.7). We now state the global existence results.
ProrosITION 9.2.1. Let p > 1 and consider
PLoifl<p<?
p <
: ifp>2
p—1 1

chosen sufficiently close to Y5~ or 5 respectively so that the assumptions in
Section 6 are satisfied. Let € > 0 chosen small enough in the definition of
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the space Y P, For any initial condition ug € 3, there exists a unique global
solution u of (8.0.1) in the class
u=e =y 4 (I, HP(R)),
where
7= (-4,%) ifl<p<5
R if p>5.
We shall denote this solution by u = ®(t,0)ug. Moreover, every integer

i > and for any n > 0, there exists C > 0 such that for every ug € ¥
(9.2.6)

Cli+2+ (5[t T M, Vte (=T, T) ifl<p<5,
||(I)(t,t(])U()HYp,6§ ( (4 H) ) ( 1 4) f p

C(i+2+1log2(1+ |t))),Vt € R ifp>5,
and if ®(t,to)ug = e~ "¢t Hyy 4+ 4 we have the bounds
(9.2.7)
Cli+(F-h™"), vte(-1.7) if1<p<5
[o@)llne <

COA+[t)(i+2+1logz(1+t)))”, VieR ifp>5.
Furthermore, if (uo N, )k>0 € Eﬁvk, N}, — 400 are so that

lim ”SNkUQNk — UOHY/J,E = O,

k—+o00
then for allt € I
(9.2.8) Vo < p, kngoo | @, (¢, 0)uo,n, — u(t)]|y.. = 0.

The key point in the proof of Proposition 9.2.1 is the following lemma.
Recall the notation Iy, » = (t9 — 7,tg + 7) and recall that the set XY is
defined in (9.2.1), (9.1.7), and (9.1.12).

LEMMA 9.2.2. There exist k,0 > 1 and ¢ > 0 such that the following
holds true. Let p satisfying the assumptions of Proposition 9.2.1. For any
R > 1, consider a sequence ug,n, € Xy, and ug € Y7 such that
(9.2.9)

HUQNk”Yp,e S R, HUQ”yp,e S R, Vo < P, ]uQNk — uQ”yo,e =0.

lim |
k——~4o00
Then if we set

(9.2.10) < {CR‘“(% —|to])? ifl<p<5

cR™F ifp>5

the quantities CTDNk (t,to)uo,n, and ®(t,to)ug exist for |t —to| < 7 and satisfy
1@, (¢, to)uo, Nl oo (1 -ivee)y < BRHL, || to)uollLoo(r,, yvee) < R+
Furthermore,

(9.2.11) Vo < P, lim ”EIV)Nk(t,t())UQNk — @(t,t())UQHLwUt Yo = 0.
k—+o0 0
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PrROOF OF LEMMA 9.2.2. The first part of this lemma is a direct con-
sequence of our local well-posedness results of Proposition 8.0.1 and Re-
mark 8.0.2. It remains to prove (9.2.11). For that, let us write

D(t, to)ug = u = ety 4 o,

(9.2.12) .

(I)Nk (t,tQ)UQNk =UL ==e€ ug, N, + V-

Let us now remark that from the first part in the lemma,

H(I)Nk (tv tO)UO,Nk - (I)(t7 tO)U’O”LO"((to—T,to-i-T);YPvf) <2R+2,
and consequently it is enough to prove (9.2.11) for some o > 0. We have

i(t_tO)H(uO — ’LL(],Nk) + (U — Uk).

uU—up =€
By assumption, for any 0 < o < p

le™" 0 (wg — g ) v ee = [[uo — o, v |yoe = 0(1)k4o0-

Therefore it remains to show that some o > 0 we have
(9213) ||U - UkHLOO(ItO,-r;Y"’e) = 0(1)k—>+007

for 7 > 0 chosen as in the statement of the lemma. Set wy, = v — Sy, vy, and
let us prove that

(9.2.14) H’U)k”Loo(ItO,T;YJ,e) = 0(1)k—>+ooa

which will imply (9.2.13) by Lemma 6.5.3 and (8.0.7). Observe that wy
solves the problem

(9.2.15) (i0y — H)wy, = COS%(2t)(|u|p_1u - S]%;k(|SNkuk|p_lSNkuk))
— cos™> (20)(1 — 5%, ) (JulP " u) + cos™> (26)S%,

(P~ — | Sy uglP~ Sy ug)
with initial condition wy, |¢=¢,= 0. Standard estimates now show

[ cos™>” (26)luf?~ <OTull%y < CTR+1)
tO,T

1
uHLl(ItO,T;H)
and consequently, by dominated convergence,

(9.2.16)  ||cos™ (26)(1 — 5%, ) (julP~! 5 0ask— +00.

u)HLl(ItO,T;Lz)
Thus from the Strichartz estimates (5.1.2) in Z% we deduce that the con-
tribution of this term to wy is bounded by o(1) in L>;L?. We estimate
the second term in the r.h.s. of (9.2.15) by using a direct manipulation

on the expression |z1[P~1z; — |22[P7 12y, Recall that X = L®(Iy, - L*) N



62 9. GLOBAL EXISTENCE FOR P > 1

L*(Iyy +; L) and denote by )22),7 = L3(Iyy - L*) N LA(Iyy »; L™). Then by
Proposition 5.2.4.

(9.2.17) H COS?(%)SN]C (]u\p_lu — \SNkuk\p_lstuk> HLl(ItO,T;LZ) <

—1
< Orllu = Sneunllge (ullxg, |+ ISweunllxg )"

<CT(R+ 1)p_1(||€_i(t_t0)H(uo = Snuo,N) | Loe (1 -ivee) + HwkHX?OYT)
< CT(R+ 1P (|lug — Snyuo,ny [y + ||wk||x,90,7)
< 0(D)k—s4oo + CTH(R + 1)p_1||wk||xgw :
We deduce from (9.2.16) and (9.2.17),
lwellxp < CT™(R+ 1P wllxo  + 0(1)kstoo-

By taking C7%(R+1)P~1 < 1/2, we infer that lwellxo = 0(1)k—+o0- Next,
07

by interpolation with (8.0.7), we deduce that for any 0 < o < p, we have

HwkHXgo _ = 0(1)k—100- Finally we choose o < p large enough such that

we can apply (6.5.2) which implies (9.2.14). This completes the proof of
Lemma 9.2.2. O

PROOF OF PROPOSITION 9.2.1. The local existence result follows from
Proposition 8.0.1. Let us now focus on main points which are the global-
isation and the limit (9.2.8). We only consider the case 1 < p < 5, the
case p > 5 being similar. We assume in the sequel that ¢ty = 0 in (8.0.1).
Let ug € ¥*. By assumption, we know that there exist sequences N, € N,
Ug,N, € Eﬁ'vk such that

S vo.n, — tollyee = 0.

Consequently, by Proposition 9.1.1, we know that for any n > 0

p—

~ i ™ p=5_
(9.2.18) | @, (, 0) M, o, N, )| ypre <042+ (Z —t)

The strategy of proof consists in proving that as long as the solution to (8.0.1)
exists, we can pass to the limit in (9.2.18) and there exists a constant C’' > 0
independent of i > iy such that

(9.2.19) | @(t, 0)uol|y,. < C'(i+2+ (% )

which (taking into account that the norm in Y'” controls the local existence
time), implies that the solution is global and satisfies (9.2.19) for all times.
Let us fix T € (=7, 7). We assume

(9.2.20) @, (t,0)(Tn, uo.n, ) ||ype <A, for [t] < T
and we want to show

(9.2.21) |®(t, 0)uo ||y, <C'A,  for [t| <T.
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As a first step, let us fix t = 0. For Q € N, if N, > @, IIn, Sg = Sg and
consequently, using Lemma 6.5.2 and the definition of 3!, we obtain

ISquollyee = lim Sy, uon,)llyee < C'A
k—+o0

and passing to the limit ) — +o00, we deduce

Juollyns = Jim || Squollyns < C'A.

This implies that the sequences I, ug v, and ug satisfy the assumptions of
Lemma 9.2.2 (with R = C’A). As a consequence, we know that

Vo <p, [lim 1@, (£,0) (I, o, ) — @ (t, 0)ig | oo ((0,r) ) = O

for 7 = c¢pA™" given in (9.2.10). Now we show that this convergence allows
to pass to the limit in (9.2.20) for ¢ = 7, using Lemma 6.5.2 again. Indeed, fix
@, then for N > 2Q), the sequence Sg (<I>Nk (7, 0)(HNku0,Nk)) is bounded
in Y#¢ by C'A, and converges to Sq(®(7,0)ug) in Y€ for all 0 < ¢ <
p. Here, the constant C’ > 0 is given by Lemma 6.5.2. We deduce that
So(®(,0)ug) € Y€ and

1Sq (®(7,0)ug) lyee < C'A.
Next, passing to the limit @ — 400, we deduce that ®(7,0)uy € Y and
|D (7, 0)ugl|yee < C'A.

Now, we can apply the results in Lemma 9.2.2, with the same A as in the
previous step (remark that the assumption (9.2.9) is now true for any o < p)
which implies that (9.2.21) holds for ¢ € [0, 27], and so on and so forth.
Notice here that at each step the a priori bound does not get worse,
because we only use the results in Lemma 9.2.2 to obtain the convergence
of || @, (£,0) (I, uo,n;, ) — B(t,0)uo]|y,. to 0, and then obtain the estimates
on the norm ||®(¢,0)up||yee by passing to the limit in (9.2.20) (applying
first Sg, passing to the limit & — +oo, then to the limit Q — +o00). A
completely analogous argument holds for the negative times ¢. O






CHAPTER 10

Quasi-invariance of the measures

10.1. Passing to the limit

In this section we pass to the limit N — +oo in Proposition 4.2.1. Recall
that the measure v, is defined in (4.2.1) by

p—>5
_cos 2 (2t)
dvy =e pHl

p+1

”uIILp+1(R) d,uO

In particular
vy < o and o K V4.
The purpose of this section is to show the following result.

PROPOSITION 10.1.1. For all t,t' € (=%, %),
<I>(t7 t/)#:u(] < po K <I>(t7 t/)#:u(]-

More precisely, for all 0 < |[t'| < [t| < § and all A C %,

vy (®(t,0)A) s f1<p<5
(10.1.1)  w»(®(t,004) < (ten )z

v (¢, 0)4) | ifp>5
and .

[Vt(q)(t O)A)} (&) * if1<p<5
(10.1.2)  w(@(¢,0)4) < ' -0

v (®(t,0)A) if p > 5.

We will need the following statement comparing ®(¢,tg) and ® (£, to)
for small |t — to

LEMMA 10.1.2. Let to,t € (=5,5). Let p' > p and 0 < € < e which
satisfy the assumptions of Proposition 9.2.1. There exists kK,0 > 1 and ¢ > 0
such that if we set

—Kk(T o :
;< cR™" (% — |to) ifl<p<hb
cR™" if p>5,

the following holds true: there exist C,6' > 0 such that for every R > 0,
every R' > 0, every ug € Y such that ||ug||yse < R and luolly e < R,
if |t —to] < 7, then

Hq)(t,to)u(] — &)N(t,to)uon,e < CR/N_JI.

65
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Proor oF LEMMA 10.1.2. Recall the notation u(]; = e‘i(t_tO)Huo. We
first write

(I)(t, to)’u,o = u(]; + v, (I)N(t, t())’u,o = u(]; + vnN
with
v=K(v), on=5n(K(n))),
where the operator K is defined in (8.0.2). We deduce
(t, to)ug — P (t,to)up = v — vy = wy,

where
(10.1.3)

(10 + H)ywy = (1 — Sy) (F(u}) +v)) + Sn (F(ul) +v) — F(ul + Syon)).
From (8.0.7), we know
/
(10.1.4) |WHX%ﬁ<+HUNHX%JfEQR

HF(U(J; + U)HLl((tmt);Hp’) <R.
We get
lwnllxg < CR'N 4 | F(uf +v) = F(uh + Syox) |1 (o 0:22)
From the Holder inequality we get easily
5 pp—
1F () + ) = F(uf + Snow) 2 (to,nyszz) < C7° RP o — unllxg

where X = L°°(I;, r; L*)NL* (14,73 L°°). Then taking ¢ > 0 small enough

and k£ > 0 large enough in the definition of 7, and using the Strichartz
estimate (5.1.2) in (10.1.3) gives

lwnllxg = CR'IN™” + %HU)NHX?OJ = lwwlxg | = 2CR'N™7.
Interpolation between this bound and (10.1.4), we get that for all 0 < p < p’
lowllxp | < 2CR'N~(7'=r)
which implies Lemma 10.1.2. O

PROOF OF PROPOSITION 10.1.1. Let us prove for example (10.1.2) in
the case 1 < p < 5. By the regularity properties of the measures vy, it
is enough to prove this result if the set A is closed. Now we assume that
0<t' <t< %. Recall that our measures v; are seen as finite Borel measures
on Y€, Let X (resp. ¥ = ®(t, O)E) be the set of full vy (resp. ;) measure
constructed in the previous section. Clearly, for all 0 <#' <t < T,

S =3 0%, X =0 t)Dy,

10.1.5 oo oo . .
( ) Y = U ¥, Y = U i, ¥ = ®(t, t")2),
=1 =1
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and by Fatou’s Lemma,
VB €Y, w(B)= lim (BN,
1—+00

As a consequence, we can replace A by AN ¢ (which is also closed).
Let T' < 7. From Section 9.2, we know that ' are closed in Y€, and from
Proposition 9.2.1 the set X! is bounded in Y€ uniformly with respect to
t €[0,7] by

Cli+2+ (G -5 ).

Let p/ > p,e < e sufficiently close to each other. Now from the large
deviation bounds in Section 7, if B, is the ball of radius n in Y*¢, we have,
for B € ¥,
po(B) = po(BNY?<) = Tim puo(B N By),
k—+o00

and the same relation holds with pg replaced by 1;. As a consequence, we
can replace A by ANY*N By. Dividing the interval [0, 7] by a finite number
P of intervals of size 7, applying (8.0.7) we get that for any ¢t € [0,7],
(t,0) (A nxin Bk) is bounded in Y€ by MPik = C; ;- Hence we can
assume that ®(t,0)A is closed in Y”¢ and bounded in Y*"¢ uniformly with
respect to ¢t € [0,7]. Now, let 0 <t' <t <T < %. For A€ ¥?, we have

vy (@', 0)A) = vy (U ©(¢,0)(AN By)) = kEToo vy (@', 0)(AN By)),
thus

v (@(t,0)A) = vy (O(¢, 1) R(t,0)A) >
> 1, (Uk<I>(t,t’)(((I)(t’,O)A)ﬂBk)) > lim sup v, (@(t,t’)((@(t’,O)A)mBk)).

k—+o00

As a consequence, it is enough to prove (10.1.2) with A = &(¢/,0)A
replaced by Aj, = (®(¢,0)A)NBy, and ®(t, ') A replaced by ®(t, ') Ax. Notice
that according to (8.0.7), since Ay, is bounded by k in Y?¢, we know that
®(t,t') Ay is bounded uniformly with respect to ¢ € [0,7] in Y7¢ by the
constant C;j > 0.

We now proceed and prove (10.1.2) by time increments |t —¢'| < 7, with
7 > 0 as defined in Lemma 10.1.2. Let ¢g > 0 and N > 1 large enough such
that

CR'N™Y < «.
From Lemma 10.1.2 between ¢ and t' + 7 we have, B, being the ball of
radius e in Y€, with A = ®(t',0) Ay,

vi(®(t' +7,t)AY + B,,) = lim Un (B + 7, 1) AL + Bey) >

> limsup vy ((EN(t/ +7, t/)Ag) )
N—+o00
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where the first limit above is simply obtained by the Lebesgue dominated
convergence theorem. From (4.2.3) combined with Remark 4.2.2, we have

> 5 / N At (%W) = .
Dnw(A) < (VN,t(éN(t +7,)47)) f1<p<5

Nt (PN (E + T, t/)Ag) ifp>5
which implies

(10.16) v (A) = lim vy (AL)

. (ut(q>(t’ + 7t AL + B60)>
(e + AL 4 Be,) if p> 5.

/ 5-p
(cos(2(t +7)) ) 2
cos(2t’)

if1<p<5

We have
51011—130 v (O(t' + 7,t') A}, + Bey) = v (@' + 7, ") AY),

and since ®(t' + 7,t/ )AZ is closed in Y#€, passing to the limit ¢¢ — 0
in (10.1.6) gives

’ 5-p
cos(2(t'+71)) ) 2
( cos(2t’)

(Vt(@(t’ +7, t’)Ag)) if1<p<5

v (@t +, t")AL) if p>5.

Applying this estimate between t' and ¢, |t — /| < 7, gives (10.1.2) for all
0 < [|t'| < [t| <T. Since T' < % is arbitrary, this proves (10.1.2). The
proof of (10.1.1) is similar. The proof of Proposition 10.1.1 is therefore

completed. O

v (Af) < {

10.2. Global existence for (NLS))

In this section we prove Theorem 2.2.2 in the particular case qo =
(0,1,1,0) (pqy = po). For this we use the inverse of the lens transform
defined in (2.3.1), (2.3.2). From Proposition 9.2.1 and Proposition 10.1.1,
we know that we can solve (8.0.1) for every initial data in the set X, the
solution takes the form u = ®(¢,0)up, and we have full pp—measure sets
¥y = ®(¢,0)X. Applying the inverse lens transform and (2.3.4), we define
the sets

— _ -1
SS = \I/(S, 0)2 = %(S)(Et(s))

We now check that these sets are of full jq, —measure with q, = (s,1,1,0).
Actually by (2.3.5) we have

g, (Ss) = o (%(s)%(_sl)zt(s)) = po(Ey()) = 1.

The first part of Theorem 2.2.2 is just the fact that the lens transform
conjugates the flows of (NLS,) and (NLSH,), and the second part follows
from Proposition 9.0.1 and Lemma A.1.1.



CHAPTER 11

Decay estimates and scattering

In this section we are going to exploit the quasi-invariance properties of
the measures ®(t,0)x1p to get almost sure estimates for the evolution of the
LPT! norms, and prove the scattering results in Theorem 1.3.1.

11.1. Decay estimates

The first step is to prove the following estimates on our solutions on the
harmonic oscillator side, obtained in Proposition 9.0.1.

PROPOSITION 11.1.1. There exists a set > of full po—measure such that
for all ug € X, there exists C > 0 such that the global solution of (NLSHp),
given by ®(t,0)ug, satisfies

1
Cllogret(F = [t)l, Vte (=%, 1), ifl<p<5
[@(t, 0)uo | Lo+1 < N o
C(1+1logz(1+1t]), VteR, ifp=>5.

By applying the inverse lens transform (2.3.1), t € (=%, %) — s(t) € R
using that

1 1
(11.1.1) |-Z1(G)||ra = cosa 2(2t)|G||La,
we can translate this result into

COROLLARY 11.1.2. There exists a set > of full po—measure such that
for all ug € X, there exists C > 0 such that the global solution of (NLS,),
given by W(s,0)uq, satisfies for all s € R

O (tlog) VBT e g 5
¥ (s, 0)uo | po+r < o # .
(7z;g%%$; pr 2,5.

For p > 5, Proposition 11.1.1 follows from (9.2.6) and the fact that the
Y€ norm controls the LPT! norm. For 1 < p < 5, the starting point is the
following observation.

LEMMA 11.1.3. Assume that 1 <p <5. Let A >0 and
Ka={ue XOR) : ||l fpsr > A}
For any 0 < |t| < §

APT1

vo(®(¢,0)71(Ky)) < Ce vt

69
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PROOF. The proof is straightforward. According to (10.1.2) with ¢ =0
and A = ®(¢,0)"1(Kx) we have

5-p
_cos(2t) 2 2 ” ||p+1 >COSO_2_(2t)

5—p
1p(A) < (l/t(/CA))COST(2t) = </IC e i Trtdpg
A

p—5 5_
_cos 2 (2t) +1 *2—1)
< (6 T A / d/Lo)COS(2t)
Ka

_AP+1 5‘5*7) _AP+1
— ¢ pil (MO(ICA))COS (2t) < e pil 7

which was the claim. O

PROOF OF PROPOSITION 11.1.1. We detail the case 1 < p < 5 (the
case p > 5 is similar). It is enough to consider the case t > 0. Let M > 0
large enough, to be fixed later, and

1
= {u € En; [|Snu| pp+1 < M logr+1 (i +j)}.
As in the proof of Lemma 11.1.3, we get

.. _MP+1
(11.1.2) vno(@n(t0) (BIAY) ) < (4 ) 7o
Then with 7 = (i + j)™7 as in (9.1.3), define
[(F—7%)/7]
AP =en(hr0)7 AR, sy = () AR
k=—[(F—5%)/7]
and from (11.1.2), we get
ik A{P+1
vo N (EN\AR™) < (i 45)" 77
therefore
.. C _ apt+1 _ apt+1
V()7N(EN\S§\}]) < ?(Z +]) ptl < C(Z-l-j)’y pHl |
Now let

“+00
i i,
Sy =[SV,
Jj=1

and choose M > 0 large enough such that if v — LA —1, so that

p+1
+oo
~. ampt1 ampt+1
vo,N(En\Sy) < CZ(z )T e < O e
=0

Then from (9.1.8) we deduce

4P+

vo.n (Ex\(Sk NEly)) < Ci' 75 4 G,
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We now claim that for any u € iﬁv N 5}\,, we have
(11.1.3) 1@ (¢, 0)ul| s < Mlogret (i +1+ (% )7 41
Indeed, for 0 <t < 7, let j > 2 be such that

te[f-20-D7"7 -2,

which implies j < 1+ (7 — t)~Y7. With 7 = ¢(i + §)~7, we can find an

integer |k| < [(§ — %)/7’], and 71 € [0, 7] so that t = k7 + 7p and thus since

from the definition of S}VJ we have
1B (o, 0l o < Mlogni (i + j) < MlogT (i + 1+ (g — )7,

As a consequence (11.1.3) follows from (8.0.6) in Proposition 8.0.1.
For integers ¢ > ig and N > 1, we now define the cylindrical sets

Sy = {ue X°(R) : Tn(u) € Si}.
Next, for i > ig, we set
St = {ue X%R) : 3Ny, lim Ny = +o0,
k—+o0
Jun, € E?\/’k N Sﬁvk’kg—ni-loo |Sn un, — ullyee = 0},

so that, as in (9.2.5),

p+1

vo(XO(R)\(S N D7) < Cit 7o 4 Cemei,

Therefore, combining the a priori bound (11.1.3) with (9.2.8) we get for all
ue S'Ny

1 . I T —1/’Y
|®(t,0)ul| pp+1 < Mlogr+i(i+ j) < Mlogw+t (i+ 1+ (Z — 1)),

Finally, define

= (Ens,
i=1
which is a set of full yp—measure (since vy and o have the same 0 measure
sets), and this concludes the proof of Proposition 11.1.1. O

11.2. Almost sure scattering

We are now able to prove the following result which will imply Theo-
rem 1.3.1.

THEOREM 11.2.1. Assume that p > 3. Then the solutions to (NLS))
constructed above scatter almost surely when s — +oo. More precisely,

there exist €, €1,m0,m1 > 0 and for pg—almost every initial data Uy, there
exist Wi € H(R) such that

(11.2.1) |0 (s,0)Up — €% (Up + W) |lpeomy < Cls)™™, s — Fo0,
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and

(11.2.2) ||€_isa§\1f(8,0)U0 — (U + W:I:)H?—Lﬁ(R <C(s)™™, s — +o0.

)
When p > 5, we can precise the result: for all § < %,
(11.2.3)  ||¥(s,0)Uy — eisag(Uo + Wi)lgsm) < C(s)™™, s —> Foo.

p+1
For all (5 < m,

(11.2.4) [ U(s,0)Up — €% Uy + W) |lgsm) < Cls) ™™, s — £cc.

REMARK 11.2.2. Since €% does not act on He, (11.2.1) and (11.2.2)
are different.

REMARK 11.2.3. Recall that Up is essentially L? (actually B9 see

2,007

Section A.2.2). Theorem 11.2.1 shows that the scattering operators,
6iZU0I—>U0+W:|:,

which associate to the initial data Uy the asymptotic profiles, are the sum
of the identity and smoothing operators, almost surely defined from Bg,oo to
Heo.

In the following we shall give the argument in the particular case qq =
(0,1,1,0), and thus g, = pr0. We refer to Section A.2.4 where we explain
how to treat the case of a general Gaussian measure fi4, as it is stated in
Theorem 11.2.1. We only treat the case s — 400 (the case s — —o0 is
similar). The first step is

LEMMA 11.2.4. Let 3 < p < 5. There exist 9,7 > 0 such that for
wo—almost every initial data ug, there exists an asymptotic state vy € HDO
such that the solution to (NLSH)) satisfies

u=®(t,0)ug = e Huy+ v,

where for all 0 <t < 7

(11.2.5) o(£) = v [l3g00 (r) < C(% — )0t
PrROOF. In the sequel, we use the notation u(]; = e~ "Hy,. The function v
satisfies
v(t) = —i /Ot cosprs(2s)e_i(t_s)HF(u£(s) + v(s))ds.
Let 0 = % — 1% < % Let us show that there exists § > 0 such that
(11.2.6) /t4 cos”%s(zs)HF(ug(s) +0(s))][ ;-0 ds < C(% — ),

this will imply that there exists v;. € H™7(R) such that v — vy in H77(R)
when ¢t — 7, with the rate

m
lo(t) = vill,, -y < o) = villa=r < C(5 = 1)
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By Sobolev, H?(R) C LPL(R) and therefore by duality L (R) c H?(R).
Thanks to Proposition 11.1.1, we compute for 0 <t < %

/tZ cosprs(2s)HF(ug(s) + v(s)) HH,Uds <
<C/ cos"T (2s) Huo )+ (s HLP+1
< C/ COS¥(28)| logril (% —s5)|ds

t

uy
4

<C t (E—s)p%s“og(z—s”ds

<o(C -7 log (§ 1)

where we used that p > 3. As a consequence we get (11.2.6). Let us prove
that for all k > 0, there exists ¢ > 0 such that

™ —K
(11.2.7) o) [lyertr < C(— —t) "
By Sobolev, for § = p + m -3 > 0 if we choose p sufficiently close to 2,
we get, using (9.2.7),
™ _
(11.2.8) [o(®)lwsssr < Cllo@®line < C(7 ~1) K

The estimate (11.2.7) then follows from an interpolation between (11.2.8)
and Proposition 11.1.1.
Now let € > 0 to be fixed later, and compute

dis/ |[H v (s)[? :23m/i83vH€v
R
— 2cos’T 23Jm/ (s) +v(s )) 27

=2cos’? 2st/HE/2 F(u ()—l—v( )))ﬂ

< CCOST 25 HF(uO s)+ (s )HWEv(PJrl)/PHUHW@P‘H'

From Proposition 5.2.1, we get that for any 1 < ¢1,¢q2 < +o0 such that
/g1 +1/g2 =1/q,

H|u|p_1uHW6q < CHuHL(p 1)y Hu||W€’q27

hence, with the choices ¢ = £+1, g =p+1,and ¢ = p+1 we get

d
% [P <

7T
< (G =5)T (eIt + 10272 ) (N lhwerss + 0lhwesss ) olhyerss.
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By time integration, for 0 < t < 7/4, thanks to (11.2.7), we get

Lo p5 g,
(11.2.9) ”mmggwm@a4h/(1_@z s < O,
0

provided x > 0 (and hence € > 0) is small enough (depending only on p > 3).
The estimate (11.2.9) shows indeed that vy € H(R). Now, let 0 < 6 <
1, and set o(0) = —60/3 + (1 — )¢, then by interpolation

—0 0 ™ 06
lo(®) = v llpgeer < o) = vellz Ilo®) = v4llgmrn < C(7 = 1)

Next, choosing 0 = 6y — 61, with 6y = % and 07 < 6. Then we set
€0 :=0(0) = (3 + €)1 >0and n:= 05— ¢ > 0 for 6, > 0 small enough,
which implies (11.2.5). O

PrOOF OF THEOREM 11.2.1. Now we need to come back to the NLS
side. Denote by U(s,y) the solution to (NLS,), and by u = Z(U) the
solution to (NLSHp). By Lemma 11.2.4, there exists vy € H® such that
v(t) = u(t) — e M yy — vy in H when t — 7/4, with the rate (11.2.5).
Observe that from (2.3.3)

(11.2.10) Z(s)(eisaﬁvo) = oM H

Denote by Wy := e/iv, € H and let 0 < ¢ < ¢g. By Lemma A.1.1,
(11.2.10) and (2.3.4) we have, with #(s) = 2ctan(s)

2
|U(s) — eis9y (uo + W+) e <
T —€ s
< O(5 1) Lo U(s) = Z(% (w0 + W) e,
™ —€ —i(t(s)—m
< C(7 = 49) " lv(t(s) — e T flpyer.
Then by (11.2.5)

(11.2.11)
(% —t(s)) " Mv(t(s)) — vgllpa < C(% —t(s))™ ~ (s)7™, 5 — 400.

Using the equation we have

(11.2.12) H (1 — e—i(t(S)—ﬂ/4)H)v+‘

He
T
el < (Z

I .
= " )at(e_l(t_ﬂ/4)HU+)dt| — t(5)) [[v4]l3ger+2

while on the other hand,
H(l o e—i(ﬂ/4—t(s))H

Juy| wer < 2 flogllpe

By interpolation this implies, choosing ¢; < %

(11.2.13) [|(1 — "=/ DYy |

HeEl S

T €0—€1 ™ €1+
SO(7 =) 7 losllao < C(7 = 1) ol
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for some 12 > 0. Putting the estimates (11.2.11) and (11.2.13) together with
(11.2.11), we deduce that

U (s) — % Uy + Wy )|l < Cls)™™, s = +o0,

which is (11.2.1).
It remains to prove (11.2.2). According to Lemma A.1.1 and (11.2.10),
we have

le™ vy [gen <
C/(8)|- L1y (e~ *Bv0)|n = Cs) || vg l30n = C(s)|[vo 30

Applying this estimate to vg = U(s) — eis%; v(ug+ Wy) gives (using (11.2.1)),
with n = %min(eo, M),

le%U (5) — (uo + Wi )|lgn < C(s)M|U(5) — €% (ug + W) [l3en
C(s)"U(s) — €% (ug + Wy |0
< C(s)(s)™™ < C(s)"™/2,

which proves Theorem 1.3.1 when 3 < p < 5. Let us now revisit the proof
above when p > 5. From Proposition 9.2.1, (9.2.7), with vy = v(%),

o T
Vo< g0 i () — e g — oy, = lim [o0) o)l =0

which proves (11.2.3). On the other hand, as in (11.2.7), and using Propo-
sition 11.1.1, we get

[v— vl
™
1 p=3

1 -5 T
< /t cospT(2s)H|ug(s) +o(s)[P7H (uf (s) + v(s)) ;-0 ds < C’(Z —t) 2.
Interpolating between these two estimates gives

(p—3)6

|u(t) — e ™ ug — vy ||lys < C(% —t) * , d=—00+(1-0)p,

Taking p arbitrarily close to % and using o = % — zﬁ gives

' pELl_
Hu(t) — e_ZtHuO _ 1)_,_”7_[5 < C(_ _ t) 7 (2 d)+e

where € > 0 can be taken arbitrarily small. We deduce that for any § <

72(§;i1)7 there exist 7 > 0 and C' > 0 such that

i 5
[u(t) — e ug — vy |l < C(— —1)".

Now, applying the inverse of the lens transform and using Lemma A.1.1
gives (11.2.4). O
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11.3. Nonlinear evolution of measures

In this section we shall prove Theorem 2.2.4. We first consider the partic-
ular case qo = (0,1,1,0). Estimates (2.2.2) and (2.2.3) are just consequences
of (10.1.1) and (10.1.2), and Lemma A.1.1. Let us prove for instance (2.2.3)
in the case 1 < p < 5. The bound (10.1.2) gives

5—

( cos(2t(s)) ) Tﬂ

(11.3.1) Vi) (®(t(s"),0)A) < [Vt(s) (‘I’(t(s),o)A)} s
Then, since t(s) = %11(25)7 we have
(11.3.2) cos(2t(s)) = cos(arctan(2s)) = !

V1+4s?

Next, by (2.3.4), we have .Zj(5) o ¥(s,0) = ®(t(s),0), therefore if we denote
by ps = .i”t(_sl)#ut(s), from (11.3.1) we obtain .
(22
ps (P(s',0)A) < [,{)S(\I’(S,O)A)} s

It remains to compute the measure ps = .,iﬂt(_sl)#yt(s). Let FF: H¢(R) — R

be a measurable function. We compute

| P -
He(R)
p—>5
_M”éﬁt(s)v”lﬁ

1
N / Fv)e  »* L E d (1o (L) v))
H(R)

P54, _ptl
_cos 2 2 (Zt(s))”v”p+1
1

Foe 7 (L #i0(0)

Fe 7 Mirtimau, (o),

J,
/ - gz
H

where we used (11.1.1), (11.3.2), and (2.3.5). Therefore

p+1
+1
LP :uqsv

(14452

ps = %(_Sl)#vt(s) =e »l

[l

hence the result.

The bound (2.2.4) is the result of Corollary 11.1.2, and the scattering re-
sults follow from Theorem 11.2.1. In order to treat the general case qg € Q,
we refer to Section A.2.4. The first part of Corollary 2.2.5 follows directly
from Theorem 2.2.4, while the second part is an application of Proposi-
tion 3.3.1.



APPENDIX A

Some technical results

A.1. Action of the lens transform on Sobolev spaces

The next result shows that the mapping .2, ! (defined in (2.3.2)) is not
continuous in H? spaces.

LEMMA A.1.1. Let 0 < |t| < 7/4 and let w and U be related by

B 2 — 1 x e_ixzta;l(Zt)
ue) = AU)@) cos%(2t)U(COS(2t)) '

(1) There exists C > 0 such that for any 0 <o <1 and 0 < |t| < 7/4,
1U o my < Cllullye w), (@) ull 2@y < CIU |lge w)-
(i7) There exists C > 0 such that for any 0 <o <1 and 0 < |t| < /4,

o T —0
W) Ullzemy < C(7 = D77 Mlullae g,
(A.1.1) T
[ull oo ) < C( = [ED) ™Il (-
The dependence in t of the constant in (A.1.1) is optimal, hence when

o > 0 the term ||lulyo @) does not control [|Ul[yeo ), uniformly in ¢ €
[—7/4,m/4].
This lemma is a corrected version of [12, Lemma 10.2].

PRrooF. Firstly, we write

iy2 cos(2t) sin(2t)
2

Uy) = cos? (2t)u(y cos(2t))e
(1) We compute

iy2 cos(2t) sin(2t)
2

o,U(y) = cos? (2t) (&cu(y cos(2t)) + iy sin(2t)u(y cos(2t))) e

with a change of variables, we get

/R 10,U(y)|2dy <

)

< Ccos?’(Qt)(/R\8xu(ycos(2t))\2dy+sin2(2t)/Ry2]u(ycos(2t))\2dy)

— Ceos?(21) / 10pu(x) 2de + C sin?(2t) / 22|u(z)2dz
R R
< CllulEp

7
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which together with the relation ||U||;2 = ||u||z2 yields the result for o = 1.
The general result follows by interpolation.
(74) A direct computation gives for t — /4

(A12) / 21U (y) 2dy

= cos” “7(2t) / 2] |u(x)|*da ~ t— - / || |u(z)|?de,
and the estimate for U follows (including the optlmahty The proof of the
estimates for u is similar. (]

A.2. Some properties of the Gaussian measures /i

A.2.1. A more precise description of the measures . In this
Section, we prove a result which characterizes the pq as image measures by
an explicit map.

LEMMA A.2.1. For q= (s,«,3,0) € Q, we define
eg = (Yiin(s,0) o My 0 Agop)ey,.

Then the family (e5,)n>0 is the L*>—eigenbasis of a twisted harmonic oscilla-
tor
Hy:= (Wn(s,0) o My o Ag o 7g)H(Wyn(s,0) o My o Ago 7'9)_1
_1+4p%s? : .
— Bf 0% + 4iBs(Bx — 0)0, + (Bx — 0)% + 2iB%s
associated to the eigenvalues 2n + 1 (we have |le}||r2 = |a|).
PROOF. First we have 7gH7_g = —02 + (x — 0)?, then

1

(A.2.1) AgTeHT—eA% = 3 07 + (Bx — 0)*.
Next, in order to show that
(A.2.2)
. : CL44pts?
1592 (ABTQHT_QA%)E_”@% +5§ 0% + 4i*sx0, + ° (m2 + 2’i8)7

we use the Fourier transform. Define Ff(¢) = [, e ¢ f(z)dz. Then for
fe 7 R),

. . . 2 . ~
Fles (namotr-any )% 1] €) = 5 (5 - (180 — 0)) € (¢
14 4p4s2 . ) ) .

_ [Tg — 2% — 4iB25€D; — B20F — 2iBOO; + 4805 + 92} 7(6)

B 14 45452

-r|(- e |
which implies (A.2.2), since the conjugaison by M, is trivial. O

02 + 4iB%s20, + (B — 0)* — 4iB0s0, + 21'528)1’
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PROPOSITION A.2.2. For q = (s,,[3,0) € Q, the measure pq defined in
(2.2.1) is the image of the probability measure p on Q by the map

Q0 — H(R)
+o0 1

w o =) g wel
n=0""

PROOF. Let q = (s,a,,0) € Q,and F : H™(R) — R be a measurable
function. We compute

/ F(U)dlu(s,a,ﬁ,@) (U) =
H(R)
= / F(v)d(po © (Prin(s,0) 0 My 0 Ago 7'9)_1) (v)
H—<(R)
= / F((\I/lln(s, O) o Ma o AB o TG)(U))d/’LO(U)
H—<(R)

= [ P((unls.0) 0 Ma 0 Ay 070) (1) dpte).
then using

(Wiin(s,0) © Mo © Mg 0 79) (1) = V(5 0,8.0) = Vo
we get the result. 0
REMARK A.2.3. Denote by @y, (¢, t') = e~ it=t")VH the linear flow of the

harmonic oscillator. Then using that for all 7 € R, the r.v. e~ g, and g,
have the same Gaussian distribution N¢(0,1)

(A23) (I)lin(tv t/)#ﬂo = Ho-
See also Section 3.1.

A.2.2. The measures y, are supported on BS’OO. Recall that H,
is the twisted harmonic defined in (A.2.1). According to Lemma A.2.1, we
have quﬂl = )\%e% with A\, = v2n + 1.

For 57 > 0 denote by

1(j) = {n e N,27 <\, <2/F1}.

We have #1(j) ~ ¢2% when j — +oc. Since the family (ej,),>o forms a
Hilbert basis of L2(R) (but with |e}||z2 = |a|), for o € R, any v € H°(R)
can be decomposed

+oo

(A.2.4) u:Zuj, with u; = Z cney.

Jj=0 nel(j)



80 A. SOME TECHNICAL RESULTS

Then, following (3.2.7), we can define the Besov space BS’OO(R), using
the dyadic decomposition (A.2.4), by the norm

llullgy _®y = sup [lujll 2wy < +oc.
' =0

Observe that for every o € R, the norm ||u||y0 (g) is equivalent to the norm

+oo

(37 2% g 22 e)) >

j=0
Therefore, for € > 0, we have the embeddings
L*(R) C B3 (R) € X°(R) C H™“(R).

PROPOSITION A.2.4. For any q € Q. The measure fiq is supported
on BY . (R), namely

Hq (ngo(R)) =1
Moreover, there exist ¢, Ky > 0 such that for all K > Ky,

po(u € XOR) : flullg > K) < e,
PROOF. For j > 0, we set & = span{ey,n € I(j)}. We define the
probability measure v; on &; via the map
Q — Ej

1
w o = Y (el
nel(j)

Let K > 0 and denote by
B ={u; € & : lujllr2w) < K},

and
BY = {ue X"R): [lullzy <K}
Then BYX = ;;08 BJK, so that
“+oo
(A2.5) pa(B) = T[ v (B,
§=0

We now show that there exists ¢y > 0 such that
(A.2.6) vi(BE) > 1 — gm0 K2,
By definition
vi(uj € &+ |lujll2m > K) =p(w e Qs yllem > K)-

We have
2 ]gnlz 1 2
illZem = D 2 S 55 > gl
nel(j) " nel(j)
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then by the Markov inequality (recall that the law of a complex normalised

Gaussian r.v. is - —l=l* dx, where dx is the 2—dimensional Lebesgue measure
on C), for all ¢ N 0

P(we Q:lyllee > K) <

<plwe: Z lgn|? > 22jK2)
nel(j)
< o 12YK? H E[e!lon’) = =2 K2 (1 — )=#10)
nel(j)
< o= 2% (tK?+clog (1)) < e—co22jK2’

with the choice ¢t = 1/2 and K > 0 large enough. This implies (A.2.6).
Finally, from (A.2.5) we get

+00 _
,uq(u € XO(R) . HUHBS > K) <1-— H (1 _ 6—002231(2) < 6_61K27
, o
which was the claim. 0

A.2.3. Singular measures. In this section, we shall prove Proposi-
tion 2.2.1. Let qo,q1 € Q. In the sequel, for simplicity we shall assume that
qgo = (0,1,1,0) in such a way that Hqy = H (the general case is similar).
Let q1 = (s,,,0). Consider two sequences (gn)n>0 and (¢y,),>0 of inde-
pendent standard complex Gaussian random variables N¢(0,1) and define
the random variables

Voo (W, ) = Zgn en(z), g (w Z )\ el

Since (en)n>0 and (e}! /a),>0 are Hilbert bases of L2( ), the random series

“+oo
Z gn(w)en(x), — Z lp(w)eM (z
n=0

both define the same measure called the whlte noise measure. Recall the
definition (A.2.1) of Hy, then by application of qu_ll/ ? we deduce that

—1
Xq1 w, x _azgn / N(x) and ’YCI1 w, .’L’ Z )\ n 7

both define the same measure, which we denote by s, . Deﬁne
Lo 12172
T=-H PHE

Then we have T'xq, = 74y, Which in turn implies T g, = pq,. Actually, for
all measurable set A,

Ty piqy (A) = pg, (T7H(A) = p(xg, 0 T7H(A)) = p((Txay) ™ (A)) = 11g0(A)-
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By [6, Theorem 6.3.2] the measures 1, and jig, are equivalent if and only
if the map

K=TT"—1:H'R) = H'(R)
is Hilbert-Schmidt (here the adjoint is taken with respect to the H! scalar
1
product). We compute Hj, = H™'Hy H, thus T* = :H_ch}l/zHl/2 S0
a
that

1
K=TT"—1= |a|2H—1/2H;{2H—1H;{2H1/2 ~ I

The operator K : HY(R) — H!(R) is Hilbert-Schmidt if and only if
|K||rs < +oo where

“+oo
K s = D [ HY2EH ey |7,
n=0

(recall that this norm does not depend on the ch01ce of the Hilbert basis
(en)ns0 in L2(R)). We observe that H/2KH /2 = o Pqu{?H YHI? -,
then

1K = ||4ZH (Hal?H H[* = [o)en| 72 g

1/2 1/2
‘04’42 qu/ H™ 1H/ ‘a’2)2enaen>7

using that the operator Hq/ *H- 'H, 1/ is self-adjoint on L?(R). We now
claim that

1/2 1/2
(A27)  ((HPH ™ Hyl? = |a]en, €n) paggy w2y —nstoo Clar),

with C(q1) > 0 for (|a|,s,8) # (1,0,1). This will imply in this case that
| K|| s = +00, and the measures piq, and jiq, are mutually singular, reducing
the study to qo = (0,1,1,0) and q; = (0,1,1,6).

We set h, = (2n + 1)7}, 2z = av/h, and fin(2) = hn /e w2/ hy).
Then by Lemma A.2.1

4 .2
(A28) f'n(2) = | = 2 h20?
+ 4iB5(Bz — \/Tn®)hnds + (B2 — \/Tn)? + 2i523hn] £ ().

Similarly, we define €,(z) = hy, 1 4en(z/ Vhy), which is an L?—normalised
solution of

(A.2.9) (=h20% 4 2% —1)g, = 0.

Let us now recall a little of semi-classical symbolic calculus adapted to the
harmonic oscillator (we refer to [39, 27] or to [36, Chapter 3| for a review
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of this theory). For k € R we define the symbol class
(A.2.10) T* = {a € C=(R%C);
Vj,0 € N;3C > 0; |8£8§a(:17,£)| <C(1+ |z + |£|)k—j—f}_

For a symbol a € T'* and 0 < h < 1, we consider the semi-classical quantifi-
cation

1
- 2mh R2
which, for any ¢ € R, defines a family of uniformly bounded operators in
L(HFFo: 1),

Va € T%,3C > 0;Yh >0, || Opp(a)| iprtoney < C.

Alu(z) = Opy(a)u(z) : GV (z, €)uly)dyde,

For a € T'*, b € T*2, we have the symbolic calculus
Opn(a)Opp(b) = Opy(ad) + hOpy(c) + R,
3C > 0;Yh > 0, || R|| g (3gr+o pgor2y) < Ch®

with ¢ € TF1+*2=1 given by
c(z,8) = —i0ca(z,£)0.b(2,€).
As a consequence we get
[Opn(a), Opn(b)] = Opn(a)Opa(b) — Opn(b)Opa(a)
= Opp(9¢a(z,€)0:0(2,€) — eb(2,£)dza(2,£))
= Opn({a,0}),

i

h

where
{a,b}(2,€) = dealz,€)8.b(2,€) — Beb(z,€)Da(z, €) € Trithe—l

is the Poisson bracket of a and b. Coming back to (A.2.8) we have M (ﬁ”hn =
Ophn (mql 7hn) and

Opn,, (mqhhn)fh” = i,
with

4.2
mq17h(z7£) = %17258)52 - 453(ﬁz - \/59)5 + (52 - \/E9)2 + 2ish.

Similarly, we define m(z,&) := €2 + 22 and M" := Opy,, (m) = —h?0? + 22.
By a change of variables we have
1/2 pp—1 771/2
(A.2.11) ((qu/ H lqu/ — |a|2)2e”’en)L2(R)xL2(R) -
_ 2 -
= (V2 )7 (A, V2~ o) 20)

2~ ~
- (Oph((mql,hn/m - ’Qﬁ‘2)) €n, en)LZ(R)XLZ(R) + O(hn)n—H-oo

L2(R)x L2(R)
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where we used the symbolic calculus. To understand the limit when n —
+0o0 of

2.~
(Opn((mgy . /m — |0d?))"En, En) 2y w20
let us recall (see e.g. [11])
LEMMA A.2.5 (Semi-classical measures). For any bounded sequence u,, €
L*(R), and any sequence (hy) such that h, > 0 and h, — 0, there exist

subsequences (Un, ,hn,) and a Radon measure j on R? such that for any
a € T°, compactly supported in (z,€)

kEI-ir-loo (Ophn,c (a)unk ) u”k)L2([R)><L2(R) = (p,a).

Let us apply this procedure to the couples (€, hy,). Using (A.2.9) which
implies that for |z| > 1, €, is exponentially decaying and for || > 1, its
Fourier transform F(e,) is also exponentially decaying. It is easy to check
that the following properties hold true:

e The convergence actually holds for any a € T'* (dropping the com-
pact support assumption and allowing polynomial growth of a).
e The measure i has total mass 1.

We will now prove that the measure p is the Liouville measure on the circle
{(€);2* + € =1}.
We have

. ~ - 2 2 2 _ = =
0= <0Phkn (a)en,, ( hknaz +z 1)e"k)L2(R)xL2(R)

(12 92, .2 ez
N <( hi, 02 + 27 =1)Opp,,, (a)e"k’e"’“>L2(R)xL2(R)'

Then, a direct computation gives
(—hznﬁf + 22— 1)Opp,, (a) =
= Op,, ((€* + 2% = 1)a) — 2ihy, Opy,, (£0:a) — b, Opp, (07a),
and therefore by (A.2.9), we deduce that
22 92 2 ~ = 2, 2
(42,02 + 22 = 1)0pn,, (@t ) o= (o (€ 4 2 = Da).

As a consequence, the measure y is supported in the circle {(z,&); 22 +¢2 =
1}. On the other hand, by (A.2.11) and Lemma A.2.5

0 : ([(—hiﬁf + 27— 1), Ophkn (a)]gnk7g"k> =

~ hn L2(R)x L2(R)

= (Ophk ({Z2 + 527 a})gnk ) gnk>L2(R)><L2(R) + O(hk) — <1u7 {Z2 + 627 CL}>

Denoting by
Jm = 2£8Z — 2z6§
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the Hamiltonian vector field of the symbol m(z, &) = 22 4+ €2 — 1, we get

Ya €T, (Jmp,a) = (g, Jm(a)) = (u, {p, a}) =0,

which implies that the measure satisfies J,,u = 0. Summarizing, we proved

e The measure ;4 has total mass 1.
e The measure y is supported on the circle

{m(z,6) =1} = {(,€); 2> + & = 1}.
e The measure p is invariant by the flow of the vector field .J,,.

We deduce that the measure p is the (uniform) Liouville measure on the cir-
cle, which we denote by dL. Remark finally that since the limit measure pu
is unique (the Liouville measure), the extraction process in the construction
of the measure was unnecessary (if it is possible to extract converging sub-
sequences and if for all such converging subsequences the limit is the same,
then the initial sequence was already converging to the unique possible limit
measure).
From the previous considerations, we deduce

2~ ~
(A-2.12)  (Opn((mq,n,/m 1) Cn ) 12w 12wy
(1+4662452)§2 . 4ﬂzsz§ + ﬂ222
—
224€2=1 m(z,ﬁ)

Notice that C'(q1) > 0 for any (s, |a|,5) # (0,1,1), simply because we inte-
grate on (0, 27) a continuous non negative function which is not identically 0.
This proves (A.2.7).

We now study the action of the translations. We still assume that qg =
(0,1,1,0) and we set q; = (0,1,1,0). We will prove that
(A.2.13)

(((Mh" )1/2(Mh”) (Mh” )1/2 _

q1,hn q1,hn

2
—|a*| dL := C(q1) >0

2~ ~
|Oé|2) e”’e")L2(R)><L2(R) ~ 2hn927

which by (A.2.11) (recall that h, = (2n + 1)~!) will imply

92
1 py1/2
(A.2.14) ((qul/zH lqu/ - |a|2)2e”’e”)L2(R)xL2(R) ~

By the semi-classical calculus, we have

(Ml VY2 = Opy, (my, )+ O(hn) = Opp, (m'/? = \/hyfzm™12) + O(h,)
thus

(M, V2= (M, )2 =1 = =24/hn80ph, (2m ™) + O(hn),
hence

(M, V()= (Mt VY2 = 1) = 4k, 020py, (2m ™) + O(h3/?).
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As a consequence, when n — +o00

(Ml V2 (0T (M, Y2 — [al?)?E,,€,)

a1l Q1 L2(R)x L2(R)
4h 92/ ﬂ
" Jimee)=1y mA(z,€)

~ 2h,0°,

which implies (A.2.13). As a consequence, the series (A.2.7) diverges, which
implies that the measures qg and ¢; are singular.

A.2.4. From py to 4. In this section we show how Theorem 2.2.2 and
Theorem 2.2.4 for ;19 imply the same results for 4 the set of all parameters
q € Q. The proof is in two steps. First we pass from qo = (0,1,1,0) (i.e.
Hqo = Ho) to g1 = (0, 5,0). This first step is harmless as the parameter ¢
is just a translation in space, the parameter « is just an homothety, and (5
is a scaling parameter. Hence this transformation amounts just to perform
the following changes

e We change the harmonic oscillator H = —8? + 22, for another
harmonic oscillator (see (A.2.1))

1
e We change the lens transform from (2.3.1), (2.3.2) to another lens

transform
u(t,x) == L (U)(t, x).

e We change the law of our random variables (1.2.2) to
+oo 1
QBwH’Yf{zZA—ngn(w)e%, fg =P
n=0

where now (e}}),>0 is the L?—eigenbasis of eigenfunctions, with

leRllze = lal,
of our new harmonic oscillator Hy, see Lemma A.2.1.

This first step is harmless as modulo these simple changes, the proof is
the same word by word. Once this step is achieved, it remains to study

: 2
the action of the time translation ¢*°% and pass from q0 = (0,,3,6) to
q = (so,,3,0). We are going to take benefit from the time translation
invariance of (NLSy,) and use that if U solves (NLS,) with initial data

. 2 ~
distributed according to piq = e;ioayuQaﬁﬂ, then U(s,y) = U(s—sg,y) solves

. 2
also (NLS,) with data at so distributed according to pq = e:;()ayuo,aﬁ,g.
However, from Step 1, we know that for all data in Sy (which is of full
Jtqo —measure), we can solve globally (N LS),), and the set S,; = ¥(s0,0)(So)
is of full piq—measure. As a consequence, we can solve globally for all data
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at s = so in the set S;,. The estimates in Theorem 2.2.2 and Theorem 2.2.4
for sg # 0 follow from this argument and the estimates for sg = 0.

A.3. On the Liouville theorem

Let us recall that the flow of a vector field with vanishing divergence
preserves the Lebesgue measure. Though it is often presented in the partic-
ular context of time independent vector fields (mis)leading to believe that
it is only true in this context, this assumption is unnecessary and we can
allow time dependent vector fields as shown by the classical proof. See e.g.
also [5, Theorem 9.9 p. 529].

Let us denote by (¢, xg) the solution of the ODE

&= X(t,z(t)), x(0) = zp.

Let us denote by ¥(t) the map z¢ — ¢(t,z¢). It is well known that (for
small time, and we shall see for all times) this map is a C'' diffeomorphism
and that the family of differentials d¥(t) satisfies the ODE

d
Ed\ll (t)go(t,xo) = dX(t7 (‘D(t, ‘TO))d\II(t)cp(t,xo)u

and consequently using the chain trule and the fact that the differential of
the determinant at A is

B+ det(A)Tr(A™!B),

we get

% (det (¥ (1) pt,0)))

o, d
= det (AW () p(t,0) Tr(d\If(t)@(lt xo)adllf(t)@(mo)))

(A ()
= det (AW () p(g o) Tr(dV (£) (0)AX (1,0, 20))dY () (1,20 ))
= det (W (1) p(t,20) Tr(dX (2, 0(t, 20))))

= det(d\I’( ) (t,20)dIV(X )(t,go(t,xo))) =0.

Hence the Jacobian of the change of variables is constant along the integral
curves. At time ¢ = 0 the change of variable is the identity. Hence the
Jacobian is identically equal to 1.

A.4. Weighted estimates on Hermite functions

Recall that the family (ey),>0 denotes the Hermite functions. The pur-
pose of this section is to prove the following result.

PROPOSITION A.4.1. Let v < %. Then there exists C' > 0 such that for
any eigenfunction of the harmonic oscillator satisfies

_1_
(A4.1) H| |4 < Clogi(Au)An .
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In order to prove Proposition A.4.1, we first need some technical results.
Define the function E for (z,y, « ) ERXR x [0 1[ by

E(x,y,«a Za en(z
n>0
Then we have an explicit formula for FE.
LEMMA A.4.2 ([12, Lemma A.5]). For all (z,y,a) € R x R x [0, 1]
l—a(z+y)? 1+a(z—y)?
L e R v

(A4.2) E(z,y,a) = m ex

We will also need the following expansions

LEMMA A.4.3. Let 0 < e < 1/2, then we have
(1—a?) 2—Zan I with \an\ﬁC(l—i-n)_%

n>0
(=)™ =3 bua™, with [by] < C(14n)""
n>0
(1+2) = caz”, with || < C(1+n)~0+9,
n>0

PROOF OF LEMMA A.4.3. Indeed,

_1(1><3>< ><271—1)_ (2n)!
=2 "2 2 )T 9n(n)2

1 I'(n +e
anEEX(E—Fl)XX(E‘Fn—l):%(E))

()" 'T(n -
n!  I'(1—¢)

and the estimates follow from the Stirling formula. O

X(1—€)x---x(n—1—¢€) =c¢€

We are now able to prove Proposition A.4.1.

PROOF OF PROPOSITION A.4.1. Denote by

I(ay, B,7) ::/RE(m,x,a)E(m,x,B)\xf“dw

=§3MWé%m%wmm@.

n,m>0

Then using (A.4.2), we get with € = % — 27,

um@wz%uﬂﬂﬁﬂ—ﬁr%ﬁfi%%ﬁyi

with dp =71 [p e=2" [y~ dy. We deduce

(1—a?)~ %14-3: Zdaz dn, = Zapcq,

n>0 pt+qg=n
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with )
|dn| < Z apCp—p + Z apCp—p < Cn™2

1<p<3 5<p<n

which implies

/ei(:n)egn(:n)|:p|_47d:n:50 Z dybyd,.
R

p+a=n
r+q=m
Therefore,
/ @) dr =6 S dbe+d 3 d2b, < Clog(n)nt,
R ptq=n prq=n
0<p<3 5<p<n
which (recall that A2 = (2n + 1)) is Proposition A.4.1. O

A.5. Proof of the embedding B, C B,
Recall the definitions of Section 3.2. In this section we prove

LEMMA A.5.1. Then for any 1 < p,q < 400, and any p > 0,

0 P
By, C Bpy

with continuous injection.
PRrROOF. Recall that the Fourier multiplier D, is defined by the formula

F(Dgu)(§) = [€1F (u)(E),
for f € /'(R). Let x; € C§°(R) be as in (3.2.3) and set A; = x(277/D,)
and Ay, = x(27%VH). We write

+00 _
Ajf = AjALS.

k=0
In this sum, we distinguish two contributions from {k < j — 3} and {k >
j — 2} respectively. To study the first contribution, let us just recall that
for any x € C§°(R), the operator x(hvH) is an h—pseudo-differential op-
erator with symbol in T (recall the notations of Section A.2.3), and its
(formal) symbol a is supported in {(z,£); /22 + &% € supp x}. As a con-
sequence, if y € C’go(%,Z), then x(277D,)x(27*VH) is, for k < j — 3, a
pseudo-differential operator with vanishing (formal) symbol, hence gaining
any number of derivatives and any power of |z|. We deduce

VN > 0,3C > 0;Vj,Vk < j — 3, Hx(z—ij)X(r’f\/ﬁ)Hﬁ(U,) < 27N,
As a consequence,

j—3

1> 25AkF ] o = En2 NIl
k=0
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To study the contribution of the second term, we just use that x(277D,) is
bounded on LP with uniform bound with respect to j, and
(A5.1) 127°85 > Agullpe <C > 27 DR 2R A | .

k>j—2 k>j—2
According to Schur lemma, the convolution by 2@1@_2 is bounded on ¢!,
and /°°, and hence by interpolation on ¢9. This implies

127085 37 Agullze ]| < CllI2%Ax] o]
. J
k>j—2
which together with (A.5.1) enables to complete the proof. O

9
Zk



(1]
(2]
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