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ALMOST SURE SCATTERING FOR THE ONE DIMENSIONAL NONLINEAR
SCHRODINGER EQUATION

NICOLAS BURQ AND LAURENT THOMANN

ABSTRACT. We consider the one-dimensional nonlinear Schrédinger equation with a nonlinearity of degree
p > 1. We exhibit measures on the space of initial data for which we describe the non trivial evolution by
the linear Schrodinger flow and we show that their nonlinear evolution is absolutely continuous with respect
to this linear evolution. We deduce from this precise description the global well-posedness of the equation for
p > 1 and scattering for p > 3. To the best of our knowledge, it is the first occurence where the description of
quasi-invariant measures allows to get quantitative asymptotics (here scattering properties) for the nonlinear
evolution.
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1. INTRODUCTION AND RESULTS

1.1. General introduction. Let p > 1. In this paper we study long time dynamics for the one-dimensional
nonlinear Schrodinger equation

0,U + 02U = |UIP~U, (s,y) € R x R,
(NLS,) {1 y U| (s,9) X

U ’8:8(): U07

where Uy is a random initial condition, with low Sobolev regularity. The distribution of Uy will be given
by a Gaussian measure and we will study its evolution under the nonlinear flow of , denoted by
U(s, sp), and compare it with the evolution under the linear flow Wy;,(s, sg) = ei(s—50)0y

When working on compact manifolds M instead of R, there exists natural Gaussian measures u supported
in some Sobolev spaces H? (M) which are invariant by the flow X, (s) of the linear equation (Wiener
measures, see Section Bl for more details). At some particular scales of regularity these measures can be
suitably modified (Gibbs measures) to ensure that they are invariant by the nonlinear flow [§], or only quasi-
invariant (renormalized energies) [34, 25], 26, 24]. In our context, and more generally on R%, the situation is
different, since dispersion prohibits the existence of measures invariant by the flow of the linear or nonlinear
Schrodinger equation (see Proposition B Proposition and Proposition [B.3]). The purpose of the present
work is twofold. First we define mesures on the space of initial data for which we can describe precisely the
non trivial evolution by the linear flow (notice that even this first step is non trivial). Second, we prove
that the nonlinear evolution of these measures is absolutely continuous with respect to their (explicit) linear
evolutions (we actually prove a precised quantitative version of the absolute continuity, characterizing the
integrability of the Radon-Nikodym derivative, see Theorem [2.4]), and finally we get benefit from this precise
description to prove almost sure scattering of our solutions of @) for p > 3. Let us emphasize that these
precise quantitative estimates for the quasi-invariance are the key point to the proof of almost sure scattering.
We refer to Section 2 for complete statements. To the best of our knowledge, the results in the present article
are the first ones giving insight, in a non compact setting on the time evolution of the statistical distribution
of solutions of a nonlinear PDE (see also Ammari-Nier [Il 2 3] in a completely different context). They
also are the first ones providing scattering for NLS for large initial data without assuming decay at infinity:
our solutions are essentially in L? : they actually miss the L? space by a logarithmic divergence both in
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space and in frequency, namely they are in the Besov space BS,OO(R) built on the harmonic oscillator (see
Appendix [B:2). Finally, to the best of our knowledge, our results are the first ones using the existence
and description of invariant or quasi-invariant measures to describe the large time behaviour of solutions to
PDE’s going beyond the globalisation argument from Bourgain [7, [8] and the elementary Poincaré recurence
theorem.

1.2. Measures with non trivial linear evolution. We shall define families of measures supported es-
sentially on L?(R) (modulo a logarithmic divergence, see Appendix [B.2) for which one can get a good
description of the (non trivial) linear evolution, and prove that the nonlinear evolution of the measure is
indeed quasi-invariant with respect to this linear evolution.

We denote by

H=-0%+2%,
the harmonic oscillator in one space dimension, and by (e,),>0 the Hermite functions its L?-normalised

eigenfunctions, He, = A\2e,, = (2n + 1)e,,. Recall that the family (e, ),>o forms a Hilbert basis of L?(R).
For o > 0, denote by

(1.1) HO(R) = {u € LA (R) : (1 - A)’?u e LAR), |z|7u € L*(R)},

and for o > 0, H~7(R) is its dual space. We shall denote by X°(R) = (.., H “(R). Notice that L*(R) C
XO(R).

We start with a typical Gaussian measure. Consider a probability space (€2, F,p) and let (g5 )n>0 be a
sequence of independent complex standard Gaussian variables. Let € > 0, we define the probability Gaussian
measure g on H~¢(R) as the law of the random variable

QO — HE(R)

1

(1.2) fo=poy .

+00 1
w wwzzA—ngnw)en,
n=0
The measure pq satisfies o(L*(R)) = 0 and o (X O(R)) = 1. The following theorem gives a flavour of
our results in this paper.

Theorem 1.1. Let p > 1 and assume that so = 0 in (NLS)). For py—almost every initial data Uy € XO(R),
there exists a unique, global in time, solution U = W(s,0)Uy to (NLS,).

Furthermore, the evolution of the measure 1o by this nonlinear flow, V(s,0)upuo is absolutely continuous
with respect to the evolution by the linear flow, Wiy (s,0)xpo.

Finally, the solution takes the form

U(s,0)Up = €% Uy +V,
where V' satisfies for some C, K >0 and all s € R
IV ($)lle ) < Cs) ™,
bl ifl<p<2

and where o < g can be chosen arbitrarily close to oy =
ifp>2.

N[ —

In the sequel, we will see that for all s € R, W, (s,0) 40 is given by an explicit time-dependent Gaussian
measure. Moreover, we will see that these measures are supported in the Besov space BS’OO (R) based on the
harmonic oscillator. We refer to Section and Appendix [Bl for more details.

The values of oy in Theorem [[LT] will play a key role in the proof of the scattering result (Theorem [L2])
for which we need the embedding H° C LP*! to control the nonlinearity. Let us however mention that the
value of oy obtained in Theorem [[T] in the case 1 < p < 2 is not optimal, and a slight modification in the
proof may improve it.
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1.3. Scattering results. Using a quantified version of the absolute continuity, we are able to go beyond
the usual easy consequences (global existence, Poincaré recurrence theorem, logarithmic bounds on the time
evolution of the complezity of solutions...). Namely, we shall use the precise knowledge of the nonlinear
evolution of our measures to prove almost sure scattering properties of solutions of (]NE;_D for p > 3 (notice
that quasi-invariance without estimates does not even imply Poincaré recurrence).

Theorem 1.2. Assume that p > 1. Then the solutions to (NLS) we have constructed in Theorem [L1]
disperse: for jig—almost every initial data Uy € X°(R), there exists a constant C > 0 such that for all s € R

C(1+logész)1_i(rp+1) ifl<p<5
H‘IJ(S,O)UOHLPH(R) < C<s> T |
e e if p>5.
Assume now that p > 3. Then there exist o,C,n >0 and Wy € H(R) such that for all s € R
(1.3) (s, 0)Uy — €% (U + W)l sy < Cs) ™",
and
(1.4) le="*%0 % (5,0)Ug — (Up + W)llpe () < Cls) 7.

In the case p > 5, we can precise the result: for all o < % there exist C,n > 0 such that for all s € R
(1.5) 19 (s,0)Up — €% (Up + W) | oy < C{s) 7",

Notice that since % does not act on H7(R), the properties (L3]) and (L4) are different. Actually we
prove a more general result. We construct a four-parameter family (uq) of Gaussian measures on X°(R),
for which the previous statement holds true (see Theorem 2.4] and Theorem [IT.4]).

In our previous work [10] we performed part of the program above, namely we proved the scattering result
in the particular case p > 5. In this case monotonicity properties allow to greatly simplify the proof and
a fine description of the nonlinear evolution of the measures was unnecessary to get scattering properties.
We emphasize that the convergence in (LE) holds in the usual Sobolev space H? but not in the weighted
space H? (the statement (L3]) is a corrected version of [I0, Theorem 1.2]). This is due to a lack of continuity
of the lens transform in the H? spaces (see Lemma [AT]).

In the case p < 3, Barab [4] showed that a non trivial solution to (NLS,) never scatters, thus even
with a stochastic approach one can not hope for scattering in this case. Therefore the condition p > 3 in
Theorem is optimal. In [35], Tsutsumi and Yajima proved a scattering result in L?(R%), d > 2 but
assuming additional ! —regularity on the initial conditions.

We refer to [29] Theorem 1.4] for an almost sure scattering result for the two-dimensional NLS. In this
latter case, one could use a probabilistic smoothing property on the Hermite functions which only holds in
dimension d > 2. For other almost sure scattering results for NLS, we refer to [I8] 2I]. In particular, the
results in this paper were recently generalised by Latocca [23] in the multi-dimensional case, in the radial
setting. See also Nakanishi [22] for deterministic scattering results for (]NE;_[) in Sobolev spaces H? for
o> 1.

1.4. Plan of the paper. The plan of the paper is the following. In Section 2l we define the measures, state
our main results precisely and prove some properties about the measures (description of the linear evolution,
absolute continuity. .. ). In Section [3] we prove elementary results on the non existence of invariant measures
for the Schrodinger equation on R, recall some tools of functional analysis and give a characterization of
weak LP regularity of Radon-Nikodym derivatives. Section s devoted to the estimate of the time evolution
of the measures under the Galerkin approximations of the nonlinear flow. In Section Bl we prove the main
nonlinear estimates that we need in the sequel. There, a difficulty is induced by the low regularity of our
nonlinearity F(u) = |u[P~!u which is not C? for p < 2. In Section [f] we introduce the spaces in which we
are able to prove the local (and later global) well-posedness. Here, another difficulty is that due to a lack of
smoothness of our initial data, the spaces for the initial data (Y*¢), and the solutions (X*) are different. For
the initial data, we exploit some probabilistic smoothness while for the solution we gain some deterministic
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smoothness. In Section [[] we show that almost surely our initial data are indeed in the spaces Y€ and
we prove large deviation estimates. In Section [ we develop a suitable Cauchy theory for the nonlinear
problem. In Section [l we prove the almost sure global well-posedness. Finally in Section [IQl we prove the
quasi-invariance properties of our measures, while in Section [Tl we use this quasi-invariance to prove decay
for p > 1 and scattering for p > 3. We gathered in an Appendix some technical results.

1.5. Notations. In this paper ¢,C' > 0 denote constants the value of which may change from line to line.
These constants will always be universal, or uniformly bounded with respect to the other parameters. We
denote by H = —0?+x? the harmonic oscillator on R, and for o € R we define the Sobolev space H? (R) by the
norm ||ullyew) = |]H”/2UHL2(R). More generally, we define the spaces W?P(R) by the norm ||u(lyye.r®) =
| H/ ?u)| r»(r) (see also Section for more details and notations). The Fourier transform is defined by
Ff(&) = [pe ™ f(x)dz, for f € S(R). The Fourier multiplier DY is defined as a tempered distribution
F(DZf)(E) = [§1*F(f)(E) for f € L (R).

2. THE MEASURES, LINEAR ANALYSIS

2.1. Definition of the Gaussian measure pg. Consider a system of complex, independent, centered,
L?—normalized Gaussians (g,)o<n<n On a probability space (Q,7T,p). Let us first recall that the density

1
distribution of o n ™ Nc(0,\,2) is given by

n

A2 42 2 A2 N2(2 112 .
Zne=Anlunl” gy, dity, = S e (90t da,, db,,, Uy, = Ay, + by |
7r 7r

and where du,du, is the Lebesgue measure on C. Denote by uy the distribution random variable
N
w —> ;::0 /\—ngn(w)en(x) =: v (w, z).
Let € > 0, then (yx)n>0 is a Cauchy sequence in L?(€2; H~¢(R)) which defines
+oo 1
1) = 3 3 gn(w)en o),
n=0""

as the limit of yx. Now the map w — ~(w, x) defines a Gaussian measure on H~¢(R) which we shall denote
by po. Notice also that the measure pg can be decomposed into

(2.1) po = py @ p
+0oo 1
where pV is the distribution of the random variable Z —gn(w)en(z) on Ex. In other words
n=N+1""
dMN = ® NC(()? )‘;2)7 dMN = ®N(C(Oa)‘7:2) )
0<n<N n>N

and the measure pg can be represented (rather informally) by

2 2 w2
do = QNe(0,072) = R %e‘*i'“"‘zdundun S o(A) = /A 11 %e VA2 g

n>0 n>0 n>0

where we decompose u = ), upe, and hence identify H~* which supports the measure 19 with CN. Finally
we define

XOR) = [V H (),
e>0
so that s is a probability measure on X°(R).
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2.2. Evolution of the Gaussian measures . In this section we define a four-parameter family of
Gaussian measures (1), which relies on the symmetries of the linear Schrodinger group.

The space dilations v — Agu = BY2u(B-), time translations u — Wy, (s, so)u = ei(s_so)‘?ﬁu, space
translations u — Tpu = u(- — 6), and homotheties u — Myu = au are invariances of the Schrodinger flow

and their actions on L?(R) define a four-parameter family of measures. Set
Q:=RxC" xR} xR, q=(s,a,3,0) € Q,
and define the family of Gaussian measures

(2.2) (Wiin(s,0) 0 Mo 0 Ag o To)spio = fi(s,0,8,6) = Ha -
given by
11q(A) = f1(5,0,8.0)(A) = po((V1in(s,0) 0 Mo 0 Ag o g) 1 A).
In the particular case ¢ = (0,1,1,0) we have jq = p19. Notice that since in the definition (I2), the law of

complex random variables g, is invariant by the multiplication by any complex number of modulus 1, we
have fi(5.q,8,0) = H(s,|a|,3,0)- Notice also that it is a direct consequence of the definition that

i81(92

Wiin (51 4 S0, 50) 4 (s0,0,6,0) = (€7 Y) 3 H(50,0,8.80) = H(s1+50,0,8,6)-

For all ¢ € Q and all € > 0, the measure jq is supported on H~¢(R) while uq(L*(R)) =0. More
precisely, we can prove that pg is supported in the Besov space Bgm(R) based on the harmonic oscillator
(see Proposition [B.4]).

The following result is proved in Section [B.3

Proposition 2.1. Let j = 1,2 and q; = (sj, 0, 5;,0;) € Q, then the measures fiq, and g, are absolutely
continuous with respect to each other if and only if

(s1.|oal, B1,01) = (s2,]azl, B2, 02).

When the measures are not absolutely continuous with respect to each other, they are mutually sin-
gular (supported on disjoint sets of H™¢(R),e > 0). Actually, thanks to the Hajek-Feldman theorem [6],
Theorem 2.7.2], two Gaussian measures on the same space are either equivalent or mutually singular.

We can now state precisely our main results. We assume that sop = 0 in (NLS).

Theorem 2.2. Let p > 1 and qo = (so, a0, Bo,00) € Q. Let qs = (s + So, 0, Po,60). There exists a set
S ¢ X°R) of full gy —measure such that for all Uy € S, there exits a unique, global in time, solution

to (NLSy)) in the class
% Uy + CO(R; 17 (R)),
bl ifl<p<?2
3 ifp=2
Denote by ¥(s,0) the flow such defined on S and denote by Sy = W(s,0)S. Then the set Ss is of full

g, —measure and there exists K, > 0 such that pg,—almost surely there exists C' > 0 such that we have the
estimates

where o < gg can be chosen arbitrarily close to og = {

U(s,00Up = ¢*%Us +V,  [[V(8)|lpr ) < Cls)Moe.

We emphasize that the exponent M, , > 0 which appears in the previous estimate is deterministic, and
depends only on p > 1 and ¢ > 0. Only the constant C' > 0 is probabilistic.

Remark 2.3. In most of the previous works in which almost sure existence results are obtained for nonlinear
dispersive equations, with arguments relying on invariant measures, it is possible to show that the corre-
sponding set S of initial data is invariant by the flow, namely S; = S for all s € R. In our situation we were
not able to prove the invariance of S by the nonlinear flow. In some sense, since S has full jg, measure,
while S, has full j1q, —measure and 4, and g, are singular to each other for any s # 0, i.e. supported on
disjoint sets, this non invariance is natural.

We can now state precisely our scattering result.
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Theorem 2.4. Let p > 1 and qo € Q. Denote by ¥(s,0) the flow on S defined in Theorem [2.2. We have a
fine description of the time evolution of the measures fig,.

e For all s € R, the measures V(s,0)xfiq, and Viin(s,0)4pq, are equivalent (they have the same zero
measure sets);
e For all s # s, the measures V(s,0)4pq, and V(s',0)xpq, are mutually singular.
More precisely, in the particular case qo = (0,1,1,0), denoting by

(14452
pPs = ¢€ p+1

p+1

Lp+1:u'flsa s = (3717170)7
we have for all 0 < |s'| < |s| < 400 and all A C S,

|

ps (T(s',0)4) flr<p<s
(2.3) Ps (\IJ(S’O)A = (1+4(S,)2)%§
(ps (U(s',0)A))\ 1542 ifp>5
and L
/)2
(0 (5, 04)) ) T i <p<s
(2.4) ps (¥(s',0)A) <
ps(P(s,0)A) if p>5.
o There exists jiq,—almost surely a constant C' > 0 such that for all s € R
C(lﬂogés,)l_i(:ﬂ) ifl<p<s
(25) (s, 0Vl oy <4 77
—T if p>5.
(s)2 PFI

o Assume moreover that p > 3. Then the solutions to (NLS})) constructed above scatter pig,—almost
surely when s — +oo : there exist C,o,n >0, and Wy € H°(R) such that for all s € R

19 (s,0)Up — €% (Up + W) |lggo ) < C{s)77,

and
le= %W (5,0) Uy — (Uo + W) |3y < Cs) 7.

(Notice that since 5% does not act on H7(R), the two estimates above are different.)

e In the case p > 5, we can precise the result: for all o < % there exist C,n > 0 such that for all s € R
[%(s,0)U0 = €% (Uo + W) | ey < Cs) 7",

Assume that 1 < p < 5, then the equation (NLS) is globally well-posed in L?(R), see [I4] Section 4.6].
In the case p = 5, the equation is L?—critical, and global well-posedness and scattering in L?(R) has been
proved by Dodson [17]. Let p > 1, then (NLS,) is globally well-posed in H*(R) by [19]. In [30], Visciglia
shows moreover that for any Uy € H'(R), and any 2 < r < +o00, ||¥(s,0)Upl| &) — 0, when s — +o0.
Therefore ([2.5]) gives a similar rate of decay for rough but random initial conditions.

For large times |s| > 1, the bound (23)) is up to the logarithmic term, the decay of linear solutions.
Namely, recall that for all ¢ € ./(R) we have the classical dispersion bound

e ol ooy < —r el oy S0,
|3|2 p+1
therefore, the power decay in s is optimal. With the arguments developed in the present paper one could
show that the logarithm can be removed for some p < 5 close to 5, but we do not now what happens for
general 1 < p < 5. For s = 0, the bound (23]) is a consequence of the fact that the measures pq are

supported in ﬂ L"(R), see Section [1

r>2
It is worth mentioning that the powers appearing in (Z3)) and (2.4]) are optimal. Actually, any improve-

ment in these exponents would imply stronger decay in (2.5]), which is impossible.
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Corollary 2.5. Let qo = (0,1,1,0) and denote by

(14452
pPs = ¢€ p+1

p+1

LP“,uqs, s = (3,1,1,0).

[l

Assume that 0 < |s'| < |s| < 400. The measures V(s',s)ups and py are absolutely continuous with respect
to each other and satisfy

5—

, , (1+4(s/)2)_4£
(s, 8)pps < pory py < (V(8',8)gps) 17057

ifl<p<5h
, (1+4(s’)2)p‘7r5 , .
W(s',8)pps < (por) N 1552 pe SW(s,s)pps  ifp>5.

As a consequence, from Proposition[33, if one denotes by fy s the Radon-Nikodym derivative of W(s', s)xps
with respect to ps, we have

~1 o 7p(s9) 1 144(s")2\ 32
fs/’s & Loo, fs’,s S Lw 5 p(s’,s) =1- ( 1+412 ) 4 Zfl < P S 5
’ N2 . P—5 _ )
Jos € I, Ao =1 (HHEL)T filer®  ifp>5,

where L, is the weak L9 space.

Equivalently, the previous result can be stated for the measures ¥(0,s)xps and ¥(0,s")4py, with 0 <
|’ < |s] < +o0.

2.3. From (NLS,) to (NLSH,). As in [32] [10], we use the lens transform which allows to work with the
Schrodinger equation with harmonic potential. More precisely, suppose that U(s,y) is a solution of the
problem (NLS))). Then the function u(t,z) defined for |t| < T and z € R by

o L 1 tan(2t) X _ithan(Zt) L
(2.6) u(t,z) = LU)(t,x) = COS%(%)U( o (%))e T2 =AU _unen) (@)
where
1 €T ithan(Zt)
2.7 Z(G)(x) = G e 2,
27 HG) ) COS%(2t) (cos(2t))

solves the problem
i0u — Hu = COSPT%(%)IUV’_IU, t] < %, z €R,

(NLSH,)
u(0, ) = Uy,

where H = —02 4 2. Similarly, if U = eis9y Uy is a solution of the linear Schrodinger equation, then u =
e" Uy = £(U) is the solution of the linear harmonic Schrodinger equation with the same initial data.
In other words, if we denote by W(s,s’) the map which sends the data at time ¢’ to the solution at time
t of (NLSH,)), the family (ﬁ)qu conjugates the linear and the nonlinear flows: with ¢(s) = %n@s),

S(t) _ tan(2t)

= 2=
(28) ,,%(S) o ei(s—s’)ﬁg = e—i(t(s)—t(s’))H @) 9%(5’)'
and

(2.9) Lys) 0V (s,5") = B(t(s),t(s)) 0 ZLye-

As a consequence, precise description of the time evolutions of our measures on the harmonic oscillator side
(for the functions u(t, ) solutions to (NLSH,))) will imply precise descriptions of the evolution on the NLS
side (for the functions U(s,y) solutions to (NLS)).

Denote by qs = (s,1,1,0), then for all s € R

(210) 20 =
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Actually, set Wy, (¢, 1) = e =) then by (ZR) and (BA4), for all measurable set A € H ¢
Ho (%(S)A) = [0 (q)lzn(t(s)a 0)\I/l_”1L(S7 O)A) = Ho (\I/l_nll(sa O)A) = Mg, (A) )

hence the result.

3. MEASURES AND FUNCTIONAL ANALYSIS

3.1. On invariant measures. Assume that M is a compact manifold and denote by Ajs the corresponding
Laplace-Beltrami operator. Then there exists a Hilbert basis of L?(M), denoted by (hy,)n>0, composed of
eigenfunctions of Ay and we write —Ajpzh, = A2h, for all n > 0.

Consider a probability space (2, F,p) and let (g,)n>0 be a sequence of independent complex standard
Gaussian variables. Let (a;,)n,>0 and define the probability measure p via the map

—+00
w — Y= Zangn(w)hn-
n=0
Then, by the invariance of the complex Gaussians (gy,),>0, by multiplication with z, such that |z,| = 1, for

“+oo
all t € R, the random variable e?#AM~% = Z ozne_m%tgn(w)hn has the same distribution as 4*. In other
=0

n
words, the measure pu is invariant under the flow of the equation
10U + AU =0, (s,y) € Rx M.

The same remark holds when M is replaced by R, and Ay by H = —92 + 22 (in which case, the (hy,)n>0
are the Hermite functions and A2 = 2n + 1).

Without some compactness in phase-space, the situation is dramatically different, as shown by the next
elementary result.

Proposition 3.1. Let 0 € R and consider a probability measure p on H? (R) (endowed with the cylindrical
sigma-algebra). Assume that p is invariant under the flow Xy, of equation

285U+8§U:O, (Say) € R xR,
U(0,-) = Up.
Then = dg.

Proof. Let o € R and assume that y is a probability measure on H?(R) which is invariant. Let x € C3°(R).
By invariance of the measure, for all £ € R we have

/ ”XU’”H" d,u(u):/ ”XZlin(t)u”H“ d,u(u),
H

ow) 1+ [[ullme ae®) 1+ (1S )yl ge

and by unitarity of the linear flow in H?, we get

el [ ISt ()l e
3.1 / —= = du(u) = T du(u).
(5-1) e Tl = Jyow 1 Tl )

We now prove that the right hand side of ([BI]) tends to 0 when ¢ — +oo. This will in turn imply that
|xul|ge = 0, p—almost surely, and therefore we will have, since the cut-off x € C§°(R) is arbitrary, that
u = 0 on the support of p, namely p = dy.

By continuity of the product by x in H? and unitarity of the linear flow in H?, we have

D ®ullae o i Oullae o ellae o
Lot el e Lt [l e 1+ [l e

Let v € H?(R). For all 6 > 0, there exists us € C§°(R) such that ||u — us||ge < § and we have
(3.2) IXZtin (H)ul| 7o < Cl|Z0in () (w — us)|| o + [[XZtin (t)us | o -
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The first term in the previous line can be bounded as follows
12000 (8) (v — ug) || e < Cllu — ug||ge < CO.
For the second term we distinguish the cases ¢ > 0 and o < 0. If 0 <0,
(3.3) IXZtin (s || 7o < (X Ein Ousll Lz < x4 [ Xtin (s s
Now we use the classical dispersion inequality ||Xy, (t)us||pa < Ct~Y*||us|| a5, which proves, together
with B2) and B3] that || xXin(t)ul|ge — 0, when t — co. We conclude with the Lebesgue dominated
convergence theorem. Now assume that ¢ > 0. Then by the fractional Leibniz rule
IXEtin Ousll e < IXlwealEin (us e
and the dispersion inequality ||X, (£)uslyes < Ct~Y4{Jus|yy.4/3, allows to conclude similarly. O
The previous argument can be adapted to the case of a nonlinear equation, provided that one has a

suitable global existence result with scattering on the support of the measure. Let us illustrate this with
the (L?—critical) quintic Schrédinger equation.

Proposition 3.2. Consider a probability measure u on L*(R). Assume that p is invariant under the flow
> of the equation

(3.0 {z’@sU +02U = |U)'U, (s,y) ER xR,
U(o,-) =U,.

Then = dg.

Proof. By [I7], the equation (34) is globally well-posed in L?(R), and we denote by ¥ its flow. Moreover,

the solution scatters: for all Uy € L*(R) there exists U;” € L?(R) such that

(3.5) I=(5)Up — €% U || gy — 0, when s — +oc.

We follow the same strategy as in the proof of Proposition B.Il Assume that p is a probability measure
on L%(R) which is invariant by 3 and let y € C§°(R). By invariance of the measure, for all s € R we have

Ixull 1 X2 (s)ul| 1 XX (s)ul| 1
(3.6) [ it = [ g = [ BRI g ),
2w 1+ [lullze 2wy 1+ [12(s)ull 2 2w 1+ lullze
where we used the conservation of the L?—norm. By Cauchy-Schwarz we have
X2 (s)ul| 1 < xllzzllullze
L+ [fullz2 L+ [fullz2
This bound allows to use the Lebesgue theorem to show that ([B.6) tends to 0, provided that we show a
punctual decay. Actually,
)2 F o2
IXE()ullr < [lxe™ut |+ [x (S(s)u — Pt ||

. a2 o2
SOt g+ x2S (s)u — %u® || 2,

IN

llxe

where u™ is chosen as in ([83]). The first term can be treated as in the proof of Proposition 3] and the
second tends to 0 by (B.5). O

Let us state a third result which shows that in the previous argument scattering can be replaced by the
decay of the nonlinear solution in some L" norm, r > 2.

Proposition 3.3. Consider a probability measure p on H'(R). Let p > 1. Assume that p is invariant
under the flow X of the equation

37) i0U + 0U = [UPP~'U,  (s,y) € R X R,
' U(0,-) = Up.
Then = dg.
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Proof. The equation ([B.1) is globally well-posed in H'(R), by [19], and we denote by ¥ its flow. Under
these assumptions, we do not know whether the solution scatters, but in [36], Visciglia shows that when
u € H'(R), then for all 2 < r < +oo0,

(3.8) [E(s)ullprry — 0, when s — +o0.

Assume that y is a probability measure on H!(R) which is invariant by  and let x € C§°(R). By invariance
of the measure, as in (B.0)), for all s € R, we get

Ixullz2 / [xE(s)ull 2 / [xE(s)ull 2
3.9 / —=—= du(u) = — L 2 du(u) = L 2 du(u).
(3.9 m®) 1+ [lullz2 ) mir) 1+ [[2(s)ull g2 ) m®) 1+ [lullze plw)
On the one hand we have the bound
IxE(s)ullze _ [IxllzelIE(s)ulle _ [Ixllzeelull

T P e PR ey 7 PP
and on the other hand, by (B.8])
DB (s)ullze [Pl [X(s)ull 0,
L+ flull 22 L+ Jlull 2
when s — +o00. By the Lebesgue theorem, every term in (3.9) cancels, which implies that p—a.s.
lIxu|/ 72 = 0, hence (since y is arbitrary) the result. O

Remark 3.4. The main ingredient in all these results is the knowledge that locally in space, the solutions
of the PDE (linear or nonlinear) tend to 0 when ¢ — 4o00. It would be an interesting question to know
whether this is true in the simplest case of (NLS)), for 1 < p < 5 and for general initial data in L?.

3.2. Some functional analysis.

3.2.1. The harmonic oscillator. Let us recall some elementary facts concerning H = —92? + 22 (we refer
to [27] for more details). The operator H has a self-adjoint extension on L?(R) (still denoted by H) and
has eigenfunctions (ey),>0, called the Hermite functions, which form a Hilbert basis of L?(R) and satisfy
He, = )\%en with A\, = v/2n + 1. Indeed, e, is given by the explicit formula

dr 1 1 n

en(z) = (—=1)"¢y ex2/2(m—n(e_x2 ), with Pl (n!)222 1.
3.2.2. Projectors. We define the finite dimensional complex vector space En by
Exn = spang(eqg, €1, ...,eN).

Then we introduce the spectral projector Iy on Ex by

+o00 N
HN( E Cnen) = E Cnn ,

and we set IIV = I —TIy. Let x € C§°(—1,1), so that x = 1 on [~3,3] and 0 < y < 1. Let Sy be the
operator

510 SV (3 nen) = S e, = 0l ) (3 nen)
. N n_ocnen —HZOX ON + 1 Cn€n =X ON + 1 nzocnen .

It is clear that ||Sn|zr2r)) = ITINll2(z2m)) = 1 and we have
SyIlIy =lx Sy =Sy, and Sy = Sn.
The smooth cut-off Sy is continuous on all the L? spaces, for 1 < ¢ < +oo (see [10, Proposition 4.1]),
(3.11) SN llczawy) < C,
uniformly with respect to N > 0. Such a property does not hold true for II.
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3.2.3. Usual Sobolev and Besov spaces. The Sobolev spaces on R are defined for ¢ € R, p > 1 by
WP = WoP(R) = {u € #'(R), (1-A)"?uc LP(R)},
and
H° = H°(R) = W72

These spaces are endowed by the natural norms ||ulye.n@) = [[(1 — A)7/?

ul| Lo (w)-
We consider a partition of unity on R

2),

(3.12) =Y @ Wzl GO =x279, xeCF(

and we define the Fourier multiplier Aju = x;(v/1 — A)u. Let 0 € R and 1 < p,q < +o00. Then the Besov
spaces are defined by

Bpg=BpR) = {u € 7'(R), H2JUA ullLe(w) € fq}

and we equip them with the natural norm

1
(3.13) ullBg, = <Z H2JUAJ‘“||%ZJ(R)> E

Jj=0
Moreover, one can check that B, = H?.

Assume that 0 < o < 1 and 1 < p,q < +oo. Then by [33, Theorem 2, p. 242], the spaces By, can be
characterized by

lul- +1) = u()ll7,

’t’1+crq

(3.14) By, = {u € LP(R), |lullzs + (/t dt) < +oo},

<1

and the corresponding norm is equivalent to (3.13).

3.2.4. Sobolev and Besov spaces based on the harmonic oscillator. Similarly we define the Sobolev spaces
associated to H for o € R, p > 1 by

WP = WOP(R) = {u € LP(R), H"?u € LP(R)},

and
H7 = HI(R) = W2
These spaces are endowed by the norms |ullyye.rg) = HHU/QUHLP(R). It turns out (see [37, Lemma 2.4]),
that for 1 < p < 400, and up to equivalence of norms we have
(3.15) lullwer = |H?ul| e = ||(=2)?ull Lo + |[(2)7ul 1o

In particular, we recover the characterization (LI)). Recall that we also have the following description of

+o0 +o0o
the H® norm: if u = chen, then |ju|3 = Z A len)?.
n=0 =
We consider a partition of unity on R as in (312 and we define the Hermite multiplier Aju = x;(V H)u.
Then the Besov spaces based on the harmonic oscillator are defined by

(3.16) Bl =B (R)={uec ' [R), |277Au ) € €1},
and are endowed with the natural norm
Julsg, = (3 127 Bsulf )
7>0

In particular, one can check that B‘z’g = H?. Moreover, for any 1 < p,q < 400, and any p > 0, one has the
continuous embedding By , C B, (see Lemma [ET]).
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3.3. Radon-Nikodym derivatives. In the sequel we shall give quantitative estimates on the quasi-
invariance of measures transported by linear or nonlinear flows. The next result shows that the bounds
on the measures that we will obtain in Proposition are actually equivalent to bounds on the Radon-
Nikodym derivative.

Proposition 3.5. Let p,v be two finite measures on a measurable space (X,T). Assume that

(3.17) n<L v,
and more precisely
(3.18) J0<a<l1l, 3C>0, VAcT, u(Ad) <Cr(Ad)~

By the Radon-Nikodym theorem, assumption B1T) implies that there exists a f € L'(dv) with f > 0,
such that du = fdv. We call f = 2—5 the Radon-Nikodym derivative of the measure p with respect to the
measure v.

(i) The assertion BIR) is satisfied with 0 < a < 1 iff f € L¥,(dv) N LY (dv) with p = 2. In other words,
f e LY (dv) and
v({z: [f(x)| = A}) <C' (NP, VA>O0.
(i7) The assertion [BIR) is satisfied wzth a=1iff f € L®(dv) N L'(dv).
Recall that the weak LP spaces, denoted by L%, satisfy
L2 (dv) N L' (dv) € L(dv), VY1<q<p.

Proof. The first part of the statement is the classical Radon-Nikodym theorem, see e.g. [13l Theorem 10.22]
for a proof.

(i) Assume that there exist a € (0,1) and C' > 0 such that pu(A) < Cv(A)*. Let A > 0, then with
A= {fZ)\} we get

W(f =) < /{M Fdv = u(f = 2) < Cw(f = N7,

which implies I/(f > )\) < A V(1=9) which was the claim.
Assume now that f = zll—’; € L, (dv) N L' (dv) with p = 1, and let A € T. Then

(3.19) wu(A) :/ fdu+/ fdv S/ fdu—l—)\/ dv.
{fzatnA {f<ainA {f=A} A

Now we claim that for any f € L}, (dv) and any E € T such that v(E) < +o0,
p _
— 1V(E)1 Vp”f”L{L(@p

where || f[| 17 4, is defined by || f[[}, (dv) = SUP {Nv(f=X)}. For A >0, we write
w0

/Efdu = /0+Ooy(1Ef > )\)d)\

(3.20)

A +o0
/u(lEf>)\)d)\+/ v(1ef > N)dA
0 A

+o0o

< ()A+HfHLp(dV | aran

= V( ) HfHLP dl/A p+1‘

Finally, we choose A = V(E)_l/p||f||L5J(dV) which implies (B:ZQI)
We apply B20) with £ = {f > A} and together with (B.19) we get

p(A) < Co(f > NP 4 aw(4) < CA P 4w (A).

Now we optimize the previous inequality with A\ = v/(A)~/7,
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(79) Assume that f ¢ L°°(dv). Then for all M > 0, there exists A € T such that f > M on A and
v(A) > 0. Then pu(A) = [, fdv > Mv(A) which is the contraposition of B.I8).
If f € L>(dv), then for all A € T, u(A) < | f|zo(a)v(A), which is (BIS]). O

4. EVOLUTION OF THE (GAUSSIAN MEASURE

4.1. Hamiltonian structure of the approximate problem. Recall the definition (BI0]) of the operator
Sy and that Ey = spanc(ep,e1,...,en). We consider the truncated equation

4

(41) {i@tu — Hu = cospTis(%)SN(\SNu\p_lSNu), t| < z, z €R,

u|t:s 6 EN‘
For v € Eyn, write

N
U= chen = Z ap, + ibp)en,  an, by, € R.
n=0

Then we have the following result.
Lemma 4.1. Set

Voul? + |zul?  cos(2t B
JN(t,u):/<| |2 Gl + p(—l—)l |5Nu|p+1)dx:

:JN(t ag, - - -, aN,b(),...,bN)

N

——ZV (@ +12)+ 22T HsN(Zmn+ibn>en)|§ti1®.

n=0
The equation (&Il) is a Hamiltonian ODE of the form
" ob, " Oay’

Remark that Jy is not conserved by the flow of ([Il), due to the time dependance of the Hamiltonian Jy,
however the mass

0<n<N.

N

lull oy =D (an +b7)

n=0

is conserved under the flow of ([{I]). As a consequence, (A1) has a well-defined global flow ®y because it is
actually an ordinary differential equation for n < N and a linear equation for n > V.
Set

1 cos"T (2t) 11
En(t,u(t)) = §H\/ﬁu(t)‘|i2(m) + pTHSN u(t )||I£p+1
A direct computation shows that along the flow of (AI]) one has

(5 — p) sin(2t) cos"T (2t)
p+1

(42 < (entt () =

ISnu(®)[Fh 5 -

Observe that actually we have
1
En(t,u(t)) = En(t, 1y (u(t))) + g\l\/ﬁﬂN(U(t))H%z,

and the last term is constant along the evolution given by ® .
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4.2. Evolution of measures: a first result. Recall that the measures uy and p¥ are defined in (21)),
then we define the measure vy, on En by

p—5
_cos_Q_(Qt) Snu p+1 T ™
dun, = e — 1SN HLerl(R)d,uN, VN > 1, -3 <t< T

and notice that vy has finite total mass but is not a probability measure. This definition implies that for

all measurable set A C En, t € (=7, 7).

vNt(A) < pn(A).

Similarly, we define the measures v, and vy; = VN ® ,uN by

p—>5 p—5
cos 2 (2t) +1 cos 2 (2t) +1
(4.3) dy, =e P71 _||U||ip+1(R)d,u0’ d;N,t —e  PL ”SNu”ip{»l(R)dMO’ _% <t< %
Proposition 4.2. For all s,t € (=%, %),
(4.4) (I)N(t, S)#,UN L Uy K q)N(t, S)#,LLN.
More precisely, for all 0 < |s| < [t| < 7,
VN,s(4) if1<p<5
I/N’t(¢N(t, S)A) S ° (cos(27ﬁ))p*575
[N, (A)] Ve if p>5,
and
(cos(2t) ) igﬁ
|:VN7t Dy(t,s)A } cos(zs) if1<p<5
(4.5) UN,s(A) < ( ) .
UNt (@N(t, s)A) if p>>5.

Another way to state the previous result is :
e for1<p<5

cos(2t) ) LT

[VN,s(A)] (cos(zs)

< UNt ((I)N(t, S)A) < VN78(A).

o forp>5

p—>5
cos(2t) ) 2

VN,S(A) < UNg ((I)N(t, S)A) < [VN,s(A)] (cos(zs)

Proof. By definition we have, for all t € (=7, §)
pn <vng o and vz < pw,
and in particular

(4.6) un < v and Vo <K [N -
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This will imply (£4)) thanks to ([@6]). By [@.2]), if we write u(t) = ®n(¢, s)up, we have

iVNt((I)N(t S)A)

dt
p—>5
COST

— %/ 2”\/_””L2(R) p+1(2t)||SNv”§Jfr’}r1(R)dv

vED N (t,5)A

p—>5
B i ||\F”||L2(R) cos?:l(%)HSN ||LP+1(]R)drU
dt vM=HM(v)€HM(<1>N(t78)AM)
p—>5
cos 2
(4.7) :% oIV w2 ) =5 ||SNu(t)||T;i1(R)du0’M
uo,mr=1Ias (uo)EANM
p—T
p—5)sin(2t) cos 2 (2t _

— [ D B o) e o

M

p—T

p —5)sin(2t) cos 2 (2t -
R S e T
=(p-05) tan(2t)/ a(t,u(t))e_gN(t’“(t))duo,

A
p—
COST (2t)

where a(t,u) = p+1
according to Liouville Theorem (see Appendix[C]) the Jacobian of the change of variables v = ® (¢, s)ug —

ug is equal to 1.
In the following, we assume that 0 < s <t < 7. If 1 <p <5 the r.h.s. of (7)) is non positive and we
get by monotonicity

||S vulPh i L (R)’ and to pass from the first line to the second line we used that

VNt (@N(t, S)A) < I/N7S(A).
When p > 5 by the Holder inequality, for any k > 1,

iVNt((I)N(t S)A) < (p_5)tan(2t)(/Aak(t’u)e—&\r(t,u(t))duo)%(/Ae—EN(t,u(t))duo)l—%

dt
= (p—5)tan(2t)(/ak(t,u)e at,u)=3lIVH u(®)|I}
A

1

120 dug) * (v 4 (@ (1, 5)A)) TF.
We use that o (t,u)e= "% < kFe=F then

d k _
ZN(BN(t5)A) < (p—5) tan(2t) ~ vy (P (1, s)A))' .

dt
We now optimize the inequality above by choosing k = — log (VN,t(<I> ~(t, S)A)), which gives

Bl

%I/NJ (@n(t,s)A) < —(p—5)tan(2t)log (VN,t (@n(t, s)A))yNJ(CI)N(t, s)A).

This in turn implies

—% log ( — log (vn(Pn (2, s)A))> < (p—>5)tan(2t) = — (p ; 5) % log(cos(2t))

and consequently

cos(2t) > -

cos(2s)

—log (vn (P (t,5)A)) > —log (v,s(A)) (

Therefore, for all 0 < s <t < 7,

(cos(2t) ) %_
UNt (q>N(t, S)A) S [VN,S(A)] cos(2s)

The reverse inequality is obtained by backward integration of the estimate and reads similarly when p > 5
VN,S(A) < UNt (<1>N(t7 S)A) s
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and when 1 < p <5 we get (COS(%))S_E_p

cos(2s)

UN,s(A) < [VN,t((I)N(ta S)A)} ;
which concludes the proof. ]

Remark 4.3. We can extend the flow ®x to be the flow of
-5 T
iOu — Hu = cos"Z (20)Sn (|SnulP " Syu),  |t| < 7€ R,
u|t:s € H_67
where the extension on Ey; = Vect{e,,n > N} is given by the linear flow e~
and in the decomposition

u. Using that vn = vy ® Il

H = FEn x Ex
the flow takes the form
(4.8) (T)N = 0N ® e~
Since the measure p% is invariant by the flow of e " we get that with this extension, Proposition is
still true with vy, replaced by vy, see definition (4.3)).
5. NON LINEAR ESTIMATES

5.1. Strichartz estimates. To begin with, we recall the Strichartz estimates for the harmonic oscillator.
A couple (g,7) € [2,+0oc]? is called admissible if

S|

+o=3

CS N V]

and if one defines
Zf = L=([-T,T); 17 (R)) N LY([=T, T]; W™ (R)),
then for all 7" > 0 there exists C7 > 0 so that for all ug € H?(R) we have
(5.1) le™ gl zg. < Crlluollye @)-
We will also need the inhomogeneous version of the Strichartz estimates: for all T' > 0, there exists Cr > 0

so that for all admissible couple (¢,r) and function F € LY ((T,T); W (R)),

t
—i(t—s)H
(5.2) [ /0 e F(s)ds|| 7 < CTlFll o (-azymo @)

where ¢ and 1’ are the Holder conjugate of ¢ and r. We refer to [28] for a proof.
In the sequel, we will also need similar estimates in Besov spaces (recall definition ([B.I6])).

Proposition 5.1. Assume that (q,r) is admissible and p > 0. Then there exists Cp > 0 such that

(5.3) He_itHuOHLCI((—T,T);Bffj) < Cr|luollae,
and
t .
(5'4) H/O e_l(t_s)HF(s)dSHLq((_Tj);B%) < C’THFHLl((—T,T);?-U’)'

Proof. For the inequality (5.3)), we use the Minkowski inequality (because ¢ > 2) and (G.1])

HB_“HUO||L¢I((—T,T);Bf72) = ||2ijj€_itHU0HLg;z§;L; <
< |127°e7 " Ajuo|l 2,191, < Cl12°Ajuolle < Clluglae

which was the claim. The inequality (5.4]) follows from (5.3]) and the Minkowski inequality. O
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Let
F(u) = |ulPu.

In the following, the analysis of the Cauchy problem will be different according whether p > 2 (the nonlin-
earity is C2) or 1 < p < 2 (the nonlinearity is only C*).

5.2. The estimates for the local theory. In this section we prove the main estimates allowing to perform
a fixed point to establish the local existence for our nonlinear equations. When p < 2, the lack of smoothness
of the nonlinearity F(u) = |u|[P~!u forces us to prove a priori estimates in strong norm (see Proposition [5.4))
and contraction in weak norm (see Proposition [B5]). As a consequence, in Section [ we shall in this case
perform a quasi-linear type fixed point.

The starting point is the following set of results from Christ-Weinstein [16]. In the sequel, DSu is defined
as a tempered distribution using the Fourier transform: F(D%u)(&) = |£|*F (u)(§).

Proposition 5.2 ([I6, Proposition 3.1]). Assume that G € C'(C;C), and let 0 < a <1, 1< p,q,7 < +00,
r~l=pl 4 ¢t Assume that w € W4 and G'(u) € LP, then G(u) € W', and

IDZG@W)l|zr < CIG (w)] e | DS ul| o

Proposition 5.3 ([I6, Proposition 3.3]). Let 0 <a <1, 1< rp;,q < +o0,i=1,2, and r ' =p; 1 +¢;*
Assume that f € LP*, DS f € LP?2, and g € L%, D%g € L. Then D$(fg) € L" and

1D ()l < C (1 e D2 gl + D2 fllz gl ).

From the previous results we deduce

Proposition 5.4. Let p > 1 and p,oc > 0. Then
(55) IF ) < Ol bmll )Tl ey

Assume moreover that 1 < p < % Then for any 2 < r < %, there exists C' > 0 such that, with

g = 2(p—1)r (2 1)

r—2

(5.6) 1)l gy < Cllllynr el -

Proposition 5.5. Let p > 2 and p,o > 0. Then there exists C > 0 such that

(5.7) |1F(u) = F(0)ll30(x) <au>\mmm<>3wgam+mwﬁw§@w

+cwmﬁWu—mmﬂ%nw@WEM@ﬁﬂ+w@w%m&z%nw<>HWp+u<>qu

Let 1 < p <2, then for any r > 2, there exists C' > 0 such that, with s = 2(;:;—;)7«

(53) 1F(w) = F)llay < Cllu = ollormy (1l + 1017725
Proof of Proposition[5.7) Let us first show (5.0). We use [3I5]) which gives

IE ()l () ~ [1€2)P F (w)]| 22 ) + I1DZF (w) ]| 22 (w)-
The contribution of the first term is bounded by

mwwwmgww@%wmunw1m<cmﬂwwwmfw@én

while the contribution of the second term is bounded using Proposition with the choice G(z) = |2|P~ 1z
which is C! because p > 1 (it is clearly C! away from (0,0) and its differential is homogeneous of degree
p—1in (x,y), hence vanishing at (0,0)). Therefore we obtain

—_ -1
(5.9) ID2F (u)ll 2 < CIDZull palllul? ™ 22 < Cllullweallulfag-1,
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which is the result with ¢ = 0. In order to treat the general case o > 0, we introduce a partition of unity

. s 1
(5.10) 1= xj(x), Vi1, xj(@)=x(272), suppxC {x; 5 Slal< 2},
and choose x; equal to 1 on the support of x;. Then by (5.9)
IF@Fe < Y IF@IF = Y I FEw)lEe
>0 7>0
< CZHXJUHWP4HXJ HL4(p n = CZ||XJ2]JHWP4H2JP 1XJUHL4(p -
J=0 j>0
Therefore we get
1 1
~ 1)) 2
|F@)3e < (Z %5 7y Iwe)” (Z 1542y 7 Tl 3 )
<

||<x> ol e Tul 35,4, |
which gives ([B.3). To get (5.6]), we use Proposition to estimate
- -1
IDZF ()2 < ClIDZullLr [[ulP = 2e, < Cllullwerllull7:

which was the claim. O

Proof of Proposition [543, Let us now turn to the proof of (5.7)). By the Taylor formula,
1
(5.11) F(u) — F(v) = (u—v) / 9. F(v+6(u—v),5+6(u—v))do+
0
1
+ (u — v)/ OzF (v +6(u—v),7+ 0(u—v))db.
0

On the first hand, since |0F(z,%)| < C]z|P~!, we deduce

(@) (F(w) = F) g2 < Cll oy (@) (= 0)llgs (1) 7Tl + )2 T0]50, ) )

b
(z)7

On the other hand, according to Proposition B3] with » = 2, (p1,¢1) = (4(p — 1), 2(p 3)) (p2,q2) = (4,4),

we have, using again the same partition of unity (G10]),

1F (u) = F(0)[5 ~ Y lIx; (F( Dz =Y G (FEu) — F(350)) -

7>0 j>0

Next, for all j > 0, we compute
1
(512) || D(Fi(u - ) /0 0-F (X (v + 0(u =), % (0 + 0@ =10)))db ) || . <
1
< IRy (= o)l [ D2 [ 0 (R0 0= ). 5,5+ 0G=7)) ] sy

1
+CIDETy (= )lia| [ 0P (o + 0w = 0). 5,7+ 0T=0)) o] .
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The second term in the r.h.s. of (512)) is easily bounded by (recall that |0, F| < C|z[P~1)
1 o~ ~ —_—
(5.13) || DET;(u— v HL4H/ 0.F (%;(0 + 0(u— v)), 3 (0 + 0@ =)))db| ., <

HD Xj(u—v HL4/ H@ F XJ(U+9(U—U)) X (U +0(u—v) )Hmda

~ -1
< || D% = )| (150 + IRl )-

To bound the first term in the r.h.s. of (5I2]), we apply Proposition with the choice of functions
G(u) = 0.F (u,w) which is C' (because p > 2 and the second derivative which is defined away from (0,0) is

homogeneous of degree p — 2, hence vanishing at (0,0)). We get with the choice (r,p,q) = (42(2 :il,’), 4(;__21) ,4),

1
(5.14) HDg/O 0.F (%50 + 6(u = ). %50+ 6=0)))d8]| spopy <

1
< / | D20.F (X (v + 0(u —v)), X; (0 + 0(u—0))) HLMgil) de

<0 [l 0= 0PI sy IDET 0+ 600 = o)
< c(IRullya, + ux]-vum,ﬂ)) (102l s + 1D2 v 2 ).

From (5.12), (513) and (514]) we deduce

1
[D2(%50 =) [ 0P (R0 + 0= ). %0+ 0T=7) b <
< CIDER;(u — ) pa (IF50 12y + IRl sy)
~ ~ —92 ~ —92 ~ ~
+ 1% = )0 (K5l + 1Kol (1D2 Rl o + DA 0l 24).

Putting the weights (z) and using that these weights are essentially constant on the support of x;, we get
the estimate for the contribution of the first term in the r.h.s. of (LII]). The estimate for the second term
is similar. This concludes the proof of (5.7). Finally (5.8)) follows from (G.I1]) and the Holder inequality. O

5.3. The estimates for the continuity of the flow.

Proposition 5.6. Let % <p<2andp,o>0. Then there exists C > 0 such that

(5.15) HF(U)_F(U)HHP(R <

a 1 o —1 e —1
<C| 5 e ||B42<||< Pl +||(<E>P*1v||’£4<p71)) +C||< = > lsg ) (@) 77T (w = W) Ty -
Let 1 <p <3 3 and p > 0. Then for any 2 < r < 5=, there exists C > 0 such that, with s = % > 2

(5.16) |F () = F(0)llaom) < Cllu =l g, (Huufz:l Il ) + Clol e eyl — w3

Proof. We first consider the case 0 = 0. Since 0 < p < 1, we can use the characterization (8I4]) of the usual
H?(R) norm, namely

x+1t)—g(x)|?
(5.17) 191210 gy = 1912 g + /| . oI
<
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We only prove (5I3), the proof of (5IG) being similar. We have
Flu)(x) - Flu)(y) =
= (u(e) ~ 00) [ 0P () + 00(a) ~ u(0), 7o) + ) — )
()= 0) [ 0 (ute) + 0lute) — a0, T(a) + 0G) — )b
We deduce
(518) (F)) - F)) - (F)@) - Fo)y) =

0zF (u() + 0(u(z) — u(y)), u(x) + 0(u(z) — u(y)))

+
—
<]
—~
8
N~—
|
S]]
—
NS
SN—
N~—
S—
2
/N

— 0F (u(a) + 0(0(x) — v(y)), () + 0(o(x) — o) ) do.

Recall that, assuming 1 < p < 2, we have 0,F(z,z) = *7%1|z|p_1 and 0;F(2,%z) = p;21|z|p_2z which satisfy
(see e.g. [I5] (2.26) & (2.27)])

(5.19) “Z1|p_1 - |Z2|p_1‘ S C|Z1 —Z2|p_1, “Z1|p_221 — |22|p_2Z2| § C|Z1 —22|p_1.
From (5I8]) and (519) we deduce
|(F(u)(z) = F(u)(y)) — (F(v)(2) = F(0)(y))] <
< Cl(u—v)(@) — (u—))| (Jul(@) + [ul(v) + o)) + o]())”
+ Clo(@) = v(y)| (lu = v|(@) + [u = v|())"".
Plugging this estimate into (5.I7]) we get (notice that the roles of x and y are symetric)
1F(u) = F(0) oy < 1{2)?(F(w) — F(0))|[ 72y +
2
N / [(F(u) = F(v)(@ +t) — (F(u) — F(v))(x)|
[t|]<1

‘th"'l

dxdt

< (@) (F(u) = F(0) |72+

(u—v)(x+1t)— (u

—)(x)]? B
+C DEGE @) (|u|(:17) + |v|(z) + |ul(z) + |U|(:E))2(p D dudt

[t]<1

o(z +1) — v(z)?

+C |t|2p+1

[t]<1
The first term, [[(z)?(F(u) — F(v))||2r) is easily bounded by

(Ju—v|(@ + t) + Ju — o] ()P Vdtda.

—1 -1 -1 —1
[l (x)? (u — U)”L4(HUH§I4(I)71) + ”U”IL)A(pfl)) < Ollu — UHW”A(HUHIL)A(pfl) + HUHII)/L(pfl))'
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Using the Cauchy-Schwarz inequality for the x integral and (BI4]), the contributions of the second and
third term are bounded by

-1
Cllu = ollgg , (l[ullfagr + 1ol ) + Clivllsg, llu = vl G-

This proves (5.15]) for o = 0 with B o instead of Bp To conclude (when o = O) we apply Lemma [E.1]
To get the result for any o > 0, We follow the same method as in Section [£.2] using the partition of unity.
Finally, the proof of (5.16) is similar. O

6. FUNCTIONAL SPACES Y/ AND X{ _

In this section we define the spaces required to develop our Cauchy theory. The rule of the game is the
following: the spaces for the initial data must be of full measures, while the spaces for the solutions must be
strong enough to perform fixed points, and to ensure that after solving, the final data is controlled in the
space of the data. Last but not least, to be able to show the decay properties of the LP*! norms, all the
norms involved must control the L>; LP*! norm (and its variation during the fixed point).

In the sequel we will work on the interval

T
( 4’ 4 )

In the next sections, we define the spaces Y of the initial conditions, and the solution spaces Xt%,r' Before
we define precisely these spaces, let us state the main properties they need to satisfy:

ItOJ:(tQ—T,t()—i-T) C

e The space Y€ is of full yg—measure and large deviation estimates are available (see Proposition [(3]).
e The space Y€ is invariant by the linear flow: if u € Y, then for all ¢t € R we have e~y € Y€
and ||e™ |y pe = ||ullyre
e The spaces (Y*),50,>0 are included in each other, with compact embeddings: if 0 < p < p' and
0< € <¢, then Y C yre
We have the continuous embedding H” C Y7 (see Lemma [6.]).
e There exists § > 0 such that for u € Y€ we have He_itHuHLoo((_ﬂ.’ﬂ.);wé,p+1) < C||lullyee. This will
be proved in Proposition [7.1]
e The solution space ti(w is the usual Strichartz space for the Schrodinger equation with harmonic
potential and data in H”, and including a Besov-norm when F' is not regular enough (1 < p < 2).
The definitions of these spaces depend whether 1 < p < % or % < p<2orp>2 Thisis due to the

regularity of the nonlinearity F' and is a consequence of the results of Section
Set

1 1 p-1

2 ptl 20p+1)°
then we have the Sobolev embedding H”° C LP*! and for all p > pg
(6.1) HP C Wrmroptl

In the following we will also need the notation

PO =

3—5 if2<g<4
(6.2) o00=93, 1 .
g‘i‘@ 1fq24,

and we refer to Proposition [Z1] for a justification of this parameter.

6.1. Spaces for p > 2. Let max(0, 3 — 2(2;_3) po) < p < %. Denote by 1 = min(252, 0,,11), where ;11 is

defined in (6.2). For 0 < € < 1), we define the spaces for the initial data Y/

YP© = {u eHE: My e LS(p_l)((—ﬂ,w); Wﬁ"l(p_l)),
1

—itH (. . n—e,p+1
€ UEC ([ 7T77T]7W )7 <.Z'>p/2

ety e Ls((—ﬂ',ﬂ'); Wp’4)} )
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and we equip them with the natural norm

_ —itH
fulne = ulpe—e + €™l e,

. 1 .
—itH —itH
. ul| poo (—r mywn—er+1y + || <$>p/2€ i Ul L8 (—,m); W4

+ |le

We define X[E)’T the spaces for the solutions by

XP

to,T

i= C%Iy s HP) N LA (1 7 WP™),
equipped with the natural norm

lullxg = [l 2 00y + el Lagryg owee)-

6.2. Spaces for 3 < p < 2. We can check that for all 3 < p < 2 we have max(0, %,po) < p—gl and we

consider max(0, ﬁg—:z),po) <p< 7’%1. We denote by 7 = min(£52,0,41). Let 0 < € < 7, and define the
spaces for the initial data Y#€ by

YPe .= {u cHE: ety ¢ Ls(p_l)((—ﬂ,w); W42(§:?>_E’4(p_1))7

. 1 .
ety e CO([—ﬂ',TF]; W"_e’pﬂ), 46_“Hu € Ls((—ﬂ',ﬂ'); Wp’4)} ,

()@=

and the spaces X’

to,T

by

XP

to,T =

CO(Ly,rs H?) N L (11 1y W) 0 L (I 3 BY o).
All spaces are equipped with their natural norms (recall that the Besov spaces are defined in (3.10))).

6.3. Spaces for 1 < p < % Let po < p < p—gl. Similarly to the previous cases, denote by n =

min(p_—fo,apﬂ). Then for x > 0 small enough, we consider the Strichartz-admissible couple (g,r) =

(zﬁ’ Hﬁ) The spaces for the initial data are given by
veei={ueH e ™ue L®((—m,m); ) N LI((—m,7); WPT) N CO[—m, w]; W= Pt}

where 0 < € < 7, and the spaces for the solutions X/

to,r are given by

XP

to,T

1= O3 H) NV LA (T, W) 0 L (I 75 BY ).

All spaces are equipped with their natural norms.

Define s = 2(1: :;)T = 12)(_”1__1,1 We shall choose p < p—gl arbitrarily close to p%l, then chose k > 0 small

enough so that 2 < s < r, and then for € > 0 small enough, since ¢ > 8, we have

(63) ”e_itHuHLS((—W,ﬂ);W/”T') < He_itH

UHL‘Z((—N,W);WP’T) < |’uHY”’€‘
Observe also that by Sobolev embedding, the previous line implies that there exists C' > 0 such that

(6.4) le™ oo mysney < Clluflyee.

6.4. The space Xgm. In the sequel, we will also need the space

Xph + = L®(Lyy 73 L*) N L (1,75 L).



24 NICOLAS BURQ AND LAURENT THOMANN

6.5. Further properties of Y€, As a consequence of the Strichartz inequalities, we have

Lemma 6.1. Let p > 1. Under the above assumptions on p, we have for all € > 0 small enough
(6.5) HP C YPE.
Namely, there exists Coy > 0 such that for all u € Y€
l[ullyee < Collulle-
As a consequence,

(6.6) X7

to,T

C LIy Y7,
and for all v € Xf _
(6.7) V]l oo (1 vy < Collvllxp -
Proof. e Case p > 2. The bound

lle™ " | oo ((— mpym—esry < Cllulle
is a direct consequence of (6.I)). On the other hand, the couple (8,4) is admissible which implies

—itH

H 1 —itH

e ul s ((—r ety < Clle™ ull Ls(ampwety < Cllullpe.

To bound the last term, we use the Strichartz inequality (0.1 and get

. 1 1 1
—itH — _
(6.8) lle UHLS(Pfl)((—w,ﬂ);WPvT) < Cllullpe, ;3 Alp—1)
It remains to check that by Sobolev embeddings, we have
WPT WQ(TF:DA(P_D,

which follows from

1 1 1 1 1 1 1 p—2

6.9 l-—— ) > =——— = > - — = .
(6.9) =) 27 -1 2 251 =97 3202p-3) 2p-3
3

e Case 5 < p < 2. The proof follows the same lines. To bound the last term, it is enough to check here

the Sobolev embedding

(6.10) Wer ¢ Wit 4=
which holds true under the condition
-3 _ 1 1 1 1 4p— 7
- > & p>—
PTAp-) T a1 2 201 ip—1)
We conclude with ([G.8]).
e Case 1 < p < % Recall that (q,r) = (Zﬁ, 2—?%) is an admissible couple. From the Sobolev
embedding (6.1]) we obtain
lle™ " ul| oo (= mpmn-—erity < e ull poe (o mpe-rority < Cllulae.
The bound '
”e_ZtHu”Lq((—ﬂJr);Wpﬂ") < C”uHHpv
is given by the Strichartz estimate (G.1]).
Finally, the embedding (G.6) follows from the fact that Xf = C L>(Iy, -;H?) and (G.3). O

As a consequence of ([BI1), we can show

Lemma 6.2. Assume that €,p > 0 and o > 0. There exists C > 0 such that for any N > 1, and any
ue Y’ and any v € X[

0,77

[Snullyee < Cllullyee, — [[Snvllxg < Cllvllxg -
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We also have the following statement.

Lemma 6.3. Let p >0 and ¢ > 0. Then for any u € Y7 and N > 1,

11 = Sn)ullyre = o(1) N 4oc-
Assume moreover that 0 < p < p' and 0 < € < e. Then for any u € VP and N > 1,
(6.11) (1 = Sn)ullyee < CNTRRE =P )

One can easily see that the analysis above implies that Syu is a Cauchy sequence in L?(Q; Y*¢) and thus
we may see the measures uo and 14 as finite Borel measures on Y€,

The property (611]) will be used to obtain uniform bounds for the approximate flow (see Lemma [[0.2)),
which is a key ingredient in the proof of the quasi-invariance result (Proposition [[0.1]). Notice in particular
that (GII) implies that, for 0 < p < p’ and 0 < € < ¢, the embedding Y*¢ C Y€ is compact.

Proof. Notice that the assumptions p < p’ and € < e gain some positive power in H (hence positive powers
of N > 1), and consequently compactness in the space variable because powers of H control both powers of
D, and of . On the other hand, since the second and the third term in the definition of Y€ are defined
in terms of the free evolution, we may exchange some saving derivatives in H for some time derivatives and
hence some compactness in time. We omit the details. O

7. LARGE DEVIATION BOUNDS

We start by recalling the following large deviation bound, which is a variation around results obtained in
[32, [10], leading to an improvement in the time variable.

Proposition 7.1. Assume that (o, q) satisfy o < o, where

i - % if 2<q<4
997 V1, 1
51 3¢ if >4
Then
—q —cR?
(7.1) pio({uo € X°(R) : ||e tHu()HLoo((_W’ﬂ-);WO',q) > R}) < Ce .

Proof. From [32] Theorem 2.1, (00, 2,1)] and [10, Lemma A.§],

_ 1 _1
(7.2) lenllz =1, llenllzs < Clogi(A)An®,  Jlenllie < CAR°.

We deduce by Holder inequality

Og—0

5 1 Zenllzs = A7 enllze < CALS.

(7.3) Vo <oy, de=

We now revisit the proof of [I1, Proposition 4.4], see also [12], Section 3] and [32, Proposition 6.2], with a
slightly different treatment of the time variable. To begin with, observe that

D?e—thuO _ Hae_ZtHUO,

as can be checked by a decomposition in Hermite series together with a Fourier transform in time.
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Next, let s > r > % > q, let x € C*°(R) equal to 1 on [—~F, 5]. By the Minkowski inequality we have

(@)D EE e (3 S ena) )|

n>0

Lo (@)L (Re):La(Ry) =

< HZ ATy (e _ZtAnen(x)g"HL‘I(Rx);LT(Rt);LS(Q)

n>0
. 1/2
<OVs ”@0 XX OPenl@®) oz gy
. 1/2
< C\/§<Z>:O<)‘n>e+2o_2||X(t)6n($)H%q(Rx)§LT(Rt)>
< C\/§Z<)\n>e+2a—2)\;2a—2s < C/\/g
n>0

where we used that for i.i.d normalised Gaussian random variables

| ZBHQH”LS(Q) < C\/E(Z ’ﬁn’2)1/27

n>0 n>0

and in the last line we used (7.3]) and the fact that A\, = +/2n + 1.
The Bienaymé-Tchebychev inequality and an optimisation with respect to the parameter s > 1 (see

e.g. [11L (4.5) & (4.6)]) gives
(7.4) po({uo € XO(R) « (/D) T HZ e ug | 1 ysar,) > R}) < Ce™
Finally, to get (ZI)), we just remark using Sobolev embedding in the time variable (recall that § > %)

—itH —itH

lle Uo|| oo (—mm);8) <

uo || L (= ey = || H 2 €
< Hng_itHUOHLg;Lw(—w,n) < ”X(t)Dting_itHUOHLZ;LT(Rt) ;
which together with (4] yields the result. O
We shall also need the following result
Proposition 7.2. Assume that 0 < v < i. Then for any p < % + 7, there exist ¢c,C' > 0 such that

—itH

,uo({uo € XO(]R) > R}) < Ce R

: H W UOHLOO((—W,N);WM)

Proof. The proof follows the same lines as the proof of Proposition [Z] after replacing the bound (2] by
the bound (D.J]) in Appendix [Dl O

We can now proceed to show that pg—almost every function is in Y€,
Proposition 7.3. Assume that p,e > 0 satisfy the assumptions in Sections[6.1, (623, [6.3. Then
J¢,C>0; po({ue XOR): ulyee > R}) < Ce R,
Proof. e Case p > 2. Recall that

YPe = {u cH ™ e My e L8(p_1)((—w,ﬂ);WQ(T,il)A(p_l)),

e~y € CO([—m, n]; Wi—eptl), ety ¢ Ls((—ﬂ',ﬂ'); Wp’4)} .

(z)P/2

Since p < %, we have p < i + &. Therefore, we can apply Proposition with v = £ < %, which allows to
control the last term in the definition of Y. To control the other terms, it is enough to check
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20— 1) Y T 6(p 1)
(7.6) N—€< Opti-

(7.5)

The inequality (Z.6) holds true because we made the choice n = min(452,0,41) > 0 and € > 0 is small
enough. Condition (Z5) follows from the fact that p > 2 and p < 3.
e Case % < p < 2. Recall that

Y/ = {u eHE: e My e L3 ((—7T,7r); W%_ev‘“p—l)),

ety e OO[—m, m]; WPt ! 4e_itHu € Ls((—ﬂ',ﬂ'); Wp’4)} )

(z) =3/

In this case we apply Proposition with v = %

the conditions

<tandp<i+ % = p—gl. Then, we have to check

2p— 3 e _ 2p-—3
4p—1) DT gy — 1)
N—€<0pt1,

which both hold true.
e Case 1l <p< % Recall that

YPe = {u eH ™ e My e L®((—m,m); H™ ) N LA((—m, m); WPT) N CO([—, 7); W"_E’pﬂ)},

4 2

with 0 < p < 251, and where (¢,7) = (m, TR

to check are

) is a Strichartz-admissible couple. Here, the conditions

- 1 1
Ty = — — — =
p T3

N—€<0pt1,

p—1—k
2

and there are both satisfied if €, x > 0 are small enough. g

Remark 7.4. As a consequence of the proof (namely the proof of Proposition [I]), all the results in this
section remain true if we replace H™ ¢ by En and pg by uy, with the same constants (hence uniform with
respect to N > 1).

8. THE LOCAL CAUCHY THEORY

We consider the equation

(8.1) {i@tu — Hu = COSPT{)(2t)|u|p_1u, (t,z) € (—E —) xR,

Ult:to = Up.
Recall that F(u) = [u[P~1u, then 1) admits the Duhamel formula
t -5 . .
u=e Mty z/ COSPT(28)6_2(t_s)HF(E_Z(s_tO)H’LL(] +v(s))ds,
to
and consequently setting u = e ~*(¢—t0)H ) 4 4 the function v must satisfy v = K (v) with
p—>5

t
(8.2) K(v) := —z'/ COST(2s)e_i(t_s)HF(e_i(s_to)Huo + v(s))ds.
to

For tg,t € (=%, %), thanks to a fixed point argument, we will prove that equation (8I) admits, on the
interval Iy, » = (to — 7,t9o + 7), a solution of the form u = e~ it=to)Hy 4 o where v € Xg),r'
The main result we shall need to prove for the a.s. global existence is the following.
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Proposition 8.1. Let p > 1 and tg € (=5, 7). Let

5 ifp=>2
chosen sufficiently close to p%l or % respectively so that the assumptions in Section[@ are satisfied. Let € > 0

chosen small enough in the definition of the space Y. There exist ¢ > 0 and k,6 > 1 such that for any
R >0, setting

(8.3)

—K(T 6 ;
< cR™F(G —[to])° if1<p<5
I ifp>5

for any ug € YP€ such that ||ug||yee < R, there exists a unique solution u = e~ yy 4 v, with v € X
the equation (8I]) on the interval
Ligr = (to — 7. t0 +7),

which satisfies
1
HUHX;JOJ < o [0ll oo (1 - vee) < 1,

where Cy > 0 is the constant in (6.1).
Furthermore, for two such initial data ug,ug € Y7 such that ||ug||ye.e, |to|lyec < R, we have

lu—llxy < Clluo—Tollyne if1<p<?
(8.4) l|lu — ﬂHtiw < Clluo — uo||%p.e  for some >0 if1 <p<2
lu—llxy < Clluo—Tollyne  ifp>2
and for any t € (tg — 1,to + 1),
[u(t) — at)|lyee < Cllug — tol|§pe  for some 0 >0 if 1 <p <2
{Hu(t) —u(t)|lyre < Cllug —tollyee if p>2.
In addition, after possibly taking smaller ¢ > 0, and larger 6,k > 1, the solution satisfies

(8.6) sup  [[u(t) — uollpp+r < 1.
te(to—T,to+7)

(8.5)

Finally, let p' > p, € < € and assume in addition that ug € YP, then there exists M > 0 such that

—i(t—to)H

(8'7) HuHLOO((tO_T,tO+T);Yp’,e’) < MHUOHYP’,&’ , u=e¢e ug + v, ||U||ti’ < ||u0HYP/7€/
07T

Remark 8.2. Proposition 811 holds for the equation
{i@tu — Hu = cosp_gs(2t)SN(|SNu|p_1SNu), (t,z) € (—%, —) x R,
ult:to =ug € EN7

with uniform estimates with respect to the parameter N > 1. This is a direct consequence of the proof of
Proposition Bl and the boundedness of Sy on LI(R) spaces for 1 < ¢ < 400 (see (311 and Lemma [6.2]).

Proof of Proposition [8]]. Consider the constant Cp > 0 in ([6.7]). We will show that the operator K, defined

in (82), has a unique fixed point v in the closed ball of radius 1/Cy centered around ug = e~it-to)H

in Xg) -
Step 1: the operator K maps a ball of Xt’fw into itself. We have to distinguish several cases with respect
top > 1.

e Case p > 2. From (B.5)) applied with o = p/2, we get

Up

1
17t + )l < C 7 W wllwes + o olbwna) (1@ T T e 170 + 1) P T 0l ).
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Taking the L} norm and using Hélder inequality gives,
1_1 1
HF(U’g—i_U)HLl(ItO,T;HP) < CT2 (”< >p/2u0”L8(It0 PRAVZE + H< >p/2UHL8(ItO’T;Wp»4))

(Il ¢z Lo Dbl D (I i) T [ >2(”p71)”Higé—l)(zto’f;m(p—l)))
(8.5) < Ot (Juollyoe + ol )"
— Subcase 2 < p < 5. First, notice that for all [t| < %
0< COSPT{)(Zt) < C’(% - |t|)¥
Therefore, since 7 < 1(5 — [to]), for all t € I, -, we have T — [t| > Z — |t0| — 7 > 2(Z — |to]), hence
Vte I, r, cos = (2t) < C(— — ’toD
and together with (88 we deduce
| cos?@s)F(uS + v HLl (g 2 5) <Crs (— - ’toD (”U()Hyﬂs + H’UHXP T)p.
Thus we get, using the inhomogeneous Strichartz estimates (5.2])

(8.9) I W)lixp =< CTS(— ~Jtol) T (Jluolyne + ollxp )"

T

As a consequence, in (83)), taking x,d > 1 large enough and ¢ > 0 small enough shows that the operator K
maps the unit ball of X _ into itself.

— Subcase p > 5. In this case, we simply use that 0 < COS?(Qt) <1 and get
3
(8.10) IK@xp . <O (luollvee + Iollxy )’

and conclude similarly.
e Case % < p < 2. We can proceed as in the previous case, but here we apply (B.5) with o = %. In
particular we get the estimate

| cos™s* @) F(ud + )| s sy, ey < €73 (G = o) T (ollyee + ol )"

With the inhomogeneous Strichartz estimates (5.2]) we deduce
(8.11) I W)lixe < Crs (Z ~Jto]) " (uollyee + ollxp )

Hence we get, as before, taking in (83]) the parameters k,d > 1 large enough and ¢ > 0 small enough, that
the operator K maps the ball of radius 1/Cy of Xﬁw into itself.

e Case 1 <p< % We now use (5.0)), and get
-1
1F @+ 0) |y < C b llwor + [ollwoer) (g llze + loll2s)
and using the Holder inequality in time, the bounds (6.3]) and (6.4]), we get

(8.12) | cos¥(2s)F(u£ <

+v HLl (Itg, 7 HP(R))

8—p -1
<Crs (— - \tOD (”UoHL8 (g ey T VI Ls (1, - weer) )(HU(J)[”US(I,&O,T;LS) + ”U”Ls(ItO,T;LS))p

87
<Crs (—— [to]) = (HuoHWe +llvllxg )"

With the inhomogeneous Strichartz estimates (5.2]) we deduce

87
(8.13) I W)lxp < CTs (— — ltol) = (HUOHYM +lvllxg )"
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and conclude similarly.
Step 2: the operator K is a contraction. Let v,w € X/ _ be such that [vllxe llwllxe < 1/Co. The
’ 07 0

,T

contraction argument depends on whether p > 2 or p < 2.
e Case p > 2. We follow the same lines as in Step 1, but using (5.7)) instead of (5.6]). We get
| cos ™= (25) (F(uf +v) = F(uf +w))]| <
cos S uy + v Uy T W) L, ey =
3T p=5 -1
<Cri( —ltol) * Ml —wlixp (luollyee + lollxg )"
which implies according to the inhomogeneous Strichartz estimates (5.2)),
3, p—5 -1
1)~ K(w)lxp < C8(G ~ lto) T o~ wilxp_(uollvec + lollx )"

and we get the contraction by choosing k,d > 1 large enough and ¢ > 0 small enough in ([&3)).

e Case % < p < 2. We shall prove that K it is a contraction in a weaker norm. Recall that X2 =

to,m
L>®(Iy, 73 L?) N LY(Iy, 3 L*). From Proposition 5.5 we get
-1
(8.14) HF(ug + v) — F(ug + w) HL2 < Cllv— w||L2(Hu0||Loo + ||v||pe + ||w||Loo)p

and as previously we get

p—5
| cos™" (28) (F(uf + v) = F(uf + w)) HLl(ItO,T;LQ) <
3 T p—5 p—1
< O7s (7~ [tol) = llv - wlixy (luollyee +lvllxg  +llwlxg )"

Taking in (B3] the values k,0 > 1 large enough, ¢ > 0 small enough we get (since ||v||ti < 1/Cy and
07
fwllgs < 1/Ch).

1
1K) - K@y | < 5llo-wly

The map K sending the ball of radius 1/Cj of Xgm into itself and being a contraction for the X,%J topology
has a unique fixed point in the ball of radius 1/Cy of Xt’;’T.

e Case 1 < p< % The proof is similar to the previous case, but using (5.8]) with the parameter r > 2
appearing in the definition of Y€ instead of (8I4]).

Step 3: Regularity of the fluctuation. To conclude the proof of the first part of Proposition R.]] it remains
to prove that

veC((to—T,to+7); H'(R)).
Since v = K (v), we get

to _ )
v(ta) —v(ty) = —z’/ cospT5(2s)e_Z(t_s)HF(u£(s) + v(s))ds.
t1
Then, as in (8] (resp. (8I0), (RII) and BI3)) we get
7T _
[o(t2) —v(t1)llne < Clta — tl\%(z =t (luollyee + llvllxg )"

with 7 = max (%, 0), hence the result.

This concludes the proof of the first part in Proposition [B] (existence, uniqueness, and regularity of the
solution).

Step 4: proof of ([84]) and (83]). Consider two solutions u = u(’; +vand u = ﬂg + v of the equation (8I]).

e Case p > 2. To prove (B4, we again use (5.7)) and get

| cos"=" (25) (P + ) = F G +9)) || o, ey

3 T p—5 ~ ~ ~
< O73(7 — lto) 2 Il +0) = (@ +D)lxp, (luollyee + [dollyee + vllxy

to,T to,T

~ —1
+7lxp )"
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which implies, choosing again x,d > 1 large enough and ¢ > 0 small enough,

(8:15)  [[Kuo (v) = Kay () xp - <

~ ~ —1
< CTs(Z —Jtol) =" (luo — Tollye + [lv — Olixg ) (luollye + l[dollyee + Ilvllxp + 17llx )"

< 5 (llwo = ollyre + llv =Bllxp ).
Since for the two solutions K, (v) = v, Kg,(v) = v, we get

lv ="2llxp = 1Ky (v) = K (0)llxp . < lluo = tollyee.

to,T

t—to)H

Coming back to the solutions u = e *t—t0)Hy 4 4 7 = =i ug + v, we get

lu —ullxp . < Clluo — tollye.
Finally, to prove (8H]), we only use that, since v — v = Ky, (v) — Kg,(v), we have from (815
v = 0llLoe(r, 70y < [l — tollyee
together with

[u(t) — @(t)|lyee < le” 0 (ug — o) lyme + () — () ||2e < 2||uo — oy e

° Case s <p<2 Letu= ug + v and u = ﬂg + v. With the arguments of Step 2, we get the bound

lv — U”Xo < Clluo — to|lyre. Then by interpolation of this bound with [[vflxe ,[[v]lxp < 1/Co, we
0,7 07

T

deduce that for all 0 < P <p

0 p"
< Cllug — o |lypes 0=1—-~—.

(816) H'U —5”an < , P
07T

We are going to follow a strategy inspired from [I5]. According to (BI0) with o = %, we get that for all

[uol[yee, [dollyee < R
1 (uf + ) = F (@ + )| g, ey <
<R+l + 1015, ) (lvo = Tollvee + o = Bllxg, )+

1
+ R+ |[vlxe, Mo —2]"

L8e=1) (I, TW4(P 1) A4p—1)

)
< CR"™(Jluo = T llyne + v = Fllxy, ) +CRIv =37

to T
for some 4%2—:1) < p" < p, by ([6I0). Now, we use ([BI0) together with Proposition B and get
[o—llyy <
1,7 p—5 ~ ~ 1
< CRP 1(1 _ ‘to‘)p2 T“(HUO — U()Hyp,e + H’U — U”tio»f) + CR(— — ‘to’) 2 TKHUO — uOHYp )

Thus, choosing CR(F — lto) 2 3R < 1, gives

~ - ~ 0(p—1
lo=3llxp < lluo = Gollyne + luo — Gollyhx .
which proves (84) when 3 < p < 2.

e Case 1 <p< % The proof in this case is similar to the previous one, by replacing (5.I5]) in Proposi-
tion 0.6 by (5.I6). We do not write the details.



32 NICOLAS BURQ AND LAURENT THOMANN

Step 5: proof of ([RB7). Finally, to prove (81), we revisit the first step. We detail for example the case
1l<p< % Starting from (8I2), with p replaced by p’ > p, and the same choice of 7 > 0, we get

|7 (uf + ”)HLl(uO,T;w’(R)) =

8—p —1
<Cr's (|’U£|’L8(1tw;wp'm) + HUHLS(%’T;W,)/,T-)) (Hug”LS(ItO,T;LS) + HU”LB(AO,T;LS))p

8—p —1
< OrF (uollywes + ol gy ) (luollves + ollxg, )"

We deduce with the previous choice of 7 > 0 (possibly choosing a smaller ¢ > 0 in 7),

8—p

8—p T es "
OT (g = o))" T (uolly e + 10l ) (luollyoe +llvllx, )

IN

”'U”Xfol,q—

IN

(HUOHYﬂ’,E’ + ”UHpr )
tO,T

| =

which implies
Ioll gy < 2ol

Coming back to u gives (8.1).

Step 6: proof of ([B.6]). Again, we detail for example the case 1 < p < % We study the contributions of
—i(t—to)H

u=-ce ug and v = K (v). Since the Y€ norm controls the L>; W7=P+L norm of e~#H v, we have

(8.17) e 0 g — || yyn-epir < 2R.

On the other hand, since
t
(8.18) e =10 g — gl e aper = || / (e 0 ug)ds || 0 < RIE—to] < R
to

Interpolating between ([8I7) and ([8I8]) gives
ey ], < 2R

for some €y > 0, and a suitable choice of ¢, §, k > 0 ensures that

1

_i(t—to)HuO o UOHLp+1 < 5

le

Let us now turn to the analysis of the contribution of v. Replacing in ([812)) the interval Iy, » by (¢',t), we
get

p—>5

lv(t) — v(t")|| e I COST(2S)F(€_i(S_tO)HUQ + v(s))

IN

HLl((t’,t);HP)
< Clt—#]5(F ~ o) 7 RV,

Now according to the Sobolev embeddings H” C LPT!, which implies

p—>5

2 RP

8—p T
[o(t) = v(&)l| Lo < CJt - t'\Tp(Z — [tol)
and a suitable choice of ¢, d, k > 0 ensures that

t=t1<7 = Ju(t) - u)lle+ <

)

N —

hence the result. O
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9. GLOBAL EXISTENCE FOR p > 1

In this section, we assume qo = (0,1,1,0), i.e. pg, = pro. We show that the problem (NLS)) is globally
well-posed on a set of full yp—measure (Theorem [[T)). We start with a result on the harmonic oscillator
side.

Proposition 9.1. Let p > 1 and consider
ELifl<p<2
p <
if p>2

chosen sufficiently close to 7%1 or % respectively so that the assumptions in Section[@ are satisfied. Let € > 0
chosen small enough in the definition of the space YP€. There exists a set X of full po—measure such that
the local solution w of (81 with initial condition ug € X is defined on

;o JEERD ifi<p<s
R ifp>5

D=

and we shall denote it by
w=®(t, to)ug = e ETOIHyy 4y,
Moreover, for every uyg € 3 and for any n > 0, there exists C > 0 such that

C(1+(F-1)T"), vee(-55) #l<p<5

[@(¢, to)uollyre < .
C(1+log5(1+yty)), VteR if p>5.

Furthermore, we have an additional smoothness property: there exist K,~v > 0 such that for all ug € 3,
there exists C' > 0 such that

CL+(F-[)"), vte(-%.%) if1<p<5

(9.1) [v(@)[le < .
C(L+t))(1+1log2(1+[t])", VteR ifp>5.

We emphasize that the constants K,~ > 0 which appear in the previous statement are deterministic, and
depend only on p > 1 and p > 0. They are obtained by an iteration of the local well-posedness result on
small time intervals (see the proof of Proposition [0.2)).

We proceed in three steps. First we prove bounds (independent of N > 1) on the solution of the
approximate equation (4], then we pass to the limit N — +oo to get well-posedness for (81]) on the
interval I. Finally, we prove the quasi-invariance result. For simplicity, in the proofs, we only address the
existence for positive times.

9.1. Uniform estimates.
Proposition 9.2. Let p > 1 and consider
ELifl<p<2
p <
if p>2
p—1

chosen sufficiently close to =5 or % respectively so that the assumptions in Section[@ are satisfied. Let € > 0
chosen small enough in the definition of the space YP°. Let n > 0, then for all i, N € N*, there exists a
un—measurable set Eﬁv C En so that there exist ¢, C, ey > 0 with

() < Ot

D=

and for all ug € f]’N

i+ 24 (Z— )T, Vte (—I,T) ifl<p<5
(9.2) 1 n (£, to) o]y ee < t A
i+2+logz(l+]t), VteR if p > 5.
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i(t—to )H

Moreover, there exist K,,7y, > 0 such that for all uy € S , setting vy = Py (t,tg)ug — e~ ug, there

exists C' > 0 such that
Cli+24 (Z—|t)~ K", vte(-Z,%) ifl<p<5
(9.3) lon ()]l < , y
CA+t)(i+2+1ogz(1+]t]))”, VteR ifp>5.
9.1.1. The case 1 < p < 5. It is enough to consider the case tg = 0. We set, for 7,j > 1 integers,
BY = {ue En : |lullyee <i+j}.

Let 0 < a< 5%;;' For any t' € (-7 j%, T ]%), thanks to Proposition B there exist ig € N and v > 1,
which only depends on p > 0 and p > 1, such that

(9.4) T=c(i+j)"
for every t € (t' —1,t' +7), i > ig,
(9.5) On(t,t)(BY) c{uec By : |Jullyse <i+j+1}.

Namely, the time of existence of Proposition BIlis c(i + ) "(5 —t')° > c(i + j) ™ for v = k + da. In the
sequel, [z] stands for the integer part of z € R. Remark that for [k| < [(§ — J%) /7], and since for i > i
large enough we have a < «y, then

T 2 s T
< _=Z )Y < = <l

(k+2)t < 1 ja+2c(z+j) <y = kr < 1 27,

and similarly
—T 2T <k
Let
[(5—5%)/7]
Byt =aykr,007N(BY), =¥= () By

k=—[(5—5%)/7]
Notice that thanks to ([@.3]), we obtain that the solution of (@Il with data ug € EZNJ satisfies
S s 2
(9.6) |[®n(t,0)uo |y, <i+j+1, t< i
Indeed, for t < 7 — j%, we can find an integer |k| < [(§ — ]%)/T], and 7 € [—7, 7| so that t = k747 and thus
u(t) = Sy (kT 4+ 71, k1) (PN (kT,0)up). Since ug € E?V’ implies that @ (k7,0)ug € Bj\’,j, we can apply (.5

and get (9.0).
By Proposition {2 the measure vy, is quasi-invariant by the flow ®y and more precisely from (Z5])
with s =0

5—p
0, . cos™ 2 (2kT)
uno(EN\BY) < v (B (b, 0)(Ex\BLF))
. 50p
< VNJCT(EN\BK/:])COST(QICT)
< MN(EN\B;L\,[]')COS%_p(QkT)‘
Now, since
7T 4
kTéZ——, COS(Q]{?T)Zj—a, a<ﬂ’

by the large deviation bound of Proposition and Remark [[.4] we have

57 —5)a
KN (EN\B%)COSTP(%T) < Ce_c(i'i'j)%%i < Ce—c’(i—l—j)fo
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where eg = 2 + ozp—gs > 0. We deduce

(9.7) UN.O (EN\E%) < Ci + j)e~d DO < Ce=eli+3)0
Next, we set
+00
(9.8) S ==V
j=1
Thanks to (@.1),
(9.9) VN,O(EN\iév) <C Z e—c" (i) 4 o Z o—¢ ()0 < Cec.
J<i G>i

In addition, using (@.6]), we get that for every i > ig, every N > 1, every ug € EZN, every 0 <t < 7,

@ (£, 0)uo|[yoe <i42+ (% -

_1

)=,

Indeed, for 0 <t < 7 there exists j > 2 such that ﬁ <i-t< %a and we apply (@.6]) with this j > 2.
4

Choosing a@ < =% but arbitrarily close to —— proves . To prove , for uy € yh , we apply
5—p 5—p N

Proposition Bl with Remark [82] which implies that on each interval [k7, (k + 1)7], we have

e—i(t—kT)H

u= U lt=kr +on,  Jlon(@)[ne < 1.

Iterating this estimate between 0 and ¢ leads to (recall that 7 = ¢(i 4+ j)™7)
O (t,0)ug = ¢ Mug + vy, [lon(®)llue < Cli +4)7,

and for ug € i’N, choosing again ﬁ <i-t< ]% gives

; v
D (t,00u0 = Mg+ oy, o (@)l < O (i + (5 —1)7%) ",
which proves ([@.3]).

9.1.2. The case p > 5. We revisit the proof above, taking benefit from the better estimate in Proposition 8]
and ([@3]). Thanks to Proposition BJ] there exist i > 1 and v = k > 0 (only depending on p > 0 and p > 5)
such that if we set

T=cli+7)77, v =K,
for every tg € R and for every t; € (tg — 7,tg + 7), @ > i,
(9.10) Dy (tr,to)(BY) C {uec By : [Jullyoe <i+j+1}.
Let €9 > 0 to be fixed later and

[2¢09 /7]
Bt =en(hr,0)7'(BY), = [ By
k=—[2¢032 /7]

where [207° /7] stays for the integer part of 27 * /7. Notice that thanks to (@I0), we obtain that the solution
of [@I) with data uy € X7}/ satisfies

(9.11) @ (8, 0 utg||ype SiJ+1, t< 209,

Indeed, for ¢ < 203° we can find an integer k = (t/7] < 2¢03* /7 and 71 € [—7, 7] so that ¢t = k7+ 71 and thus
u(t) = ®n (kT + 71, k7) (PN (kT,0)up). Since ug € LY implies that @y (k7,0)up € By, we can apply (@10)
and get (O.IT).
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Now we apply Proposition d.2] with s = 0, and from (D) we deduce
vno(EN\BY™) < vnpr (Pn(kr,0)(Ex\BY™))

< UN kr (EN\B]Z\?)
< un(EN\BY).

Then, by Proposition and Remark [74] we have
un (Ex\BY) < Ce e+,
which in turn implies
(9.12) uno(Ex\ZY) < Cli + j)r2007 e+’ < g (4)7
if €9 < ¢/2. Next, we set

—+00
(9.13) =)=V
j=1

Thanks to (@.12)),
vno(Ex\EY) < €Y e ) < g,
j=1
In addition, using (@.I1), for every i > iy, every N > 1, every ugy € §§v= every t > 0,
| n(t,0)uo]|y,. < i+ 2+logz(1+1).

Indeed for t > 1 there exists j > 1 such that 200U —? < ¢ < 295” and we apply (@II]) with this j > 1. This

proves (@.2)). To prove (Q.3]), for ug € Eé{,j, we apply Proposition B1] with Remark which gives that on
each interval [k7, (k + 1)7], we have

U= e—i(t—kT)H

U =g +on,  |Jon(t)]lpe < 1.
Iterating this estimate between 0 and ¢ on each interval [kT, (k + 1)7] leads to (recall that 7 = c(i + j)™")
DN (t,0)up = ¢ ug +vn,  on(B)lle < C(L+ 1)+ )",
and for ug € i’N, choosing again 260(i—1)* < ¢ < 9c05” gives
O (t,0)ug = e ug + vy, o ()]ae < C(1+1)(i +log (1 +1))",
which proves (@.3]).
9.2. Passing to the limit N — +4oco. For integers ¢ > iy and N > 1, we define the cylindrical sets
(9.14) vo={ue XOR) : Tyue 2y},
where iﬁv is defined in ([@8) or in ([@I3]). Next, for i > iy, we define
Y= {u e X'(R): EINk,kETOO Nj = 400, Jun, € Eﬁvk,kli)rfoo |Sn un, — ullyee = 0}.
Let us prove that X is a closed subset of Y€, The closedness property is clear, it is enough to show that

¥ C YP€. Assume that there exists uy, € Eévk such that limy_, 4 ||Sn,un, — ul|yre = 0. Then for any
P € N, as soon as N, > P, we have

18p(u, — w)llyne = [1SE(Snytu, — w)llyne < CllSnun, — ullyre - 0.
As a consequence, using ([@.2]) (with ¢ = ¢ty = 0) and Lemma [6.2] we deduce

[Spullyee <limsup [|Sp(un,)llyee < C(i+1)
k——+o00

and passing to the limit P — 400, we deduce that u € Y€ and
Jullyre < CG+1).
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Next, we prove we have the following inclusions

+oo 400
(9.15) limsup XY = ﬂ U S, C Zh
N—=o0 N=1N,=N

Indeed, if u € limsup XY, there exists N — 400 such that
N—+o0

Iy, u e i’Nk,
and the same proof as above shows that
ue Y ullyee <C(i+1).
Now, we clearly have
[Snu — ullyre = 0(1)n— 40,
and since S, (Il u) = S,u, the sequence uy, := Iy, u is the one ensuring that v € 3*. This proves ([@.15]).
Consider Gy (u) = exp(—ﬁHSNuHiﬁl(R)), G(u) = eXP(—ﬁHU”I;;L(R)) and recall that
dvy = G(u)dpo, dvn o = Gn(u)dpo.
As a consequence of ([@I5]), we get the inequality

(9.16) vo(2Y) > v (limsup SY).
N—4o00

Using Fatou’s lemma, we get

(9.17) vo(lim sup XY) > limsup vo(XYy) .

N—+o0 N—o0

We have (because the set E’]'V is cylindrical),

w(Ey) = | Glu)dpo(u),
Xy
and
I/N7()(§§V) = [ Gn(uw)dpn(uw) = |  Gn(w)duo(u).

Xy XN

We deduce
(=)~ aEi0)] < [ 160 = G la)dia(w) = of1)x- o
Xy

where we used the dominated convergence theorem and the fact that pg—a.s. v € LPT! and consequently
Ho—a.s

Nl_l)liloo Gy (u) = G(u).

Therefore, using Proposition [0.2], we obtain

lim sup vp(Xy) = limsup VN,O(E}LV)
N—o0 N—00

> limsup (vxo(Ew) = Ce™) = vo(X"(R)) = Ce™ ™.

N—o0

Collecting the last estimate, (@.I6]), and ([@.I7]), we obtain that
(9.18) 2 (EZ) > 1vy(XO(R)) — Ce™ .

Now, we set

o0
E::UEi.

=10
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Then, by ([@.I8), the set 3 is of full vy—measure (and hence also of full pp—measure). It turns out that one
has global existence for any initial condition ug € . Recall that @ stands for the extension of the flow ®n
on H™¢(R), see ([L8)). We now state the global existence results.

Proposition 9.3. Let p > 1 and consider
bLifl<p<2
p <
: if p>2
chosen sufficiently close to p%l or % respectively so that the assumptions in Section[d are satisfied. Let € > 0

chosen small enough in the definition of the space Y. For any initial condition uy € X, there exists a
unique global solution w of [BJ) in the class

u=e =y 4 (I, HP(R)),

where
[ (—%,%) ifl1<p<5b
R if p>5.

We shall denote this solution by u = @(t, 0)ug. Moreover, every integer i > ig and for any n > 0, there
exists C' > 0 such that for every ug € 3

Cli+2+(Z— [, Ve (-T,7) ifl<p<5,
(9.19) o0t topualre < { ' ) o
C(i+2+1logz(1+t])), VteR if p>5,
and if ®(t,to)ug = e~ "¢t Hyy 44 we have the bounds
Cli+(Z—t)) "), vte(-Z,%) ifl1<p<5b
(9.20) Jo(®) e < | 1 i _
CA+t)(i+2+1ogz(1+]t]))™”, VteR ifp>5.
Furthermore, if (uo N, )k>0 € Eﬁ'vk, N}, — 400 are so that
kll)liloo ”SNkuQNk — u()Hyp,e = 0,

then for allt € I
(9.21) Vo < p, kgﬁﬂ®mﬁﬁmww—u@ww¢20

The key point in the proof of Proposition is the following lemma. Recall the notation I, , = (to —
7,to + 7) and recall that the set ¥%; is defined in ([@.I4), (0.8), and (@.I3).

Lemma 9.4. There exist k,0 > 1 and ¢ > 0 such that the following holds true. Let p satisfying the
assumptions of Proposition[9.3. For any R > 1, consider a sequence up n, € X, and uy € YP€ such that

(9.22) luollyee <R, lluollysc <R, Yo <p, lim |lugn, — uollyec = 0.
k—+00
Then if we set

(9.23) T < {

cR™N(Z —|to])° ifl<p<5
cR™"F ifp>5
the quantities CTDNk (t,to)uo,n, and ®(t,to)ug exist for [t —to| < T and satisfy
1@, (¢ to)uo N ooy - iveey S R+, ([ @t to)uol|poe(ry, ,yvee) < R+ 1.
Furthermore,

(9.24) Vo <p,  lim 1@, (£, to)uo, v, — B(t, to)uol| oo (1, iye) = 0.
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Proof of Lemma[9.]] The first part of this lemma is a direct consequence of our local well-posedness results
of Proposition Rl and Remark It remains to prove ([@.24]). For that, let us write

—i(t—to)H

D(t, to)ug = u = e_i(t_tO)Huo + v, Oy, (¢, to)uoN, =ur =€ Uo,N,, + Uk

Let us now remark that from the first part in the lemma,
@, (¢, to)uo,n, — Pt to)uol oo ((to—rto+7) v o) < 2R + 2,

and consequently it is enough to prove ([@.24) for some o > 0. We have

t—to)H(

u—uk:e_i( ug — uo,N, ) + (v — vg).

By assumption, for any 0 < o < p

—i(t—to)H(

[le ug — uo,N, ) |lyee = [luo — uo,n, lyee = o(1)r— 400

Therefore it remains to show that some o > 0 we have

(9.25) [ = vkl Lo (1, v o) = O(L) k4o,

for 7 > 0 chosen as in the statement of the lemma. Set wy = v — Sy, v and let us prove that
(9.26) Wkl Loo (£, voe) = 0(1) k400,

which will imply ([@.25) by Lemma and (87). Observe that wy solves the problem

(10, — Hywy, = cos'2 (2t)(Jul"" u — S, (1Sn urP~" S, ur))

p—5

(9.27) = cos 2z (2t)(1 — S%Vk)(|u|p_1u) + COS%(Zt)S%Vk (|u|p_1u - |SNkuk|p_lSNkuk)

with initial condition wy, |¢=¢,= 0. Standard estimates now show

| cos™= (26)|ufP~ul| < Orullfy < OTY(R+ 1)
07

(Ito,T;Lz)
and consequently, by dominated convergence,

(9.28) [ cos™2” (26)(1 — S%. ) (JulP~ 0 as k— +oo.

u)HLl(ItO,T;Lz)

Thus from the Strichartz estimates (5.2]) in Z°, we deduce that the contribution of this term to wy, is bounded
by o(1) in L>=;L?. We estimate the second term in the r.h.s. of (@27) by using a direct manipulation

on the expression |z1[P7 'z — [22[P"'22. Recall that X = = L(Iy 7 L*) N L* (14,73 L°°) and denote by
)Z'gm = L3Iy, +; L*) N LY(Iy, ; L*°). Then by Proposition (.5

(9.29) || (:os¥(2t)5]\r,c <]u\p_lu - \SNkuk\p_lstuk> <

HLI(ItO,,;m)
< Crfflu = Snuellgy (lullxg, |+ ISnauelxg )
< CT(R+ 1P ([l O (ug — S uo.n) | oo 1y 0 vee) + ||wk||x,9w)
< OT"(R+ 1P ([luo — Swnyuonellyee + IIwkllng,T)
S 0(Dpstoc + CT(R + 1)p_1||wk||X?O’T :
We deduce from ([@.28]) and ([@.29]),

lwillxp =< CT(R+ 1)”_1HwkagM + 0(1)k—sto0 -

By taking O7%(R+1)P~! < 1/2, we infer that lwellxo = 0(1)k—+oc- Next, by interpolation with (8.1), we
07T

deduce that for any 0 < o < p, we have H"wk”X% _ = 0(1)r—4o00- Finally we choose o < p large enough such

that we can apply (6.0]) which implies ([@.26]). This completes the proof of Lemma O
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Proof of Proposition [9.3. The local existence result follows from Proposition Bl Here the main points are
the globalisation and the limit ([@:2I]). We only consider the case 1 < p < 5, the case p > 5 being similar. We
assume in the sequel that to = 0 in (8)). Let ug € ¥*. By assumption, we know that there exist sequences
Ni € N, ug n, € Eﬁ'vk such that

SN, vo.n, — tollyee = 0.
Consequently, by Proposition [0.2] we know that for any n > 0
~ . ™ p—5_
(9.30) | @, (t, 0) M, o, )| ypre <0 +2+ (3 - #)E -,

The strategy of proof consists in proving that as long as the solution to (81 exists, we can pass to the limit
in ([@30) and there exists a constant C’ > 0 independent of i > iy such that

T
Y
which (taking into account that the norm in Y”¢ controls the local existence time), implies that the solution

is global and satisfies (Q.31]) for all times.

Let us fix T' € (=%, §). We assume

(9.31) |2t 0oy, < C'(i 24 (5 =0T )

(9.32) @, (£, 0) (T uo.n, ) ||ype <A, for [t <T
and we want to show
(9.33) |®(t, 0)uo |y, <C'A,  for [t| <T.

As a first step, let us fix t = 0. For Q € N, if N, > Q, IIy, S = S and consequently, using Lemma [6.2]
and the definition of ¥¢, we obtain

1Squollyee = lim [Sq(Mn, uo,n)llyee < C°A

and passing to the limit ) — +o00, we deduce

€ — l s€ < /A.
[|uollye Q_l}TOOHSQUOHYP <C

This implies that the sequences Iy, ug n, and ug satisfy the assumptions of Lemma (with R = C'A).
As a consequence, we know that

Vo <p,  lim 1@ v, (£, 0) (L o, ) — P(t, 0)to]| oo ((0.1)yc) = O

for 7 = cpA™" given in ([@23)). Now we show that this convergence allows to pass to the limit in ([@32]) for
t = 7, using Lemma again. Indeed, fix @, then for Nj > 2Q), the sequence Sg (<I>Nk (7, 0)(HNkU0,Nk))
is bounded in Y€ by C’A, and converges to Sg ((I)(T,O)U()) in Y€ for all 0 < 0 < p. Here, the constant
C’ > 0 is given by Lemma 62l We deduce that So(®(7,0)ug) € Y€ and

Sq (®(7,0)ug) lyee < C'A.
Next, passing to the limit Q — 400, we deduce that ®(7,0)uy € Y€ and
|®(7,0)upl|yee < C'A.

Now, we can apply the results in Lemma [0.4] with the same A as in the previous step (remark that the
assumption (3.22)) is now true for any o < p) which implies that ([@.33]) holds for ¢ € [0, 27], and so on and
so forth.

Notice here that at each step the a priori bound does not get worse, because we only use the results in
Lemma to obtain the convergence of H(I)Nk (t,0) (N, uwo,N,) — <I>(t,0)u0HYp,€ to 0, and then obtain the
estimates on the norm ||®(¢,0)ug||yre by passing to the limit in ([@32]) (applying first Sq, passing to the
limit & — +o0, then to the limit Q — 400). A completely analogous argument holds for the negative
times ¢. ]
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10. QUASI-INVARIANCE OF THE MEASURES

10.1. Passing to the limit N — +oco in Proposition Recall that the measure v; is defined in (£3))
by

cos_2_ cos 2 (2t) ” ||p+1
th =€ G LPH(®) d,u().

In particular
vy < o and po <K vy
The purpose of this section is to show the following result.

Proposition 10.1. For all t,t' € (=5, %),

B(t, ") gpo < po < P, ) 0.
More precisely, for all 0 < |t'| < [t| < § and all AC X,

vy (2(t',0)A) ,s  fl1<p<5h
(10.1) v (®(t,0)A (c22) =

[ut,(<1>(t',0)A)} cos(24") ifp>5
and W

[ (@(2,0)4)] (68) ™ if1<p<5
(10.2) v (®(',0)4) < ’ T

v (9(1,0)A) ifp>5.

We will need the following statement comparing ®(¢, to) and @y (¢, to) for small [t — &

Lemma 10.2. Let to,t € (=5, %). Let p' > p and 0 < € < € which satisfy the assumptions of Proposi-

tion[33. There exists k,d > 1 and ¢ > 0 such that if we set

—K(T ) .
;< cR™" (% — |to) ifl<p<b
cR™F ifp>5,

the following holds true: there exist C, 8" > 0 such that for every R > 0, every R' > 0, every ug € Y such
that |[uollyee < R and |Juglly .o < R, if [t —to| < T, then

H(I)(t,to)u() — (T)N(t tQ)U()Hyp,e < CR,N_(SI.
Proof of Lemma 102 Recall the notation uf = e~ t(t=to)Hy ) First, we write
(I)(t, tQ)UQ = u(]; + v, (T)N(t, t())UQ = u(]; + unN
with
v=K(v), oy = Sn (K (vw)),
where the operator K is defined in (8.2). We deduce

O(t,to)ug — ‘T)N(t, to)up = v — N = wp,

where
(10.3) (i + H)wy = (1 — Sn) (F(ud + ) + Sy (F(uf +v) = F(ul + Snon)).
From (87), we know
/
(10.4) ”U”Xfo', + ”UN”XZ;,T <2R
”F(U(J; + U)HLl((to,t);Hp’) <R.
We get

lonlixg | < CRNT 4 |[F(uf +v) = F(uf + Snow) oo 0:12)-

T
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From the Holder inequality we get easily
§' pp—
|F (uf +v) = F(uh + Sxow)lls oyezy < Cr° R o —onlixo

where XtOO’T = L®(Iyy.r; L*) N LA(I}, ; L>). Then taking ¢ > 0 small enough and x > 0 large enough in the
definition of 7, and using the Strichartz estimate (5.2)) in (I0.3]) gives

lonllxy . < CRN + uwllxg = lhunllxy | < 20R'N7.
Interpolation between this bound and ([I0.4]), we get that for all 0 < p < p’
lonlixp . < 2CR' N~ =r)
which implies Lemma O

Proof of Proposition [10.1l Let us prove for example (I0.2)) in the case 1 < p < 5. By the regularity properties
of the measures 14, it is enough to prove this result if the set A is closed. Now we assume that 0 <’ <t < .
Recall that our measures v, are seen as finite Borel measures on Y /€. Let X (resp. Y = (ID(t,O)E) be the
set of full vy (resp. v;) measure constructed in the previous section. Clearly, for all 0 <#' <t < Z,

=003,  Ne=0rt)Sy, S=JY, n=3 =015
i=1 i=1

and by Fatou’s Lemma, '
VB € ¥, I/t(B) = lim Vt(B N 2;)

i——+00
As a consequence, we can replace A by AN Y’ (which is also closed). Let T' < % From Section [0.2]
we know that %% are closed in Y, and from Proposition the set ¢ is bounded in Y uniformly with
respect to ¢t € [0,T] by
Cli+2+ (% — 7)),
Let p' > p, €’ < e sufficiently close to each other. Now from the large deviation bounds in Section [7, if B, is
the ball of radius n in Y*¢', we have, for B € &,

po(B) = po(BNY?") = lim po(B N By),
k—+o00

and the same relation holds with pg replaced by v4. As a consequence, we can replace A by AN YN By,.
Dividing the interval [0,7] by a finite number P of intervals of size 7, applying (87]) we get that for any
te[0,T7], (ID(t,O)(A Nn¥in Bk) is bounded in Y*¢ by MPifk = Ci k. Hence we can assume that ®(t,0)A is
closed in Y?¢ and bounded in Y* ¢ uniformly with respect to t € [0,7]. Now, let 0 <t <¢t<T < 7. For
A e X' we have

Vyr ((I)(t/, O)A) = Vt/( Uk @(t/, O)(A N Bk)) = lim wy ((I)(t/, 0)(A N Bk)),

k—+o00

thus
v (®(,0)A) = vy (D(¢, )2, 0)A) >
>y < U @(t, ) ((@(t',0)4) N Bk)) > lim sup Vt<<I>(t, ) ((2(t',0)4) N Bk)).

k—+o0
As a consequence, it is enough to prove (I0.2) with A = ®(#',0)A replaced by A = (®(t',0)A) N By, and
O(t,t )g replaced by (¢, )Zk Notice that according to ([87), since A}, is bounded by k in Y*¢', we know
that ®(t, ')Ay, is bounded uniformly with respect to ¢ € [0, 7] in Y*¢ by the constant Cir > 0.
We now proceed and prove ([I0.2]) by time increments |t — /| < 7 as defined in Lemma Let g > 0
and N > 1 large enough such that

CR'NY < ¢.
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From Lemma[I0. 2 between ¢’ and t'+7 we have, B, being the ball of radius ¢y in Y€, with A’,: = d(t/, O)gk,

v (Ot +7,t) A} + Be,) = G N (P +7,t) AL + Bey) > 1]1\[111 sup iy (Bn (' + 7, )AL,

——+o00

where the first limit above is simply obtained by the Lebesgue dominated convergence theorem. From (Z4.5])
combined with Remark [£3] we have

(Fne@n (e + 7. ¢)A7))
Una (PN (' + 7, 1) AY) ifp>5

5—
(cos(2(t’~t‘r)))*27p
cos(2t’) 1f1§p§5

Un(AL) < {

which implies 5—p
(cos(z(t’+r)) ) -
cos(2t’)

(ut(q>(t’ +7,t") AL + Beo)> if1<p<5h

(10.5) vp(AL) = lim oy (AY) < ,
N—=+o0 v (@t + 7,t') AL + Be,) if p>5.
We have
51011—130 v (Ot + 7,t') A}, + Bey) = v (@' + 7,t")AY),

and since ®(#' 4 7,t') A% is closed in Y7, passing to the limit € _;,O,, in (I0.5) gives
) (cos(2(t’ﬁ;7’)) ) o

(ut(q>(t’ +7, t’)A;)) stz if1<p<5

v (Pt + 7, t’)Ag) if p>5.

Applying this estimate between ¢’ and ¢ by increments smaller than 7 gives ([I0.2]) for all 0 < |¢/| < |t| < T.
Since T' < 7 is arbitrary, this proves (I0.2). The proof of ({I0O.I]) is similar. The proof of Proposition I0.1]is
therefore completed. O

vy (A}) < {

10.2. Global existence for (NLS,): proof of Theorem 2.2 We are now ready to prove Theorem [22] in
the particular case qo = (0,1,1,0) (uq, = o). For this we use the inverse of the lens transform (Z.8])—(Z7).
From Proposition and Proposition [[0.1] we know that we can solve ([8I]) for every initial data in the
set X, the solution takes the form u = ®(¢,0)ug, and we have full pgp—measure sets 3; = ®(¢,0)X. Applying
the inverse lens transform and (Z9), we define the sets

Ss 1= U(s,0)S = L, (Sis))-
We now check that these sets are of full iy, —measure with qs = (s,1,1,0). Actually by (2I0) we have
tq.(Ss) = o (ft(s)%(_sl)zt(s)) = po(Sys)) = 1.

The first part of Theorem is just the fact that the lens transform conjugates the flows of (NLS))
and (NLSH,)), and the second part follows from Proposition and Lemma [A]]

11. DECAY ESTIMATES AND SCATTERING

In this section we are going to exploit the quasi-invariance properties of the measures ®(t,0)41p to get
almost sure estimates for the evolution of the LP*! norms, and prove the scattering results in Theorem

11.1. Decay estimates. The first step is to prove the following estimates on our solutions on the harmonic
oscillator side, obtained in Proposition

Proposition 11.1. There exists a set 5 of full pg—measure such that for all ug € i there exists C' > 0
such that the global solution of (NLSHY), given by ®(t,0)uo, satisfies

Cllogrti (5 —[t])], Vte (—Z,%), ifl<p<5

[@(t, 0)uo || o1 < )
C(1+1logz(1+]t])), VteR, ifp=5.
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By applying the inverse lens transform 2.8]), ¢t € (=%, %) — s(t) € R using that
1_1
(11.1) [Z(G)||Le = cosa™2(2t) (|G| a,
we can translate this result into

Corollary 11.2. There exists a set ¥ of full po—measure such that for all uy € i, there exists C' > 0 such
that the global solution of [(NLSy)), given by W(s,0)uo, satisfies for all s € R

s))1/(p+1)

[~

C’(l+1og%7_ Fl<p<bs
W (s,0)upl| fp+1 < (s)2 PFT '
o s if p>5.

For p > 5, Proposition M1 follows from (@.19) and the fact that the Y€ norm controls the LP*! norm.
For 1 < p < 5, the starting point is the following observation.

Lemma 11.3. Assume that 1 <p < 5. Let A >0 and
Ka = {u € XO(R) ol e > A}.
For any 0 < [t| <
p+1

1 _aptl
vo(®(t,0)"H(Kp)) < Ce™ w31,
Proof. The proof is straightforward. According to (I0.2)) with ¢ = 0 and A = ®(¢,0)~!(Ks) we have

cos(2t)T II ||p+1 >COSL2£(2t)
<

5—p
w(4) < (n(ka) ™™ = ( /;< e w Mgy,
A

5-p
cosT (2t) Ap+1 cos(2t) 72 APt 5—p _ APt
< (N o)™ T = e g0 <
Ka

which was the claim. O

Proof of Proposition [[1.1l We detail the case 1 < p <5 (the case p > 5 is similar). It is enough to consider
the case t > 0. Let M > 0 large enough, to be fixed later, and

.. 1
AV ={ue En; [|Snvulper < Mlogr+i(i+ j)}.
As in the proof of Lemma [IT.3] we get

(11.2) VN0 (@N(t,o)—l(EN\Aﬁ’vj)) <( +j)‘Aff%11
Then with 7 = (¢ + j)77 as in ([@.4), define
[(F—7%)/7]
AP =on(kr, 007 (AY), Sy = ) AY".

and from (II12]), we get

ik A{P‘Fl
vo,N(EN\AR") < (i 4 j)” 77T
therefore
c Vas) _ il
von(En\SY) < —(i+g) 7 s C(i+37)" #T .
Now let

+oo
Sv =[5V
J=1



A.S. SCATTERING FOR THE ONE DIMENSIONAL NLS 45

and choose M > 0 large enough such that if v — AI{-TT < 1. so that
+o0
~. ampt1 a1
von(Ex\Sk) < CY (i +4) w1 < 0t
j=0

Then from ([@.9) we deduce

p+1

von (Ex\(Siy N i) < CitH7™ it 4 Cemi®,
We now claim that for any v € i‘ﬁv N 55\/7 we have
(11.3) 1@ (£, 0] s < M logret (i +1+ (% — ™) +1.
Indeed, for 0 <t < 7, let j > 2 be such that

te [% - 2(] - 1)_’\/7% - 2]'_7]7

which implies j < 1+ (5 —¢)7%/7. With 7 = ¢(i + j)™, we can find an integer |k| < [(Z — %)/T], and
71 € [0, 7] so that ¢t = kT 4+ 7 and thus since from the definition of S}VJ we have
1© v (kT, 0)ul| s < M loga+i (i + §) < M logi+i (i+1+ (% —t)7).
As a consequence (I1.3)) follows from (8.6]) in Proposition
For integers ¢ > ig and N > 1, we now define the cylindrical sets
Sy = {ue X°(R) : Tn(u) € Si}.
Next, for i > ig, we set

S'={ue X°(R): N, Jim N = +00, Jun, € S, N Sjvk,kggloo | Snun, — ullyre =0},

so that, as in (@.I8),
v (XOR)\(S'NYY)) < Cﬂ“-% L Ce—ci0
Therefore, combining the a priori bound ([([L3) with (.21 we get for all u € S* N X¢
(¢, 0)ull s < Mlogs™ (i +j) < Mlogatt (i +1+ (5 —1)7/7).
Finally, define
- @ns),
i=1

which is a set of full yg—measure (since vy and py have the same 0 measure sets), and this concludes the
proof of Proposition 1.1l O

11.2. Proof of Theorem We are now able to prove the following result which will imply Theorem [[.2]

Theorem 11.4. Assume that p > 3. Then the solutions to (NLSy)) constructed above scatter almost

surely when s — £oo. There exist €y, €1,m0,m > 0 and for pg—almost every initial data Uy, there exist
Wi € H7(R) such that

(11.4) 19 (s, 0)Up — €% (Up + Wit )30 () < C{s) ™™, s — %00,
and
(11.5) e~ %W (5,0) Uy — (U + W) |lper ) < Cs)™™, s — Foo.

When p > 5, we can precise the result: for all § < %,

11.6 W(s,0 Uo—eisag U+ Wo)llgsmy < C(s)™, s — Foc.
H(R)
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Pl
For all § < 1o

11.7 W(s,0)Uy — €59 Uo+Wi)|lsmy < C(s)™™, s — +o0.
HO(R)

Remark 11.5. Remark that since e*% does not act on H, hence (ILZ) and ([L5) are different.

Remark 11.6. Recall that Uy is essentially L? (actually BY ., see Section [B.2]). Theorem [T.4] shows that
the scattering operators, 7

GiZUQI—)U()—i-Wi,
which associate to the initial data Uy the asymptotic profiles, are the sum of the identity and smoothing
operators, almost surely defined from Bgm to H.

In the following we give the argument in the particular case qo = (0,1,1,0), and thus g, = po. We refer
to Section [B.4l where we explain how to treat the case of a general Gaussian measure fiq, as it is stated in
Theorem [[T.4l We only treat the case s — 400 (the case s — —oo is similar). The first step is

Lemma 11.7. Let 3 < p < 5. There exist €g,n > 0 such that for po—almost every initial data ug, there
exists an asymptotic state vy € H such that the solution to (NLSH,|) satisfies

u=®(t,0)ug = e Huy+ v,
where for all 0 <t < 7%
™ €
(11.8) [o(t) = vellyeo®) < C(Z — 1),

Proof. In the sequel, we use the notation ug = ey, The function v satisfies

v(t) = —z‘/o cospT{)(2s)e_"(t_5)HF(ug(s) + v(s))ds.

< % Let us show that there exists § > 0 such that

jus

(11.9) /t " cos"7" @9)||F (] (5) + 0(5)) |-t < CCF — 1),

_l_L
Letcr—2 FES)

this will imply that there exists v, € H~7(R) such that v — v4 in H7?(R) when ¢t — 7, with the rate
Y
lo(®) = vl 3 < [lv(®) = villa-o < C(; = t)°.

By Sobolev, H?(R) C LPTLY(R) and therefore by duality L%(R) C H™?(R). Thanks to Proposition [T.1]
we compute for 0 <t < %

jus

/t4 008112;5(28)”}7(1%0(8) + v(s)) HHﬁ,dS

IN

C/ cos' T 28 Huo +v(s HLP+1

IN

C/ cos B (2s) ‘logl’+1 (Z —S)‘dS

< C/ ——s _|log(z—s !ds
P
(11.10) < C(4 )t |log( t)],
where we used that p > 3. As a consequence we get (IL9]). Let us prove that for all k > 0, there exists
€ > 0 such that

(11.11) [o(@) [ werss < C(z —t) "
By Sobolev, for § = p + m - > 0 if we choose p sufficiently close to 2, we get, using (9.20]),

(11.12) lo®lhwsrn < Cle®) e < C(5=)7"
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The estimate (IT.IT]) then follows from an interpolation between (II.I2]) and Proposition 111
Now let € > 0 to be fixed later, and compute

js/mﬁ/? (s)? = 23m/i83vH—fv
= 2cos’z 23Jm/ (s) +v(s))Hev

= 2cos' 2z 28Jm/H6/2 F(ud(s) + (s )))HE—/%

< CCOST 2)|| " (up(s) + o(s D lyeorvm [0l ypersa-

From Proposition [5.2] we get that for any 1 < ¢q,¢2 < 400 such that 1/q; +1/q2 = 1/q,

H|u|p_1uHW6q < CHuHL(p 1)qp Hu||W€’q27

hence, with the choices ¢1 = Z+1, g2 =p—+1,and ¢ = = +1 we get

d m
- /R P 20(s)2 < O(F =)= (I ity + 1ol ) (e lowes + Bollweses ) olhwess

By time integration, for 0 < t < m/4, thanks to (ITII]), we get

b p5 g,
(11.13) lo()2 < llvollZ +CR/ (E— ) s < O
0

provided x > 0 (and hence € > 0) is small enough (depending only on p > 3).
The estimate (ITI3]) shows indeed that v; € H(R). Now, let 0 < 0 < 1, and set o(0) = —0/3+ (1 —0)e,
then by interpolation

—0 7T 06
[o(®) = villzeo < o) = vellpe’ lo(t) = vill3rs < C(5 = 1)

Next, choosing 6 = 6y — 61, with 6y = % and 61 < 6. Then we set ey := o(f) = (3 + €)1 > 0 and
n =00 — €y > 0 for §; > 0 small enough, which implies (ILS]). O

Proof of Theorem[11.7} Now we need to come back to the NLS side. Denote by U(s,y) the solution

to (NLSy)), and by u = Z(U) the solution to (NLSH,). By Lemma [II7 there exists vy € H® such
that v(t) = u(t) — e " ug — v, in H when t — 7/4, with the rate (ILS]). Observe that from (28]

(11.14) Z(S)(ewayvo) Z't(S)H’Uo.
Denote by W, := ¢'ifv, € H® and let 0 < €; < €. By Lemma [A1] (ILI4) and (Z3) we have, with

t(S) _ arcta2n(23) '

U (s) = €% (ug + W) 3 < 0(2 — 1(5)) | Lao) U (s) — L (™% (ug + W) [l
(11.15) < O(F = 4s) " o(t(s)) — e OV e
Then by ([ILJ)
(11.16) (% —1(5)) "M o(t(s)) — vl < 0(% —t(s))™ ~ ()M, s — +oo.

Using the equation we have

(1 = 7=, |

= [ o

m
) e

while on the other hand,
H(l - e—i(ﬂ/4—t(s))H

i || 3er < 2 vy llager
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By interpolation this implies, choosing €; < %
. - c0—¢€1 T €1+
(11.17) [(1 = e =m0 | < C(— 1) ol < C(7 = 4()™ P o I,
for some 1y > 0. Putting the estimates (ILI06]) and (III7) together with (ITI5), we deduce that
|U(s) — eis9; (Uo + W+) l3ger < C(s)™™, s — +00,

which is (IT.4).
It remains to prove (ILEH). According to Lemma [AJ] and (IT.14]), we have

le= % vg |30 < C<s>"|]$_t(s)(e_isag’UO)HH” = C(s)| O vy ||ggn = C{s)"||vo]|3n-
Applying this estimate to vg = U(s) — eis0; (uo + W2 ) gives (using ([[1.4)), with n = %min(eo, ),
le™*%U () = (w0 + W) lan < C(s)U(s) = €% (o + W)l

“(
C/(s)"|U (s) = €% (g + W) [y
Cls)(s)™™ < C(s) ™12,

IN A

which proves Theorem when 3 < p < 5.
Let us now revisit the proof above when p > 5. From Proposition 0.3, (0.20), with vy = v(7),

1 :
Vp < 3 tli}n% |u(t) — e Hoy — U+HHP = tll}m |v(t)

(Z)H'HP - 07

which proves (IL.G). On the other hand, as in (ITI0), and using Proposition [1.1] we get

uy

fom vl = /t o8 (28)][[uf (5) + 0(5) P (1w (5) + 0(5)) s < C(F = 1) 7

Interpolating between these two estimates gives

(p—3)6

|u(t) — e ™ ug — vy ||lys < C(% —t) 7, d=—-00+(1-0)p,

Taking p arbitrarily close to % and using o = % — % gives
) = €=M — v lys < (G — 1) &

where € > 0 can be taken arbitrarily small. We deduce that for any § < 2(%—&1)7 there exist n > 0 and C > 0
such that ' - 5
u(t) — e ™ ug — v |lys < C(3 ) .

Applying the inverse of the lens transform and using Lemma [AT] gives (II.7). U

11.3. Nonlinear evolution of measures and proof of Theorem [2.4l We first consider the particular
case qo = (0,1,1,0). Estimates (23] and (2.4)) are just consequences of (I0.1]) and (I0.2)), and Lemma [A.T]
Let us prove for instance (24]) in the case 1 < p < 5. The bound ([I0.2]) gives

( cos(2t(s)) )igﬁ

(11.18) V) (D(1(), 0)A) < [vy(s) (@(1(5), 0)4) | =7
Then, since t(s) = %n(zs), we have

1
(11.19) cos(2t(s)) = cos(arctan(2s)) =

V1+4s2
Next, by @2.3), we have %) 0 ¥(s,0) = ®(t(s),0), therefore if we denote by ps = .i”t(_sl)#ut(s), from (IT.I8)

we obtain
57
( 1+4(s")2 ) =
1+43E

ps (V(s',0)A) < [,os (W(s, O)A)}
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It remains to compute the measure p; = .,?;(_81)#1/,5(3). Let F: H¢(R) — R be a measurable function. We

compute

/H o P00 = /H g PO

p—5
COS_Q_(Zt) p+1
—cos 2 @y
t(s) L@ d (g (L 5)v))

p-5,, ptl
_cos 2 T2 (2t(s) ”v”p+1

H(R)

where we used (ILI), (IT.I9), and ZI0). Therefore

hence the result.

- ) o
= [ e M e o),
Ho<(R)
1 D
Ps = %(5)#%5(5) =e pfl LPHL g, s

The bound (2Z3) is the result of Corollary 1.2, and the scattering results follow from Theorem [[T.4l In
order to treat the general case qo € Q, we refer to Section B4l The first part of Corollary 23] follows directly
from Theorem 2.4] while the second part is an application of Proposition B.3

APPENDIX A. ACTION OF THE LENS TRANSFORM ON SOBOLEV SPACES

The next result shows that the mapping .2, (defined in (7)) is not continuous in H° spaces.

Lemma A.1. Let 0 < |t| < /4 and let u and U be related by

1 x _iztan(2t)
u(z) = L(U)(x) = COS%(Qt)U(COS(%))e

(i) There exists C > 0 such that for any 0 <o <1 and 0 < |t| < 7/4,

1Ullge@) < Cllullye®, (@) 7ullL2@) < CllUllye @)-

(13) There exists C > 0 such that for any 0 < o <1 and 0 < |t| < 7/4,

o ™ —0o & —0
(A1) o) Ullz@y < C(7 = ) Nulle @y, Nullae @y < C(7 = ED7NU e r)-

The dependence in ¢ of the constant in (A.I]) is optimal, hence when o > 0 the term ||ul®) does not
control ||U /|30 ), uniformly in ¢ € [~ /4, /4].
This lemma is a corrected version of [10l Lemma 10.2].

Proof. Firstly, we write

1) We compute
(4)

iy2 cos(2t) sin(2t)
2

Uly) = cos? (2t)u(y cos(2t))e

iy2 cos(2t) sin(2t)

o,U(y) = cos2 (2t) ((%u(y cos(2t)) + iy sin(2t)u(y cos(2t))) [

with a change of variables, we get

/ 10,0 () Pdy
R

<

<

C cos®(2t) / |0,u(y cos(2t))|*dy + C cos®(2t) sin®(2t) / y?|u(y cos(2t)) [Pdy
R R

Ccos2(2t)/ |Opu(z)dx + Csin2(2t)/ 22 u(z)Pdx
R R

Ollullfy gy

which together with the relation ||U||;2 = |lu||z2 yields the result for o = 1. The general result follows by

interpolation.
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(73) A direct computation gives for t — 7/4

J PPy = cos0(2t) [ faflu(o)Pde ~ e = 5172 [ [oflu(o)Pda,
R R 4 R
and the estimate for U follows (including the optimality). The proof of the estimates for w is similar. [

APPENDIX B. SOME PROPERTIES OF THE GAUSSIAN MEASURES /g

B.1. A more precise description of the measures (. In this Section, we prove a result which charac-
terizes the g as image measures by an explicit map.

Lemma B.1. For q= (s,a,[3,0) € Q, we define
ed = (Wiin(s,0) o My 0 Ag o g)e,.
Then the family (e})n>0 is the L?—eigenbasis of a twisted harmonic oscillator
Hy: = (¥n(s,0) 0 My oAgoty)H (¥ (s,0) 0 MyoAgo 7'9)_1
14 4p4s?
——

associated to the eigenvalues 2n + 1 (we have ||en| 2 = |al).

(B.1) 0% + 4iBs(Bx — 0)0y, + (Bx — 0)* + 2i5%s

Proof. First we have TgHT_g = —02 + (x — 6)?, then

(B.Q) ABTQHT_QA% = —%8% + (ﬁ$ — 9)2
Next, in order to show that
4.2
(B.3) eis0 (AngHT_gA%)e_isag = —14_’#@% + 4if8%sx0, + B2 (x2 + 21'3),
we use the Fourier transform. Define Ff(¢) = [, e7¢ f(z)dx. Then for f € .7(R),
. . . 2 . A~
Fles (wamatr_an )% 1] €) = 5 (5 - (1806 — 0)1)e € (¢
144 4 .2 .
- [+T258§2 — 2if%s — 4ifs0¢ — B0F — 2iB00g + 489s¢ + 02| f(¢)

1 4 4.2
— }‘[( _ +T§8
which implies (B.3), since the conjugaison by M, is trivial. O

02 + 4if?sa0, + (P — 0)° — 4ifiBs0, +2i6%5) £ (€),

Proposition B.2. For q = (s,a,3,0) € Q, the measure g defined in [Z2)) is the image of the probability

measure p on €2 by the map
Q — HR)

+o0o
1
w o Y= Z)\—gn(w)eﬁl.
n=0""
Proof. Let q = (s,,3,0) € Q, and F : H¢(R) — R be a measurable function. We compute
/ F(v)disape0 () = / F(v)d(po o (V4in(s,0) 0 My 0 Ag o 19) ™) (v)
H(R) H(R)
= / F((\I/lm(s, 0)oMyoAgo Tg)(?}))d,uo(?])
H(R)

= /QF((\I/lm(s, 0) o MyoAgo Te)(’Yw))dP(w)a
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then using
(Wiin(s,0) 0 Mo © Mg 0 79) (1) = V({ a,80) = Vo
we get the result. .

Remark B.3. Denote by @, (t,t') = e~ t=tH the linear flow of the harmonic oscillator. Then using that
for all 7 € R, the r.v. e g, and g, have the same Gaussian distribution N¢(0,1)

(B4) (I)lin(tv 75/)##0 = [o-

See also Section [3.11

B.2. The measures 1, are supported on Bg,oo‘ Recall that Hj is the twisted harmonic defined in (B.IJ).
By Lemma Bl Hye), = Aej with A, = /2n + 1.
For 57 > 0 denote by
I(j)={n€eN, 27 <\, <27t}
We have #1(j) ~ ¢2% when j — +o00. Since the family (e}),>0 forms a Hilbert basis of L?(R) (but with
lerllr2 = |af), for o € R, any u € H?(R) can be decomposed

+o0o
(B.5) u= Z uj, with wu; = Z Cney.
Jj=0 nel(j)

Then, following ([B.16)), we can define the Besov space 15’8700(1[%), using the dyadic decomposition (B.5), by
the norm

lullgg ) = sup ||l r2®) < +oc.
' 7j=>0

Observe that for every o € R, the norm ||u(|3 ) is equivalent to the norm

—+00

(37 2% g 22 e) >

j=0
Therefore, for € > 0, we have the embeddings
L*(R) C B3 (R) € X°(R) C H™“(R).
Proposition B.4. Let q € Q. The measure piq is supported on Bgm(R), namely
(B3 o (R)) = 1.
Moreover, there exist ¢, Ky > 0 such that for all K > Ky,
na(u € X°R) : Jlullgg > K) < e K?

Proof. For j > 0, we set & = span{ep, n € I(j)}. We define the probability measure v; on &; via the map
Q — 5]'
1
w o =Y T om(@el
nel(j) "
Let K > 0 and denote by
Bt = {uj € & : ujllr2m) < K},
and

BY = {ue X"(R): [lullzg <K}

Then BYX = j:og BJK, so that

+00
(B.6) ua(BX) = [[ vi(BL).
j=0
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We now show that there exists ¢y > 0 such that
(B.7) vj(BE) > 1 — ¢ 0K,
By definition
vi(uj € &+ |lujllrem > K) =p(w € Q: |yllrzm > K).

2 ’gn 2
”’YJHLZ(R): Z A2~ 22] Z |gn s

nel(j) nel(j

We have

then by the Markov inequality (recall that the law of a complex normalised Gaussian r.v. is %e"m'zdaz,
where dz is the 2—dimensional Lebesgue measure on C), for all ¢ > 0

p(weQ: H’Yj”LQ(R)>K) < p(wEQ: Z \gn]2>22jK2)
nel(j)
< e 12K H E[etlgn\Q] _ e—t22jK2(1 _ t)—#l(j)
nel(j)
< 6—22j(tK2+clog(1—t)) < 6_6022jK2,

with the choice t = 1/2 and K > 0 large enough. This implies (B7). Finally, from (B.6) we get
oo 27 12 2
piq(u € XO(R): Hu||38 >K)<1- H (1- e 02K ) < e~k
: i

which was the claim. O

B.3. Singular measures: proof of Proposition 2.1 Let qo,q1 € Q. In the sequel, for simplicity
we shall assume that qo = (0,1,1,0) in such a way that H,, = H (the general case is similar). Let
q1 = (s,a,3,0). Consider two sequences (g )n>0 and (¢,)n>0 of independent standard complex Gaussian
random variables N (0, 1) and define the random variables

9
’7qow:17 . nﬂ?, 7‘11 Z/\ n

Since (e, )n>0 and (et /a),>o are Hilbert bases of L?(R), the random series

“+oo
Z gn(w)en( Z lp(w)el (z
n=0

both define the same measure called the white noise measure. Recall the definition (B.Il) of Hj, then by
application of qu_ll/ % we deduce that

+oo
~1/2
Xan (@,7) = @Y gn(w) Hyy e () and g, (w, 2) Z A el (),
both define the same measure, which we denote by fiq,. Define

1
T=—H2H".
«@
Then we have T'xq, = 7qo, Which in turn implies T g, = piq,. Actually, for all measurable set A,

Ty t1q,(A) = 1, (T7H(A) = p(xg,' 0 T7H(A)) = P((Txq,) ™ (A)) = g (A).
By [6l, Theorem 6.3.2] the measures fiq, and j, are equivalent if and only if the map
K=TT*—I:H'(R) - H'(R)
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is Hilbert-Schmidt (here the adjoint is taken with respect to the H' scalar product). We compute Hp =
1
H~'Hy H, thus T* = —H 'H,/*H"/? so that
a
K=TT" —I= g \ul’a-'mlm? 1
pt e e

The operator K : H!(R) — H!(R) is Hilbert-Schmidt if and only if ||K||gs < +0o where

—+o0
K \s = Y | HYVPKH e fagm
n=0

(recall that this norm does not depend on the choice of the Hilbert basis (e,)n>0 in L?(R)). We observe

that HY2KH1/? = WHWH VHy/? — I, then

2 1/2 1771/2 2
1Kls = o ZH (Hel? B Hy? — |a)en| o)
n=0
1 X 1/2 1/2
(B.8) = WZ«H‘“ H™YH,? — |a)2en, en),
n=0

using that the operator H; V2 - 'H, 1/ is self-adjoint on L?(R). We now claim that
(Bg) ((HC}1/2H 1H1/2 ’Oﬁ‘2)2€n, e")LQ(R)XLQ(R) —>n—>+oo C(q1)7

with C(q1) > 0 for (Jal, s, 8) # (1,0,1). This will imply in this case that || K||gs = +00, and the measures jq,
and (i, are mutually singular, reducing the study to qo = (0,1,1,0) and q; = (0,1,1,60).

We set hy = (2n+ 1)1, 2 = 2/, and £ (2) = by *el1 (2/+/Ton). Then by Lemma B

(1 + 4,8432) 242 . 2 - 02 hn _ fhn
(B.10) - Thnﬁz +4iBs(Bz — \/ hpn0)hn0, + (Bz — \/hn0)” + 2i Shn]f (z) = f"(2).
Similarly, we define €,(2) = hy, Y 4en(z /v/hy), which is an L?2—normalised solution of
(B.11) (=h20% 4 2% —1)g, = 0.

Let us now recall a little of semi-classical symbolic calculus adapted to the harmonic oscillator (we refer
to [30, 20] or to [27, Chapter 3] for a review of this theory). For k € R we define the symbol class

I'" = {a € C®(R*%C); Vj,0 € N,3C > 0; |d0fa(x,&)| < C(1+ |z +[¢))F7~*}.

For a symbol a € T* and 0 < h < 1, we consider the semi-classical quantification

Aru(z) = Opulau(s) = g | (e puly)dys.

which, for any o € R, defines a family of uniformly bounded operators £(H*+7; H7),
Va €T%, 3C > 0; Vh >0, [|Opp(a)llpartone) < C.
For a € T'*, b € %2, we have the symbolic calculus
Opn(a)Opy,(b) = Opp(ab) + hOpp(c) + R, 3C > 0; Vh >0, ||R||g(pnropor2y < Ch?

with ¢ € T*1+*2=1 given by

C(Z7 g) = _iaﬁa(zv 5)8,21)(2, g)
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As a consequence we get
i

N [Opi(a), Opp(D)]

Opn(a)Opn(b) — Opn(b)Opp(a)
= Oph (65(1(2, g)azb(zv 5) - 85()(2, g)aza(z7 g))
(B.12) = Opn({a,b}),
where
{a,b}(2,€) = Bca(, €)0:b(2,€) — Oeb(2,€)dza(z,§) € T
is the Poisson bracket of a and b. Coming back to (B10) we have M ;Mhn = Op,, (mq, b, ) and

1
Ophn (mq17hn)fhn = fhn’

with
mq, w(2,&) = %ﬂg? — 4B85(8z — VhO)E + (B2 — VhB)? + 2ish.
Similarly, we define m(z,¢) := €2+ 22 and M" := Opy, (m) = —h20% + 22. By a change of variables we have
(B13) ((Ha/*H ™ Hy” ol en. e0) 1oy o) =
= (M) @) 7 (Mg, )Y = [0f) e, n) gy ey

2~ ~
= (Oph((mql,hn/m - ‘a’2)) €n, en)LZ(R)XLZ(R) + O(hn)n—H-oo

where we used the symbolic calculus. To understand the limit when n — +o00 of

2. -
(Opn((mgy n, /m — |0d?))"En, En) 2y w20
let us recall (see e.g. [9])

Lemma B.5 (Semi-classical measures). For any bounded sequence u,, € L*(R), and any sequence (hy,) such
that hy, > 0 and h, — 0, there exist subsequences (up,, hy,) and a Radon measure p on R? such that for
any a € T°, compactly supported in (z,€)

kETm(Oph"k (a)unk7u"k)L2(R)><L2(R) = (i, a).

Let us apply this procedure to the couples (€, h,). Using (BII) which implies that for |z| > 1, €, is
exponentially decaying and for [¢| > 1, its Fourier transform F(€,) is also exponentially decaying. It is easy
to check that the following properties hold true:

e The convergence actually holds for any a € T'* (dropping the compact support assumption and
allowing polynomial growth of a).
e The measure p has total mass 1.

We will now prove that the measure y is the Liouville measure on the circle {(z,&); 22 4+ ¢2 = 1}. We have

0= <Ophkn (@)Eng, (—h2 02 + 22 — 1)'5%) - ((_hinag + 22— 1)Opp,. (a)'énk,'énk) .

L2(R)x L2(R) L2(R)x L2(R)

Then, a direct computation gives
(=hj, 02 + 2> = 1)Opy,, (a) = Opy, ((€% + 2° — 1)a) — 2ihy,, Opy,, (£0.a) — hi, Opy, (02a),
and therefore by (B.IIl), we deduce that

12 92 2 ~ ~ 2 2
(12,02 + 22 = 1)0pu,, (@) = (o (€ 42 = Da).
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As a consequence, the measure p is supported in the circle {(z,€); 22 4+ ¢2 = 1}. On the other hand, by
(B12) and Lemma [B.A

0 i ([( h2 02+ 2 —1),Ophkn(a)]€"k’€"k>

hk L2(R)x L2 (R)

= <Ophk ({22 + &, a})Enk,Enk)L2(R)XL2(R) + O(hi) — (p, {22 + €2, a}).
Denoting by
Jm = 280, — 220
the Hamiltonian vector field of the symbol m(z, &) = 22 4 €2 — 1, we get

Va €T (Jmp,a) = (p, Jm(a)) = (u, {p,a}) =0,
which implies that the measure satisfies J,,u = 0. Summarizing, we proved

e The measure p has total mass 1.

e The measure p is supported on the circle {m(z,§) =1} = {(z,&); 224+ €2 = 1}

e The measure p is invariant by the flow of the vector field .J,,.
We deduce that the measure p is the (uniform) Liouville measure on the circle, which we denote by dL.
Remark finally that since the limit measure p is unique (the Liouville measure), the extraction process in
the construction of the measure was unnecessary (if it is possible to extract converging subsequences and if
for all such converging subsequences the limit is the same, then the initial sequence was already converging
to the unique possible limit measure).

From the previous considerations, we deduce

(B.14) (Oph((mqhhn/m - ‘0"2))2gn=gn)L2(R)xL2(R)

(1+48%s%) 42 2 2.2 2
T2 LE% 4B%s2E + B2z
- 21201 [ i m(z, &) ~laff} dLi=Cla) >0

Notice that C(qq) > 0 for any (s, ||, ) # (0,1, 1), simply because we integrate on (0,27) a continuous non
negative function which is not identically 0. This proves (B.9)).

We now study the action of the translations. We still assume that qo = (0,1,1,0) and we set q; =
(0,1,1,0). We will prove that

hn hn hn 2 2\2~ ~ 2
(B15) (((Mql,hn)1/2(M ) (‘Z\Jql7 n)l/ - ’Oﬁ‘ ) en7en)L2(R)XL2(R) ~ 2hn6 ’
which by ([BI3) (recall that h,, = (2n + 1)~!) will imply
1/2 py—1 771/2 62
(B.16) ((qu/ H lqu/ - |a|2)2eme")L2(R)><L2(R) ~ z’
By the semi-classical calculus, we have
(M VY2 = Opn, (my)3, ) + O(hn) = Op, (m"/? = \/hgfzm™2) + O(h,)
thus
(M, V2 (M) (M )Y =1 = =24/h80ph, (2m ") + O(hn),
hence )
(Mg, V2 (M, )2 = 1) = 4haOpn, (2*m™) + O (/).
As a consequence, when n — +o00
2dL
Mh" 1/2( phn M /2 _ o2 2~n z, - 4hn92/ Z
((( q1,h ) ( ) ( q1,hn ) ‘Oé’ ) €n, € )LZ(R)XLZ(R) (m(=6)=1} m2(z,£)

~ 2h,0°

which implies (B.15). As a consequence, the series (B.8)) diverges, which implies that the measures qq and q;
are singular.
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B.4. From pg to pg. In this section we show how Theorem and Theorem [2.4] for u imply the same
results for pq the set of all parameters g € Q. The proof is in two steps. First we pass from qo = (0,1,1,0)
(i.e. pgo = po) to qi = (0,0, 5,0). This first step is harmless as the parameter € is just a translation
in space, the parameter « is just an homothety, and [ is a scaling parameter. Hence this transformation
amounts just to perform the following changes

e We change the harmonic oscillator H = —8? + x2, for another harmonic oscillator (see (B.2))
1

e We change the lens transform from (2.6]), ([2.7) to another lens transform
u(t,z) == L (U)(t, ).

e We change the law of our random variables (L.2) to
+oo 1
QBwH’Yf{zZA—gn(w)eZ, fg =P
n=0""

where now (e})),>0 is the L?—eigenbasis of eigenfunctions (with |les||z2 = |a|) of our new harmonic
oscillator Hy, see Lemma [B.1]

This first step is harmless as modulo these simple changes, the proof is the same word by word. Once this
52
step is achieved, it remains to study the action of the time translation ¢*°% and pass from q0 = (0,, 3,0)

to q = (s0,,3,6). We are going to take benefit from the time translation invariance of (NLS) and use that
. . C . .. . 5002 ~
if U solves (NLS) with initial data distributed according to jiq = e;io Y 110,0,8,0, then U(s,y) = U(s — s9,y)

. N . 15002
solves also (NLS})) with data at sq distributed according to uq = e;io Y 110,0,8,0- However, from Step 1, we

know that for all data in Sp (which is of full pg,—measure), we can solve globally (NLS,|), and the set
Sso = ¥(50,0)(Sp) is of full g—measure. As a consequence, we can solve globally for all data at s = sg in
the set Sy,. The estimates in Theorem and Theorem 24 for sy # 0 follow from this argument and the
estimates for sg = 0.

APPENDIX C. ON THE LIOUVILLE THEOREM

Let us recall that the flow of a vector field with vanishing divergence preserves the Lebesgue measure.
Though it is often tought in the context of time independent vector fields (mis)leading to believe that it
only true in this context, this assumption is unnecessary and we can allow time dependent vector fields as
shown by the classical proof. See e.g. also [5, Theorem 9.9 p. 529].

Let us denote by ¢(t, o) the solution of the ODE

&= X(t,z(t)), z(0) = zp.

Let us denote by W(t) the map xo — ¢(t,x0). It is well known that (for small time, and we shall see for all
times) this map is a C! diffeomorphism and that the family of differentials dW¥(¢) satisfies the ODE

0 (1),.00) = AX 1, (0, 70)) AU (1)1

and consequently using the chain trule and the fact that the differential of the determinant at A is
B+ det(A)Tr(A™!B),

we get

d . d

— (det (AW (t)p(t4)) = det(dW(t So(t’wO)Tr(d\I’(t)w(t’mo)Ed\lf(t)w(mmo)))

dt
)Tk(d\If(t);éva)dX(t, o(t,20))dY () p(t.z0)))
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Hence the Jacobian of the change of variables is constant along the integral curves. At time ¢ = 0 the change
of variable is the identity. Hence the Jacobian is identically equal to 1.

APPENDIX D. WEIGHTED ESTIMATES ON HERMITE FUNCTIONS

Recall that the family (e, )n>0 denotes the Hermite functions. The purpose of this section is to prove the
following result.

Proposition D.1. Let v < %. Then there exists C > 0 such that for any eigenfunction of the harmonic
oscillator satisfies

(D.1) Iggilles < Clogi(An)An ' .

In order to prove Proposition[D.J] we first need some technical results. Define the function E for (z,y, «) €

R x R x [0, 1] by
E(x,y,«a Zoz en(z
n>0
Then we have an explicit formula for F.

Lemma D.2 ([I0, Lemma A.5]). For all (z,y,o) € R x R x [0,1]

1 ex (_1—04(x—|—y)2_1—|—a(33—y)2)
(1 —a?) P l+a 4 l—a 4 ’

We will also need the following expansions

Lemma D.3. Let 0 < e < 1/2, then we have
(1— 22 3= Zanx , with |ay| < C(1 +n)_%

(D.2) E(z,y,a) =

n>0
(1—z)” anaz with |b,| < C(1 +n)!
n>0
(1+ ) Z ez, with |c,| < C(1 4 n)~0F),
n>0
Proof of Lemma[D.3 Indeed,
11 3 on — 1 (2n)!
= 15 X3 X X ) = e
1 I'(n+e)
anEEX(€+1)X"'X(€+n—1)zm
-1 n—1 —1)" 1 T _
CHZ%EX(1—6)X"'X(n—1—6):€( n)' F((Tll—:
and the estimates follow from the Stirling formula. g
We are now able to prove Proposition [D.1l
Proof of Proposition [D . Denote by
Ha3) = [ Blo.s.)B.a,8)la|ds
= X an | @@l e

n,m>0

Then using (D.2)), we get with € = % — 27,

um@wz%uﬂﬂ%ﬂ—@raﬁfi%%ﬂyi
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: _ oy
with dp := 7! [ eV |y|~*7dy. We deduce
(1=2?) 31 +2) =D dpa",  du= Y. apcy,
n>0 p+q=n

with )
|dn| < Z apCp—p + Z apCp—p < Cn™2

1<p<3 5<p<n

which implies

/efl(:n)egn(:n)|$|_47d:n:50 Z dpbyd,.
R

pta=n
r+q=m
Therefore,
/ ek (z)|z| ™ dx = &y Z dlz,bq + do Z dgbq < Clog(n)n°?,
R p+q=n pHa=n
0<p<3 F<p<n
which (recall that A2 = (2n + 1)) is Proposition [D.1 O

APPENDIX E. PROOF OF THE EMBEDDING By, C B,

Recall the definitions of Section In this section we prove
Lemma E.1. Then for any 1 < p,q < 400, and any p > 0,

p P
By, C By,

with continuous injection.

Proof. Recall that the Fourier multiplier D, is defined by the formula F(D,u)(§) = |£|F(u)(§) for f €
7'(R). Let xj € C°(R) be as in BIZ) and set A; = x(27/D,) and Ay, = x(27*VH). We write

+00 "
Ajf = AjAf.

k=0
In this sum, we distinguish two contributions from {k < j — 3} and {k > j — 2} respectively. To study
the first contribution, let us just recall that for any x € C§°(R), the operator x(hvH) is an h—pseudo-
differential operator with symbol in I'? (recall the notations of Section [B.3), and its (formal) symbol a is
supported in {(z,§); /22 + &2 € supp x}. As a consequence, if x € C§° (2, 2), then x(277D,)x(27*VH)
is, for k < j — 3, a pseudo-differential operator with vanishing (formal) symbol, hence gaining any number
of derivatives and any power of |z|. We deduce

YN >0, 3C > 0; Vj, Ve < j—3, |[x(277Dy)x(27" < 279N,

) Hg(u))

As a consequence,
j—3

~ N
1_ 258kl < On2 N £l
k=0
To study the contribution of the second term, we just use that x(277D,) is bounded on LP with uniform
bound with respect to j, and

(E.1) 127285 > Agullpe < C Y 27 K0P 2R A .
k>j—2 k>j—2
According to Schur lemma, the convolution by 21 ¢<—2 is bounded on ¢, and ¢°, and hence by interpolation
on ¢4. This implies
127725 37 Axaularllyg < ClI2Akllus |l
k>j—2
which together with (E.I]) enables to complete the proof. O
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