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ALMOST SURE SCATTERING FOR THE ONE DIMENSIONAL NONLINEAR

SCHRÖDINGER EQUATION

NICOLAS BURQ AND LAURENT THOMANN

Abstract. We consider the one-dimensional nonlinear Schrödinger equation with a nonlinearity of degree
p > 1. We exhibit measures on the space of initial data for which we describe the non trivial evolution by
the linear Schrödinger flow and we show that their nonlinear evolution is absolutely continuous with respect
to this linear evolution. We deduce from this precise description the global well-posedness of the equation for
p > 1 and scattering for p > 3. To the best of our knowledge, it is the first occurence where the description of
quasi-invariant measures allows to get quantitative asymptotics (here scattering properties) for the nonlinear
evolution.
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1. Introduction and results

1.1. General introduction. Let p > 1. In this paper we study long time dynamics for the one-dimensional
nonlinear Schrödinger equation

(NLSp)

{
i∂sU + ∂2

yU = |U |p−1U, (s, y) ∈ R× R,

U |s=s0= U0,

where U0 is a random initial condition, with low Sobolev regularity. The distribution of U0 will be given
by a Gaussian measure and we will study its evolution under the nonlinear flow of (NLSp), denoted by

Ψ(s, s0), and compare it with the evolution under the linear flow Ψlin(s, s0) = ei(s−s0)∂2
y .

When working on compact manifoldsM instead of Rx, there exists natural Gaussian measures µ supported
in some Sobolev spaces Hσ(M) which are invariant by the flow Σlin(s) of the linear equation (Wiener
measures, see Section 3 for more details). At some particular scales of regularity these measures can be
suitably modified (Gibbs measures) to ensure that they are invariant by the nonlinear flow [8], or only quasi-
invariant (renormalized energies) [34, 25, 26, 24]. In our context, and more generally on R

d
x, the situation is

different, since dispersion prohibits the existence of measures invariant by the flow of the linear or nonlinear
Schrödinger equation (see Proposition 3.1, Proposition 3.2 and Proposition 3.3). The purpose of the present
work is twofold. First we define mesures on the space of initial data for which we can describe precisely the
non trivial evolution by the linear flow (notice that even this first step is non trivial). Second, we prove
that the nonlinear evolution of these measures is absolutely continuous with respect to their (explicit) linear
evolutions (we actually prove a precised quantitative version of the absolute continuity, characterizing the
integrability of the Radon-Nikodym derivative, see Theorem 2.4), and finally we get benefit from this precise
description to prove almost sure scattering of our solutions of (NLSp) for p > 3. Let us emphasize that these
precise quantitative estimates for the quasi-invariance are the key point to the proof of almost sure scattering.
We refer to Section 2 for complete statements. To the best of our knowledge, the results in the present article
are the first ones giving insight, in a non compact setting on the time evolution of the statistical distribution
of solutions of a nonlinear PDE (see also Ammari-Nier [1, 2, 3] in a completely different context). They
also are the first ones providing scattering for NLS for large initial data without assuming decay at infinity:
our solutions are essentially in L2 : they actually miss the L2 space by a logarithmic divergence both in
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space and in frequency, namely they are in the Besov space B0
2,∞(R) built on the harmonic oscillator (see

Appendix B.2). Finally, to the best of our knowledge, our results are the first ones using the existence
and description of invariant or quasi-invariant measures to describe the large time behaviour of solutions to
PDE’s going beyond the globalisation argument from Bourgain [7, 8] and the elementary Poincaré recurence
theorem.

1.2. Measures with non trivial linear evolution. We shall define families of measures supported es-
sentially on L2(R) (modulo a logarithmic divergence, see Appendix B.2) for which one can get a good
description of the (non trivial) linear evolution, and prove that the nonlinear evolution of the measure is
indeed quasi-invariant with respect to this linear evolution.

We denote by

H = −∂2
x + x2 ,

the harmonic oscillator in one space dimension, and by (en)n≥0 the Hermite functions its L2-normalised
eigenfunctions, Hen = λ2

nen = (2n + 1)en. Recall that the family (en)n≥0 forms a Hilbert basis of L2(R).
For σ ≥ 0, denote by

(1.1) Hσ(R) =
{
u ∈ L2(R) : (1−∆)σ/2u ∈ L2(R), |x|σu ∈ L2(R)

}
,

and for σ ≥ 0, H−σ(R) is its dual space. We shall denote by X0(R) =
⋂

ǫ>0H−ǫ(R). Notice that L2(R) ⊂
X0(R).

We start with a typical Gaussian measure. Consider a probability space (Ω,F ,p) and let (gn)n≥0 be a
sequence of independent complex standard Gaussian variables. Let ǫ > 0, we define the probability Gaussian
measure µ0 on H−ǫ(R) as the law of the random variable γ

(1.2)

Ω −→ H−ǫ(R)

ω 7−→ γω =

+∞∑

n=0

1

λn
gn(ω)en,

µ0 = p ◦ γ−1.

The measure µ0 satisfies µ0(L
2(R)) = 0 and µ0

(
X0(R)

)
= 1. The following theorem gives a flavour of

our results in this paper.

Theorem 1.1. Let p > 1 and assume that s0 = 0 in (NLSp). For µ0−almost every initial data U0 ∈ X0(R),
there exists a unique, global in time, solution U = Ψ(s, 0)U0 to (NLSp).

Furthermore, the evolution of the measure µ0 by this nonlinear flow, Ψ(s, 0)#µ0 is absolutely continuous
with respect to the evolution by the linear flow, Ψlin(s, 0)#µ0.

Finally, the solution takes the form

Ψ(s, 0)U0 = eis∂
2
yU0 + V,

where V satisfies for some C,K > 0 and all s ∈ R

‖V (s)‖Hσ(R) ≤ C〈s〉K ,

and where σ < σ0 can be chosen arbitrarily close to σ0 =

{p−1
2 if 1 < p ≤ 2

1
2 if p ≥ 2.

In the sequel, we will see that for all s ∈ R, Ψlin(s, 0)#µ0 is given by an explicit time-dependent Gaussian
measure. Moreover, we will see that these measures are supported in the Besov space B0

2,∞(R) based on the
harmonic oscillator. We refer to Section 2.2 and Appendix B for more details.

The values of σ0 in Theorem 1.1 will play a key role in the proof of the scattering result (Theorem 1.2)
for which we need the embedding Hσ ⊂ Lp+1 to control the nonlinearity. Let us however mention that the
value of σ0 obtained in Theorem 1.1 in the case 1 < p ≤ 2 is not optimal, and a slight modification in the
proof may improve it.
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1.3. Scattering results. Using a quantified version of the absolute continuity, we are able to go beyond
the usual easy consequences (global existence, Poincaré recurrence theorem, logarithmic bounds on the time
evolution of the complexity of solutions. . . ). Namely, we shall use the precise knowledge of the nonlinear
evolution of our measures to prove almost sure scattering properties of solutions of (NLSp) for p > 3 (notice
that quasi-invariance without estimates does not even imply Poincaré recurrence).

Theorem 1.2. Assume that p > 1. Then the solutions to (NLSp) we have constructed in Theorem 1.1
disperse: for µ0−almost every initial data U0 ∈ X0(R), there exists a constant C > 0 such that for all s ∈ R

‖Ψ(s, 0)U0‖Lp+1(R) ≤





C (1+log〈s〉)1/(p+1)

〈s〉
1
2−

1
p+1

if 1 < p < 5

C

〈s〉
1
2−

1
p+1

if p ≥ 5.

Assume now that p > 3. Then there exist σ,C, η > 0 and W± ∈ Hσ(R) such that for all s ∈ R

(1.3) ‖Ψ(s, 0)U0 − eis∂
2
y (U0 +W±)‖Hσ(R) ≤ C〈s〉−η,

and

(1.4) ‖e−is∂2
yΨ(s, 0)U0 − (U0 +W±)‖Hσ(R) ≤ C〈s〉−η.

In the case p ≥ 5, we can precise the result: for all σ < 1
2 there exist C, η > 0 such that for all s ∈ R

(1.5) ‖Ψ(s, 0)U0 − eis∂
2
y (U0 +W±)‖Hσ(R) ≤ C〈s〉−η,

Notice that since e±is∂2
y does not act on Hσ(R), the properties (1.3) and (1.4) are different. Actually we

prove a more general result. We construct a four-parameter family (µq) of Gaussian measures on X0(R),
for which the previous statement holds true (see Theorem 2.4 and Theorem 11.4).

In our previous work [10] we performed part of the program above, namely we proved the scattering result
in the particular case p ≥ 5. In this case monotonicity properties allow to greatly simplify the proof and
a fine description of the nonlinear evolution of the measures was unnecessary to get scattering properties.
We emphasize that the convergence in (1.5) holds in the usual Sobolev space Hσ but not in the weighted
space Hσ (the statement (1.3) is a corrected version of [10, Theorem 1.2]). This is due to a lack of continuity
of the lens transform in the Hσ spaces (see Lemma A.1).

In the case p ≤ 3, Barab [4] showed that a non trivial solution to (NLSp) never scatters, thus even
with a stochastic approach one can not hope for scattering in this case. Therefore the condition p > 3 in
Theorem 1.2 is optimal. In [35], Tsutsumi and Yajima proved a scattering result in L2(Rd), d ≥ 2 but
assuming additional H1−regularity on the initial conditions.

We refer to [29, Theorem 1.4] for an almost sure scattering result for the two-dimensional NLS. In this
latter case, one could use a probabilistic smoothing property on the Hermite functions which only holds in
dimension d ≥ 2. For other almost sure scattering results for NLS, we refer to [18, 21]. In particular, the
results in this paper were recently generalised by Latocca [23] in the multi-dimensional case, in the radial
setting. See also Nakanishi [22] for deterministic scattering results for (NLSp) in Sobolev spaces Hσ for
σ ≥ 1.

1.4. Plan of the paper. The plan of the paper is the following. In Section 2 we define the measures, state
our main results precisely and prove some properties about the measures (description of the linear evolution,
absolute continuity. . . ). In Section 3 we prove elementary results on the non existence of invariant measures
for the Schrödinger equation on R, recall some tools of functional analysis and give a characterization of
weak Lp regularity of Radon-Nikodym derivatives. Section 4 is devoted to the estimate of the time evolution
of the measures under the Galerkin approximations of the nonlinear flow. In Section 5 we prove the main
nonlinear estimates that we need in the sequel. There, a difficulty is induced by the low regularity of our
nonlinearity F (u) = |u|p−1u which is not C2 for p < 2. In Section 6 we introduce the spaces in which we
are able to prove the local (and later global) well-posedness. Here, another difficulty is that due to a lack of
smoothness of our initial data, the spaces for the initial data (Y ρ,ǫ), and the solutions (Xρ) are different. For
the initial data, we exploit some probabilistic smoothness while for the solution we gain some deterministic
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smoothness. In Section 7 we show that almost surely our initial data are indeed in the spaces Y ρ,ǫ and
we prove large deviation estimates. In Section 8 we develop a suitable Cauchy theory for the nonlinear
problem. In Section 9 we prove the almost sure global well-posedness. Finally in Section 10 we prove the
quasi-invariance properties of our measures, while in Section 11 we use this quasi-invariance to prove decay
for p > 1 and scattering for p > 3. We gathered in an Appendix some technical results.

1.5. Notations. In this paper c, C > 0 denote constants the value of which may change from line to line.
These constants will always be universal, or uniformly bounded with respect to the other parameters. We
denote byH = −∂2

x+x2 the harmonic oscillator on R, and for σ ∈ R we define the Sobolev spaceHσ(R) by the
norm ‖u‖Hσ(R) = ‖Hσ/2u‖L2(R). More generally, we define the spaces Wσ,p(R) by the norm ‖u‖Wσ,p(R) =

‖Hσ/2u‖Lp(R) (see also Section 3.2 for more details and notations). The Fourier transform is defined by

Ff(ξ) =
∫
R
e−ixξf(x)dx, for f ∈ S (R). The Fourier multiplier Dα

x is defined as a tempered distribution
F(Dα

xf)(ξ) = |ξ|αF(f)(ξ) for f ∈ S ′(R).

2. The measures, linear analysis

2.1. Definition of the Gaussian measure µ0. Consider a system of complex, independent, centered,
L2−normalized Gaussians (gn)0≤n≤N on a probability space (Ω,T ,p). Let us first recall that the density

distribution of
1

λn
gn ∼ NC(0, λ

−2
n ) is given by

λ2
n

π
e−λ2

n|un|2dundun =
λ2
n

π
e−λ2

n(a
2
n+b2n)dandbn, un = an + ibn ,

and where dundun is the Lebesgue measure on C. Denote by µN the distribution random variable

ω 7−→
N∑

n=0

1

λn
gn(ω)en(x) =: γN (ω, x).

Let ǫ > 0, then (γN )N≥0 is a Cauchy sequence in L2(Ω;H−ǫ(R)) which defines

γ(ω, x) :=

+∞∑

n=0

1

λn
gn(ω)en(x),

as the limit of γN . Now the map ω 7→ γ(ω, x) defines a Gaussian measure on H−ǫ(R) which we shall denote
by µ0. Notice also that the measure µ0 can be decomposed into

(2.1) µ0 = µN ⊗ µN

where µN is the distribution of the random variable

+∞∑

n=N+1

1

λn
gn(ω)en(x) on E⊥

N . In other words

dµN =
⊗

0≤n≤N

NC(0, λ
−2
n ), dµN =

⊗

n>N

NC(0, λ
−2
n ) ,

and the measure µ0 can be represented (rather informally) by

dµ0 =
⊗

n≥0

NC(0, λ
−2
n ) =

⊗

n≥0

λ2
n

π
e−λ2

n|un|2dundun ⇒ µ0(A) =

∫

A

∏

n≥0

λ2
n

π
e
−‖

√
H u‖2

L2(R)dundun,

where we decompose u =
∑

n unen and hence identify H−s which supports the measure µ0 with C
N. Finally

we define

X0(R) =
⋂

ǫ>0

H−ǫ(R),

so that µ0 is a probability measure on X0(R).
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2.2. Evolution of the Gaussian measures µq. In this section we define a four-parameter family of
Gaussian measures (µq), which relies on the symmetries of the linear Schrödinger group.

The space dilations u 7→ Λβu = β1/2u(β ·), time translations u 7→ Ψlin(s, s0)u := ei(s−s0)∂2
yu, space

translations u 7→ τθu = u( · − θ), and homotheties u 7→ Mαu = αu are invariances of the Schrödinger flow
and their actions on L2(R) define a four-parameter family of measures. Set

Q := R×C
∗ × R

∗
+ ×R, q = (s, α, β, θ) ∈ Q,

and define the family of Gaussian measures

(2.2) (Ψlin(s, 0) ◦Mα ◦ Λβ ◦ τθ)#µ0 = µ(s,α,β,θ) = µq ,

given by
µq(A) = µ(s,α,β,θ)(A) := µ0

(
(Ψlin(s, 0) ◦Mα ◦ Λβ ◦ τθ)−1A

)
.

In the particular case q = (0, 1, 1, 0) we have µq = µ0. Notice that since in the definition (1.2), the law of
complex random variables gn is invariant by the multiplication by any complex number of modulus 1, we
have µ(s,α,β,θ) = µ(s,|α|,β,θ). Notice also that it is a direct consequence of the definition that

Ψlin(s1 + s0, s0)#µ(s0,α,β,θ) = (eis1∂
2
y)#µ(s0,α,β,θ) = µ(s1+s0,α,β,θ).

For all q ∈ Q and all ǫ > 0, the measure µq is supported on H−ǫ(R) while µq(L
2(R)) = 0. More

precisely, we can prove that µq is supported in the Besov space B0
2,∞(R) based on the harmonic oscillator

(see Proposition B.4).
The following result is proved in Section B.3.

Proposition 2.1. Let j = 1, 2 and qj = (sj , αj , βj , θj) ∈ Q, then the measures µq1 and µq2 are absolutely
continuous with respect to each other if and only if

(
s1, |α1|, β1, θ1

)
=

(
s2, |α2|, β2, θ2

)
.

When the measures are not absolutely continuous with respect to each other, they are mutually sin-
gular (supported on disjoint sets of H−ǫ(R), ǫ > 0). Actually, thanks to the Hajek-Feldman theorem [6,
Theorem 2.7.2], two Gaussian measures on the same space are either equivalent or mutually singular.

We can now state precisely our main results. We assume that s0 = 0 in (NLSp).

Theorem 2.2. Let p > 1 and q0 = (s0, α0, β0, θ0) ∈ Q. Let qs = (s + s0, α0, β0, θ0). There exists a set
S ⊂ X0(R) of full µq0−measure such that for all U0 ∈ S, there exits a unique, global in time, solution
to (NLSp) in the class

eis∂
2
yU0 + C0(R;Hσ(R)),

where σ < σ0 can be chosen arbitrarily close to σ0 =

{p−1
2 if 1 < p ≤ 2

1
2 if p ≥ 2.

Denote by Ψ(s, 0) the flow such defined on S and denote by Ss = Ψ(s, 0)S. Then the set Ss is of full
µqs−measure and there exists Kp > 0 such that µq0−almost surely there exists C > 0 such that we have the
estimates

Ψ(s, 0)U0 = eis∂
2
yU0 + V, ‖V (s)‖Hσ(R) ≤ C〈s〉Mp,σ .

We emphasize that the exponent Mp,σ > 0 which appears in the previous estimate is deterministic, and
depends only on p > 1 and σ > 0. Only the constant C > 0 is probabilistic.

Remark 2.3. In most of the previous works in which almost sure existence results are obtained for nonlinear
dispersive equations, with arguments relying on invariant measures, it is possible to show that the corre-
sponding set S of initial data is invariant by the flow, namely Ss = S for all s ∈ R. In our situation we were
not able to prove the invariance of S by the nonlinear flow. In some sense, since S has full µq0 measure,
while Ss has full µqs−measure and µq0 and µqs are singular to each other for any s 6= 0, i.e. supported on
disjoint sets, this non invariance is natural.

We can now state precisely our scattering result.
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Theorem 2.4. Let p > 1 and q0 ∈ Q. Denote by Ψ(s, 0) the flow on S defined in Theorem 2.2. We have a
fine description of the time evolution of the measures µq0 .

• For all s ∈ R, the measures Ψ(s, 0)#µq0 and Ψlin(s, 0)#µq0 are equivalent (they have the same zero
measure sets);

• For all s′ 6= s, the measures Ψ(s, 0)#µq0 and Ψ(s′, 0)#µq0 are mutually singular.
More precisely, in the particular case q0 = (0, 1, 1, 0), denoting by

ρs = e
− (1+4s2)

p+1
‖u‖p+1

Lp+1µqs , qs = (s, 1, 1, 0),

we have for all 0 ≤ |s′| ≤ |s| < +∞ and all A ⊂ S,

ρs
(
Ψ(s, 0)A

)
≤




ρs′

(
Ψ(s′, 0)A

)
if 1 ≤ p ≤ 5

(
ρs′

(
Ψ(s′, 0)A

))( 1+4(s′)2

1+4s2

)p−5
4

if p ≥ 5
(2.3)

and

ρs′
(
Ψ(s′, 0)A

)
≤





(
ρs
(
Ψ(s, 0)A

))( 1+4(s′)2

1+4s2

) 5−p
4

if 1 ≤ p ≤ 5

ρs
(
Ψ(s, 0)A

)
if p ≥ 5.

(2.4)

• There exists µq0−almost surely a constant C > 0 such that for all s ∈ R

(2.5) ‖Ψ(s, 0)U0‖Lp+1(R) ≤





C (1+log〈s〉)1/(p+1)

〈s〉
1
2−

1
p+1

if 1 < p < 5

C

〈s〉
1
2−

1
p+1

if p ≥ 5.

• Assume moreover that p > 3. Then the solutions to (NLSp) constructed above scatter µq0−almost
surely when s −→ ±∞ : there exist C, σ, η > 0, and W± ∈ Hσ(R) such that for all s ∈ R

‖Ψ(s, 0)U0 − eis∂
2
y (U0 +W±)‖Hσ(R) ≤ C〈s〉−η,

and
‖e−is∂2

yΨ(s, 0)U0 − (U0 +W±)‖Hσ(R) ≤ C〈s〉−η.

(Notice that since e±is∂2
y does not act on Hσ(R), the two estimates above are different.)

• In the case p ≥ 5, we can precise the result: for all σ < 1
2 there exist C, η > 0 such that for all s ∈ R

‖Ψ(s, 0)U0 − eis∂
2
y (U0 +W±)‖Hσ(R) ≤ C〈s〉−η,

Assume that 1 < p < 5, then the equation (NLSp) is globally well-posed in L2(R), see [14, Section 4.6].
In the case p = 5, the equation is L2−critical, and global well-posedness and scattering in L2(R) has been
proved by Dodson [17]. Let p > 1, then (NLSp) is globally well-posed in H1(R) by [19]. In [36], Visciglia
shows moreover that for any U0 ∈ H1(R), and any 2 < r ≤ +∞, ‖Ψ(s, 0)U0‖Lr(R) −→ 0, when s −→ +∞.
Therefore (2.5) gives a similar rate of decay for rough but random initial conditions.

For large times |s| ≫ 1, the bound (2.5) is up to the logarithmic term, the decay of linear solutions.
Namely, recall that for all ϕ ∈ S (R) we have the classical dispersion bound

‖eis∂2
yϕ‖Lp+1(R) ≤

C

|s|
1
2
− 1

p+1

‖ϕ‖L(p+1)′ (R), s 6= 0,

therefore, the power decay in s is optimal. With the arguments developed in the present paper one could
show that the logarithm can be removed for some p < 5 close to 5, but we do not now what happens for
general 1 < p < 5. For s = 0, the bound (2.5) is a consequence of the fact that the measures µq are

supported in
⋂

r>2

Lr(R), see Section 7.

It is worth mentioning that the powers appearing in (2.3) and (2.4) are optimal. Actually, any improve-
ment in these exponents would imply stronger decay in (2.5), which is impossible.
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Corollary 2.5. Let q0 = (0, 1, 1, 0) and denote by

ρs = e
− (1+4s2)

p+1
‖u‖p+1

Lp+1µqs , qs = (s, 1, 1, 0).

Assume that 0 ≤ |s′| ≤ |s| < +∞. The measures Ψ(s′, s)#ρs and ρs′ are absolutely continuous with respect
to each other and satisfy

Ψ(s′, s)#ρs ≤ ρs′ , ρs′ ≤
(
Ψ(s′, s)#ρs

)( 1+4(s′)2

1+4s2

) 5−p
4

if 1 < p ≤ 5

Ψ(s′, s)#ρs ≤
(
ρs′

)( 1+4(s′)2

1+4s2

) p−5
4

, ρs′ ≤ Ψ(s′, s)#ρs if p ≥ 5.

As a consequence, from Proposition 3.5, if one denotes by fs′,s the Radon-Nikodym derivative of Ψ(s′, s)#ρs
with respect to ρs′, we have




fs′,s ∈ L∞, f−1

s′,s ∈ L
p(s′,s)
w , 1

p(s′,s) = 1−
(1+4(s′)2

1+4s2

) 5−p
4 if 1 < p ≤ 5

fs′,s ∈ L
p(s′,s)
w , 1

p(s′,s) = 1−
(1+4(s′)2

1+4s2

) p−5
4 , f−1

s′,s ∈ L∞ if p ≥ 5 ,

where Lq
w is the weak Lq space.

Equivalently, the previous result can be stated for the measures Ψ(0, s)#ρs and Ψ(0, s′)#ρs′ , with 0 ≤
|s′| ≤ |s| < +∞.

2.3. From (NLSp) to (NLSHp). As in [32, 10], we use the lens transform which allows to work with the
Schrödinger equation with harmonic potential. More precisely, suppose that U(s, y) is a solution of the
problem (NLSp). Then the function u(t, x) defined for |t| < π

4 and x ∈ R by

(2.6) u(t, x) = L (U)(t, x) :=
1

cos
1
2 (2t)

U
(tan(2t)

2
,

x

cos(2t)

)
e−

ix2tan(2t)
2 := Lt(U |

s= tan(2t)
2

)(x)

where

(2.7) Lt(G)(x) =
1

cos
1
2 (2t)

G
( x

cos(2t)

)
e−

ix2tan(2t)
2 ,

solves the problem

(NLSHp)




i∂tu−Hu = cos

p−5
2 (2t)|u|p−1u, |t| < π

4
, x ∈ R,

u(0, ·) = U0,

where H = −∂2
x + x2. Similarly, if U = eis∂

2
yU0 is a solution of the linear Schrödinger equation, then u =

e−itHU0 = L (U) is the solution of the linear harmonic Schrödinger equation with the same initial data.
In other words, if we denote by Ψ(s, s′) the map which sends the data at time t′ to the solution at time

t of (NLSHp), the family (Lt)|t|<π
4
conjugates the linear and the nonlinear flows: with t(s) = arctan(2s)

2 ,

s(t) = tan(2t)
2 ,

(2.8) Lt(s) ◦ ei(s−s′)∂2
y = e−i(t(s)−t(s′))H ◦ Lt(s′).

and

(2.9) Lt(s) ◦Ψ(s, s′) = Φ(t(s), t(s′)) ◦ Lt(s′).

As a consequence, precise description of the time evolutions of our measures on the harmonic oscillator side
(for the functions u(t, x) solutions to (NLSHp)) will imply precise descriptions of the evolution on the NLS
side (for the functions U(s, y) solutions to (NLSp)).

Denote by qs = (s, 1, 1, 0), then for all s ∈ R

(2.10) L
−1
t(s)#µ0 = µqs .
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Actually, set Ψlin(t, t
′) = e−i(t−t′)H , then by (2.8) and (B.4), for all measurable set A ∈ H−ǫ

µ0

(
Lt(s)A

)
= µ0

(
Φlin(t(s), 0)Ψ

−1
lin(s, 0)A

)
= µ0

(
Ψ−1

lin(s, 0)A
)
= µqs(A) ,

hence the result.

3. Measures and functional analysis

3.1. On invariant measures. Assume that M is a compact manifold and denote by ∆M the corresponding
Laplace-Beltrami operator. Then there exists a Hilbert basis of L2(M), denoted by (hn)n≥0, composed of
eigenfunctions of ∆M and we write −∆Mhn = λ2

nhn for all n ≥ 0.
Consider a probability space (Ω,F ,p) and let (gn)n≥0 be a sequence of independent complex standard

Gaussian variables. Let (αn)n≥0 and define the probability measure µ via the map

ω 7−→ γω =
+∞∑

n=0

αngn(ω)hn.

Then, by the invariance of the complex Gaussians (gn)n≥0, by multiplication with zn such that |zn| = 1, for

all t ∈ R, the random variable eit∆M γω =

+∞∑

n=0

αne
−itλ2

ntgn(ω)hn has the same distribution as γω. In other

words, the measure µ is invariant under the flow of the equation

i∂sU +∆MU = 0, (s, y) ∈ R×M.

The same remark holds when M is replaced by R, and ∆M by H = −∂2
x + x2 (in which case, the (hn)n≥0

are the Hermite functions and λ2
n = 2n + 1).

Without some compactness in phase-space, the situation is dramatically different, as shown by the next
elementary result.

Proposition 3.1. Let σ ∈ R and consider a probability measure µ on Hσ(R) (endowed with the cylindrical
sigma-algebra). Assume that µ is invariant under the flow Σlin of equation

{
i∂sU + ∂2

yU = 0, (s, y) ∈ R× R,

U(0, ·) = U0.

Then µ = δ0.

Proof. Let σ ∈ R and assume that µ is a probability measure on Hσ(R) which is invariant. Let χ ∈ C∞
0 (R).

By invariance of the measure, for all t ∈ R we have
∫

Hσ(R)

‖χu‖Hσ

1 + ‖u‖Hσ
dµ(u) =

∫

Hσ(R)

‖χΣlin(t)u‖Hσ

1 + ‖Σlin(t)u‖Hσ
dµ(u),

and by unitarity of the linear flow in Hσ, we get

(3.1)

∫

Hσ(R)

‖χu‖Hσ

1 + ‖u‖Hσ
dµ(u) =

∫

Hσ(R)

‖χΣlin(t)u‖Hσ

1 + ‖u‖Hσ
dµ(u).

We now prove that the right hand side of (3.1) tends to 0 when t → +∞. This will in turn imply that
‖χu‖Hσ = 0, µ−almost surely, and therefore we will have, since the cut-off χ ∈ C∞

0 (R) is arbitrary, that
u ≡ 0 on the support of µ, namely µ = δ0.

By continuity of the product by χ in Hσ and unitarity of the linear flow in Hσ, we have

‖χΣlin(t)u‖Hσ

1 + ‖u‖Hσ
≤ C

‖Σlin(t)u‖Hσ

1 + ‖u‖Hσ
= C

‖u‖Hσ

1 + ‖u‖Hσ
≤ C.

Let u ∈ Hσ(R). For all δ > 0, there exists uδ ∈ C∞
0 (R) such that ‖u− uδ‖Hσ ≤ δ and we have

(3.2) ‖χΣlin(t)u‖Hσ ≤ C‖Σlin(t)(u − uδ)‖Hσ + ‖χΣlin(t)uδ‖Hσ .
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The first term in the previous line can be bounded as follows

‖Σlin(t)(u− uδ)‖Hσ ≤ C‖u− uδ‖Hσ ≤ Cδ.

For the second term we distinguish the cases σ ≥ 0 and σ ≤ 0. If σ ≤ 0,

(3.3) ‖χΣlin(t)uδ‖Hσ ≤ ‖χΣlin(t)uδ‖L2 ≤ ‖χ‖L4‖Σlin(t)uδ‖L4 .

Now we use the classical dispersion inequality ‖Σlin(t)uδ‖L4 ≤ Ct−1/4‖uδ‖L4/3 , which proves, together
with (3.2) and (3.3) that ‖χΣlin(t)u‖Hσ −→ 0, when t −→ ∞. We conclude with the Lebesgue dominated
convergence theorem. Now assume that σ ≥ 0. Then by the fractional Leibniz rule

‖χΣlin(t)uδ‖Hσ ≤ ‖χ‖Wσ,4‖Σlin(t)uδ‖Wσ,4 ,

and the dispersion inequality ‖Σlin(t)uδ‖Wσ,4 ≤ Ct−1/4‖uδ‖Wσ,4/3 , allows to conclude similarly. �

The previous argument can be adapted to the case of a nonlinear equation, provided that one has a
suitable global existence result with scattering on the support of the measure. Let us illustrate this with
the (L2−critical) quintic Schrödinger equation.

Proposition 3.2. Consider a probability measure µ on L2(R). Assume that µ is invariant under the flow
Σ of the equation

(3.4)

{
i∂sU + ∂2

yU = |U |4U, (s, y) ∈ R× R,

U(0, ·) = U0.

Then µ = δ0.

Proof. By [17], the equation (3.4) is globally well-posed in L2(R), and we denote by Σ its flow. Moreover,
the solution scatters: for all U0 ∈ L2(R) there exists U+

0 ∈ L2(R) such that

(3.5) ‖Σ(s)U0 − eis∂
2
yU+

0 ‖L2(R) −→ 0, when s −→ +∞.

We follow the same strategy as in the proof of Proposition 3.1. Assume that µ is a probability measure
on L2(R) which is invariant by Σ and let χ ∈ C∞

0 (R). By invariance of the measure, for all s ∈ R we have

(3.6)

∫

L2(R)

‖χu‖L1

1 + ‖u‖L2

dµ(u) =

∫

L2(R)

‖χΣ(s)u‖L1

1 + ‖Σ(s)u‖L2

dµ(u) =

∫

L2(R)

‖χΣ(s)u‖L1

1 + ‖u‖L2

dµ(u),

where we used the conservation of the L2−norm. By Cauchy-Schwarz we have

‖χΣ(s)u‖L1

1 + ‖u‖L2

≤ ‖χ‖L2‖u‖L2

1 + ‖u‖L2

≤ C.

This bound allows to use the Lebesgue theorem to show that (3.6) tends to 0, provided that we show a
punctual decay. Actually,

‖χΣ(s)u‖L1 ≤ ‖χeis∂2
yu+‖L1 + ‖χ

(
Σ(s)u− eis∂

2
yu+

)
‖L1

≤ ‖χeis∂2
yu+‖L1 + ‖χ‖L2‖Σ(s)u− eis∂

2
yu+‖L2 ,

where u+ is chosen as in (3.5). The first term can be treated as in the proof of Proposition 3.1 and the
second tends to 0 by (3.5). �

Let us state a third result which shows that in the previous argument scattering can be replaced by the
decay of the nonlinear solution in some Lr norm, r > 2.

Proposition 3.3. Consider a probability measure µ on H1(R). Let p > 1. Assume that µ is invariant
under the flow Σ of the equation

(3.7)

{
i∂sU + ∂2

yU = |U |p−1U, (s, y) ∈ R× R,

U(0, ·) = U0.

Then µ = δ0.
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Proof. The equation (3.7) is globally well-posed in H1(R), by [19], and we denote by Σ its flow. Under
these assumptions, we do not know whether the solution scatters, but in [36], Visciglia shows that when
u ∈ H1(R), then for all 2 < r ≤ +∞,

(3.8) ‖Σ(s)u‖Lr(R) −→ 0, when s −→ +∞.

Assume that µ is a probability measure on H1(R) which is invariant by Σ and let χ ∈ C∞
0 (R). By invariance

of the measure, as in (3.6), for all s ∈ R, we get

(3.9)

∫

H1(R)

‖χu‖L2

1 + ‖u‖L2

dµ(u) =

∫

H1(R)

‖χΣ(s)u‖L2

1 + ‖Σ(s)u‖L2

dµ(u) =

∫

H1(R)

‖χΣ(s)u‖L2

1 + ‖u‖L2

dµ(u).

On the one hand we have the bound

‖χΣ(s)u‖L2

1 + ‖u‖L2

≤ ‖χ‖L∞‖Σ(s)u‖L2

1 + ‖u‖L2

=
‖χ‖L∞‖u‖L2

1 + ‖u‖L2

≤ C,

and on the other hand, by (3.8)

‖χΣ(s)u‖L2

1 + ‖u‖L2

≤ ‖χ‖L2‖Σ(s)u‖L∞

1 + ‖u‖L2

−→ 0,

when s −→ +∞. By the Lebesgue theorem, every term in (3.9) cancels, which implies that µ−a.s.
‖χu‖L2 = 0, hence (since χ is arbitrary) the result. �

Remark 3.4. The main ingredient in all these results is the knowledge that locally in space, the solutions
of the PDE (linear or nonlinear) tend to 0 when t → +∞. It would be an interesting question to know
whether this is true in the simplest case of (NLSp), for 1 < p < 5 and for general initial data in L2.

3.2. Some functional analysis.

3.2.1. The harmonic oscillator. Let us recall some elementary facts concerning H = −∂2
x + x2 (we refer

to [27] for more details). The operator H has a self-adjoint extension on L2(R) (still denoted by H) and
has eigenfunctions (en)n≥0, called the Hermite functions, which form a Hilbert basis of L2(R) and satisfy
Hen = λ2

nen with λn =
√
2n+ 1. Indeed, en is given by the explicit formula

en(x) = (−1)ncn e
x2/2 dn

dxn
(
e−x2 )

, with
1

cn
=

(
n !

) 1
2 2

n
2 π

1
4 .

3.2.2. Projectors. We define the finite dimensional complex vector space EN by

EN = spanC(e0, e1, . . . , eN ).

Then we introduce the spectral projector ΠN on EN by

ΠN

( +∞∑

n=0

cnen
)
=

N∑

n=0

cnen ,

and we set ΠN = I − ΠN . Let χ ∈ C∞
0 (−1, 1), so that χ = 1 on [−1

2 ,
1
2 ] and 0 ≤ χ ≤ 1. Let SN be the

operator

(3.10) SN

( +∞∑

n=0

cnen
)
=

+∞∑

n=0

χ
( 2n+ 1

2N + 1

)
cnen = χ

( H

2N + 1

)( +∞∑

n=0

cnen
)
.

It is clear that ‖SN‖L(L2(R)) = ‖ΠN‖L(L2(R)) = 1 and we have

SN ΠN = ΠN SN = SN , and S∗
N = SN .

The smooth cut-off SN is continuous on all the Lq spaces, for 1 ≤ q ≤ +∞ (see [10, Proposition 4.1]),

(3.11) ‖SN‖L(Lq(R)) ≤ C ,

uniformly with respect to N ≥ 0. Such a property does not hold true for ΠN .
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3.2.3. Usual Sobolev and Besov spaces. The Sobolev spaces on R are defined for σ ∈ R, p ≥ 1 by

W σ,p = W σ,p(R) =
{
u ∈ S

′(R), (1−∆)σ/2u ∈ Lp(R)
}
,

and

Hσ = Hσ(R) = W σ,2.

These spaces are endowed by the natural norms ‖u‖Wσ,p(R) = ‖(1−∆)σ/2u‖Lp(R).

We consider a partition of unity on R
+

(3.12) 1 =

+∞∑

j=0

χj(ξ), ∀j ≥ 1, χj(ξ) = χ(2−jξ), χ ∈ C∞
0 (

1

2
, 2),

and we define the Fourier multiplier ∆ju = χj(
√
1−∆)u. Let σ ∈ R and 1 ≤ p, q ≤ +∞. Then the Besov

spaces are defined by

Bσ
p,q = Bσ

p,q(R) =
{
u ∈ S

′(R), ‖2jσ∆̃ju‖Lp(R) ∈ ℓq
}
,

and we equip them with the natural norm

(3.13) ‖u‖Bσ
p,q

=
(∑

j≥0

‖2jσ∆ju‖qLp(R)

) 1
q
.

Moreover, one can check that Bσ
2,2 = Hσ.

Assume that 0 < σ < 1 and 1 ≤ p, q ≤ +∞. Then by [33, Theorem 2, p. 242], the spaces Bσ
p,q can be

characterized by

(3.14) Bσ
p,q =

{
u ∈ Lp(R), ‖u‖Lp +

(∫

|t|<1

‖u(· + t)− u(·)‖qLp(R)

|t|1+σq
dt
) 1

q
< +∞

}
,

and the corresponding norm is equivalent to (3.13).

3.2.4. Sobolev and Besov spaces based on the harmonic oscillator. Similarly we define the Sobolev spaces
associated to H for σ ∈ R, p ≥ 1 by

Wσ,p = Wσ,p(R) =
{
u ∈ Lp(R), Hσ/2u ∈ Lp(R)

}
,

and

Hσ = Hσ(R) = Wσ,2.

These spaces are endowed by the norms ‖u‖Wσ,p(R) = ‖Hσ/2u‖Lp(R). It turns out (see [37, Lemma 2.4]),
that for 1 < p < +∞, and up to equivalence of norms we have

(3.15) ‖u‖Wσ,p = ‖Hσ/2u‖Lp ≡ ‖(−∆)σ/2u‖Lp + ‖〈x〉σu‖Lp .

In particular, we recover the characterization (1.1). Recall that we also have the following description of

the Hs norm: if u =

+∞∑

n=0

cnen, then ‖u‖2Hs =

+∞∑

n=0

λs
n|cn|2.

We consider a partition of unity on R
+ as in (3.12) and we define the Hermite multiplier ∆̃ju = χj(

√
H)u.

Then the Besov spaces based on the harmonic oscillator are defined by

(3.16) Bσ
p,q = Bσ

p,q(R) =
{
u ∈ S

′(R), ‖2jσ∆̃ju‖Lp(R) ∈ ℓq
}
,

and are endowed with the natural norm

‖u‖Bσ
p,q

=
(∑

j≥0

‖2jσ∆̃ju‖qLp(R)

) 1
q
.

In particular, one can check that Bσ
2,2 = Hσ. Moreover, for any 1 ≤ p, q ≤ +∞, and any ρ ≥ 0, one has the

continuous embedding Bρ
p,q ⊂ Bρ

p,q (see Lemma E.1).
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3.3. Radon-Nikodym derivatives. In the sequel we shall give quantitative estimates on the quasi-
invariance of measures transported by linear or nonlinear flows. The next result shows that the bounds
on the measures that we will obtain in Proposition 4.2 are actually equivalent to bounds on the Radon-
Nikodym derivative.

Proposition 3.5. Let µ, ν be two finite measures on a measurable space (X,T ). Assume that

(3.17) µ ≪ ν,

and more precisely

(3.18) ∃ 0 < α ≤ 1, ∃C > 0, ∀A ∈ T , µ(A) ≤ Cν(A)α.

By the Radon-Nikodym theorem, assumption (3.17) implies that there exists a f ∈ L1(dν) with f ≥ 0,

such that dµ = fdν. We call f = dµ
dν the Radon-Nikodym derivative of the measure µ with respect to the

measure ν.

(i) The assertion (3.18) is satisfied with 0 < α < 1 iff f ∈ Lp
w(dν)∩L1(dν) with p = 1

1−α . In other words,

f ∈ L1(dν) and

ν
({

x : |f(x)| ≥ λ
})

≤ C ′〈λ〉−p, ∀λ > 0.

(ii) The assertion (3.18) is satisfied with α = 1 iff f ∈ L∞(dν) ∩ L1(dν).

Recall that the weak Lp spaces, denoted by Lp
w, satisfy

Lp
w(dν) ∩ L1(dν) ⊂ Lq(dν), ∀ 1 ≤ q < p.

Proof. The first part of the statement is the classical Radon-Nikodym theorem, see e.g. [13, Theorem 10.22]
for a proof.

(i) Assume that there exist α ∈ (0, 1) and C > 0 such that µ(A) ≤ Cν(A)α. Let λ > 0, then with
A =

{
f ≥ λ

}
we get

λν
(
f ≥ λ

)
≤

∫

{f≥λ}
fdν = µ

(
f ≥ λ

)
≤ Cν

(
f ≥ λ

)α
,

which implies ν
(
f ≥ λ

)
≤ cλ−1/(1−α), which was the claim.

Assume now that f = dµ
dν ∈ Lp

w(dν) ∩ L1(dν) with p = 1
1−α , and let A ∈ T . Then

(3.19) µ(A) =

∫

{f≥λ}∩A
fdν +

∫

{f<λ}∩A
fdν ≤

∫

{f≥λ}
fdν + λ

∫

A
dν.

Now we claim that for any f ∈ Lp
w(dν) and any E ∈ T such that ν(E) < +∞,

(3.20)

∫

E
fdν ≤ p

p− 1
ν(E)1−1/p‖f‖Lp

w(dν),

where ‖f‖Lp
w(dν) is defined by ‖f‖p

Lp
w(dν)

= sup
λ>0

{
λpν

(
f ≥ λ

)}
. For Λ > 0, we write

∫

E
fdν =

∫ +∞

0
ν
(
1Ef > λ

)
dλ =

∫ Λ

0
ν
(
1Ef > λ

)
dλ+

∫ +∞

Λ
ν
(
1Ef > λ

)
dλ

≤ ν(E)Λ + ‖f‖p
Lp
w(dν)

∫ +∞

Λ
λ−pdλ

= ν(E)Λ +
1

p− 1
‖f‖p

Lp
w(dν)

Λ−p+1.

Finally, we choose Λ = ν(E)−1/p‖f‖Lp
w(dν) which implies (3.20).

We apply (3.20) with E = {f ≥ λ} and together with (3.19) we get

µ(A) ≤ Cν
(
f ≥ λ

)1−1/p
+ λν(A) ≤ Cλ−p+1 + λν(A).

Now we optimize the previous inequality with λ = ν(A)−1/p.
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(ii) Assume that f /∈ L∞(dν). Then for all M > 0, there exists A ∈ T such that f > M on A and
ν(A) > 0. Then µ(A) =

∫
A fdν > Mν(A) which is the contraposition of (3.18).

If f ∈ L∞(dν), then for all A ∈ T , µ(A) ≤ ‖f‖L∞(dν)ν(A), which is (3.18). �

4. Evolution of the Gaussian measure

4.1. Hamiltonian structure of the approximate problem. Recall the definition (3.10) of the operator
SN and that EN = spanC(e0, e1, . . . , eN ). We consider the truncated equation

(4.1)

{
i∂tu−Hu = cos

p−5
2 (2t)SN (|SNu|p−1SNu), |t| < π

4
, x ∈ R,

u|t=s ∈ EN .

For u ∈ EN , write

u =
N∑

n=0

cnen =
N∑

n=0

(an + ibn)en, an, bn ∈ R.

Then we have the following result.

Lemma 4.1. Set

JN (t, u) =

∫ ( |∇xu|2 + |xu|2
2

+
cos(2t)

p−5
2

p+ 1
|SNu|p+1

)
dx =

= JN (t, a0, . . . , aN , b0, . . . , bN )

=
1

2

+∞∑

n=0

λ2
n(a

2
n + b2n) +

cos(2t)
p−5
2

p+ 1

∥∥SN

( N∑

n=0

(an + ibn)en

)∥∥p+1

Lp+1(R)
.

The equation (4.1) is a Hamiltonian ODE of the form

ȧn =
∂JN
∂bn

, ḃn = −∂JN
∂an

, 0 ≤ n ≤ N.

Remark that JN is not conserved by the flow of (4.1), due to the time dependance of the Hamiltonian JN ,
however the mass

‖u‖2L2(R) =
N∑

n=0

(a2n + b2n)

is conserved under the flow of (4.1). As a consequence, (4.1) has a well-defined global flow ΦN because it is
actually an ordinary differential equation for n ≤ N and a linear equation for n > N .

Set

EN (t, u(t)) =
1

2
‖
√
H u(t)‖2L2(R) +

cos
p−5
2 (2t)

p+ 1
‖SNu(t)‖p+1

Lp+1(R)
.

A direct computation shows that along the flow of (4.1) one has

(4.2)
d

dt

(
EN (t, u(t))

)
=

(5− p) sin(2t) cos
p−7
2 (2t)

p+ 1
‖SNu(t)‖p+1

Lp+1(R)
.

Observe that actually we have

EN (t, u(t)) = EN (t,ΠN (u(t))) +
1

2
‖
√
H ΠN (u(t))‖2L2 ,

and the last term is constant along the evolution given by ΦN .
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4.2. Evolution of measures: a first result. Recall that the measures µN and µN are defined in (2.1),
then we define the measure νN,t on EN by

dνN,t = e
− cos

p−5
2 (2t)

p+1
‖SNu‖p+1

Lp+1(R)dµN , ∀N ≥ 1, −π

4
< t <

π

4
,

and notice that νN,t has finite total mass but is not a probability measure. This definition implies that for
all measurable set A ⊂ EN , t ∈ (−π

4 ,
π
4 ),

νN,t(A) ≤ µN (A).

Similarly, we define the measures νt and ν̃N,t = νN,t ⊗ µN by

(4.3) dνt = e
− cos

p−5
2 (2t)

p+1
‖u‖p+1

Lp+1(R)dµ0, dν̃N,t = e
− cos

p−5
2 (2t)

p+1
‖SNu‖p+1

Lp+1(R)dµ0, −π

4
< t <

π

4
.

Proposition 4.2. For all s, t ∈ (−π
4 ,

π
4 ),

(4.4) ΦN(t, s)#µN ≪ µN ≪ ΦN (t, s)#µN .

More precisely, for all 0 ≤ |s| ≤ |t| < π
4 ,

νN,t

(
ΦN (t, s)A

)
≤

{
νN,s(A) if 1 ≤ p ≤ 5
[
νN,s(A)

]( cos(2t)
cos(2s)

)p−5
2

if p ≥ 5,

and

νN,s(A) ≤





[
νN,t

(
ΦN (t, s)A

)]
(

cos(2t)
cos(2s)

) 5−p
2

if 1 ≤ p ≤ 5

νN,t

(
ΦN (t, s)A

)
if p ≥ 5.

(4.5)

Another way to state the previous result is :
• For 1 ≤ p ≤ 5

[
νN,s(A)

]( cos(2t)
cos(2s)

) p−5
2

≤ νN,t

(
ΦN (t, s)A

)
≤ νN,s(A).

• For p ≥ 5

νN,s(A) ≤ νN,t

(
ΦN (t, s)A

)
≤

[
νN,s(A)

]( cos(2t)
cos(2s)

) p−5
2

.

Proof. By definition we have, for all t ∈ (−π
4 ,

π
4 )

µN ≪ νN,t and νN,t ≪ µN ,

and in particular

(4.6) µN ≪ ν0 and ν0 ≪ µN .
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This will imply (4.4) thanks to (4.6). By (4.2), if we write u(t) = ΦN (t, s)u0, we have

(4.7)

d

dt
νN,t(ΦN (t, s)A) =

=
d

dt

∫

v∈ΦN (t,s)A
e
− 1

2
‖
√
H v‖2

L2(R)
− cos

p−5
2 (2t)

p+1
‖SNv‖p+1

Lp+1(R)dv

=
d

dt

∫

vM=ΠM (v)∈ΠM (ΦN (t,s)AM )
e
− 1

2
‖
√
H v‖2

L2(R)
− cos

p−5
2 (2t)

p+1
‖SNv‖p+1

Lp+1(R)dv

=
d

dt

∫

u0,M=ΠM (u0)∈AM

e
− 1

2
‖
√
H u(t)‖2

L2(R)
− cos

p−5
2 (2t)

p+1
‖SNu(t)‖p+1

Lp+1(R)du0,M

=

∫

AM

(p− 5) sin(2t) cos
p−7
2 (2t)

p+ 1
‖SNu(t)‖p+1

Lp+1(R)
e−EN (t,u(t))du0,M

=

∫

A

(p− 5) sin(2t) cos
p−7
2 (2t)

p+ 1
‖SNu(t)‖p+1

Lp+1(R)
e−EN (t,u(t))du0

= (p− 5) tan(2t)

∫

A
α
(
t, u(t)

)
e−EN (t,u(t))du0,

where α(t, u) = cos
p−5
2 (2t)

p+1 ‖SNu‖p+1
Lp+1(R)

, and to pass from the first line to the second line we used that

according to Liouville Theorem (see Appendix C) the Jacobian of the change of variables v = ΦN (t, s)u0 7→
u0 is equal to 1.

In the following, we assume that 0 ≤ s ≤ t < π
4 . If 1 ≤ p ≤ 5 the r.h.s. of (4.7) is non positive and we

get by monotonicity
νN,t

(
ΦN (t, s)A

)
≤ νN,s(A).

When p ≥ 5 by the Hölder inequality, for any k ≥ 1,

d

dt
νN,t(ΦN (t, s)A) ≤ (p− 5) tan(2t)

( ∫

A
αk(t, u)e−EN (t,u(t))du0

) 1
k
( ∫

A
e−EN (t,u(t))du0

)1− 1
k

= (p− 5) tan(2t)
( ∫

A
αk(t, u)e

−α(t,u)− 1
2
‖
√
H u(t)‖2

L2(R)du0
) 1

k
(
νN,t(ΦN (t, s)A)

)1− 1
k .

We use that αk(t, u)e−α(t,u) ≤ kke−k, then

d

dt
νN,t(ΦN (t, s)A) ≤ (p− 5) tan(2t)

k

e

(
νN,t(ΦN (t, s)A)

)1− 1
k .

We now optimize the inequality above by choosing k = − log
(
νN,t(ΦN (t, s)A)

)
, which gives

d

dt
νN,t

(
ΦN (t, s)A

)
≤ −(p− 5) tan(2t) log

(
νN,t

(
ΦN (t, s)A

))
νN,t

(
ΦN (t, s)A

)
.

This in turn implies

− d

dt
log

(
− log

(
νN,t(ΦN (t, s)A)

))
≤ (p− 5) tan(2t) = −(p− 5)

2

d

dt
log(cos(2t))

and consequently

− log
(
νN,t(ΦN (t, s)A)

)
≥ − log

(
νN,s(A)

)( cos(2t)

cos(2s)

) (p−5)
2

.

Therefore, for all 0 ≤ s ≤ t < π
4 ,

νN,t

(
ΦN (t, s)A

)
≤

[
νN,s(A)

]( cos(2t)
cos(2s)

) p−5
2

.

The reverse inequality is obtained by backward integration of the estimate and reads similarly when p ≥ 5

νN,s(A) ≤ νN,t

(
ΦN (t, s)A

)
,
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and when 1 < p ≤ 5 we get

νN,s(A) ≤
[
νN,t

(
ΦN (t, s)A

)]
(

cos(2t)
cos(2s)

) 5−p
2

,

which concludes the proof. �

Remark 4.3. We can extend the flow ΦN to be the flow of



i∂tu−Hu = cos

p−5
2 (2t)SN (|SNu|p−1SNu), |t| < π

4
, x ∈ R,

u|t=s ∈ H−ǫ,

where the extension on E⊥
N = Vect{en, n > N} is given by the linear flow e−itHu. Using that ν̃N,t = νN,t⊗µN

and in the decomposition

H−ǫ = EN × E⊥
N

the flow takes the form

(4.8) Φ̃N := ΦN ⊗ e−itH .

Since the measure µN is invariant by the flow of e−itH , we get that with this extension, Proposition 4.2 is
still true with νN,t replaced by ν̃N,t, see definition (4.3).

5. Non linear estimates

5.1. Strichartz estimates. To begin with, we recall the Strichartz estimates for the harmonic oscillator.
A couple (q, r) ∈ [2,+∞]2 is called admissible if

2

q
+

1

r
=

1

2
,

and if one defines

Zσ
T := L∞(

[−T, T ] ;Hσ(R)
)
∩ L4

(
[−T, T ] ;Wσ,∞(R)

)
,

then for all T > 0 there exists CT > 0 so that for all u0 ∈ Hσ(R) we have

(5.1) ‖e−itHu0‖Zσ
T
≤ CT ‖u0‖Hσ(R).

We will also need the inhomogeneous version of the Strichartz estimates: for all T > 0, there exists CT > 0
so that for all admissible couple (q, r) and function F ∈ Lq′((T, T );Wσ,r′ (R)),

(5.2)
∥∥
∫ t

0
e−i(t−s)HF (s)ds

∥∥
Zσ
T
≤ CT ‖F‖Lq′ ((−T,T );Wσ,r′(R)),

where q′ and r′ are the Hölder conjugate of q and r. We refer to [28] for a proof.
In the sequel, we will also need similar estimates in Besov spaces (recall definition (3.16)).

Proposition 5.1. Assume that (q, r) is admissible and ρ ≥ 0. Then there exists CT > 0 such that

(5.3) ‖e−itHu0‖Lq((−T,T );Bρ
r,2)

≤ CT ‖u0‖Hρ ,

and

(5.4)
∥∥
∫ t

0
e−i(t−s)HF (s)ds

∥∥
Lq((−T,T );Bρ

r,2)
≤ CT ‖F‖L1((−T,T );Hρ).

Proof. For the inequality (5.3), we use the Minkowski inequality (because q ≥ 2) and (5.1)

‖e−itHu0‖Lq((−T,T );Bρ
r,2)

= ‖2jρ∆̃je
−itHu0‖Lq

t ;ℓ
2
j ;L

r
x
≤

≤ ‖2jρe−itH∆̃ju0‖ℓ2j ;Lq
t ;L

r
x
≤ C‖2jρ∆̃ju0‖ℓ2j ≤ C‖u0‖Hρ ,

which was the claim. The inequality (5.4) follows from (5.3) and the Minkowski inequality. �
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Let

F (u) = |u|p−1u.

In the following, the analysis of the Cauchy problem will be different according whether p ≥ 2 (the nonlin-
earity is C2) or 1 < p < 2 (the nonlinearity is only C1).

5.2. The estimates for the local theory. In this section we prove the main estimates allowing to perform
a fixed point to establish the local existence for our nonlinear equations. When p ≤ 2, the lack of smoothness
of the nonlinearity F (u) = |u|p−1u forces us to prove a priori estimates in strong norm (see Proposition 5.4)
and contraction in weak norm (see Proposition 5.5). As a consequence, in Section 8 we shall in this case
perform a quasi-linear type fixed point.

The starting point is the following set of results from Christ-Weinstein [16]. In the sequel, Dα
xu is defined

as a tempered distribution using the Fourier transform: F(Dα
xu)(ξ) = |ξ|αF(u)(ξ).

Proposition 5.2 ([16, Proposition 3.1]). Assume that G ∈ C1(C;C), and let 0 ≤ α ≤ 1, 1 < p, q, r < +∞,
r−1 = p−1 + q−1. Assume that u ∈ Wα,q and G′(u) ∈ Lp, then G(u) ∈ Wα,r, and

‖Dα
xG(u)‖Lr ≤ C‖G′(u)‖Lp‖Dα

xu‖Lq .

Proposition 5.3 ([16, Proposition 3.3]). Let 0 ≤ α ≤ 1, 1 < r, pi, qi < +∞, i = 1, 2, and r−1 = p−1
i + q−1

i .
Assume that f ∈ Lp1 ,Dα

xf ∈ Lp2, and g ∈ Lq2 ,Dα
xg ∈ Lq1. Then Dα

x (fg) ∈ Lr and

‖Dα
x (fg)‖Lr ≤ C

(
‖f‖Lp1‖Dα

x g‖Lq1 + ‖Dα
xf‖Lp2‖g‖Lq2

)
.

From the previous results we deduce

Proposition 5.4. Let p > 1 and ρ, σ ≥ 0. Then

(5.5) ‖F (u)‖Hρ(R) ≤ C‖ u

〈x〉σ ‖Wρ,4(R)‖〈x〉
σ

p−1u‖p−1

L4(p−1)(R)
.

Assume moreover that 1 < p < 3
2 . Then for any 2 < r ≤ 2

1−2(p−1) , there exists C > 0 such that, with

s = 2(p−1)r
r−2 (≥ 1)

(5.6) ‖F (u)‖Hρ(R) ≤ C‖u‖Wρ,r(R)‖u‖p−1
Ls(R).

Proposition 5.5. Let p > 2 and ρ, σ ≥ 0. Then there exists C > 0 such that

(5.7) ‖F (u)− F (v)‖Hρ(R) ≤ C‖u− v

〈x〉σ ‖Wρ,4

(
‖〈x〉

σ
p−1u‖p−1

L4(p−1) + ‖〈x〉
σ

p−1 v‖p−1

L4(p−1)

)

+C‖〈x〉
σ

p−1 (u− v)‖L4(p−1)

(
‖〈x〉

σ
p−1u‖p−2

L4(p−1) + ‖〈x〉
σ

p−1 v‖p−2

L4(p−1)

)(
‖ u

〈x〉σ ‖Wρ,4 + ‖ v

〈x〉σ ‖Wρ,4

)
.

Let 1 < p ≤ 2, then for any r ≥ 2, there exists C > 0 such that, with s = 2(p−1)r
r−2

(5.8) ‖F (u) − F (v)‖L2(R) ≤ C‖u− v‖Lr(R)

(
‖u‖p−1

Ls(R) + ‖v‖p−1
Ls(R)

)
.

Proof of Proposition 5.4. Let us first show (5.5). We use (3.15) which gives

‖F (u)‖Hρ(R) ∼ ‖〈x〉ρF (u)‖L2(R) + ‖Dρ
xF (u)‖L2(R).

The contribution of the first term is bounded by

‖〈x〉ρF (u)‖L2 ≤ ‖〈x〉ρ 1

〈x〉σ u‖L4‖〈x〉σ |u|p−1‖L4 ≤ C‖ 1

〈x〉σ u‖Wρ,4‖〈x〉
σ

p−1u‖p−1

L4(p−1)

while the contribution of the second term is bounded using Proposition 5.2 with the choice G(z) = |z|p−1z
which is C1 because p > 1 (it is clearly C1 away from (0, 0) and its differential is homogeneous of degree
p− 1 in (x, y), hence vanishing at (0, 0)). Therefore we obtain

(5.9) ‖Dρ
xF (u)‖L2 ≤ C‖Dρ

xu‖L4‖|u|p−1‖L4 ≤ C‖u‖Wρ,4‖u‖p−1

L4(p−1) ,
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which is the result with σ = 0. In order to treat the general case σ ≥ 0, we introduce a partition of unity

(5.10) 1 =
+∞∑

j=0

χj(x), ∀j ≥ 1, χj(x) = χ(2−jx), supp χ ⊂
{
x;

1

2
≤ |x| ≤ 2

}
,

and choose χ̃j equal to 1 on the support of χj. Then by (5.9)

‖F (u)‖2Hρ ≤
∑

j≥0

‖χjF (u)‖2Hρ =
∑

j≥0

‖χjF (χ̃ju)‖2Hρ

≤ C
∑

j≥0

‖χ̃ju‖2Wρ,4‖χ̃ju‖2(p−1)

L4(p−1) = C
∑

j≥0

‖χ̃j
u

2jσ
‖2Wρ,4‖2j

σ
p−1 χ̃ju‖2(p−1)

L4(p−1) .

Therefore we get

‖F (u)‖2Hρ ≤ C
(∑

j≥0

‖χ̃j
u

〈x〉σ ‖
4
Wρ,4

) 1
2
(∑

j≥0

‖χ̃j〈x〉
σ

p−1u‖4(p−1)

L4(p−1)

) 1
2

≤ C‖ u

〈x〉σ ‖
2
Wρ,4‖〈x〉

σ
p−1u‖2(p−1)

L4(p−1) ,

which gives (5.5). To get (5.6), we use Proposition 5.2 to estimate

‖Dρ
xF (u)‖L2 ≤ C‖Dρ

xu‖Lr‖|u|p−1‖
L

2r
r−2

≤ C‖u‖Wρ,r‖u‖p−1
Ls ,

which was the claim. �

Proof of Proposition 5.5. Let us now turn to the proof of (5.7). By the Taylor formula,

(5.11) F (u)− F (v) = (u− v)

∫ 1

0
∂zF

(
v + θ(u− v), v + θ(u− v)

)
dθ+

+ (u− v)

∫ 1

0
∂zF

(
v + θ(u− v), v + θ(u− v)

)
dθ.

On the first hand, since |∂F (z, z)| ≤ C|z|p−1, we deduce

‖〈x〉ρ
(
F (u)− F (v)

)
‖L2 ≤ C‖ 1

〈x〉σ 〈x〉
ρ(u− v)‖L4

(
‖〈x〉

σ
p−1u‖p−1

L4(p−1) + ‖〈x〉
σ

p−1 v‖p−1

L4(p−1)

)
.

On the other hand, according to Proposition 5.3, with r = 2, (p1, q1) = (4(p − 1), 4(p−1)
2p−3 ), (p2, q2) = (4, 4),

we have, using again the same partition of unity (5.10),

‖F (u) − F (v)‖2Hρ ∼
∑

j≥0

‖χj(F (u)− F (v))‖2Hρ =
∑

j≥0

‖χj(F (χ̃ju)− F (χ̃jv))‖2Hρ .

Next, for all j ≥ 0, we compute

(5.12)
∥∥Dρ

x

(
χ̃j(u− v)

∫ 1

0
∂zF

(
χ̃j(v + θ(u− v)), χ̃j(v + θ(u− v))

)
dθ

)∥∥
L2 ≤

≤ C‖χ̃j(u− v)‖L4(p−1)

∥∥Dρ
x

∫ 1

0
∂zF

(
χ̃j(v + θ(u− v)), χ̃j(v + θ(u− v))

)
dθ

∥∥
L

4(p−1)
2p−3

+ C‖Dρ
xχ̃j(u− v)‖L4

∥∥
∫ 1

0
∂zF

(
χ̃j(v + θ(u− v)), χ̃j(v + θ(u− v))

)
dθ

∥∥
L4 .
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The second term in the r.h.s. of (5.12) is easily bounded by (recall that |∂zF | ≤ C|z|p−1)

(5.13)
∥∥Dρ

xχ̃j(u− v)
∥∥
L4

∥∥
∫ 1

0
∂zF

(
χ̃j(v + θ(u− v)), χ̃j(v + θ(u− v))

)
dθ

∥∥
L4 ≤

≤
∥∥Dρ

xχ̃j(u− v)
∥∥
L4

∫ 1

0

∥∥∂zF
(
χ̃j(v + θ(u− v)), χ̃j(v + θ(u− v))

)∥∥
L4dθ

≤
∥∥Dρ

xχ̃j(u− v)
∥∥
L4

(
‖χ̃jv‖p−1

L4(p−1) + ‖χ̃ju‖p−1

L4(p−1)

)
.

To bound the first term in the r.h.s. of (5.12), we apply Proposition 5.2 with the choice of functions
G(u) = ∂zF (u, u) which is C1 (because p > 2 and the second derivative which is defined away from (0, 0) is

homogeneous of degree p− 2, hence vanishing at (0, 0)). We get with the choice (r, p, q) = (4(p−1)
2p−3 , 4(p−1)

p−2 , 4),

(5.14)
∥∥Dρ

x

∫ 1

0
∂zF

(
χ̃j(v + θ(u− v)), χ̃j(v + θ(u− v))

)
dθ

∥∥
L

4(p−1)
2p−3

≤

≤
∫ 1

0

∥∥Dρ
x∂zF

(
χ̃j(v + θ(u− v)), χ̃j(v + θ(u− v))

)∥∥
L

4(p−1)
2p−3

dθ

≤ C

∫ 1

0
‖χ̃j |v + θ(u− v)|p−2‖

L
4(p−1)
p−2

‖Dρ
xχ̃j(v + θ(u− v))‖L4

≤ C
(
‖χ̃ju‖p−2

L4(p−1) + ‖χ̃jv‖p−2

L4(p−1)

)(
‖Dρ

xχ̃ju‖L4 + ‖Dρ
xχ̃jv‖L4

)
.

From (5.12), (5.13) and (5.14) we deduce

∥∥Dρ
x

(
χ̃j(u− v)

∫ 1

0
∂zF

(
χ̃j(v + θ(u− v)), χ̃j(v + θ(u− v))

)
dθ

)∥∥
L2 ≤

≤ C‖Dρ
xχ̃j(u− v)‖L4

(
‖χ̃jv‖p−1

L4(p−1) + ‖χ̃ju‖p−1

L4(p−1)

)

+ C‖χ̃j(u− v)‖L4(p−1)

(
‖χ̃ju‖p−2

L4(p−1) + ‖χ̃jv‖p−2

L4(p−1)

)(
‖Dρ

xχ̃ju‖L4 + ‖Dρ
xχ̃jv‖L4

)
.

Putting the weights 〈x〉 and using that these weights are essentially constant on the support of χ̃j, we get
the estimate for the contribution of the first term in the r.h.s. of (5.11). The estimate for the second term
is similar. This concludes the proof of (5.7). Finally (5.8) follows from (5.11) and the Hölder inequality. �

5.3. The estimates for the continuity of the flow.

Proposition 5.6. Let 3
2 ≤ p ≤ 2 and ρ, σ ≥ 0. Then there exists C > 0 such that

(5.15) ‖F (u) − F (v)‖Hρ(R) ≤

≤ C‖u− v

〈x〉σ ‖Bρ
4,2

(
‖〈x〉

σ
p−1u‖p−1

L4(p−1) + ‖〈x〉
σ

p−1 v‖p−1

L4(p−1)

)
+ C‖ v

〈x〉σ ‖B
ρ
4,2(R)

‖〈x〉
σ

p−1 (u− v)‖p−1

L4(p−1) .

Let 1 < p < 3
2 and ρ ≥ 0. Then for any 2 < r < 2

2−p , there exists C > 0 such that, with s = 2(p−1)r
r−2 > 2

(5.16) ‖F (u) − F (v)‖Hρ(R) ≤ C‖u− v‖Bρ
r,2

(
‖u‖p−1

Ls + ‖v‖p−1
Ls

)
+ C‖v‖Bρ

r,2(R)
‖u− v‖p−1

Ls .

Proof. We first consider the case σ = 0. Since 0 < ρ < 1, we can use the characterization (3.14) of the usual
Hρ(R) norm, namely

(5.17) ‖g‖2Hρ(R) = ‖g‖2L2(R) +

∫

|t|<1

|g(x+ t)− g(x)|2
|t|2ρ+1

dtdx.
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We only prove (5.15), the proof of (5.16) being similar. We have

F (u)(x) − F (u)(y) =

=
(
u(x)− u(y)

) ∫ 1

0
∂zF

(
u(x) + θ(u(x)− u(y)), u(x) + θ(u(x)− u(y))

)
dθ

+
(
u(x)− u(y)

) ∫ 1

0
∂zF

(
u(x) + θ(u(x)− u(y))(x), u(x) + θ(u(x)− u(y))

)
dθ.

We deduce

(5.18)
(
F (u)(x) − F (u)(y)

)
−

(
F (v)(x) − F (v)(y)

)
=

=
(
(u− v)(x)− (u− v)(y)

) ∫ 1

0
∂zF

(
u(x) + θ(u(x)− u(y)), u(x) + θ(u(x)− u(y))

)
dθ

+
(
(u− v)(x)− (u− v)(y)

) ∫ 1

0
∂zF

(
u(x) + θ(u(x)− u(y))(x), u(x) + θ(u(x)− u(y))

)
dθ

+ (v(x) − v(y))

∫ 1

0

(
∂zF

(
u(x) + θ(u(x)− u(y)), u(x) + θ(u(x)− u(y))

)

− ∂zF
(
v(x) + θ(v(x)− v(y)), v(x) + θ(v(x)− v(y))

))
dθ

+ (v(x)− v(y))

∫ 1

0

(
∂zF

(
u(x) + θ(u(x)− u(y)), u(x) + θ(u(x)− u(y))

)

− ∂zF
(
v(x) + θ(v(x)− v(y)), v(x) + θ(v(x)− v(y))

))
dθ.

Recall that, assuming 1 < p ≤ 2, we have ∂zF (z, z) = p+1
2 |z|p−1 and ∂zF (z, z) = p−1

2 |z|p−2z which satisfy
(see e.g. [15, (2.26) & (2.27)])

(5.19)
∣∣|z1|p−1 − |z2|p−1

∣∣ ≤ C|z1 − z2|p−1,
∣∣|z1|p−2z1 − |z2|p−2z2

∣∣ ≤ C|z1 − z2|p−1.

From (5.18) and (5.19) we deduce
∣∣(F (u)(x) − F (u)(y)

)
−

(
F (v)(x) − F (v)(y)

)∣∣ ≤

≤ C
∣∣(u− v)(x) − (u− v)(y)

∣∣
(
|u|(x) + |u|(y) + |v|(x) + |v|(y)

)p−1

+ C
∣∣v(x)− v(y)

∣∣(|u− v|(x) + |u− v|(y)
)p−1

.

Plugging this estimate into (5.17) we get (notice that the roles of x and y are symetric)

‖F (u) − F (v)‖2Hρ(R) ≤ ‖〈x〉ρ(F (u)− F (v))‖2L2(R)+

+

∫

|t|<1

∣∣(F (u)− F (v))(x + t)− (F (u) − F (v))(x)
∣∣2

|t|2ρ+1
dxdt

≤ ‖〈x〉ρ(F (u) − F (v))‖2L2(R)+

+ C

∫

|t|<1

|(u− v)(x+ t)− (u− v)(x)|2
|t|2ρ+1

(
|u|(x) + |v|(x) + |u|(x) + |v|(x)

)2(p−1)
dxdt

+ C

∫

|t|<1

|v(x+ t)− v(x)|2
|t|2ρ+1

(
|u− v|(x+ t) + |u− v|(x)

)2(p−1)
dtdx.

The first term, ‖〈x〉ρ(F (u)− F (v))‖L2(R) is easily bounded by

‖〈x〉ρ(u− v)‖L4

(
‖u‖p−1

L4(p−1) + ‖v‖p−1

L4(p−1)

)
≤ C‖u− v‖Wρ,4

(
‖u‖p−1

L4(p−1) + ‖v‖p−1

L4(p−1)

)
.
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Using the Cauchy-Schwarz inequality for the x integral and (3.14), the contributions of the second and
third term are bounded by

C‖u− v‖Bρ
4,2

(
‖u‖p−1

L4(p−1) + ‖v‖p−1

L4(p−1)

)
+ C‖v‖Bρ

4,2
‖u− v‖p−1

L4(p−1) .

This proves (5.15) for σ = 0 with Bρ
p,2 instead of Bρ

p,2. To conclude (when σ = 0) we apply Lemma E.1.
To get the result for any σ ≥ 0, we follow the same method as in Section 5.2 using the partition of unity.

Finally, the proof of (5.16) is similar. �

6. Functional spaces Y ρ,ǫ and Xρ
t0,τ

In this section we define the spaces required to develop our Cauchy theory. The rule of the game is the
following: the spaces for the initial data must be of full measures, while the spaces for the solutions must be
strong enough to perform fixed points, and to ensure that after solving, the final data is controlled in the
space of the data. Last but not least, to be able to show the decay properties of the Lp+1 norms, all the
norms involved must control the L∞;Lp+1 norm (and its variation during the fixed point).

In the sequel we will work on the interval

It0,τ = (t0 − τ, t0 + τ) ⊂ (−π

4
,
π

4
).

In the next sections, we define the spaces Y ρ,ǫ of the initial conditions, and the solution spaces Xρ
t0,τ . Before

we define precisely these spaces, let us state the main properties they need to satisfy:

• The space Y ρ,ǫ is of full µ0−measure and large deviation estimates are available (see Proposition 7.3).
• The space Y ρ,ǫ is invariant by the linear flow: if u ∈ Y ρ,ǫ, then for all t ∈ R we have e−itHu ∈ Y ρ,ǫ

and ‖e−itHu‖Y ρ,ǫ = ‖u‖Y ρ,ǫ

• The spaces (Y ρ,ǫ)ρ>0,ǫ>0 are included in each other, with compact embeddings: if 0 < ρ < ρ′ and
0 < ǫ′ < ǫ, then Y ρ′,ǫ′ ⊂ Y ρ,ǫ.

• We have the continuous embedding Hρ ⊂ Y ρ,ǫ (see Lemma 6.1).
• There exists δ > 0 such that for u ∈ Y ρ,ǫ we have ‖e−itHu‖L∞((−π,π);Wδ,p+1) ≤ C‖u‖Y ρ,ǫ . This will
be proved in Proposition 7.1.

• The solution space Xρ
t0,τ is the usual Strichartz space for the Schrödinger equation with harmonic

potential and data in Hρ, and including a Besov-norm when F is not regular enough (1 < p ≤ 2).

The definitions of these spaces depend whether 1 < p ≤ 3
2 or 3

2 < p ≤ 2 or p > 2. This is due to the
regularity of the nonlinearity F and is a consequence of the results of Section 5.

Set

ρ0 =
1

2
− 1

p+ 1
=

p− 1

2(p + 1)
,

then we have the Sobolev embedding Hρ0 ⊂ Lp+1 and for all ρ ≥ ρ0

(6.1) Hρ ⊂ Wρ−ρ0,p+1.

In the following we will also need the notation

(6.2) σq =





1
2 − 1

q if 2 ≤ q ≤ 4

1
6 +

1
3q if q ≥ 4 ,

and we refer to Proposition 7.1 for a justification of this parameter.

6.1. Spaces for p > 2. Let max(0, 12 − 1
2(2p−3) , ρ0) < ρ < 1

2 . Denote by η = min(ρ−ρ0
2 , σp+1), where σp+1 is

defined in (6.2). For 0 < ǫ < η, we define the spaces for the initial data Y ρ,ǫ

Y ρ,ǫ :=
{
u ∈ H−ε : e−itHu ∈ L8(p−1)

(
(−π, π);W

ρ
2(p−1)

,4(p−1))
,

e−itHu ∈ C0([−π, π];Wη−ǫ,p+1),
1

〈x〉ρ/2 e
−itHu ∈ L8

(
(−π, π);Wρ,4

)}
,
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and we equip them with the natural norm

‖u‖Y ρ,ǫ = ‖u‖H−ε + ‖e−itHu‖
L8(p−1)((−π,π);W

ρ
2(p−1)

,4(p−1)
)

+ ‖e−itHu‖L∞((−π,π);Wη−ǫ,p+1) + ‖ 1

〈x〉ρ/2 e
−itHu‖L8((−π,π);Wρ,4).

We define Xρ
t0,τ the spaces for the solutions by

Xρ
t0,τ := C0(It0,τ ;Hρ) ∩ L4(It0,τ ;Wρ,∞),

equipped with the natural norm

‖u‖Xρ
t0,τ

= ‖u‖L∞(It0,τ ;Hρ) + ‖u‖L4(It0,τ ;Wρ,∞).

6.2. Spaces for 3
2 < p ≤ 2. We can check that for all 3

2 < p ≤ 2 we have max(0, 4p−7
4(p−1) , ρ0) <

p−1
2 and we

consider max(0, 4p−7
4(p−1) , ρ0) < ρ < p−1

2 . We denote by η = min(ρ−ρ0
2 , σp+1). Let 0 < ǫ < η, and define the

spaces for the initial data Y ρ,ǫ by

Y ρ,ǫ :=
{
u ∈ H−ε : e−itHu ∈ L8(p−1)

(
(−π, π);W

2p−3
4(p−1)

−ǫ,4(p−1))
,

e−itHu ∈ C0([−π, π];Wη−ǫ,p+1),
1

〈x〉(2p−3)/4
e−itHu ∈ L8

(
(−π, π);Wρ,4

)}
,

and the spaces Xρ
t0,τ by

Xρ
t0,τ := C0(It0,τ ;Hρ) ∩ L4(It0,τ ;Wρ,∞) ∩ L8(It0,τ ;Bρ

4,2).

All spaces are equipped with their natural norms (recall that the Besov spaces are defined in (3.16)).

6.3. Spaces for 1 < p ≤ 3
2 . Let ρ0 < ρ < p−1

2 . Similarly to the previous cases, denote by η =

min(ρ−ρ0
2 , σp+1). Then for κ > 0 small enough, we consider the Strichartz-admissible couple (q, r) =

( 4
p−1−κ ,

2
2−p+κ). The spaces for the initial data are given by

Y ρ,ǫ :=
{
u ∈ H−ε : e−itHu ∈ L∞((−π, π);H−ǫ) ∩ Lq((−π, π);Wρ,r) ∩ C0([−π, π];Wη−ǫ,p+1)

}
,

where 0 < ǫ < η, and the spaces for the solutions Xρ
t0,τ

are given by

Xρ
t0,τ := C0(It0,τ ;Hρ) ∩ L4(It0,τ ;Wρ,∞) ∩ Lq(It0,τ ;Bρ

r,2).

All spaces are equipped with their natural norms.

Define s = 2(p−1)r
r−2 = 2(p−1)

p−1−κ . We shall choose ρ < p−1
2 arbitrarily close to p−1

2 , then chose κ > 0 small

enough so that 2 < s < r, and then for ǫ > 0 small enough, since q > 8, we have

(6.3) ‖e−itHu‖L8((−π,π);Wρ,r) ≤ ‖e−itHu‖Lq((−π,π);Wρ,r) ≤ ‖u‖Y ρ,ǫ .

Observe also that by Sobolev embedding, the previous line implies that there exists C > 0 such that

(6.4) ‖e−itHu‖L8((−π,π);Ls) ≤ C‖u‖Y ρ,ǫ .

6.4. The space X0
t0,τ . In the sequel, we will also need the space

X0
t0,τ = L∞(It0,τ ;L

2) ∩ L4(It0,τ ;L
∞).
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6.5. Further properties of Y ρ,ǫ. As a consequence of the Strichartz inequalities, we have

Lemma 6.1. Let p > 1. Under the above assumptions on ρ, we have for all ǫ > 0 small enough

(6.5) Hρ ⊂ Y ρ,ǫ.

Namely, there exists C0 > 0 such that for all u ∈ Y ρ,ǫ

‖u‖Y ρ,ǫ ≤ C0‖u‖Hρ .

As a consequence,

(6.6) Xρ
t0,τ ⊂ L∞(It0,τ ;Y

ρ,ǫ),

and for all v ∈ Xρ
t0,τ

(6.7) ‖v‖L∞(It0,τ ;Y
ρ,ǫ) ≤ C0‖v‖Xρ

t0,τ
.

Proof. • Case p > 2. The bound

‖e−itHu‖L∞((−π,π);Wη−ǫ,p+1) ≤ C‖u‖Hρ

is a direct consequence of (6.1). On the other hand, the couple (8, 4) is admissible which implies

‖ 1

〈x〉ρ/2 e
−itHu‖L8((−π,π);Wρ,4) ≤ C‖e−itHu‖L8((−π,π);Wρ,4) ≤ C‖u‖Hρ .

To bound the last term, we use the Strichartz inequality (5.1) and get

(6.8) ‖e−itHu‖L8(p−1)((−π,π);Wρ,r) ≤ C‖u‖Hρ ,
1

r
=

1

2
− 1

4(p − 1)
.

It remains to check that by Sobolev embeddings, we have

Wρ,r ⊂ W
ρ

2(p−1)
,4(p−1)

,

which follows from

(6.9) ρ(1− 1

2(p − 1)
) ≥ 1

r
− 1

4(p − 1)
=

1

2
− 1

2(p − 1)
⇐ ρ ≥ 1

2
− 1

2(2p − 3)
=

p− 2

2p − 3
.

• Case 3
2 < p ≤ 2. The proof follows the same lines. To bound the last term, it is enough to check here

the Sobolev embedding

(6.10) Wρ,r ⊂ W
2p−3
4(p−1)

,4(p−1)

which holds true under the condition

ρ− 2p− 3

4(p − 1)
≥ 1

r
− 1

4(p − 1)
=

1

2
− 1

2(p − 1)
⇐ ρ >

4p− 7

4(p − 1)
.

We conclude with (6.8).
• Case 1 < p ≤ 3

2 . Recall that (q, r) = ( 4
p−1−κ ,

2
2−p+κ) is an admissible couple. From the Sobolev

embedding (6.1) we obtain

‖e−itHu‖L∞((−π,π);Wη−ǫ,p+1) ≤ ‖e−itHu‖L∞((−π,π);Wρ−ρ0,p+1) ≤ C‖u‖Hρ .

The bound
‖e−itHu‖Lq((−π,π);Wρ,r) ≤ C‖u‖Hρ ,

is given by the Strichartz estimate (5.1).
Finally, the embedding (6.6) follows from the fact that Xρ

t0,τ ⊂ L∞(It0,τ ;Hρ) and (6.5). �

As a consequence of (3.11), we can show

Lemma 6.2. Assume that ǫ, ρ > 0 and σ > 0. There exists C > 0 such that for any N ≥ 1, and any
u ∈ Y ρ,ǫ and any v ∈ Xσ

t0,τ ,

‖SNu‖Y ρ,ǫ ≤ C‖u‖Y ρ,ǫ , ‖SNv‖Xσ
t0,τ

≤ C‖v‖Xσ
t0,τ

.
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We also have the following statement.

Lemma 6.3. Let ρ > 0 and ǫ > 0. Then for any u ∈ Y ρ,ǫ and N ≥ 1,

‖(1− SN )u‖Y ρ,ǫ = o(1)N→+∞.

Assume moreover that 0 < ρ < ρ′ and 0 < ǫ′ < ǫ. Then for any u ∈ Y ρ′,ǫ′ and N ≥ 1,

(6.11) ‖(1− SN )u‖Y ρ,ǫ ≤ CN−min(ρ′−ρ,ǫ−ǫ′)‖u‖Y ρ′,ǫ′ .

One can easily see that the analysis above implies that SNu is a Cauchy sequence in L2(Ω;Y ρ,ǫ) and thus
we may see the measures µ0 and νt as finite Borel measures on Y ρ,ǫ.

The property (6.11) will be used to obtain uniform bounds for the approximate flow (see Lemma 10.2),
which is a key ingredient in the proof of the quasi-invariance result (Proposition 10.1). Notice in particular

that (6.11) implies that, for 0 < ρ < ρ′ and 0 < ǫ′ < ǫ, the embedding Y ρ′,ǫ′ ⊂ Y ρ,ǫ is compact.

Proof. Notice that the assumptions ρ < ρ′ and ǫ′ < ǫ gain some positive power in H (hence positive powers
of N ≥ 1), and consequently compactness in the space variable because powers of H control both powers of
Dx and of x. On the other hand, since the second and the third term in the definition of Y ρ,ǫ are defined
in terms of the free evolution, we may exchange some saving derivatives in H for some time derivatives and
hence some compactness in time. We omit the details. �

7. Large deviation bounds

We start by recalling the following large deviation bound, which is a variation around results obtained in
[32, 10], leading to an improvement in the time variable.

Proposition 7.1. Assume that (σ, q) satisfy σ < σq, where

σq =





1
2 − 1

q if 2 ≤ q ≤ 4

1
6 + 1

3q if q ≥ 4.

Then

(7.1) µ0

({
u0 ∈ X0(R) : ‖e−itHu0‖L∞((−π,π);Wσ,q) ≥ R

})
≤ Ce−cR2

.

Proof. From [32, Theorem 2.1, (∞, 2, 1)] and [10, Lemma A.8],

(7.2) ‖en‖L2 = 1, ‖en‖L4 ≤ C log
1
4 (λn)λ

− 1
4

n , ‖en‖L∞ ≤ Cλ
− 1

6
n .

We deduce by Hölder inequality

(7.3) ∀σ < σq, ∃ǫ = σq − σ

2
; ‖H σ

2 en‖Lq = ‖λσ
nen‖Lq ≤ Cλ−ǫ

n .

We now revisit the proof of [11, Proposition 4.4], see also [12, Section 3] and [32, Proposition 6.2], with a
slightly different treatment of the time variable. To begin with, observe that

Dα
t e

−itHu0 = Hαe−itHu0,

as can be checked by a decomposition in Hermite series together with a Fourier transform in time.
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Next, let s ≥ r > 4
ǫ > q, let χ ∈ C∞(R) equal to 1 on [−π

2 ,
π
2 ]. By the Minkowski inequality we have

∥∥χ(t)〈Dt〉
ǫ
4H

σ
2 e−itH

(∑

n≥0

gn
λn

en(x)
)∥∥

Ls(Ω);Lr(Rt);Lq(Rx)
≤

≤
∥∥∑

n≥0

〈λn〉
ǫ
2λσ−1

n χ(t)e−itλnen(x)gn
∥∥
Lq(Rx);Lr(Rt);Ls(Ω)

≤ C
√
s
∥∥
(∑

n≥0

〈λn〉ǫλ2σ−2
n |χ(t)|2|en|2(x)

)1/2∥∥
Lq(Rx);Lr(Rt)

≤ C
√
s
(∑

n≥0

〈λn〉ǫ+2σ−2‖χ(t)en(x)‖2Lq(Rx);Lr(Rt)

)1/2

≤ C
√
s
∑

n≥0

〈λn〉ǫ+2σ−2λ−2σ−2ǫ
n < C ′√s

where we used that for i.i.d normalised Gaussian random variables

‖
∑

n≥0

βngn‖Ls(Ω) ≤ C
√
s(
∑

n≥0

|βn|2)1/2,

and in the last line we used (7.3) and the fact that λn =
√
2n + 1.

The Bienaymé-Tchebychev inequality and an optimisation with respect to the parameter s ≥ 1 (see
e.g. [11, (4.5) & (4.6)]) gives

(7.4) µ0

(
{u0 ∈ X0(R) : ‖χ(t)〈Dt〉

ǫ
4H

σ
2 e−itHu0‖Lr(Rt);Lq(Rx) ≥ R

})
≤ Ce−cR2

.

Finally, to get (7.1), we just remark using Sobolev embedding in the time variable (recall that ǫ
4 > 1

r )

‖e−itHu0‖L∞((−π,π);Wσ,q) = ‖H σ
2 e−itHu0‖L∞((−π,π);Lq

x) ≤

≤ ‖H ρ
4 e−itHu0‖Lq

x;L∞(−π,π) ≤ ‖χ(t)D
ǫ
4
t H

ρ
4 e−itHu0‖Lq

x;Lr(Rt) ,

which together with (7.4) yields the result. �

We shall also need the following result

Proposition 7.2. Assume that 0 < γ < 1
4 . Then for any ρ < 1

4 + γ, there exist c, C > 0 such that

µ0

({
u0 ∈ X0(R) :

∥∥ 1

|x|γ e
−itHu0

∥∥
L∞((−π,π);Wρ,4)

≥ R
})

≤ Ce−cR2
.

Proof. The proof follows the same lines as the proof of Proposition 7.1 after replacing the bound (7.2) by
the bound (D.1) in Appendix D. �

We can now proceed to show that µ0−almost every function is in Y ρ,ǫ.

Proposition 7.3. Assume that ρ, ǫ > 0 satisfy the assumptions in Sections 6.1, 6.2, 6.3. Then

∃ c, C > 0; µ0

({
u ∈ X0(R) : ‖u‖Y ρ,ǫ > R}

)
≤ Ce−cR2

.

Proof. • Case p > 2. Recall that

Y ρ,ǫ =
{
u ∈ H−ε : e−itHu ∈ L8(p−1)

(
(−π, π);W

ρ
2(p−1)

,4(p−1))
,

e−itHu ∈ C0([−π, π];Wη−ǫ,p+1),
1

〈x〉ρ/2 e
−itHu ∈ L8

(
(−π, π);Wρ,4

)}
.

Since ρ < 1
2 , we have ρ < 1

4 + ρ
2 . Therefore, we can apply Proposition 7.2 with γ = ρ

2 < 1
4 , which allows to

control the last term in the definition of Y ρ,ǫ. To control the other terms, it is enough to check
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ρ

2(p − 1)
< σ4(p−1) =

p+ 1

6(p − 1)
(7.5)

η − ǫ < σp+1.(7.6)

The inequality (7.6) holds true because we made the choice η = min(ρ−ρ0
2 , σp+1) > 0 and ǫ > 0 is small

enough. Condition (7.5) follows from the fact that p > 2 and ρ < 1
2 .

• Case 3
2 < p ≤ 2. Recall that

Y ρ,ǫ =
{
u ∈ H−ε : e−itHu ∈ L8(p−1)

(
(−π, π);W

2p−3
4(p−1)

−ǫ,4(p−1))
,

e−itHu ∈ C0([−π, π];Wη−ǫ,p+1),
1

〈x〉(2p−3)/4
e−itHu ∈ L8

(
(−π, π);Wρ,4

)}
.

In this case we apply Proposition 7.2 with γ = 2p−3
4 < 1

4 and ρ < 1
4 + 2p−3

4 = p−1
2 . Then, we have to check

the conditions
2p− 3

4(p − 1)
− ǫ < σ4(p−1) =

2p− 3

4(p − 1)

η − ǫ < σp+1 ,

which both hold true.
• Case 1 < p ≤ 3

2 . Recall that

Y ρ,ǫ =
{
u ∈ H−ε : e−itHu ∈ L∞((−π, π);H−ǫ) ∩ Lq((−π, π);Wρ,r) ∩ C0([−π, π];Wη−ǫ,p+1)

}
,

with 0 < ρ < p−1
2 , and where (q, r) = ( 4

p−1−κ ,
2

2−p+κ) is a Strichartz-admissible couple. Here, the conditions

to check are

ρ < σr =
1

2
− 1

r
=

p− 1− κ

2
η − ǫ < σp+1 ,

and there are both satisfied if ǫ, κ > 0 are small enough. �

Remark 7.4. As a consequence of the proof (namely the proof of Proposition 7.1), all the results in this
section remain true if we replace H−ǫ by EN and µ0 by µN , with the same constants (hence uniform with
respect to N ≥ 1).

8. The local Cauchy theory

We consider the equation

(8.1)

{
i∂tu−Hu = cos

p−5
2 (2t)|u|p−1u, (t, x) ∈ (−π

4
,
π

4
)×R,

u|t=t0 = u0.

Recall that F (u) = |u|p−1u, then (8.1) admits the Duhamel formula

u = e−i(t−t0)Hu0 − i

∫ t

t0

cos
p−5
2 (2s)e−i(t−s)HF

(
e−i(s−t0)Hu0 + v(s)

)
ds,

and consequently setting u = e−i(t−t0)Hu0 + v, the function v must satisfy v = K(v) with

(8.2) K(v) := −i

∫ t

t0

cos
p−5
2 (2s)e−i(t−s)HF

(
e−i(s−t0)Hu0 + v(s)

)
ds.

For t0, t ∈ (−π
4 ,

π
4 ), thanks to a fixed point argument, we will prove that equation (8.1) admits, on the

interval It0,τ = (t0 − τ, t0 + τ), a solution of the form u = e−i(t−t0)Hu0 + v, where v ∈ Xρ
t0,τ .

The main result we shall need to prove for the a.s. global existence is the following.
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Proposition 8.1. Let p > 1 and t0 ∈ (−π
4 ,

π
4 ). Let

ρ <

{p−1
2 if 1 < p ≤ 2

1
2 if p ≥ 2

chosen sufficiently close to p−1
2 or 1

2 respectively so that the assumptions in Section 6 are satisfied. Let ǫ > 0
chosen small enough in the definition of the space Y ρ,ǫ. There exist c > 0 and κ, δ ≥ 1 such that for any
R > 0, setting

(8.3) τ ≤
{
cR−κ(π4 − |t0|)δ if 1 < p < 5

cR−κ if p ≥ 5

for any u0 ∈ Y ρ,ǫ such that ‖u0‖Y ρ,ǫ ≤ R, there exists a unique solution u = e−itHu0 + v, with v ∈ Xρ
t0,τ , to

the equation (8.1) on the interval
It0,τ = (t0 − τ, t0 + τ),

which satisfies

‖v
∥∥
Xρ

t0,τ
≤ 1

C0
, ‖v‖L∞(It0,τ ;Y

ρ,ǫ) ≤ 1,

where C0 > 0 is the constant in (6.7).
Furthermore, for two such initial data u0, ũ0 ∈ Y ρ,ǫ such that ‖u0‖Y ρ,ǫ , ‖ũ0‖Y ρ,ǫ ≤ R, we have

(8.4)





‖u− ũ‖X0
t0,τ

≤ C‖u0 − ũ0‖Y ρ,ǫ if 1 < p ≤ 2

‖u− ũ‖Xρ
t0,τ

≤ C‖u0 − ũ0‖θY ρ,ǫ for some θ > 0 if 1 < p ≤ 2

‖u− ũ‖Xρ
t0,τ

≤ C‖u0 − ũ0‖Y ρ,ǫ if p > 2

and for any t ∈ (t0 − τ, t0 + τ),

(8.5)

{
‖u(t)− ũ(t)‖Y ρ,ǫ ≤ C‖u0 − ũ0‖θY ρ,ǫ for some θ > 0 if 1 < p ≤ 2

‖u(t)− ũ(t)‖Y ρ,ǫ ≤ C‖u0 − ũ0‖Y ρ,ǫ if p > 2.

In addition, after possibly taking smaller c > 0, and larger δ, κ ≥ 1, the solution satisfies

(8.6) sup
t∈(t0−τ,t0+τ)

‖u(t) − u0‖Lp+1 ≤ 1.

Finally, let ρ′ > ρ, ǫ′ < ǫ and assume in addition that u0 ∈ Y ρ′,ǫ′, then there exists M > 0 such that

(8.7) ‖u‖L∞((t0−τ,t0+τ);Y ρ′,ǫ′) ≤ M‖u0‖Y ρ′,ǫ′ , u = e−i(t−t0)Hu0 + v , ‖v‖
Xρ′

t0,τ

≤ ‖u0‖Y ρ′,ǫ′ .

Remark 8.2. Proposition 8.1, holds for the equation
{
i∂tu−Hu = cos

p−5
2 (2t)SN

(
|SNu|p−1SNu

)
, (t, x) ∈ (−π

4
,
π

4
)× R,

u|t=t0 = u0 ∈ EN ,

with uniform estimates with respect to the parameter N ≥ 1. This is a direct consequence of the proof of
Proposition 8.1 and the boundedness of SN on Lq(R) spaces for 1 ≤ q ≤ +∞ (see (3.11) and Lemma 6.2).

Proof of Proposition 8.1. Consider the constant C0 > 0 in (6.7). We will show that the operator K, defined

in (8.2), has a unique fixed point v in the closed ball of radius 1/C0 centered around uf0 := e−i(t−t0)Hu0
in Xρ

t0,τ .

Step 1: the operator K maps a ball of Xρ
t0,τ into itself. We have to distinguish several cases with respect

to p > 1.
• Case p > 2. From (5.5) applied with σ = ρ/2, we get

∥∥F
(
uf0 + v

)∥∥
Hρ ≤ C

(
‖ 1

〈x〉ρ/2 u
f
0‖Wρ,4 + ‖ 1

〈x〉ρ/2 v‖Wρ,4

)(
‖〈x〉

ρ
2(p−1)uf0‖p−1

L4(p−1) + ‖〈x〉
ρ

2(p−1) v‖p−1

L4(p−1)

)
.
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Taking the L1
t norm and using Hölder inequality gives,

∥∥F
(
uf0 + v

)∥∥
L1(It0,τ ;Hρ)

≤ Cτ
1
2
− 1

8
(
‖ 1

〈x〉ρ/2 u
f
0‖L8(It0,τ ;Wρ,4) + ‖ 1

〈x〉ρ/2 v‖L8(It0,τ ;Wρ,4)

)

(
‖〈x〉

ρ
2(p−1)uf0‖p−1

L8(p−1)(It0,τ ;L
4(p−1))

+ ‖〈x〉
ρ

2(p−1) v‖p−1

L8(p−1)(It0,τ ;L
4(p−1))

)

≤ Cτ
3
8
(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p
.(8.8)

– Subcase 2 < p < 5. First, notice that for all |t| < π
4

0 < cos
p−5
2 (2t) ≤ C

(π
4
− |t|

) p−5
2 .

Therefore, since τ ≤ 1
2 (

π
4 − |t0|), for all t ∈ It0,τ , we have π

4 − |t| ≥ π
4 − |t0| − τ ≥ 1

2(
π
4 − |t0|), hence

∀t ∈ It0,τ , cos
p−5
2 (2t) ≤ C

(π
4
− |t0|

)p−5
2 ,

and together with (8.8) we deduce
∥∥ cos

p−5
2 (2s)F (uf0 + v)

∥∥
L1(It0,τ ;Hρ)

≤ Cτ
3
8
(π
4
− |t0|

) p−5
2
(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p
.

Thus we get, using the inhomogeneous Strichartz estimates (5.2)

(8.9) ‖K(v)‖Xρ
t0 ,τ

≤ Cτ
3
8
(π
4
− |t0|

) p−5
2
(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p
.

As a consequence, in (8.3), taking κ, δ > 1 large enough and c > 0 small enough shows that the operator K
maps the unit ball of Xρ

t0,τ into itself.

– Subcase p ≥ 5. In this case, we simply use that 0 < cos
p−5
2 (2t) ≤ 1 and get

(8.10) ‖K(v)‖Xρ
t0 ,τ

≤ Cτ
3
8
(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p

and conclude similarly.
• Case 3

2 < p ≤ 2. We can proceed as in the previous case, but here we apply (5.5) with σ = 2p−3
4 . In

particular we get the estimate
∥∥ cos

p−5
2 (2s)F (uf0 + v)

∥∥
L1(It0,τ ;Hρ)

≤ Cτ
3
8
(π
4
− |t0|

) p−5
2
(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p
.

With the inhomogeneous Strichartz estimates (5.2) we deduce

(8.11) ‖K(v)‖Xρ
t0 ,τ

≤ Cτ
3
8
(π
4
− |t0|

) p−5
2
(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p
.

Hence we get, as before, taking in (8.3) the parameters κ, δ > 1 large enough and c > 0 small enough, that
the operator K maps the ball of radius 1/C0 of Xρ

t0,τ into itself.

• Case 1 < p ≤ 3
2 . We now use (5.6), and get

∥∥F (uf0 + v)
∥∥
Hρ(R)

≤ C
(
‖uf0‖Wρ,r + ‖v‖Wρ,r

)(
‖uf0‖Ls + ‖v‖Ls

)p−1
,

and using the Hölder inequality in time, the bounds (6.3) and (6.4), we get

(8.12)
∥∥ cos

p−5
2 (2s)F (uf0 + v)

∥∥
L1(It0,τ ;Hρ(R))

≤

≤ Cτ
8−p
8
(π
4
− |t0|

) p−5
2
(
‖uf0‖L8(It0,τ ;Wρ,r) + ‖v‖L8(It0,τ ;Wρ,r)

)(
‖uf0‖L8(It0,τ ;L

s) + ‖v‖L8(It0,τ ;L
s)

)p−1

≤ Cτ
8−p
8
(π
4
− |t0|

) p−5
2
(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p
.

With the inhomogeneous Strichartz estimates (5.2) we deduce

(8.13) ‖K(v)‖Xρ
t0 ,τ

≤ Cτ
8−p
8
(π
4
− |t0|

) p−5
2
(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p
,
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and conclude similarly.
Step 2: the operator K is a contraction. Let v,w ∈ Xρ

t0,τ be such that ‖v‖Xρ
t0,τ

, ‖w‖Xρ
t0,τ

≤ 1/C0. The

contraction argument depends on whether p > 2 or p ≤ 2.
• Case p > 2. We follow the same lines as in Step 1, but using (5.7) instead of (5.6). We get

∥∥ cos
p−5
2 (2s)

(
F (uf0 + v)− F (uf0 + w)

)∥∥
L1(It0,τ ;Hρ)

≤

≤ Cτ
3
8
(π
4
− |t0|

) p−5
2 ‖v − w‖Xρ

t0,τ

(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p−1

which implies according to the inhomogeneous Strichartz estimates (5.2),

‖K(v) −K(w)‖Xρ
t0,τ

≤ Cτ
3
8 (
π

4
− |t0|)

p−5
2 ‖v −w‖Xρ

t0,τ

(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p−1

and we get the contraction by choosing κ, δ > 1 large enough and c > 0 small enough in (8.3).
• Case 3

2 < p ≤ 2. We shall prove that K it is a contraction in a weaker norm. Recall that X0
t0,τ =

L∞(It0,τ ;L
2) ∩ L4(It0,τ ;L

∞). From Proposition 5.5 we get

(8.14)
∥∥F

(
uf0 + v

)
− F

(
uf0 + w

)∥∥
L2 ≤ C‖v − w‖L2

(
‖u0‖L∞ + ‖v‖L∞ + ‖w‖L∞

)p−1

and as previously we get

∥∥ cos
p−5
2 (2s)

(
F (uf0 + v)− F (uf0 + w)

)∥∥
L1(It0,τ ;L

2)
≤

≤ Cτ
3
8 (
π

4
− |t0|)

p−5
2 ‖v −w‖X0

t0,τ

(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ
+ ‖w‖Xρ

t0,τ

)p−1
.

Taking in (8.3) the values κ, δ > 1 large enough, c > 0 small enough we get (since ‖v‖Xρ
t0,τ

≤ 1/C0 and

‖w‖Xρ
t0,τ

≤ 1/C0),

‖K(v) −K(w)‖X0
t0,τ

≤ 1

2
‖v − w‖X0

t0,τ
.

The map K sending the ball of radius 1/C0 of Xρ
t0,τ into itself and being a contraction for the X0

t0,τ topology

has a unique fixed point in the ball of radius 1/C0 of Xρ
t0,τ .

• Case 1 < p ≤ 3
2 . The proof is similar to the previous case, but using (5.8) with the parameter r > 2

appearing in the definition of Y ρ,ǫ instead of (8.14).
Step 3: Regularity of the fluctuation. To conclude the proof of the first part of Proposition 8.1, it remains

to prove that

v ∈ C
(
(t0 − τ, t0 + τ);Hρ(R)

)
.

Since v = K(v), we get

v(t2)− v(t1) = −i

∫ t2

t1

cos
p−5
2 (2s)e−i(t−s)HF

(
uf0(s) + v(s)

)
ds.

Then, as in (8.9) (resp. (8.10), (8.11) and (8.13)) we get

‖v(t2)− v(t1)‖Hρ ≤ C|t2 − t1|
3
8 (
π

4
− |t0|)−η

(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p
,

with η = max
(5−p

2 , 0
)
, hence the result.

This concludes the proof of the first part in Proposition 8.1 (existence, uniqueness, and regularity of the
solution).

Step 4: proof of (8.4) and (8.5). Consider two solutions u = uf0 + v and ũ = ũf0 + ṽ of the equation (8.1).

• Case p > 2. To prove (8.4), we again use (5.7) and get

∥∥ cos
p−5
2 (2s)

(
F (uf0 + v)− F (ũf0 + ṽ)

)∥∥
L1(It0,τ ;Hρ)

≤

≤ Cτ
3
8 (
π

4
− |t0|)

p−5
2 ‖(uf0 + v)− (ũf0 + ṽ)‖Xρ

t0,τ

(
‖u0‖Y ρ,ǫ + ‖ũ0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ
+ ‖ṽ‖Xρ

t0,τ

)p−1
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which implies, choosing again κ, δ > 1 large enough and c > 0 small enough,

(8.15) ‖Ku0(v)−Kũ0
(ṽ)‖Xρ

t0,τ
≤

≤ Cτ
3
8 (
π

4
− |t0|)

p−5
2
(
‖u0 − ũ0‖Y ρ,ǫ + ‖v − ṽ‖Xρ

t0,τ

)(
‖u0‖Y ρ,ǫ + ‖ũ0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ
+ ‖ṽ‖Xρ

t0,τ

)p−1

≤ 1

2

(
‖u0 − ũ0‖Y ρ,ǫ + ‖v − ṽ‖Xρ

t0,τ

)
.

Since for the two solutions Ku0(v) = v, Kũ0
(ṽ) = ṽ, we get

‖v − ṽ‖Xρ
t0,τ

= ‖Ku0(v)−Kũ0
(ṽ)‖Xρ

t0,τ
≤ ‖u0 − ũ0‖Y ρ,ǫ .

Coming back to the solutions u = e−i(t−t0)Hu0 + v, ũ = e−i(t−t0)H ũ0 + ṽ, we get

‖u− ũ‖Xρ
t0,τ

≤ C‖u0 − ũ0‖Y ρ,ǫ .

Finally, to prove (8.5), we only use that, since v − ṽ = Ku0(v)−Kũ0
(ṽ), we have from (8.15)

‖v − ṽ‖L∞(It0,τ ;Hρ) ≤ ‖u0 − ũ0‖Y ρ,ǫ

together with

‖u(t) − ũ(t)‖Y ρ,ǫ ≤ ‖e−i(t−t0)H(u0 − ũ0)‖Y ρ,ǫ + ‖v(t)− ṽ(t)‖Hρ ≤ 2‖u0 − ũ0‖Y ρ,ǫ .

• Case 3
2 < p ≤ 2. Let u = uf0 + v and ũ = ũf0 + ṽ. With the arguments of Step 2, we get the bound

‖v − ṽ‖X0
t0,τ

≤ C‖u0 − ũ0‖Y ρ,ǫ . Then by interpolation of this bound with ‖v‖Xρ
t0,τ

, ‖ṽ‖Xρ
t0,τ

≤ 1/C0, we

deduce that for all 0 < ρ′′ < ρ

(8.16) ‖v − ṽ‖
Xρ′′

t0,τ

≤ C‖u0 − ũ0‖θY ρ,ǫ , θ = 1− ρ′′

ρ
.

We are going to follow a strategy inspired from [15]. According to (5.15) with σ = 2p−3
4 , we get that for all

‖u0‖Y ρ,ǫ , ‖ũ0‖Y ρ,ǫ ≤ R

∥∥F
(
uf0 + v

)
− F

(
ũf0 + ṽ

)∥∥
L1(It0,τ ;Hρ)

≤

≤ C
(
Rp−1 + ‖v‖p−1

Xρ
τ,t0

+ ‖ṽ‖p−1
Xρ

τ,t0

)(
‖u0 − ũ0‖Y ρ,ǫ + ‖v − ṽ‖Xρ

t0,τ

)
+

+ C(R+ ‖v‖Xρ
τ,t0

)‖v − ṽ‖p−1

L8(p−1)(It0,τ ;W
2p−3
4(p−1)

,4(p−1)
)

≤

≤ CRp−1
(
‖u0 − ũ0‖Y ρ,ǫ + ‖v − ṽ‖Xρ

t0,τ

)
+CR‖v − ṽ‖p−1

Xρ′′

t0,τ

,

for some 4p−7
4(p−1) < ρ′′ < ρ, by (6.10). Now, we use (8.16) together with Proposition 5.1, and get

‖v − ṽ‖Xρ
t0,τ

≤

≤ CRp−1(
π

4
− |t0|)

p−5
2 τκ

(
‖u0 − ũ0‖Y ρ,ǫ + ‖v − ṽ‖Xρ

t0,τ

)
+ CR(

π

4
− |t0|)

p−5
2 τκ‖u0 − ũ0‖θ(p−1)

Y ρ,ǫ .

Thus, choosing CR(π4 − |t0|)
p−5
2 τκ < 1

2 , gives

‖v − ṽ‖Xρ
t0,τ

≤ ‖u0 − ũ0‖Y ρ,ǫ + ‖u0 − ũ0‖θ(p−1)
Y ρ,ǫ ,

which proves (8.4) when 3
2 < p ≤ 2.

• Case 1 < p < 3
2 . The proof in this case is similar to the previous one, by replacing (5.15) in Proposi-

tion 5.6 by (5.16). We do not write the details.
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Step 5: proof of (8.7). Finally, to prove (8.7), we revisit the first step. We detail for example the case

1 < p ≤ 3
2 . Starting from (8.12), with ρ replaced by ρ′ > ρ, and the same choice of τ > 0, we get

∥∥F
(
uf0 + v

)∥∥
L1(It0,τ ;Hρ′(R))

≤

≤ Cτ
8−p
8
(
‖uf0‖L8(It0,τ ;Wρ′,r) + ‖v‖L8(It0,τ ;Wρ′,r)

)(
‖uf0‖L8(It0,τ ;L

s) + ‖v‖L8(It0,τ ;L
s)

)p−1

≤ Cτ
8−p
8

(
‖u0‖Y ρ′,ǫ′ + ‖v‖

Xρ′

t0,τ

)(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p−1
.

We deduce with the previous choice of τ > 0 (possibly choosing a smaller c > 0 in τ),

‖v‖
Xρ′

t0,τ

≤ Cτ
8−p
8 (

π

4
− |t0|)

p−5
2
(
‖u0‖Y ρ′,ǫ′ + ‖v‖

Xρ′

t0,τ

)(
‖u0‖Y ρ,ǫ + ‖v‖Xρ

t0,τ

)p−1

≤ 1

2

(
‖u0‖Y ρ′,ǫ′ + ‖v‖

Xρ′

t0,τ

)

which implies

‖v‖
Xρ′

t0,τ

≤ 2‖u0‖Y ρ′,ǫ′ .

Coming back to u gives (8.7).
Step 6: proof of (8.6). Again, we detail for example the case 1 < p ≤ 3

2 . We study the contributions of

u = e−i(t−t0)Hu0 and v = K(v). Since the Y ρ,ǫ norm controls the L∞;Wη−ǫ,p+1 norm of e−itHu0, we have

(8.17) ‖e−i(t−t0)Hu0 − u0‖Wη−ǫ,p+1 ≤ 2R.

On the other hand, since

(8.18)
∥∥e−i(t−t0)Hu0 − u0

∥∥
Wη−ǫ−2,p+1 =

∥∥
∫ t

t0

∂s(e
−i(s−t0)Hu0)ds

∥∥
Wη−ǫ−2,p+1 ≤ R|t− t0| ≤ Rτ.

Interpolating between (8.17) and (8.18) gives

∥∥e−i(t−t0)Hu0 − u0
∥∥
Lp+1 ≤ 2Rτ ǫ0

for some ǫ0 > 0, and a suitable choice of c, δ, κ > 0 ensures that

∥∥e−i(t−t0)Hu0 − u0
∥∥
Lp+1 ≤

1

2
.

Let us now turn to the analysis of the contribution of v. Replacing in (8.12) the interval It0,τ by (t′, t), we
get

‖v(t) − v(t′)‖Hρ ≤
∥∥ cos

p−5
2 (2s)F

(
e−i(s−t0)Hu0 + v(s)

)∥∥
L1((t′,t);Hρ)

≤ C|t− t′| 8−p
8 (

π

4
− |t0|)

p−5
2 Rp.

Now according to the Sobolev embeddings Hρ ⊂ Lp+1, which implies

‖v(t) − v(t′)‖Lp+1 ≤ C|t− t′| 8−p
8 (

π

4
− |t0|)

p−5
2 Rp

and a suitable choice of c, δ, κ > 0 ensures that

|t− t′| ≤ τ ⇒ ‖u(t)− u(t′)‖Lp+1 ≤ 1

2
,

hence the result. �
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9. Global existence for p > 1

In this section, we assume q0 = (0, 1, 1, 0), i.e. µq0 = µ0. We show that the problem (NLSp) is globally
well-posed on a set of full µ0−measure (Theorem 1.1). We start with a result on the harmonic oscillator
side.

Proposition 9.1. Let p > 1 and consider

ρ <

{p−1
2 if 1 < p ≤ 2

1
2 if p ≥ 2

chosen sufficiently close to p−1
2 or 1

2 respectively so that the assumptions in Section 6 are satisfied. Let ǫ > 0
chosen small enough in the definition of the space Y ρ,ǫ. There exists a set Σ of full µ0−measure such that
the local solution u of (8.1) with initial condition u0 ∈ Σ is defined on

I =

{
(−π

4 ,
π
4 ) if 1 < p < 5

R if p ≥ 5

and we shall denote it by

u = Φ(t, t0)u0 = e−i(t−t0)Hu0 + v.

Moreover, for every u0 ∈ Σ and for any η > 0, there exists C > 0 such that

‖Φ(t, t0)u0‖Y ρ,ǫ ≤




C
(
1 + (π4 − |t|) p−5

4
−η

)
, ∀t ∈ (−π

4 ,
π
4 ) if 1 < p < 5

C
(
1 + log

1
2 (1 + |t|)

)
, ∀t ∈ R if p ≥ 5.

Furthermore, we have an additional smoothness property: there exist K, γ > 0 such that for all u0 ∈ Σ,
there exists C > 0 such that

(9.1) ‖v(t)‖Hρ ≤




C
(
1 + (π4 − |t|)−K

)
, ∀t ∈ (−π

4 ,
π
4 ) if 1 < p < 5

C(1 + |t|)
(
1 + log

1
2 (1 + |t|)

)γ
, ∀t ∈ R if p ≥ 5.

We emphasize that the constants K, γ > 0 which appear in the previous statement are deterministic, and
depend only on p > 1 and ρ > 0. They are obtained by an iteration of the local well-posedness result on
small time intervals (see the proof of Proposition 9.2).

We proceed in three steps. First we prove bounds (independent of N ≥ 1) on the solution of the
approximate equation (4.1), then we pass to the limit N → +∞ to get well-posedness for (8.1) on the
interval I. Finally, we prove the quasi-invariance result. For simplicity, in the proofs, we only address the
existence for positive times.

9.1. Uniform estimates.

Proposition 9.2. Let p > 1 and consider

ρ <

{p−1
2 if 1 < p ≤ 2

1
2 if p ≥ 2

chosen sufficiently close to p−1
2 or 1

2 respectively so that the assumptions in Section 6 are satisfied. Let ǫ > 0
chosen small enough in the definition of the space Y ρ,ǫ. Let η > 0, then for all i,N ∈ N

∗, there exists a

µN−measurable set Σ̃i
N ⊂ EN so that there exist c, C, ǫ0 > 0 with

µN

(
EN\Σ̃i

N

)
≤ Ce−ciǫ0 ,

and for all u0 ∈ Σ̃i
N

(9.2) ‖ΦN (t, t0)u0‖Y ρ,ǫ ≤




i+ 2 + (π4 − |t|) p−5

4
−η, ∀t ∈ (−π

4 ,
π
4 ) if 1 < p < 5

i+ 2 + log
1
2 (1 + |t|), ∀t ∈ R if p ≥ 5.
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Moreover, there exist Kp, γp > 0 such that for all u0 ∈ Σ̃i
N , setting vN := ΦN (t, t0)u0 − e−i(t−t0)Hu0, there

exists C > 0 such that

(9.3) ‖vN (t)‖Hρ ≤




C
(
i+ 2 + (π4 − |t|)−Kp

)γp , ∀t ∈ (−π
4 ,

π
4 ) if 1 < p < 5

C(1 + |t|)
(
i+ 2 + log

1
2 (1 + |t|)

)γp , ∀t ∈ R if p ≥ 5.

9.1.1. The case 1 < p < 5. It is enough to consider the case t0 = 0. We set, for i, j ≥ 1 integers,

Bi,j
N :=

{
u ∈ EN : ‖u‖Y ρ,ǫ ≤ i+ j

}
.

Let 0 < α < 4
5−p . For any t′ ∈ (−π

4 + 2
jα ,

π
4 − 2

jα ), thanks to Proposition 8.1, there exist i0 ∈ N and γ > 1,

which only depends on ρ > 0 and p > 1, such that

(9.4) τ = c(i + j)−γ

for every t ∈ (t′ − τ, t′ + τ), i ≥ i0,

(9.5) ΦN (t, t′)
(
Bi,j

N

)
⊂

{
u ∈ EN : ‖u‖Y ρ,ǫ ≤ i+ j + 1

}
.

Namely, the time of existence of Proposition 8.1 is c(i + j)−κ(π4 − t′)δ ≥ c(i + j)−γ for γ = κ + δα. In the

sequel, [x] stands for the integer part of x ∈ R. Remark that for |k| ≤ [(π4 − 2
jα )/τ ], and since for i ≥ i0

large enough we have α < γ, then

(k + 2)τ ≤ π

4
− 2

jα
+ 2c(i+ j)−γ ≤ π

4
⇒ kτ ≤ π

4
− 2τ,

and similarly

−π

4
+ 2τ ≤ kτ.

Let

Bi,j,k
N = ΦN (kτ, 0)−1(Bi,j

N ), Σi,j
N :=

[(π
4
− 2

jα
)/τ ]⋂

k=−[(π
4
− 2

jα
)/τ ]

Bi,j,k
N .

Notice that thanks to (9.5), we obtain that the solution of (4.1) with data u0 ∈ Σi,j
N satisfies

(9.6)
∥∥ΦN (t, 0)u0

∥∥
Y ρ,ǫ ≤ i+ j + 1, t ≤ π

4
− 2

jα
.

Indeed, for t ≤ π
4 − 2

jα , we can find an integer |k| ≤ [(π4 − 2
jα )/τ ], and τ1 ∈ [−τ, τ ] so that t = kτ+τ1 and thus

u(t) = ΦN (kτ + τ1, kτ)
(
ΦN (kτ, 0)u0

)
. Since u0 ∈ Σi,j

N implies that ΦN (kτ, 0)u0 ∈ Bi,j
N , we can apply (9.5)

and get (9.6).
By Proposition 4.2, the measure νN,t is quasi-invariant by the flow ΦN and more precisely from (4.5)

with s = 0

νN,0

(
EN\Bi,j,k

N

)
≤ νN,kτ

(
ΦN (kτ, 0)

(
EN\Bi,j,k

N

))cos
5−p
2 (2kτ)

≤ νN,kτ

(
EN\Bi,j

N

)cos 5−p
2 (2kτ)

≤ µN

(
EN\Bi,j

N

)cos 5−p
2 (2kτ)

.

Now, since

kτ ≤ π

4
− 2

jα
, cos(2kτ) ≥ 4

jα
, α <

4

5− p
,

by the large deviation bound of Proposition 7.3 and Remark 7.4, we have

µN

(
EN\Bi,j

N

)cos 5−p
2 (2kτ) ≤ Ce−c(i+j)2j

(p−5)α
2 ≤ Ce−c′(i+j)ǫ0 ,
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where ǫ0 = 2 + αp−5
2 > 0. We deduce

(9.7) νN,0

(
EN\Σi,j

N

)
≤ C(i+ j)γe−c′(i+j)ǫ0 ≤ Ce−c′′(i+j)ǫ0 .

Next, we set

(9.8) Σ̃i
N =

+∞⋂

j=1

Σi,j
N .

Thanks to (9.7),

(9.9) νN,0(EN\Σ̃i
N ) ≤ C

∑

j≤i

e−c′′(i+j)ǫ0 + C
∑

j>i

e−c′′(i+j)ǫ0 ≤ Ce−ciǫ0 .

In addition, using (9.6), we get that for every i ≥ i0, every N ≥ 1, every u0 ∈ Σ̃i
N , every 0 < t < π

4 ,

∥∥ΦN (t, 0)u0
∥∥
Y ρ,ǫ ≤ i+ 2 + (

π

4
− t)−

1
α .

Indeed, for 0 < t < π
4 there exists j ≥ 2 such that 1

(j−1)α < π
4 − t < 1

jα and we apply (9.6) with this j ≥ 2.

Choosing α < 4
5−p but arbitrarily close to 4

5−p proves (9.2). To prove (9.3), for u0 ∈ Σi,j
N , we apply

Proposition 8.1 with Remark 8.2 which implies that on each interval [kτ, (k + 1)τ ], we have

u = e−i(t−kτ)Hu |t=kτ +vN , ‖vN (t)‖Hρ ≤ 1.

Iterating this estimate between 0 and t leads to (recall that τ = c(i+ j)−γ)

ΦN (t, 0)u0 = e−itHu0 + vN , ‖vN (t)‖Hρ ≤ C(i+ j)γ ,

and for u0 ∈ Σ̃i
N , choosing again 1

(j−1)α < π
4 − t < 1

jα gives

ΦN (t, 0)u0 = e−itHu0 + vN , ‖vN (t)‖Hρ ≤ C
(
i+ (

π

4
− t)−

1
α

)γ
,

which proves (9.3).

9.1.2. The case p ≥ 5. We revisit the proof above, taking benefit from the better estimate in Proposition 8.1
and (4.5). Thanks to Proposition 8.1, there exist i0 ≥ 1 and γ = κ > 0 (only depending on ρ > 0 and p ≥ 5)
such that if we set

τ = c(i+ j)−γ , γ = κ,

for every t0 ∈ R and for every t1 ∈ (t0 − τ, t0 + τ), i ≥ i0,

(9.10) ΦN (t1, t0)
(
Bi,j

N

)
⊂

{
u ∈ EN : ‖u‖Y ρ,ǫ ≤ i+ j + 1

}
.

Let ǫ0 > 0 to be fixed later and

Bi,j,k
N = ΦN (kτ, 0)−1(Bi,j

N ), Σi,j
N :=

[2ǫ0j
2
/τ ]⋂

k=−[2ǫ0j
2
/τ ]

Bi,j,k
N ,

where [2ǫ0j
2
/τ ] stays for the integer part of 2ǫ0j

2
/τ . Notice that thanks to (9.10), we obtain that the solution

of (4.1) with data u0 ∈ Σi,j
N satisfies

(9.11)
∥∥ΦN (t, 0)u0

∥∥
Y ρ,ǫ ≤ i+ j + 1, t ≤ 2ǫ0j

2
.

Indeed, for t ≤ 2ǫ0j
2
, we can find an integer k = [t/τ ] ≤ 2ǫ0j

2
/τ , and τ1 ∈ [−τ, τ ] so that t = kτ+τ1 and thus

u(t) = ΦN (kτ + τ1, kτ)
(
ΦN (kτ, 0)u0

)
. Since u0 ∈ Σi,j

N implies that ΦN (kτ, 0)u0 ∈ Bi,j
N , we can apply (9.10)

and get (9.11).
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Now we apply Proposition 4.2 with s = 0, and from (4.5) we deduce

νN,0

(
EN\Bi,j,k

N

)
≤ νN,kτ

(
ΦN (kτ, 0)

(
EN\Bi,j,k

N

))

≤ νN,kτ

(
EN\Bi,j

N

)

≤ µN

(
EN\Bi,j

N

)
.

Then, by Proposition 7.3 and Remark 7.4 we have

µN

(
EN\Bi,j

N

)
≤ Ce−c(i+j)2 ,

which in turn implies

(9.12) νN,0

(
EN\Σi,j

N ) ≤ C(i+ j)κ2ǫ0j
2
e−c(i+j)2 ≤ Ce−c′(i+j)2 ,

if ǫ0 < c/2. Next, we set

(9.13) Σ̃i
N =

+∞⋂

j=1

Σi,j
N .

Thanks to (9.12),

νN,0(EN\Σ̃i
N ) ≤ C

∑

j≥1

e−c′(i+j)2 ≤ Ce−c′i2 .

In addition, using (9.11), for every i ≥ i0, every N ≥ 1, every u0 ∈ Σ̃i
N , every t > 0,

∥∥ΦN(t, 0)u0
∥∥
Y ρ,ǫ ≤ i+ 2 + log

1
2 (1 + t).

Indeed for t > 1 there exists j ≥ 1 such that 2ǫ0(j−1)2 ≤ t < 2ǫ0j
2
and we apply (9.11) with this j ≥ 1. This

proves (9.2). To prove (9.3), for u0 ∈ Σi,j
N , we apply Proposition 8.1 with Remark 8.2 which gives that on

each interval [kτ, (k + 1)τ ], we have

u = e−i(t−kτ)Hu |t=kτ +vN , ‖vN (t)‖Hρ ≤ 1.

Iterating this estimate between 0 and t on each interval [kτ, (k + 1)τ ] leads to (recall that τ = c(i+ j)−κ)

ΦN(t, 0)u0 = e−itHu0 + vN , ‖vN (t)‖Hρ ≤ C(1 + t)(i+ j)κ,

and for u0 ∈ Σ̃i
N , choosing again 2ǫ0(j−1)2 ≤ t < 2ǫ0j

2
gives

ΦN(t, 0)u0 = e−itHu0 + vN , ‖vN (t)‖Hρ ≤ C(1 + t)
(
i+ log

1
2 (1 + t)

)κ
,

which proves (9.3).

9.2. Passing to the limit N → +∞. For integers i ≥ i0 and N ≥ 1, we define the cylindrical sets

(9.14) Σi
N :=

{
u ∈ X0(R) : ΠNu ∈ Σ̃i

N

}
,

where Σ̃i
N is defined in (9.8) or in (9.13). Next, for i ≥ i0, we define

Σi :=
{
u ∈ X0(R) : ∃Nk, lim

k→+∞
Nk = +∞, ∃uNk

∈ Σi
Nk

, lim
k→+∞

‖SNk
uNk

− u‖Y ρ,ǫ = 0
}
.

Let us prove that Σi is a closed subset of Y ρ,ǫ. The closedness property is clear, it is enough to show that
Σi ⊂ Y ρ,ǫ. Assume that there exists uNk

∈ Σi
Nk

such that limk→+∞ ‖SNk
uNk

− u‖Y ρ,ǫ = 0. Then for any
P ∈ N, as soon as Nk ≫ P , we have

‖SP (uNk
− u)‖Y ρ,ǫ = ‖SP (SNk

uNk
− u)‖Y ρ,ǫ ≤ C‖SNk

uNk
− u‖Y ρ,ǫ → 0.

As a consequence, using (9.2) (with t = t0 = 0) and Lemma 6.2, we deduce

‖SPu‖Y ρ,ǫ ≤ lim sup
k→+∞

‖SP (uNk
)‖Y ρ,ǫ ≤ C(i+ 1)

and passing to the limit P → +∞, we deduce that u ∈ Y ρ,ǫ and

‖u‖Y ρ,ǫ ≤ C(i+ 1).
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Next, we prove we have the following inclusions

(9.15) lim sup
N→+∞

Σi
N =

+∞⋂

N=1

+∞⋃

N1=N

Σi
N1

⊂ Σi.

Indeed, if u ∈ lim sup
N→+∞

Σi
N , there exists Nk → +∞ such that

ΠNk
u ∈ Σ̃i

Nk
,

and the same proof as above shows that

u ∈ Y ρ,ǫ, ‖u‖Y ρ,ǫ ≤ C(i+ 1).

Now, we clearly have

‖Snu− u‖Y ρ,ǫ = o(1)n→+∞,

and since Sn(Πnu) = Snu, the sequence uNk
:= ΠNk

u is the one ensuring that u ∈ Σi. This proves (9.15).

Consider GN (u) = exp(− 1
p+1‖SNu‖p+1

Lp+1(R)
), G(u) = exp(− 1

p+1‖u‖
p+1
Lp+1(R)

) and recall that

dν0 = G(u)dµ0, dνN,0 = GN (u)dµ0.

As a consequence of (9.15), we get the inequality

(9.16) ν0
(
Σi

)
≥ ν0

(
lim sup
N→+∞

Σi
N

)
.

Using Fatou’s lemma, we get

(9.17) ν0(lim sup
N→+∞

Σi
N ) ≥ lim sup

N→∞
ν0(Σ

i
N ) .

We have (because the set Σi
N is cylindrical),

ν0(Σ
i
N ) =

∫

Σi
N

G(u)dµ0(u),

and

νN,0(Σ̃
i
N ) =

∫

Σ̃i
N

GN (u)dµN (u) =

∫

Σi
N

GN (u)dµ0(u).

We deduce ∣∣∣ν0(Σi
N )− νN,0(Σ̃

i
N )

∣∣∣ ≤
∫

Σi
N

|G(u) −GN (u)|dµ0(u) = o(1)N→+∞,

where we used the dominated convergence theorem and the fact that µ0−a.s. u ∈ Lp+1 and consequently
µ0−a.s

lim
N→+∞

GN (u) = G(u).

Therefore, using Proposition 9.2, we obtain

lim sup
N→∞

ν0(Σ
i
N ) = lim sup

N→∞
νN,0(Σ̃

i
N )

≥ lim sup
N→∞

(
νN,0(EN )− Ce−ciǫ0

)
= ν0(X

0(R))−Ce−ciǫ0 .

Collecting the last estimate, (9.16), and (9.17), we obtain that

(9.18) ν0
(
Σi

)
≥ ν0(X

0(R))− Ce−ciǫ0 .

Now, we set

Σ :=

∞⋃

i=i0

Σi.
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Then, by (9.18), the set Σ is of full ν0−measure (and hence also of full µ0−measure). It turns out that one

has global existence for any initial condition u0 ∈ Σ. Recall that Φ̃N stands for the extension of the flow ΦN

on H−ǫ(R), see (4.8). We now state the global existence results.

Proposition 9.3. Let p > 1 and consider

ρ <

{p−1
2 if 1 < p ≤ 2

1
2 if p ≥ 2

chosen sufficiently close to p−1
2 or 1

2 respectively so that the assumptions in Section 6 are satisfied. Let ǫ > 0
chosen small enough in the definition of the space Y ρ,ǫ. For any initial condition u0 ∈ Σ, there exists a
unique global solution u of (8.1) in the class

u = e−i(t−t0)Hu0 + C(I;Hρ(R)),

where

I =

{
(−π

4 ,
π
4 ) if 1 < p < 5

R if p ≥ 5.

We shall denote this solution by u = Φ(t, 0)u0. Moreover, every integer i ≥ i0 and for any η > 0, there
exists C > 0 such that for every u0 ∈ Σi

(9.19) ‖Φ(t, t0)u0‖Y ρ,ǫ ≤




C
(
i+ 2 + (π4 − |t|) p−5

4
−η

)
, ∀t ∈ (−π

4 ,
π
4 ) if 1 < p < 5 ,

C
(
i+ 2 + log

1
2 (1 + |t|)

)
, ∀t ∈ R if p ≥ 5,

and if Φ(t, t0)u0 = e−i(t−t0)Hu0 + v we have the bounds

(9.20) ‖v(t)‖Hρ ≤




C
(
i+ (π4 − |t|)−Kp

)
, ∀t ∈ (−π

4 ,
π
4 ) if 1 < p < 5

C(1 + |t|)
(
i+ 2 + log

1
2 (1 + |t|)

)γp , ∀t ∈ R if p ≥ 5.

Furthermore, if (u0,Nk
)k≥0 ∈ Σi

Nk
, Nk → +∞ are so that

lim
k→+∞

‖SNk
u0,Nk

− u0‖Y ρ,ǫ = 0,

then for all t ∈ I

(9.21) ∀σ < ρ, lim
k→+∞

∥∥Φ̃Nk
(t, 0)u0,Nk

− u(t)
∥∥
Y σ,ǫ = 0.

The key point in the proof of Proposition 9.3 is the following lemma. Recall the notation It0,τ = (t0 −
τ, t0 + τ) and recall that the set Σi

N is defined in (9.14), (9.8), and (9.13).

Lemma 9.4. There exist κ, δ ≥ 1 and c > 0 such that the following holds true. Let ρ satisfying the
assumptions of Proposition 9.3. For any R ≥ 1, consider a sequence u0,Nk

∈ Σi
Nk

and u0 ∈ Y ρ,ǫ such that

(9.22) ‖u0,Nk
‖Y ρ,ǫ ≤ R, ‖u0‖Y ρ,ǫ ≤ R, ∀σ < ρ, lim

k→+∞
‖u0,Nk

− u0‖Y σ,ǫ = 0.

Then if we set

(9.23) τ ≤
{
cR−κ(π4 − |t0|)δ if 1 < p < 5

cR−κ if p ≥ 5

the quantities Φ̃Nk
(t, t0)u0,Nk

and Φ(t, t0)u0 exist for |t− t0| ≤ τ and satisfy

‖Φ̃Nk
(t, t0)u0,Nk

‖L∞(It0,τ ;Y
ρ,ǫ) ≤ R+ 1, ‖Φ(t, t0)u0‖L∞(It0,τ ;Y

ρ,ǫ) ≤ R+ 1.

Furthermore,

(9.24) ∀σ < ρ, lim
k→+∞

‖Φ̃Nk
(t, t0)u0,Nk

− Φ(t, t0)u0‖L∞(It0,τ ;Y
σ,ǫ) = 0.
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Proof of Lemma 9.4. The first part of this lemma is a direct consequence of our local well-posedness results
of Proposition 8.1 and Remark 8.2. It remains to prove (9.24). For that, let us write

Φ(t, t0)u0 = u = e−i(t−t0)Hu0 + v, Φ̃Nk
(t, t0)u0,Nk

= uk = e−i(t−t0)Hu0,Nk
+ vk.

Let us now remark that from the first part in the lemma,

‖Φ̃Nk
(t, t0)u0,Nk

− Φ(t, t0)u0‖L∞((t0−τ,t0+τ);Y ρ,ǫ) ≤ 2R + 2,

and consequently it is enough to prove (9.24) for some σ > 0. We have

u− uk = e−i(t−t0)H(u0 − u0,Nk
) + (v − vk).

By assumption, for any 0 < σ < ρ

‖e−i(t−t0)H(u0 − u0,Nk
)‖Y σ,ǫ = ‖u0 − u0,Nk

‖Y σ,ǫ = o(1)k→+∞.

Therefore it remains to show that some σ > 0 we have

(9.25) ‖v − vk‖L∞(It0,τ ;Y
σ,ǫ) = o(1)k→+∞,

for τ > 0 chosen as in the statement of the lemma. Set wk = v − SNk
vk and let us prove that

(9.26) ‖wk‖L∞(It0,τ ;Y
σ,ǫ) = o(1)k→+∞,

which will imply (9.25) by Lemma 6.3 and (8.7). Observe that wk solves the problem

(i∂t −H)wk = cos
p−5
2 (2t)

(
|u|p−1u− S2

Nk
(|SNk

uk|p−1SNk
uk)

)

= cos
p−5
2 (2t)(1 − S2

Nk
)(|u|p−1u) + cos

p−5
2 (2t)S2

Nk

(
|u|p−1u− |SNk

uk|p−1SNk
uk

)
(9.27)

with initial condition wk |t=t0= 0. Standard estimates now show
∥∥ cos

p−5
2 (2t)|u|p−1u

∥∥
L1(It0,τ ;L

2)
≤ Cτκ‖u‖p

X0
t0,τ

≤ Cτκ(R+ 1)p

and consequently, by dominated convergence,

(9.28)
∥∥ cos

p−5
2 (2t)(1 − S2

Nk
)(|u|p−1u)

∥∥
L1(It0,τ ;L

2)
→ 0 as k → +∞ .

Thus from the Strichartz estimates (5.2) in Z0, we deduce that the contribution of this term to wk is bounded
by o(1) in L∞;L2. We estimate the second term in the r.h.s. of (9.27) by using a direct manipulation
on the expression |z1|p−1z1 − |z2|p−1z2. Recall that X0

t0,τ = L∞(It0,τ ;L
2) ∩ L4(It0,τ ;L

∞) and denote by

X̃0
t0,τ = L8(It0,τ ;L

4) ∩ L4(It0,τ ;L
∞). Then by Proposition 5.5.

(9.29)
∥∥ cos

p−5
2 (2t)SNk

(
|u|p−1u− |SNk

uk|p−1SNk
uk

)∥∥
L1(It0,τ ;L

2)
≤

≤ Cτκ‖u− SNk
uk‖X̃0

t0,τ

(
‖u‖Xρ

t0,τ
+ ‖SNk

uk‖Xρ
t0,τ

)p−1

≤ Cτκ(R + 1)p−1
(
‖e−i(t−t0)H(u0 − SNk

u0,Nk
)‖L∞(It0,τ ;Y

ρ,ǫ) + ‖wk‖X0
t0,τ

)

≤ Cτκ(R + 1)p−1
(
‖u0 − SNk

u0,Nk
‖Y ρ,ǫ + ‖wk‖X0

t0,τ

)

≤ o(1)k→+∞ + Cτκ(R + 1)p−1‖wk‖X0
t0,τ

.

We deduce from (9.28) and (9.29),

‖wk‖X0
t0,τ

≤ Cτκ(R+ 1)p−1‖wk‖X0
t0,τ

+ o(1)k→+∞ .

By taking Cτκ(R+1)p−1 ≤ 1/2, we infer that ‖wk‖X0
t0,τ

= o(1)k→+∞. Next, by interpolation with (8.7), we

deduce that for any 0 < σ < ρ, we have ‖wk‖Xσ
t0,τ

= o(1)k→+∞. Finally we choose σ < ρ large enough such

that we can apply (6.6) which implies (9.26). This completes the proof of Lemma 9.4. �
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Proof of Proposition 9.3. The local existence result follows from Proposition 8.1. Here the main points are
the globalisation and the limit (9.21). We only consider the case 1 < p < 5, the case p ≥ 5 being similar. We
assume in the sequel that t0 = 0 in (8.1). Let u0 ∈ Σi. By assumption, we know that there exist sequences
Nk ∈ N, u0,Nk

∈ Σi
Nk

such that

lim
k→+∞

‖SNk
u0,Nk

− u0‖Y ρ,ǫ = 0.

Consequently, by Proposition 9.2, we know that for any η > 0

(9.30)
∥∥Φ̃Nk

(t, 0)(ΠNk
u0,Nk

)
∥∥
Y ρ,ǫ ≤ i+ 2 + (

π

4
− t)

p−5
4

−η.

The strategy of proof consists in proving that as long as the solution to (8.1) exists, we can pass to the limit
in (9.30) and there exists a constant C ′ > 0 independent of i ≥ i0 such that

(9.31)
∥∥Φ(t, 0)u0

∥∥
Y ρ,ǫ ≤ C ′(i+ 2 + (

π

4
− t)

p−5
4

−η
)

which (taking into account that the norm in Y ρ,ǫ controls the local existence time), implies that the solution
is global and satisfies (9.31) for all times.

Let us fix T ∈ (−π
4 ,

π
4 ). We assume

(9.32)
∥∥Φ̃Nk

(t, 0)(ΠNk
u0,Nk

)
∥∥
Y ρ,ǫ ≤ Λ, for |t| ≤ T

and we want to show

(9.33)
∥∥Φ(t, 0)u0

∥∥
Y ρ,ǫ ≤ C ′Λ, for |t| ≤ T.

As a first step, let us fix t = 0. For Q ∈ N, if Nk ≥ Q, ΠNk
SQ = SQ and consequently, using Lemma 6.2

and the definition of Σi, we obtain

‖SQu0‖Y ρ,ǫ = lim
k→+∞

‖SQ(ΠNk
u0,Nk

)‖Y ρ,ǫ ≤ C ′Λ

and passing to the limit Q → +∞, we deduce

‖u0‖Y ρ,ǫ = lim
Q→+∞

‖SQu0‖Y ρ,ǫ ≤ C ′Λ.

This implies that the sequences ΠNk
u0,Nk

and u0 satisfy the assumptions of Lemma 9.4 (with R = C ′Λ).
As a consequence, we know that

∀σ < ρ, lim
k→+∞

‖Φ̃Nk
(t, 0)(ΠNk

u0,Nk
)− Φ(t, 0)u0‖L∞((0,τ);Y σ,ǫ) = 0

for τ = cTΛ
−κ given in (9.23). Now we show that this convergence allows to pass to the limit in (9.32) for

t = τ , using Lemma 6.2 again. Indeed, fix Q, then for Nk ≫ 2Q, the sequence SQ

(
ΦNk

(τ, 0)(ΠNk
u0,Nk

)
)

is bounded in Y ρ,ǫ by C ′Λ, and converges to SQ

(
Φ(τ, 0)u0

)
in Y σ,ǫ for all 0 < σ < ρ. Here, the constant

C ′ > 0 is given by Lemma 6.2. We deduce that SQ

(
Φ(τ, 0)u0

)
∈ Y ρ,ǫ and

‖SQ

(
Φ(τ, 0)u0

)
‖Y ρ,ǫ ≤ C ′Λ.

Next, passing to the limit Q → +∞, we deduce that Φ(τ, 0)u0 ∈ Y ρ,ǫ and

‖Φ(τ, 0)u0‖Y ρ,ǫ ≤ C ′Λ.

Now, we can apply the results in Lemma 9.4, with the same Λ as in the previous step (remark that the
assumption (9.22) is now true for any σ < ρ) which implies that (9.33) holds for t ∈ [0, 2τ ], and so on and
so forth.

Notice here that at each step the a priori bound does not get worse, because we only use the results in

Lemma 9.4 to obtain the convergence of
∥∥Φ̃Nk

(t, 0)(ΠNk
u0,Nk

) − Φ(t, 0)u0
∥∥
Y ρ,ǫ to 0, and then obtain the

estimates on the norm ‖Φ(t, 0)u0‖Y ρ,ǫ by passing to the limit in (9.32) (applying first SQ, passing to the
limit k → +∞, then to the limit Q → +∞). A completely analogous argument holds for the negative
times t. �
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10. Quasi-invariance of the measures

10.1. Passing to the limit N → +∞ in Proposition 4.2. Recall that the measure νt is defined in (4.3)
by

dνt = e
− cos

p−5
2 (2t)

p+1
‖u‖p+1

Lp+1(R)dµ0.

In particular
νt ≪ µ0 and µ0 ≪ νt.

The purpose of this section is to show the following result.

Proposition 10.1. For all t, t′ ∈ (−π
4 ,

π
4 ),

Φ(t, t′)#µ0 ≪ µ0 ≪ Φ(t, t′)#µ0.

More precisely, for all 0 ≤ |t′| ≤ |t| < π
4 and all A ⊂ Σ,

νt
(
Φ(t, 0)A

)
≤




νt′

(
Φ(t′, 0)A

)
if 1 ≤ p ≤ 5

[
νt′

(
Φ(t′, 0)A

)]
(

cos(2t)

cos(2t′)

) p−5
2

if p ≥ 5
(10.1)

and

νt′
(
Φ(t′, 0)A

)
≤





[
νt
(
Φ(t, 0)A

)]
(

cos(2t)

cos(2t′)

) 5−p
2

if 1 ≤ p ≤ 5

νt
(
Φ(t, 0)A

)
if p ≥ 5.

(10.2)

We will need the following statement comparing Φ(t, t0) and Φ̃N (t, t0) for small |t− t0|
Lemma 10.2. Let t0, t ∈ (−π

4 ,
π
4 ). Let ρ′ > ρ and 0 < ǫ′ < ǫ which satisfy the assumptions of Proposi-

tion 9.3. There exists κ, δ ≥ 1 and c > 0 such that if we set

τ ≤
{
cR−κ(π4 − |t0|)δ if 1 < p < 5

cR−κ if p ≥ 5 ,

the following holds true: there exist C, δ′ > 0 such that for every R > 0, every R′ > 0, every u0 ∈ Y ρ′,ǫ′ such
that ‖u0‖Y ρ,ǫ ≤ R and ‖u0‖Y ρ′,ǫ′ ≤ R′, if |t− t0| ≤ τ , then

‖Φ(t, t0)u0 − Φ̃N(t, t0)u0‖Y ρ,ǫ < CR′N−δ′ .

Proof of Lemma 10.2. Recall the notation uf0 = e−i(t−t0)Hu0. First, we write

Φ(t, t0)u0 = uf0 + v, Φ̃N (t, t0)u0 = uf0 + vN

with
v = K(v), vN = SN

(
K(vN )

)
,

where the operator K is defined in (8.2). We deduce

Φ(t, t0)u0 − Φ̃N (t, t0)u0 = v − vN = wN ,

where

(10.3) (i∂t +H)wN = (1− SN )
(
F (uf0 + v)

)
+ SN

(
F (uf0 + v)− F (uf0 + SNvN )

)
.

From (8.7), we know

(10.4) ‖v‖
Xρ′

t0,τ

+ ‖vN‖
Xρ′

t0,τ

≤ 2R′

‖F (uf0 + v)‖L1((t0,t);Hρ′ ) ≤ R′.

We get

‖wN‖X0
t0,τ

≤ CR′N−ρ′ + ‖F (uf0 + v)− F
(
uf0 + SNvN

)
‖L1((t0,t);L2).
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From the Hölder inequality we get easily

‖F
(
uf0 + v

)
− F

(
uf0 + SNvN

)
‖L1((t0,t);L2) ≤ Cτ δ

′

Rp−1‖v − vN‖X0
t0,τ

,

where X0
t0,τ = L∞(It0,τ ;L

2)∩L4(It0,τ ;L
∞). Then taking c > 0 small enough and κ > 0 large enough in the

definition of τ , and using the Strichartz estimate (5.2) in (10.3) gives

‖wN‖X0
t0,τ

≤ CR′N−ρ′ +
1

2
‖wN‖X0

t0,τ
⇒ ‖wN‖X0

t0,τ
≤ 2CR′N−ρ′ .

Interpolation between this bound and (10.4), we get that for all 0 < ρ < ρ′

‖wN‖Xρ
t0,τ

≤ 2CR′N−(ρ′−ρ)

which implies Lemma 10.2. �

Proof of Proposition 10.1. Let us prove for example (10.2) in the case 1 < p ≤ 5. By the regularity properties
of the measures νt, it is enough to prove this result if the set A is closed. Now we assume that 0 ≤ t′ < t < π

4 .

Recall that our measures νt are seen as finite Borel measures on Y ρ,ǫ. Let Σ
(
resp. Σt = Φ(t, 0)Σ

)
be the

set of full ν0 (resp. νt) measure constructed in the previous section. Clearly, for all 0 ≤ t′ < t < π
4 ,

Σt = Φ(t, 0)Σ, Σt = Φ(t, t′)Σt′ , Σ =

+∞⋃

i=1

Σi, Σt =

+∞⋃

i=1

Σi
t, Σi

t = Φ(t, t′)Σi
t′

and by Fatou’s Lemma,

∀B ∈ Σt, νt(B) = lim
i→+∞

νt(B ∩ Σi
t).

As a consequence, we can replace A by A ∩ Σi (which is also closed). Let T < π
4 . From Section 9.2,

we know that Σi are closed in Y ρ,ǫ, and from Proposition 9.3 the set Σi
t is bounded in Y ρ,ǫ uniformly with

respect to t ∈ [0, T ] by

C
(
i+ 2 + (

π

4
− T )

p−5
4

−η
)
.

Let ρ′ > ρ, ǫ′ < ǫ sufficiently close to each other. Now from the large deviation bounds in Section 7, if Bn is
the ball of radius n in Y ρ′,ǫ′, we have, for B ∈ Σt,

µ0(B) = µ0(B ∩ Y ρ′,ǫ′) = lim
k→+∞

µ0(B ∩Bk),

and the same relation holds with µ0 replaced by νt. As a consequence, we can replace A by A ∩ Σi ∩ Bk.
Dividing the interval [0, T ] by a finite number P of intervals of size τ , applying (8.7) we get that for any

t ∈ [0, T ], Φ(t, 0)
(
A ∩Σi ∩Bk

)
is bounded in Y ρ′,ǫ′ by MPik := Ci,k. Hence we can assume that Φ(t, 0)A is

closed in Y ρ,ǫ and bounded in Y ρ′,ǫ′ uniformly with respect to t ∈ [0, T ]. Now, let 0 ≤ t′ ≤ t ≤ T < π
4 . For

A ∈ Σi, we have

νt′
(
Φ(t′, 0)A

)
= νt′

(
∪k Φ(t

′, 0)(A ∩Bk)
)
= lim

k→+∞
νt′

(
Φ(t′, 0)(A ∩Bk)

)
,

thus

νt
(
Φ(t, 0)A

)
= νt

(
Φ(t, t′)Φ(t′, 0)A

)
≥

≥ νt

(
∪k Φ(t, t

′)
(
(Φ(t′, 0)A) ∩Bk

))
≥ lim sup

k→+∞
νt

(
Φ(t, t′)

(
(Φ(t′, 0)A) ∩Bk

))
.

As a consequence, it is enough to prove (10.2) with Ã = Φ(t′, 0)A replaced by Ãk = (Φ(t′, 0)A) ∩Bk and

Φ(t, t′)Ã replaced by Φ(t, t′)Ãk. Notice that according to (8.7), since Ãk is bounded by k in Y ρ′,ǫ′, we know

that Φ(t, t′)Ãk is bounded uniformly with respect to t ∈ [0, T ] in Y ρ′,ǫ′ by the constant Ci,k > 0.
We now proceed and prove (10.2) by time increments |t − t′| ≤ τ as defined in Lemma 10.2. Let ǫ0 > 0

and N ≥ 1 large enough such that

CR′N−δ′ < ǫ0.
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From Lemma 10.2 between t′ and t′+τ we have, Bǫ0 being the ball of radius ǫ0 in Y ρ,ǫ, with At′

k = Φ(t′, 0)Ãk,

νt
(
Φ(t′ + τ, t′)At′

k +Bǫ0

)
= lim

N→+∞
ν̃N,t

(
Φ(t′ + τ, t′)At′

k +Bǫ0

)
≥ lim sup

N→+∞
ν̃N,t

(
Φ̃N (t′ + τ, t′)At′

k

)
,

where the first limit above is simply obtained by the Lebesgue dominated convergence theorem. From (4.5)
combined with Remark 4.3, we have

ν̃N,t′(A
t′

k ) ≤
{(

ν̃N,t(Φ̃N (t′ + τ, t′)At′

k )
)( cos(2(t′+τ))

cos(2t′)

) 5−p
2

if 1 ≤ p ≤ 5

ν̃N,t

(
Φ̃N (t′ + τ, t′)At′

k

)
if p ≥ 5

which implies

(10.5) νt′(A
t′

k ) = lim
N→+∞

ν̃N,t′(A
t′

k ) ≤
{(

νt
(
Φ(t′ + τ, t′)At′

k +Bǫ0

))
(

cos(2(t′+τ))

cos(2t′)

) 5−p
2

if 1 ≤ p ≤ 5

νt
(
Φ(t′ + τ, t′)At′

k +Bǫ0

)
if p ≥ 5.

We have

lim
ǫ0→0

νt
(
Φ(t′ + τ, t′)At′

k +Bǫ0

)
= νt

(
Φ(t′ + τ, t′)At′

k

)
,

and since Φ(t′ + τ, t′)At′

k is closed in Y ρ,ǫ, passing to the limit ǫ0 → 0 in (10.5) gives

νt′(A
t′

k ) ≤
{(

νt
(
Φ(t′ + τ, t′)At′

k

))
(

cos(2(t′+τ))

cos(2t′)

) 5−p
2

if 1 ≤ p ≤ 5

νt
(
Φ(t′ + τ, t′)At′

k

)
if p ≥ 5.

Applying this estimate between t′ and t by increments smaller than τ gives (10.2) for all 0 ≤ |t′| ≤ |t| ≤ T .
Since T < π

4 is arbitrary, this proves (10.2). The proof of (10.1) is similar. The proof of Proposition 10.1 is
therefore completed. �

10.2. Global existence for (NLSp): proof of Theorem 2.2. We are now ready to prove Theorem 2.2, in
the particular case q0 = (0, 1, 1, 0) (µq0 = µ0). For this we use the inverse of the lens transform (2.6)–(2.7).
From Proposition 9.3 and Proposition 10.1, we know that we can solve (8.1) for every initial data in the
set Σ, the solution takes the form u = Φ(t, 0)u0, and we have full µ0−measure sets Σt = Φ(t, 0)Σ. Applying
the inverse lens transform and (2.9), we define the sets

Ss := Ψ(s, 0)Σ = L
−1
t(s)(Σt(s)).

We now check that these sets are of full µqs−measure with qs = (s, 1, 1, 0). Actually by (2.10) we have

µqs(Ss) = µ0

(
Lt(s)L

−1
t(s)

Σt(s)

)
= µ0

(
Σt(s)

)
= 1.

The first part of Theorem 2.2 is just the fact that the lens transform conjugates the flows of (NLSp)
and (NLSHp), and the second part follows from Proposition 9.1 and Lemma A.1.

11. Decay estimates and scattering

In this section we are going to exploit the quasi-invariance properties of the measures Φ(t, 0)#ν0 to get
almost sure estimates for the evolution of the Lp+1 norms, and prove the scattering results in Theorem 1.2.

11.1. Decay estimates. The first step is to prove the following estimates on our solutions on the harmonic
oscillator side, obtained in Proposition 9.1.

Proposition 11.1. There exists a set Σ̃ of full µ0−measure such that for all u0 ∈ Σ̃, there exists C > 0
such that the global solution of (NLSHp), given by Φ(t, 0)u0, satisfies

‖Φ(t, 0)u0‖Lp+1 ≤




C| log

1
p+1 (π4 − |t|)|, ∀t ∈ (−π

4 ,
π
4 ), if 1 < p < 5

C
(
1 + log

1
2 (1 + |t|)

)
, ∀t ∈ R, if p ≥ 5.
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By applying the inverse lens transform (2.6), t ∈ (−π
4 ,

π
4 ) → s(t) ∈ R using that

(11.1) ‖Lt(G)‖Lq = cos
1
q
− 1

2 (2t)‖G‖Lq ,

we can translate this result into

Corollary 11.2. There exists a set Σ̃ of full µ0−measure such that for all u0 ∈ Σ̃, there exists C > 0 such
that the global solution of (NLSp), given by Ψ(s, 0)u0, satisfies for all s ∈ R

‖Ψ(s, 0)u0‖Lp+1 ≤





C (1+log〈s〉)1/(p+1)

〈s〉
1
2−

1
p+1

if 1 < p < 5

C 1

〈s〉
1
2−

1
p+1

if p ≥ 5.

For p ≥ 5, Proposition 11.1 follows from (9.19) and the fact that the Y ρ,ǫ norm controls the Lp+1 norm.
For 1 < p < 5, the starting point is the following observation.

Lemma 11.3. Assume that 1 < p < 5. Let Λ > 0 and

KΛ =
{
u ∈ X0(R) : ‖u‖Lp+1 > Λ

}
.

For any 0 ≤ |t| < π
4

ν0
(
Φ(t, 0)−1(KΛ)

)
≤ Ce

−Λp+1

p+1 .

Proof. The proof is straightforward. According to (10.2) with t′ = 0 and A = Φ(t, 0)−1(KΛ) we have

ν0(A) ≤
(
νt(KΛ)

)cos 5−p
2 (2t)

=
(∫

KΛ

e
− cos(2t)

p−5
2

p+1
‖u‖p+1

Lp+1dµ0

)cos
5−p
2 (2t)

≤

≤
(
e−

cos
p−5
2 (2t)

p+1
Λp+1

∫

KΛ

dµ0

)cos(2t)
5−p
2

= e−
Λp+1

p+1 (µ0(KΛ))
cos

5−p
2 (2t) ≤ e−

Λp+1

p+1 ,

which was the claim. �

Proof of Proposition 11.1. We detail the case 1 < p < 5 (the case p ≥ 5 is similar). It is enough to consider
the case t > 0. Let M > 0 large enough, to be fixed later, and

Ai,j
N =

{
u ∈ EN ; ‖SNu‖Lp+1 ≤ M log

1
p+1 (i+ j)

}
.

As in the proof of Lemma 11.3, we get

(11.2) νN,0

(
ΦN (t, 0)−1

(
EN\Ai,j

N

))
≤ (i+ j)−

Mp+1

p+1

Then with τ = (i+ j)−γ as in (9.4), define

Ai,j,k
N = ΦN(kτ, 0)−1(Ai,j

N ), Si,j
N =

[(π
4
− 2

jα
)/τ ]⋂

k=−[(π
4
− 2

jα
)/τ ]

Ai,j,k
N ,

and from (11.2), we get

ν0,N (EN\Ai,j,k
N ) ≤ (i+ j)−

Mp+1

p+1

therefore

ν0,N (EN\Si,j
N ) ≤ C

τ
(i+ j)−

Mp+1

p+1 ≤ C(i+ j)γ−
Mp+1

p+1 .

Now let

S̃i
N =

+∞⋂

j=1

Si,j
N ,



A.S. SCATTERING FOR THE ONE DIMENSIONAL NLS 45

and choose M > 0 large enough such that if γ − Mp+1

p+1 < −1, so that

ν0,N (EN\S̃i
N ) ≤ C

+∞∑

j=0

(i+ j)γ−
Mp+1

p+1 ≤ Ci1+γ−Mp+1

p+1 .

Then from (9.9) we deduce

ν0,N
(
EN\(S̃i

N ∩ Σ̃i
N )

)
≤ Ci

1+γ−Mp+1

p+1 + Ce−ciǫ0 .

We now claim that for any u ∈ Σ̃i
N ∩ S̃i

N , we have

(11.3) ‖ΦN (t, 0)u‖Lp+1 ≤ M log
1

p+1
(
i+ 1 + (

π

4
− t)−γ

)
+ 1.

Indeed, for 0 ≤ t < π
4 , let j ≥ 2 be such that

t ∈
[π
4
− 2(j − 1)−γ ,

π

4
− 2j−γ

]
,

which implies j ≤ 1 + (π4 − t)−1/γ . With τ = c(i + j)−γ , we can find an integer |k| ≤ [(π4 − 2
jγ )/τ ], and

τ1 ∈ [0, τ ] so that t = kτ + τ1 and thus since from the definition of Si,j
N we have

‖ΦN (kτ, 0)u‖Lp+1 ≤ M log
1

p+1 (i+ j) ≤ M log
1

p+1
(
i+ 1 + (

π

4
− t)−1/γ

)
.

As a consequence (11.3) follows from (8.6) in Proposition 8.1.
For integers i ≥ i0 and N ≥ 1, we now define the cylindrical sets

Si
N :=

{
u ∈ X0(R) : ΠN (u) ∈ S̃i

N

}
.

Next, for i ≥ i0, we set

Si =
{
u ∈ X0(R) : ∃Nk, lim

k→+∞
Nk = +∞,∃uNk

∈ Σi
Nk

∩ Si
Nk

, lim
k→+∞

‖SNk
uNk

− u‖Y ρ,ǫ = 0
}
,

so that, as in (9.18),

ν0
(
X0(R)\(Si ∩ Σi)

)
≤ Ci1+γ−Mp+1

p+1 + Ce−ciǫ0 .

Therefore, combining the a priori bound (11.3) with (9.21) we get for all u ∈ Si ∩ Σi

‖Φ(t, 0)u‖Lp+1 ≤ M log
1

p+1 (i+ j) ≤ M log
1

p+1
(
i+ 1 + (

π

4
− t)−1/γ

)
.

Finally, define

Σ̃ =

+∞⋃

i=1

(
Σi ∩ Si

)
,

which is a set of full µ0−measure (since ν0 and µ0 have the same 0 measure sets), and this concludes the
proof of Proposition 11.1. �

11.2. Proof of Theorem 1.2. We are now able to prove the following result which will imply Theorem 1.2.

Theorem 11.4. Assume that p > 3. Then the solutions to (NLSp) constructed above scatter almost
surely when s −→ ±∞. There exist ǫ0, ǫ1, η0, η1 > 0 and for µq−almost every initial data U0, there exist
W± ∈ Hσ(R) such that

(11.4) ‖Ψ(s, 0)U0 − eis∂
2
y (U0 +W±)‖Hǫ0 (R) ≤ C〈s〉−η0 , s −→ ±∞,

and

(11.5) ‖e−is∂2
yΨ(s, 0)U0 − (U0 +W±)‖Hǫ1 (R) ≤ C〈s〉−η1 , s −→ ±∞.

When p ≥ 5, we can precise the result: for all δ < 1
2 ,

(11.6) ‖Ψ(s, 0)U0 − eis∂
2
y (U0 +W±)‖Hδ(R) ≤ C〈s〉−η0 , s −→ ±∞.
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For all δ < p+1
4p+2 ,

(11.7) ‖Ψ(s, 0)U0 − eis∂
2
y (U0 +W±)‖Hδ(R) ≤ C〈s〉−η0 , s −→ ±∞.

Remark 11.5. Remark that since eis∂
2
y does not act on Hǫ0 , hence (11.4) and (11.5) are different.

Remark 11.6. Recall that U0 is essentially L2 (actually B0
2,∞, see Section B.2). Theorem 11.4 shows that

the scattering operators,
S± : U0 7→ U0 +W±,

which associate to the initial data U0 the asymptotic profiles, are the sum of the identity and smoothing
operators, almost surely defined from B0

2,∞ to Hǫ0 .

In the following we give the argument in the particular case q0 = (0, 1, 1, 0), and thus µq0 = µ0. We refer
to Section B.4 where we explain how to treat the case of a general Gaussian measure µq, as it is stated in
Theorem 11.4. We only treat the case s −→ +∞ (the case s −→ −∞ is similar). The first step is

Lemma 11.7. Let 3 < p < 5. There exist ǫ0, η > 0 such that for µ0−almost every initial data u0, there
exists an asymptotic state v+ ∈ Hǫ0 such that the solution to (NLSHp) satisfies

u = Φ(t, 0)u0 = e−itHu0 + v,

where for all 0 ≤ t < π
4

(11.8) ‖v(t)− v+‖Hǫ0 (R) ≤ C
(π
4
− t

)ǫ0+η
.

Proof. In the sequel, we use the notation uf0 = e−itHu0. The function v satisfies

v(t) = −i

∫ t

0
cos

p−5
2 (2s)e−i(t−s)HF

(
uf0(s) + v(s)

)
ds.

Let σ = 1
2 − 1

p+1 ≤ 1
3 . Let us show that there exists δ > 0 such that

(11.9)

∫ π
4

t
cos

p−5
2 (2s)

∥∥F
(
uf0(s) + v(s)

)∥∥
H−σds ≤ C(

π

4
− t)δ,

this will imply that there exists v+ ∈ H−σ(R) such that v −→ v+ in H−σ(R) when t −→ π
4 , with the rate

‖v(t) − v+‖H−
1
3
≤ ‖v(t) − v+‖H−σ ≤ C(

π

4
− t)δ.

By Sobolev, Hσ(R) ⊂ Lp+1(R) and therefore by duality L
p+1
p (R) ⊂ H−σ(R). Thanks to Proposition 11.1,

we compute for 0 ≤ t < π
4

∫ π
4

t
cos

p−5
2 (2s)

∥∥F
(
uf0 (s) + v(s)

)∥∥
H−σds ≤ C

∫ π
4

t
cos

p−5
2 (2s)

∥∥uf0(s) + v(s)
∥∥p
Lp+1ds

≤ C

∫ π
4

t
cos

p−5
2 (2s)

∣∣ log
p

p+1
(π
4
− s

)∣∣ds

≤ C

∫ π
4

t
(
π

4
− s)

p−5
2

∣∣ log
(π
4
− s

)∣∣ds

≤ C(
π

4
− t)1+

p−5
2

∣∣ log
(π
4
− t

)∣∣,(11.10)

where we used that p > 3. As a consequence we get (11.9). Let us prove that for all κ > 0, there exists
ǫ > 0 such that

(11.11) ‖v(t)‖Wǫ,p+1 ≤ C
(π
4
− t

)−κ
.

By Sobolev, for δ = ρ+ 1
p+1 − 1

2 > 0 if we choose ρ sufficiently close to 1
2 , we get, using (9.20),

(11.12) ‖v(t)‖Wδ,p+1 ≤ C‖v(t)‖Hρ ≤ C
(π
4
− t

)−K
.
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The estimate (11.11) then follows from an interpolation between (11.12) and Proposition 11.1.
Now let ǫ > 0 to be fixed later, and compute

d

ds

∫

R

|Hǫ/2v(s)|2 = 2Im

∫

R

i∂svHǫv

= 2cos
p−5
2 (2s)Im

∫

R

F
(
uf0 (s) + v(s)

)
Hǫv

= 2cos
p−5
2 (2s)Im

∫

R

Hǫ/2
(
F
(
uf0(s) + v(s)

))
Hǫ/2v

≤ C cos
p−5
2 (2s)

∥∥F
(
uf0(s) + v(s)

)∥∥
Wǫ,(p+1)/p

∥∥v
∥∥
Wǫ,p+1 .

From Proposition 5.2, we get that for any 1 < q1, q2 < +∞ such that 1/q1 + 1/q2 = 1/q,
∥∥|u|p−1u

∥∥
Wǫ,q ≤ C‖u‖p−1

L(p−1)q1
‖u‖Wǫ,q2 ,

hence, with the choices q1 =
p+1
p−1 , q2 = p+ 1, and q = p+1

p we get

d

ds

∫

R

|Hǫ/2v(s)|2 ≤ C
(π
4
− s

) p−5
2

(
‖uf0‖p−1

Lp+1 + ‖v‖p−1
Lp+1

)(
‖uf0‖Wǫ,p+1 + ‖v‖Wǫ,p+1

)
‖v‖Wǫ,p+1 .

By time integration, for 0 < t ≤ π/4, thanks to (11.11), we get

(11.13) ‖v(t)‖2Hǫ ≤ ‖v0‖2Hǫ + CR

∫ t

0

(π
4
− s

)p−5
2

−3κ
ds ≤ CR,

provided κ > 0 (and hence ǫ > 0) is small enough (depending only on p > 3).
The estimate (11.13) shows indeed that v+ ∈ Hǫ(R). Now, let 0 ≤ θ ≤ 1, and set σ(θ) = −θ/3+ (1− θ)ǫ,

then by interpolation

‖v(t) − v+‖Hσ(θ) ≤ ‖v(t) − v+‖1−θ
Hǫ ‖v(t)− v+‖θH−1/3 ≤ C

(π
4
− t

)θδ
.

Next, choosing θ = θ0 − θ1, with θ0 = 3ǫ
1+3ǫ and θ1 < θ0. Then we set ǫ0 := σ(θ) = (13 + ǫ)θ1 > 0 and

η := θδ − ǫ0 > 0 for θ1 > 0 small enough, which implies (11.8). �

Proof of Theorem 11.4. Now we need to come back to the NLS side. Denote by U(s, y) the solution
to (NLSp), and by u = L (U) the solution to (NLSHp). By Lemma 11.7, there exists v+ ∈ Hǫ0 such
that v(t) = u(t)− e−itHu0 −→ v+ in Hǫ0 when t −→ π/4, with the rate (11.8). Observe that from (2.8)

(11.14) Lt(s)(e
is∂2

yv0) = e−it(s)Hv0.

Denote by W+ := ei
π
4
Hv+ ∈ Hǫ0 and let 0 < ǫ1 < ǫ0. By Lemma A.1, (11.14) and (2.9) we have, with

t(s) = arctan(2s)
2 .

‖U(s)− eis∂
2
y
(
u0 +W+

)
‖Hǫ1 ≤ C

(π
4
− t(s)

)−ǫ1‖Lt(s)U(s)− L
(
eis∂

2
y (u0 +W+)

)
‖Hǫ1 ,

≤ C
(π
4
− t(s)

)−ǫ1‖v
(
t(s)

)
− e−i(t(s)−π/4)Hv+‖Hǫ1 .(11.15)

Then by (11.8)

(11.16)
(π
4
− t(s)

)−ǫ1‖v
(
t(s)

)
− v+‖Hǫ1 ≤ C

(π
4
− t(s)

)η1 ∼ 〈s〉−η1 , s → +∞.

Using the equation we have

∥∥(1− e−i(t(s)−π/4)H
)
v+

∥∥
Hǫ1

=
∥∥
∫ π

4

t(s)
∂t(e

−i(t−π/4)Hv+)dt
∥∥
Hǫ1

≤
(π
4
− t(s)

)
‖v+‖Hǫ1+2

while on the other hand, ∥∥(1− e−i(π/4−t(s))H )v+
∥∥
Hǫ1

≤ 2 ‖v+‖Hǫ1 .
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By interpolation this implies, choosing ǫ1 <
ǫ0
3

(11.17)
∥∥(1− e−i(t(s)−π/4)H

)
v+

∥∥
Hǫ1

≤ C
(π
4
− t(s)

) ǫ0−ǫ1
2 ‖v+‖Hǫ0 ≤ C

(π
4
− t(s)

)ǫ1+η2‖v+‖Hǫ0 ,

for some η2 > 0. Putting the estimates (11.16) and (11.17) together with (11.15), we deduce that

‖U(s)− eis∂
2
y
(
U0 +W+

)
‖Hǫ1 ≤ C〈s〉−η0 , s → +∞ ,

which is (11.4).
It remains to prove (11.5). According to Lemma A.1 and (11.14), we have

‖e−is∂2
yv0‖Hη ≤ C〈s〉η‖L−t(s)(e

−is∂2
yv0)‖Hη = C〈s〉η‖eit(s)Hv0‖Hη = C〈s〉η‖v0‖Hη .

Applying this estimate to v0 = U(s)− eis∂
2
y(u0 +W+) gives (using (11.4)), with η = 1

2 min(ǫ0, η0),

‖e−is∂2
yU(s)− (u0 +W+)‖Hη ≤ C〈s〉η‖U(s)− eis∂

2
y(u0 +W+)‖Hη

≤ C〈s〉η‖U(s)− eis∂
2
y(u0 +W+)‖Hǫ0

≤ C〈s〉η〈s〉−η0 ≤ C〈s〉−η0/2,

which proves Theorem 1.2 when 3 < p < 5.
Let us now revisit the proof above when p ≥ 5. From Proposition 9.3, (9.20), with v+ = v(π4 ),

∀ρ <
1

2
, lim

t→π
4

∥∥u(t)− e−itHu0 − v+
∥∥
Hρ = lim

t→π
4

∥∥v(t)− v(
π

4
)
∥∥
Hρ = 0,

which proves (11.6). On the other hand, as in (11.10), and using Proposition 11.1, we get

‖v − v+‖H−σ ≤
∫ π

4

t
cos

p−5
2 (2s)

∥∥|uf0(s) + v(s)|p−1
(
uf0 (s) + v(s)

)∥∥
H−σds ≤ C

(π
4
− t

) p−3
2 .

Interpolating between these two estimates gives

‖u(t) − e−itHu0 − v+‖Hδ ≤ C
(π
4
− t

) (p−3)θ
2 , δ = −σθ + (1− θ)ρ,

Taking ρ arbitrarily close to 1
2 and using σ = 1

2 − 1
p+1 gives

‖u(t)− e−itHu0 − v+‖Hδ ≤ C
(π
4
− t

)p+1
p

( 1
2
−δ)+ǫ

where ǫ > 0 can be taken arbitrarily small. We deduce that for any δ < p+1
2(2p+1) , there exist η > 0 and C > 0

such that
‖u(t)− e−itHu0 − v+‖Hδ ≤ C

(π
4
− t

)δ+η
.

Applying the inverse of the lens transform and using Lemma A.1 gives (11.7). �

11.3. Nonlinear evolution of measures and proof of Theorem 2.4. We first consider the particular
case q0 = (0, 1, 1, 0). Estimates (2.3) and (2.4) are just consequences of (10.1) and (10.2), and Lemma A.1.
Let us prove for instance (2.4) in the case 1 < p ≤ 5. The bound (10.2) gives

(11.18) νt(s′)
(
Φ(t(s′), 0)A

)
≤

[
νt(s)

(
Φ(t(s), 0)A

)]
(

cos(2t(s))

cos(2t(s′))

) 5−p
2

.

Then, since t(s) = arctan(2s)
2 , we have

(11.19) cos(2t(s)) = cos(arctan(2s)) =
1√

1 + 4s2
.

Next, by (2.9), we have Lt(s) ◦Ψ(s, 0) = Φ(t(s), 0), therefore if we denote by ρs = L
−1
t(s)#νt(s), from (11.18)

we obtain

ρs′
(
Ψ(s′, 0)A

)
≤

[
ρs
(
Ψ(s, 0)A

)]
(

1+4(s′)2

1+4s2

) 5−p
4

.
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It remains to compute the measure ρs = L
−1
t(s)#νt(s). Let F : H−ǫ(R) −→ R be a measurable function. We

compute

∫

H−ǫ(R)
F (v)dρs(v) =

∫

H−ǫ(R)
F (v)e

− cos
p−5
2 (2t)

p+1
‖Lt(s)v‖p+1

Lp+1(R)d
(
µ0(Lt(s)v)

)

=

∫

H−ǫ(R)
F (v)e

− cos
p−5
2 +1−

p+1
2 (2t(s))

p+1
‖v‖p+1

Lp+1(R)d
(
L

−1
t(s)#µ0(v)

)

=

∫

H−ǫ(R)
F (v)e

− (1+4s2)
p+1

‖v‖p+1

Lp+1(R)dµqs(v),

where we used (11.1), (11.19), and (2.10). Therefore

ρs = L
−1
t(s)#νt(s) = e

− (1+4s2)
p+1

‖u‖p+1

Lp+1µqs ,

hence the result.
The bound (2.5) is the result of Corollary 11.2, and the scattering results follow from Theorem 11.4. In

order to treat the general case q0 ∈ Q, we refer to Section B.4. The first part of Corollary 2.5 follows directly
from Theorem 2.4, while the second part is an application of Proposition 3.5.

Appendix A. Action of the lens transform on Sobolev spaces

The next result shows that the mapping L
−1
t (defined in (2.7)) is not continuous in Hσ spaces.

Lemma A.1. Let 0 ≤ |t| < π/4 and let u and U be related by

u(x) = Lt(U)(x) =
1

cos
1
2 (2t)

U
( x

cos(2t)

)
e−

ix2tan(2t)
2 .

(i) There exists C > 0 such that for any 0 ≤ σ ≤ 1 and 0 ≤ |t| < π/4,

‖U‖Hσ(R) ≤ C‖u‖Hσ(R), ‖〈x〉σu‖L2(R) ≤ C‖U‖Hσ(R).

(ii) There exists C > 0 such that for any 0 ≤ σ ≤ 1 and 0 ≤ |t| < π/4,

(A.1) ‖〈y〉σU‖L2(R) ≤ C(
π

4
− |t|)−σ‖u‖Hσ(R), ‖u‖Hσ(R) ≤ C(

π

4
− |t|)−σ‖U‖Hσ(R).

The dependence in t of the constant in (A.1) is optimal, hence when σ > 0 the term ‖u‖Hσ(R) does not
control ‖U‖Hσ(R), uniformly in t ∈ [−π/4, π/4].

This lemma is a corrected version of [10, Lemma 10.2].

Proof. Firstly, we write

U(y) = cos
1
2 (2t)u

(
y cos(2t)

)
e

iy2 cos(2t) sin(2t)
2 .

(i) We compute

∂yU(y) = cos
3
2 (2t)

(
∂xu

(
y cos(2t)

)
+ iy sin(2t)u

(
y cos(2t)

))
e

iy2 cos(2t) sin(2t)
2 ,

with a change of variables, we get
∫

R

|∂yU(y)|2dy ≤ C cos3(2t)

∫

R

|∂xu
(
y cos(2t)

)
|2dy + C cos3(2t) sin2(2t)

∫

R

y2|u
(
y cos(2t)

)
|2dy

= C cos2(2t)

∫

R

|∂xu(x)|2dx+ C sin2(2t)

∫

R

x2|u(x)|2dx

≤ C‖u‖2H1(R),

which together with the relation ‖U‖L2 = ‖u‖L2 yields the result for σ = 1. The general result follows by
interpolation.
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(ii) A direct computation gives for t −→ π/4
∫

R

|y|2σ|U(y)|2dy = cos−2σ(2t)

∫

R

|x|2σ|u(x)|2dx ∼ C(t− π

4
)−2σ

∫

R

|x|2σ |u(x)|2dx,

and the estimate for U follows (including the optimality). The proof of the estimates for u is similar. �

Appendix B. Some properties of the Gaussian measures µq

B.1. A more precise description of the measures µq. In this Section, we prove a result which charac-
terizes the µq as image measures by an explicit map.

Lemma B.1. For q = (s, α, β, θ) ∈ Q, we define

eqn = (Ψlin(s, 0) ◦Mα ◦ Λβ ◦ τθ)en.
Then the family (eqn)n≥0 is the L2−eigenbasis of a twisted harmonic oscillator

Hq : = (Ψlin(s, 0) ◦Mα ◦ Λβ ◦ τθ)H(Ψlin(s, 0) ◦Mα ◦ Λβ ◦ τθ)−1

= −1 + 4β4s2

β2
∂2
x + 4iβs(βx− θ)∂x + (βx− θ)2 + 2iβ2s(B.1)

associated to the eigenvalues 2n+ 1 (we have ‖eqn‖L2 = |α|).
Proof. First we have τθHτ−θ = −∂2

x + (x− θ)2, then

(B.2) ΛβτθHτ−θΛ 1
β
= − 1

β2
∂2
x + (βx− θ)2.

Next, in order to show that

(B.3) eis∂
2
x
(
ΛβτθHτ−θΛ 1

β

)
e−is∂2

x = −1 + 4β4s2

β2
∂2
x + 4iβ2sx∂x + β2

(
x2 + 2is

)
,

we use the Fourier transform. Define Ff(ξ) =
∫
R
e−ixξf(x)dx. Then for f ∈ S (R),

F
[
eis∂

2
x
(
ΛβτθHτ−θΛ 1

β

)
e−is∂2

xf
]
(ξ) = e−isξ2

( ξ2
β2

− (iβ∂ξ − θ)2
)
eisξ

2
f̂(ξ)

=
[1 + 4β4s2

β2
ξ2 − 2iβ2s− 4iβ2sξ∂ξ − β2∂2

ξ − 2iβθ∂ξ + 4βθsξ + θ2
]
f̂(ξ)

= F
[(

− 1 + 4β4s2

β2
∂2
x + 4iβ2sx∂x + (βx− θ)2 − 4iβθs∂x + 2iβ2s

)
f
]
(ξ),

which implies (B.3), since the conjugaison by Mα is trivial. �

Proposition B.2. For q = (s, α, β, θ) ∈ Q, the measure µq defined in (2.2) is the image of the probability
measure p on Ω by the map

Ω −→ H−ǫ(R)

ω 7−→ γωq =

+∞∑

n=0

1

λn
gn(ω)e

q
n.

Proof. Let q = (s, α, β, θ) ∈ Q, and F : H−ǫ(R) −→ R be a measurable function. We compute

∫

H−ǫ(R)
F (v)dµ(s,α,β,θ)(v) =

∫

H−ǫ(R)
F (v)d

(
µ0 ◦ (Ψlin(s, 0) ◦Mα ◦ Λβ ◦ τθ)−1

)
(v)

=

∫

H−ǫ(R)
F
(
(Ψlin(s, 0) ◦Mα ◦ Λβ ◦ τθ)(v)

)
dµ0(v)

=

∫

Ω
F
(
(Ψlin(s, 0) ◦Mα ◦ Λβ ◦ τθ)(γω)

)
dp(ω),
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then using
(Ψlin(s, 0) ◦Mα ◦ Λβ ◦ τθ)(γω) = γω(s,α,β,θ) = γωq ,

we get the result. �

Remark B.3. Denote by Φlin(t, t
′) = e−i(t−t′)H the linear flow of the harmonic oscillator. Then using that

for all τ ∈ R, the r.v. e−iτλngn and gn have the same Gaussian distribution NC(0, 1)

(B.4) Φlin(t, t
′)#µ0 = µ0.

See also Section 3.1.

B.2. The measures µq are supported on B0
2,∞. Recall that Hq is the twisted harmonic defined in (B.1).

By Lemma B.1, Hqe
q
n = λ2

ne
q
n with λn =

√
2n+ 1.

For j ≥ 0 denote by
I(j) =

{
n ∈ N, 2j ≤ λn < 2j+1

}
.

We have #I(j) ∼ c22j when j −→ +∞. Since the family (eqn)n≥0 forms a Hilbert basis of L2(R) (but with
‖eqn‖L2 = |α|), for σ ∈ R, any u ∈ Hσ(R) can be decomposed

(B.5) u =

+∞∑

j=0

uj, with uj =
∑

n∈I(j)
cne

q
n.

Then, following (3.16), we can define the Besov space B0
2,∞(R), using the dyadic decomposition (B.5), by

the norm
‖u‖B0

2,∞(R) := sup
j≥0

‖uj‖L2(R) < +∞.

Observe that for every σ ∈ R, the norm ‖u‖Hσ(R) is equivalent to the norm

( +∞∑

j=0

22jσ‖uj‖2L2(R)

)1/2
.

Therefore, for ǫ > 0, we have the embeddings

L2(R) ⊂ B0
2,∞(R) ⊂ X0(R) ⊂ H−ǫ(R).

Proposition B.4. Let q ∈ Q. The measure µq is supported on B0
2,∞(R), namely

µq

(
B0
2,∞(R)

)
= 1.

Moreover, there exist c,K0 > 0 such that for all K ≥ K0,

µq

(
u ∈ X0(R) : ‖u‖B0

2,∞
> K

)
≤ e−cK2

.

Proof. For j ≥ 0, we set Ej = span{eqn, n ∈ I(j)}. We define the probability measure νj on Ej via the map

Ω −→ Ej
ω 7−→ γωj =

∑

n∈I(j)

1

λn
gn(ω)e

q
n.

Let K > 0 and denote by
BK

j =
{
uj ∈ Ej : ‖uj‖L2(R) ≤ K

}
,

and
BK =

{
u ∈ X0(R) : ‖u‖B0

2,∞
≤ K

}
.

Then BK =
⊗+∞

j=0 B
K
j , so that

(B.6) µq(B
K) =

+∞∏

j=0

νj(B
K
j ).
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We now show that there exists c0 > 0 such that

(B.7) νj(B
K
j ) ≥ 1− e−c022jK2

.

By definition

νj
(
uj ∈ Ej : ‖uj‖L2(R) > K

)
= p

(
ω ∈ Ω : ‖γj‖L2(R) > K

)
.

We have

‖γj‖2L2(R) =
∑

n∈I(j)

|gn|2
λ2
n

≤ 1

22j

∑

n∈I(j)
|gn|2,

then by the Markov inequality (recall that the law of a complex normalised Gaussian r.v. is 1
πe

−|x|2dx,
where dx is the 2−dimensional Lebesgue measure on C), for all t > 0

p
(
ω ∈ Ω : ‖γj‖L2(R) > K

)
≤ p

(
ω ∈ Ω :

∑

n∈I(j)
|gn|2 > 22jK2

)

≤ e−t22jK2
∏

n∈I(j)
E[et|gn|

2
] = e−t22jK2

(1− t)−#I(j)

≤ e−22j (tK2+c log(1−t)) ≤ e−c022jK2
,

with the choice t = 1/2 and K > 0 large enough. This implies (B.7). Finally, from (B.6) we get

µq

(
u ∈ X0(R) : ‖u‖B0

2,∞
> K

)
≤ 1−

+∞∏

j=0

(
1− e−c022jK2) ≤ e−c1K2

,

which was the claim. �

B.3. Singular measures: proof of Proposition 2.1. Let q0, q1 ∈ Q. In the sequel, for simplicity
we shall assume that q0 = (0, 1, 1, 0) in such a way that Hq0 = H (the general case is similar). Let
q1 = (s, α, β, θ). Consider two sequences (gn)n≥0 and (ℓn)n≥0 of independent standard complex Gaussian
random variables NC(0, 1) and define the random variables

γq0(ω, x) =

+∞∑

n=0

gn(ω)

λn
en(x), γq1(ω, x) =

+∞∑

n=0

ℓn(ω)

λn
eq1n (x).

Since (en)n≥0 and (eq1n /α)n≥0 are Hilbert bases of L2(R), the random series

+∞∑

n=0

gn(ω)en(x),
1

α

+∞∑

n=0

ℓn(ω)e
q1
n (x),

both define the same measure called the white noise measure. Recall the definition (B.1) of Hq, then by

application of αH
−1/2
q1 we deduce that

χq1(ω, x) := α

+∞∑

n=0

gn(ω)H
−1/2
q1 en(x) and γq1(ω, x) =

+∞∑

n=0

ℓn(ω)

λn
eq1n (x),

both define the same measure, which we denote by µq1 . Define

T =
1

α
H−1/2H

1/2
q1 .

Then we have Tχq1 = γq0 , which in turn implies T#µq1 = µq0 . Actually, for all measurable set A,

T#µq1(A) = µq1(T
−1(A)) = p(χ−1

q1
◦ T−1(A)) = p((Tχq1)

−1(A)) = µq0(A).

By [6, Theorem 6.3.2] the measures µq1 and µq0 are equivalent if and only if the map

K = TT ⋆ − I : H1(R) → H1(R)
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is Hilbert-Schmidt (here the adjoint is taken with respect to the H1 scalar product). We compute H⋆
q1

=

H−1Hq1H, thus T ⋆ =
1

α
H−1H

1/2
q1 H1/2 so that

K = TT ⋆ − I =
1

|α|2H
−1/2H

1/2
q1 H−1H

1/2
q1 H1/2 − I.

The operator K : H1(R) −→ H1(R) is Hilbert-Schmidt if and only if ‖K‖HS < +∞ where

‖K‖2HS =

+∞∑

n=0

∥∥H1/2KH−1/2en
∥∥2
L2(R)

(recall that this norm does not depend on the choice of the Hilbert basis (en)n≥0 in L2(R)). We observe

that H1/2KH−1/2 =
1

|α|2H
1/2
q1 H−1H

1/2
q1 − I, then

‖K‖2HS =
1

|α|4
+∞∑

n=0

∥∥(H1/2
q1 H−1H

1/2
q1 − |α|2)en

∥∥2
L2(R)

=
1

|α|4
+∞∑

n=0

〈(H1/2
q1 H−1H

1/2
q1 − |α|2)2en, en〉,(B.8)

using that the operator H
1/2
q1 H−1H

1/2
q1 is self-adjoint on L2(R). We now claim that

(B.9)
(
(H

1/2
q1 H−1H

1/2
q1 − |α|2)2en, en

)
L2(R)×L2(R)

−→n→+∞ C(q1),

with C(q1) > 0 for (|α|, s, β) 6= (1, 0, 1). This will imply in this case that ‖K‖HS = +∞, and the measures µq0

and µq1 are mutually singular, reducing the study to q0 = (0, 1, 1, 0) and q1 = (0, 1, 1, θ).

We set hn = (2n+ 1)−1, z = x
√
hn and fhn(z) = h

−1/4
n eq1n (z/

√
hn). Then by Lemma B.1

(B.10)
[
− (1 + 4β4s2)

β2
h2n∂

2
z + 4iβs(βz −

√
hnθ)hn∂z + (βz −

√
hnθ)

2 + 2iβ2shn

]
fhn(z) = fhn(z).

Similarly, we define ẽn(z) = h
−1/4
n en(z/

√
hn), which is an L2−normalised solution of

(B.11) (−h2n∂
2
z + z2 − 1)ẽn = 0.

Let us now recall a little of semi-classical symbolic calculus adapted to the harmonic oscillator (we refer
to [30, 20] or to [27, Chapter 3] for a review of this theory). For k ∈ R we define the symbol class

Γk =
{
a ∈ C∞(R2;C); ∀j, ℓ ∈ N,∃C > 0; |∂j

x∂
ℓ
ξa(x, ξ)| ≤ C(1 + |x|+ |ξ|)k−j−ℓ

}
.

For a symbol a ∈ Γk and 0 < h < 1, we consider the semi-classical quantification

Ahu(z) = Oph(a)u(z) :=
1

2πh

∫

R2

ei(z−y)ξ/ha(z, ξ)u(y)dydξ,

which, for any σ ∈ R, defines a family of uniformly bounded operators L(Hk+σ;Hσ),

∀a ∈ Γk, ∃C > 0; ∀h > 0, ‖Oph(a)‖L(Hk+σ ;Hσ) ≤ C.

For a ∈ Γk1 , b ∈ Γk2 , we have the symbolic calculus

Oph(a)Oph(b) = Oph(ab) + hOph(c) +R, ∃C > 0; ∀h > 0, ‖R‖L(Hk+σ;Hσ+2) ≤ Ch2

with c ∈ Γk1+k2−1 given by

c(z, ξ) = −i∂ξa(z, ξ)∂zb(z, ξ).
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As a consequence we get

i

h
[Oph(a), Oph(b)] = Oph(a)Oph(b)−Oph(b)Oph(a)

= Oph
(
∂ξa(z, ξ)∂zb(z, ξ)− ∂ξb(z, ξ)∂za(z, ξ)

)

= Oph
({

a, b
})

,(B.12)

where {
a, b

}
(z, ξ) = ∂ξa(z, ξ)∂zb(z, ξ) − ∂ξb(z, ξ)∂za(z, ξ) ∈ Γk1+k2−1

is the Poisson bracket of a and b. Coming back to (B.10) we have Mhn
q1,hn

= Ophn(mq1,hn) and

Ophn(mq1,hn)f
hn = fhn,

with

mq1,h(z, ξ) :=
(1 + 4β4s2)

β2
ξ2 − 4βs(βz −

√
hθ)ξ + (βz −

√
hθ)2 + 2ish.

Similarly, we define m(z, ξ) := ξ2+ z2 and Mh := Ophn(m) = −h2∂2
z + z2. By a change of variables we have

(B.13)
(
(H

1/2
q1 H−1H

1/2
q1 − |α|2)2en, en

)
L2(R)×L2(R)

=

=
((
(Mhn

q1,h
)1/2(Mhn)−1(Mhn

q1,hn
)1/2 − |α|2

)2
ẽn, ẽn

)
L2(R)×L2(R)

=
(
Oph

(
(mq1,hn/m− |α|2)

)2
ẽn, ẽn

)
L2(R)×L2(R)

+O(hn)n→+∞

where we used the symbolic calculus. To understand the limit when n → +∞ of
(
Oph

(
(mq1,hn/m− |α|2)

)2
ẽn, ẽn

)
L2(R)×L2(R)

,

let us recall (see e.g. [9])

Lemma B.5 (Semi-classical measures). For any bounded sequence un ∈ L2(R), and any sequence (hn) such
that hn > 0 and hn → 0, there exist subsequences (unk

, hnk
) and a Radon measure µ on R

2 such that for
any a ∈ Γ0, compactly supported in (z, ξ)

lim
k→+∞

(
Ophnk

(a)unk
, unk

)
L2(R)×L2(R)

= 〈µ, a〉.

Let us apply this procedure to the couples (ẽn, hn). Using (B.11) which implies that for |z| > 1, ẽn is
exponentially decaying and for |ξ| > 1, its Fourier transform F(ẽn) is also exponentially decaying. It is easy
to check that the following properties hold true:

• The convergence actually holds for any a ∈ Γk (dropping the compact support assumption and
allowing polynomial growth of a).

• The measure µ has total mass 1.

We will now prove that the measure µ is the Liouville measure on the circle {(z, ξ); z2 + ξ2 = 1}. We have

0 =
(
Ophkn

(a)ẽnk
, (−h2kn∂

2
z + z2 − 1)ẽnk

)
L2(R)×L2(R)

=
(
(−h2kn∂

2
z + z2 − 1)Ophkn

(a)ẽnk
, ẽnk

)
L2(R)×L2(R)

.

Then, a direct computation gives

(−h2kn∂
2
z + z2 − 1)Ophkn

(a) = Ophkn

(
(ξ2 + z2 − 1)a

)
− 2ihknOphkn

(ξ∂za)− h2knOphkn
(∂2

za),

and therefore by (B.11), we deduce that
(
(−h2kn∂

2
z + z2 − 1)Ophkn

(a)ẽnk
, ẽnk

)
L2(R)×L2(R)

−→ 〈µ, (ξ2 + z2 − 1)a〉.
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As a consequence, the measure µ is supported in the circle {(z, ξ); z2 + ξ2 = 1}. On the other hand, by
(B.12) and Lemma B.5

0 =
i

hk

([
(−h2kn∂

2
z + z2 − 1), Ophkn

(a)
]
ẽnk

, ẽnk

)
L2(R)×L2(R)

=
(
Ophk

(
{z2 + ξ2, a}

)
ẽnk

, ẽnk

)
L2(R)×L2(R)

+O(hk) −→ 〈µ, {z2 + ξ2, a}〉.

Denoting by
Jm = 2ξ∂z − 2z∂ξ

the Hamiltonian vector field of the symbol m(z, ξ) = z2 + ξ2 − 1, we get

∀a ∈ Γ0, 〈Jmµ, a〉 = 〈µ, Jm(a)〉 = 〈µ, {p, a}〉 = 0,

which implies that the measure satisfies Jmµ = 0. Summarizing, we proved

• The measure µ has total mass 1.
• The measure µ is supported on the circle {m(z, ξ) = 1} =

{
(z, ξ); z2 + ξ2 = 1

}

• The measure µ is invariant by the flow of the vector field Jm.

We deduce that the measure µ is the (uniform) Liouville measure on the circle, which we denote by dL.
Remark finally that since the limit measure µ is unique (the Liouville measure), the extraction process in
the construction of the measure was unnecessary (if it is possible to extract converging subsequences and if
for all such converging subsequences the limit is the same, then the initial sequence was already converging
to the unique possible limit measure).

From the previous considerations, we deduce

(B.14)
(
Oph

(
(mq1,hn/m− |α|2)

)2
ẽn, ẽn

)
L2(R)×L2(R)

−→
∫

z2+ξ2=1

[ (1+4β4s2)
β2 ξ2 − 4β2szξ + β2z2

m(z, ξ)
− |α|2

]2

dL := C(q1) > 0

Notice that C(q1) > 0 for any (s, |α|, β) 6= (0, 1, 1), simply because we integrate on (0, 2π) a continuous non
negative function which is not identically 0. This proves (B.9).

We now study the action of the translations. We still assume that q0 = (0, 1, 1, 0) and we set q1 =
(0, 1, 1, θ). We will prove that

(B.15)
((
(Mhn

q1,hn
)1/2(Mhn)−1(Mhn

q1,hn
)1/2 − |α|2

)2
ẽn, ẽn

)
L2(R)×L2(R)

∼ 2hnθ
2,

which by (B.13) (recall that hn = (2n+ 1)−1) will imply

(B.16)
(
(H

1/2
q1 H−1H

1/2
q1 − |α|2)2en, en

)
L2(R)×L2(R)

∼ θ2

n
,

By the semi-classical calculus, we have

(Mhn
q1,hn

)1/2 = Ophn(m
1/2
q1,hn

) +O(hn) = Ophn(m
1/2 −

√
hnθzm

−1/2) +O(hn)

thus
(Mhn

q1,hn
)1/2(Mhn)−1(Mhn

q1,hn
)1/2 − 1 = −2

√
hnθOphn(zm

−1) +O(hn),

hence (
(Mhn

q1,hn
)1/2(Mhn)−1(Mhn

q1,hn
)1/2 − 1

)2
= 4hnθ

2Ophn(z
2m−2) +O(h3/2n ).

As a consequence, when n −→ +∞
((
(Mhn

q1,hn
)1/2(Mhn)−1(Mhn

q1,hn
)1/2 − |α|2

)2
ẽn, ẽn

)
L2(R)×L2(R)

∼ 4hnθ
2

∫

{m(z,ξ)=1}

z2dL

m2(z, ξ)

∼ 2hnθ
2,

which implies (B.15). As a consequence, the series (B.8) diverges, which implies that the measures q0 and q1
are singular.



56 NICOLAS BURQ AND LAURENT THOMANN

B.4. From µ0 to µq. In this section we show how Theorem 2.2 and Theorem 2.4 for µ0 imply the same
results for µq the set of all parameters q ∈ Q. The proof is in two steps. First we pass from q0 = (0, 1, 1, 0)
(i.e. µq0 = µ0) to q1 = (0, α, β, θ). This first step is harmless as the parameter θ is just a translation
in space, the parameter α is just an homothety, and β is a scaling parameter. Hence this transformation
amounts just to perform the following changes

• We change the harmonic oscillator H = −∂2
x + x2, for another harmonic oscillator (see (B.2))

Hq = − 1

β2
∂2
x + (βx− θ)2.

• We change the lens transform from (2.6), (2.7) to another lens transform

u(t, x) := Lq(U)(t, x).

• We change the law of our random variables (1.2) to

Ω ∋ ω 7→ γωq =

+∞∑

n=0

1

λn
gn(ω)e

q
n, µq = p ◦ γ−1

q ,

where now (eqn)n≥0 is the L2−eigenbasis of eigenfunctions (with ‖eqn‖L2 = |α|) of our new harmonic
oscillator Hq, see Lemma B.1.

This first step is harmless as modulo these simple changes, the proof is the same word by word. Once this

step is achieved, it remains to study the action of the time translation eis0∂
2
y and pass from q0 = (0, α, β, θ)

to q = (s0, α, β, θ). We are going to take benefit from the time translation invariance of (NLSp) and use that

if U solves (NLSp) with initial data distributed according to µq = e
is0∂2

y

# µ0,α,β,θ, then Ũ(s, y) = U(s− s0, y)

solves also (NLSp) with data at s0 distributed according to µq = e
is0∂2

y

# µ0,α,β,θ. However, from Step 1, we

know that for all data in S0 (which is of full µq0−measure), we can solve globally (NLSp), and the set
Ss0 = Ψ(s0, 0)(S0) is of full µq−measure. As a consequence, we can solve globally for all data at s = s0 in
the set Ss0 . The estimates in Theorem 2.2 and Theorem 2.4 for s0 6= 0 follow from this argument and the
estimates for s0 = 0.

Appendix C. On the Liouville theorem

Let us recall that the flow of a vector field with vanishing divergence preserves the Lebesgue measure.
Though it is often tought in the context of time independent vector fields (mis)leading to believe that it
only true in this context, this assumption is unnecessary and we can allow time dependent vector fields as
shown by the classical proof. See e.g. also [5, Theorem 9.9 p. 529].

Let us denote by ϕ(t, x0) the solution of the ODE

ẋ = X(t, x(t)), x(0) = x0.

Let us denote by Ψ(t) the map x0 7→ ϕ(t, x0). It is well known that (for small time, and we shall see for all
times) this map is a C1 diffeomorphism and that the family of differentials dΨ(t) satisfies the ODE

d

dt
dΨ(t)ϕ(t,x0) = dX(t, ϕ(t, x0))dΨ(t)ϕ(t,x0),

and consequently using the chain trule and the fact that the differential of the determinant at A is

B 7−→ det(A)Tr(A−1B),

we get

d

dt

(
det

(
dΨ(t)ϕ(t,x0))

)
= det

(
dΨ(t)ϕ(t,x0)Tr(dΨ(t)−1

ϕ(t,x0)

d

dt
dΨ(t)ϕ(t,x0))

)

= det
(
dΨ(t)ϕ(t,x0)Tr(dΨ(t)−1

ϕ(t,x0)
dX(t, ϕ(t, x0))dΨ(t)ϕ(t,x0))

)

= det
(
dΨ(t)ϕ(t,x0)Tr(dX(t, ϕ(t, x0)))

)

= det
(
dΨ(t)ϕ(t,x0)div(X)(t, ϕ(t, x0))

)
= 0.
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Hence the Jacobian of the change of variables is constant along the integral curves. At time t = 0 the change
of variable is the identity. Hence the Jacobian is identically equal to 1.

Appendix D. Weighted estimates on Hermite functions

Recall that the family (en)n≥0 denotes the Hermite functions. The purpose of this section is to prove the
following result.

Proposition D.1. Let γ < 1
4 . Then there exists C > 0 such that for any eigenfunction of the harmonic

oscillator satisfies

(D.1)
∥∥ en
|x|γ

∥∥
L4 ≤ C log

1
4 (λn)λ

− 1
4
−γ

n .

In order to prove Proposition D.1, we first need some technical results. Define the function E for (x, y, α) ∈
R× R× [0, 1[ by

E(x, y, α) =
∑

n≥0

αn en(x) en(y).

Then we have an explicit formula for E.

Lemma D.2 ([10, Lemma A.5]). For all (x, y, α) ∈ R× R× [0, 1[

(D.2) E(x, y, α) =
1√

π(1− α2)
exp

(
− 1− α

1 + α

(x+ y)2

4
− 1 + α

1− α

(x− y)2

4

)
.

We will also need the following expansions

Lemma D.3. Let 0 < ǫ < 1/2, then we have

(1− x2)−
1
2 =

∑

n≥0

anx
2n, with |an| ≤ C(1 + n)−

1
2

(1− x)−ǫ =
∑

n≥0

bnx
n, with |bn| ≤ C(1 + n)ǫ−1

(1 + x)ǫ =
∑

n≥0

cnx
n, with |cn| ≤ C(1 + n)−(1+ǫ).

Proof of Lemma D.3. Indeed,

an =
1

n!
(
1

2
× 3

2
× · · · × 2n− 1

2
) =

(2n)!

22n(n!)2

bn =
1

n!
ǫ× (ǫ+ 1)× · · · × (ǫ+ n− 1) =

Γ(n+ ǫ)

n! Γ(ǫ)

cn =
(−1)n−1

n!
ǫ× (1− ǫ)× · · · × (n− 1− ǫ) = ǫ

(−1)n−1

n!

Γ(n− ǫ)

Γ(1− ǫ)

and the estimates follow from the Stirling formula. �

We are now able to prove Proposition D.1.

Proof of Proposition D.1. Denote by

I(α, β, γ) :=

∫

R

E(x, x, α)E(x, x, β)|x|−4γdx

=
∑

n,m≥0

αnβm

∫

R

e2n(x)e
2
m(x)|x|−4γdx.

Then using (D.2), we get with ǫ = 1
2 − 2γ,

I(α, β, γ) = δ0(1− α2)−
1
2 (1 − β2)−

1
2

( 1− αβ

(1 + α)(1 + β)

)−ǫ
,
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with δ0 := π−1
∫
R
e−2y2 |y|−4γdy. We deduce

(1− x2)−
1
2 (1 + x)ǫ =

∑

n≥0

dnx
n, dn =

∑

p+q=n

apcq,

with
|dn| ≤

∑

1≤p≤n
2

apcn−p +
∑

n
2
<p≤n

apcn−p ≤ Cn− 1
2

which implies ∫

R

e2n(x)e
2
m(x)|x|−4γdx = δ0

∑

p+q=n
r+q=m

dpbqdr.

Therefore, ∫

R

e4n(x)|x|−4γdx = δ0
∑

p+q=n
0≤p≤n

2

d2pbq + δ0
∑

p+q=n
n
2
<p≤n

d2pbq ≤ C log(n)nǫ−1,

which (recall that λ2
n = (2n + 1)) is Proposition D.1. �

Appendix E. Proof of the embedding Bρ
p,q ⊂ Bρ

p,q

Recall the definitions of Section 3.2. In this section we prove

Lemma E.1. Then for any 1 ≤ p, q ≤ +∞, and any ρ ≥ 0,

Bρ
p,q ⊂ Bρ

p,q,

with continuous injection.

Proof. Recall that the Fourier multiplier Dx is defined by the formula F(Dxu)(ξ) = |ξ|F(u)(ξ) for f ∈
S ′(R). Let χj ∈ C∞

0 (R) be as in (3.12) and set ∆j = χ(2−jDx) and ∆̃k = χ(2−k
√
H). We write

∆jf =

+∞∑

k=0

∆j∆̃kf.

In this sum, we distinguish two contributions from {k ≤ j − 3} and {k > j − 2} respectively. To study

the first contribution, let us just recall that for any χ ∈ C∞
0 (R), the operator χ(h

√
H) is an h−pseudo-

differential operator with symbol in Γ0 (recall the notations of Section B.3), and its (formal) symbol a is

supported in {(x, ξ);
√

x2 + ξ2 ∈ supp χ}. As a consequence, if χ ∈ C∞
0 (12 , 2), then χ(2−jDx)χ(2

−k
√
H)

is, for k ≤ j − 3, a pseudo-differential operator with vanishing (formal) symbol, hence gaining any number
of derivatives and any power of |x|. We deduce

∀N > 0, ∃C > 0; ∀j, ∀k ≤ j − 3,
∥∥χ(2−jDx)χ(2

−k
√
H)

∥∥
L(Lp)

≤ C2−jN .

As a consequence,

∥∥
j−3∑

k=0

∆j∆̃kf
∥∥
Lp ≤ CN2−jN‖f‖Lp .

To study the contribution of the second term, we just use that χ(2−jDx) is bounded on Lp with uniform
bound with respect to j, and

(E.1) ‖2jρ∆j

∑

k≥j−2

∆̃ku‖Lp ≤ C
∑

k≥j−2

2−(k−j)ρ‖2kρ∆̃k‖Lp .

According to Schur lemma, the convolution by 2ℓρ1ℓ≤−2 is bounded on ℓ1, and ℓ∞, and hence by interpolation
on ℓq. This implies ∥∥‖2jρ∆j

∑

k≥j−2

∆̃ku‖Lp

∥∥
ℓqj

≤ C
∥∥‖2kρ∆̃k‖Lp

∥∥
ℓqk

,

which together with (E.1) enables to complete the proof. �



A.S. SCATTERING FOR THE ONE DIMENSIONAL NLS 59

References

[1] Z. Ammari and F. Nier. Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. Henri Poincaré 9
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