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Genetic correlations between traits can strongly impact evolutionary responses to selection, and may thus impose constraints

on adaptation. Theoretical and empirical work has made it clear that without strong linkage and with random mating, genetic

correlations at evolutionary equilibrium result from an interplay of correlated pleiotropic effects of mutations, and correlational

selection favoring combinations of trait values. However, it is not entirely clear how change in the overall strength of stabilizing

selection across traits (breadth of the fitness peak, given its shape) influences this compromise between mutation and selection

effects on genetic correlation. Here, we show that the answer to this question crucially depends on the intensity of genetic drift.

In large, effectively infinite populations, genetic correlations are unaffected by the strength of selection, regardless of whether

the genetic architecture involves common small-effect mutations (Gaussian regime), or rare large-effect mutations (House-of-Cards

regime). In contrast in finite populations, the strength of selection does affect genetic correlations, by shifting the balance from

drift-dominated to selection-dominated evolutionary dynamics. The transition between these domains depends on mutation pa-

rameters to some extent, but with a similar dependence of genetic correlation on the strength of selection. Our results are partic-

ularly relevant for understanding how senescence shapes patterns of genetic correlations across ages, and genetic constraints on

adaptation during colonization of novel habitats.

KEY WORDS: G matrix, genetic drift, genetic correlation, stabilizing selection, selection-mutation-drift equilibrium.

Impact Summary
When phenotypic traits are genetically correlated, the direc-

tion and rate of phenotypic evolution is altered relative to what

would be predicted solely from their genetic variances, with

potential impacts on adaptation to changing environments

such as climate change. These genetic correlations between

traits result from a combination of evolutionary forces, chiefly

mutations jointly influencing multiple traits (pleiotropy), and

natural/sexual selection favoring some combinations of

trait values (correlational selection). However, it is unclear

whether and how much the overall strength of selection

influences the degree to which genetic correlations are shaped

mostly by pleiotropic mutation, versus by correlational

selection. Here, we show that the response to this question

crucially depends on the population size, which determines

the level of randomness in the evolutionary process resulting

from genetic drift. In large populations with negligible genetic

drift, the same equilibrium genetic correlation is reached,

regardless of the strength of selection. In contrast in smaller

populations, the strength of selection determines whether

genetic correlations are mostly explained by mutation (under

weak selection), or by a compromise between mutation and

selection (under strong selection). Our theoretical results

can be used to analyze and interpret empirical estimates of

468
© 2020 The Authors. Evolution Letters published by Wiley Periodicals, LLC on behalf of Society for the Study of Evolution
(SSE) and European Society for Evolutionary Biology (ESEB).
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
Evolution Letters 4-6: 468–478

https://orcid.org/0000-0003-4188-4618
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fevl3.201&domain=pdf&date_stamp=2020-11-03


HOW DOES THE STRENGTH OF SELECTION INFLUENCE GENETIC CORRELATIONS?

genetic correlations across ages, or in other situations where

the strength of selection varies in a predictable way.

Adaptation is inherently a multidimensional problem. Or-

ganisms live in complex environments composed of multiple

niche axes (Hutchinson 1957), which exert natural selection on

phenotypes composed of multiple traits that get integrated during

development (Fisher 1930). This complexity can limit the pro-

cess of adaptive evolution. First, the mere fact that multiple traits

are under selection can slow down adaptation, which has been

described as the cost of complexity (Fisher 1930; Orr 2000). And

second, genetic correlations between traits can constrain the re-

sponse to selection for any of these traits, thereby limiting the

ensuing increase in fitness by adaptive evolution (Lande 1979;

Etterson and Shaw 2001; Hansen and Houle 2008; Agrawal and

Stinchcombe 2009; Walsh and Blows 2009; Chevin 2013; Con-

nallon and Hall 2018). The development of evolutionary quanti-

tative genetics theory on these questions (Lande 1979) was soon

followed by a related formalism for measuring selection on cor-

related characters (Lande 1979; Lande and Arnold 1983). This

has fostered much interest in the past decades for measuring pat-

terns of genetic correlations among traits, in order to quantify

constraints on adaptation (reviewed in Agrawal and Stinchcombe

2009). Such constraints can also be interpreted geometrically

(Walsh and Blows 2009), since genetic correlations can influence

the major axis of genetic variation across multiple traits, orienting

evolution along genetic lines of least resistance (Schluter 1996).

Beyond quantifying the consequences of genetic correla-

tions on rates on adaptation, understanding what shapes con-

straints on adaptation ultimately requires investigating the fac-

tors that govern the evolution of the G matrix, which includes

all the additive genetic variances of traits and covariances among

traits (Lande 1979). This has been a topic of intense research,

both theoretically and empirically. Theoretical work has made it

clear that, in randomly mating populations, genetic correlations

evolve in response to (i) correlated pleiotropic mutation effects

on traits, and (ii) correlational selection favoring combinations

of trait values between pairs of traits (Lande 1980; Turelli 1985).

Random genetic drift may also play an important role (Jones et al.

2003), but this was mostly investigated through individual-based

simulations, and few analytical results exist to guide intuition in

that respect. In addition, patterns of environmental change (Jones

et al. 2004, 2012) and epistatic interactions among loci (Jones

et al. 2014) can also influence the shape of the G matrix and evo-

lution of genetic correlation, but we will not address them here.

On the empirical side, it was recently demonstrated that the

genetic divergence of multiple traits across several Drosophila

species is aligned with the major axis of both the G matrix of

additive genetic variation within species, and the M matrix of

mutation effects on these traits (Houle et al. 2017). Natural se-

lection was not measured in that study, but another study on the

same set of traits has demonstrated that their genetic correlations

can evolve in response to experimental patterns of correlational

selection (Bolstad et al. 2015).

Since genetic correlations result from a compromise be-

tween mutational correlations and correlational selection, we

may wonder: How do they change as the strength of selection

varies? And more generally, how does the overall shape of the

G matrix change as a fitness peak becomes broader (thus causing

weaker selection), or narrower (stronger selection), while keeping

the same overall shape (as illustrated in Figure 1A)? This simple

question has received surprisingly little attention, despite its gen-

eral importance in evolutionary biology. In particular, it bears on

our understanding of the evolution of senescence by mutation ac-

cumulation, whereby relaxed selection in later age classes allows

for accumulation of more genetic variance of traits (Charlesworth

and Hughes 1996). A multivariate extension of this argument

might suggest that the G matrix becomes more similar to the mu-

tation M matrix in older ages, because they undergo relaxed se-

lection. However, the premises that underlie this argument have

yet to be explored more thoroughly.

Here, we investigate theoretically how the overall strength

of selection influences evolution of genetic correlations, and the

shape and orientation of the G matrix. Using analytical results

and individual-based simulations, we show that the relative im-

portance of mutation versus selection in shaping the G matrix

critically depends on random genetic drift.

Methods
MODEL

As in standard quantitative genetic models, we assume that the

multivariate phenotype z can be partitioned into a breeding value

x determined by the genotype, plus a residual component of vari-

ation e (often described as the environmental component), nor-

mally distributed with mean 0 and covariance matrix E. In each

generation, mutations occur with probability μ at each allele of

n diploid loci, such that the total mutation rate is 2 nμ. Mutation

increments the phenotypic value at the mutated allele by an effect

that is unbiased (does not change the average breeding value), but

can change the genetic (co)variances between traits. Specifically,

we assume multivariate normally distributed mutation effects α,

with mean 0 and the same covariance matrix M at each locus,

which we parameterize (for two traits) as

M = VαMρ

Mρ =
(

1 ρm
√

φm

ρm
√

φm φm

)
.

(1)
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(A) (B)

(D) (E)

(C)

Figure 1. Influence of selection strength and genetic drift on the G matrix (Gaussian regime). (A) Orientation and shape of the mutation

matrix M, and selection matrix V with variable selection strengths. First eigenvectors are also represented with colored lines. (B-E) Shape

and orientation of the G matrix as the width of the fitness peak Vs varies. Solid ellipses (along with their first eigenvectors) represent

the analytical predictions from equation (8) that neglects genetic drift in (B), or equation (9) that accounts for genetic drift in (C-E).

Dashed ellipses show the mean estimates from IBM simulations with Ne = 5000 (B), 600 (C), 300 (D), and 150 (E). Standard data ellipses

are represented, such that the half-widths of their projections on axes x and y give the standard deviation of the corresponding traits

(Friendly et al. 2013). The M ellipse (green) was magnified by a factor 5 × 104 for graphical purpose. Parameters used: n = 20, μ = 0.01,

ρm = −0.7, φm = 1, Vα = 0.0025 and ρs = 0.8, φs = 2, and Vs = 5,20, 50, 100.

The parameter Vα is the variance of mutation effects on trait 1 (a

scalar), φm is the ratio of mutational variances between traits 2

and 1, and ρm is the mutational correlation. When φm = 1, the

two traits have the same mutational variance, and Mρ is a muta-

tional correlation matrix.

The multivariate phenotype is under stabilizing selection to-

ward an optimum phenotype θ, which we assume constant for

simplicity. This is modeled as classically by letting the fitness of

individuals with multivariate phenotype z (relative to the fitness

of the optimum phenotype) be

W (z) = exp

(
− (z − θ)T �−1(z − θ)

2

)
(2)

where the matrix � determines the breadth and orientation of the

fitness peak. Averaging over the distribution of the residual phe-

notypic component e, the fitness function on breeding values x,

which determines evolution of the G matrix, is

W̃ (x) ∝ exp

(
− (x − θ)T V−1(x − θ)

2

)
(3)

where V = � + E is the stabilizing selection matrix, which can

be written similarly to M as

V = VsVρ

Vρ =
(

1 ρs
√

φs

ρs
√

φs φs

)
.

(4)

The scalar Vs determines the width of the fitness peak on breed-

ing values, and is inversely proportional to the strength of sta-

bilizing selection, while φs controls the ratio of strengths of se-

lection between the two traits. The selective correlation ρs deter-

mines what genetic correlation is favored by natural selection (see
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below). Figure 1A illustrates how these parameters translate into

the shapes of the mutation and selection matrix.

INDIVIDUAL-BASED SIMULATIONS

We tested the accuracy of the expected G matrix and ge-

netic correlation at mutation-selection(-drift) equilibrium using

individual-based, genetically explicit simulations. The traits were

determined by n = 20 unlinked diploid loci, with alleles assumed

to be fully pleitropic (i.e., affecting all the phenotypic traits under

selection). We simulated populations of hermaphroditic, sexually

reproducing individuals with non-overlapping generations. The

life cycle included the following three steps:

1. Assigning phenotype and fitness. For each individual, its

phenotype at each trait was computed by summing breeding

values across all loci and alleles. This amounts to assuming no

dominance and no epistasis at the phenotypic level (although

they may exist at the fitness level), as also assumed in our ana-

lytical treatment. A residual component of variation was then

added for each trait, with mean 0, variance 1, and no covari-

ance between traits (that is, E was the identity matrix). The

expected fitness of each individual was then computed based

on its phenotypic value and the stabilizing selection matrix �,

as defined by equation (2). The fitness optimum was arbitrar-

ily set to zero.

2. Selection and reproduction. Two adults were drawn ran-

domly with a probability proportional to their fitness, and

mated to produce exactly one offspring. Selfing was not al-

lowed, but beside this being involved in a reproductive event

did not change the probability to mate again. The sequence

was repeated N times, to yield parents for the N individuals

of the next generation.

3. Offspring production. The genotype of each individual off-

spring was produced by drawing one random allele from each

parent at each locus, thus modelling fully unlinked loci. The

probability that a mutation occurred at each allele of each lo-

cus was μ. Mutation had additive effects on the traits, modi-

fying the phenotypic value of the mutated allele by an amount

drawn from a multivariate normal distribution, with mean

zero (unbiased mutation) and mutation variance-covariance

matrix M.

This life cycle, developed by Revell (2007), ensures that the

population size N is constant and equal to the effective population

size Ne in the absence of selection. However, something that has

been largely overlooked in previous studies on this topic (e.g.,

Lande 1976, 1979; Burger et al. 1989), but becomes important

under strong selection and low population size, is that selection

on non-heritable phenotypic variation increases the intensity of

genetic drift on heritable phenotypic variation. This occurs be-

cause residual, non-heritable phenotypic variation, with covari-

ance matrix E (usually denoted as Ve for single traits) causes

variance in relative fitness among parents with a given breeding

value x, thus increasing the amount of genetic drift, that is, ran-

dom changes in the distribution of breeding values. As we show

in online Appendix A, when all breeding values are close to the

optimum (genetic variances small relative to the ”variance” of the

fitness landscape), environmental variation reduces the effective

population size to

Ne = N
√

det[I − ((� + E)−1E)2] (5)

where N is the size of the parental population, possibly corrected

for other factors affecting Ne (such as uneven sex-ratios; here,

we assume a Wright-Fisher population). Here, to account for the

reduction in effective population size caused by selection on the

residual component of variation, for a given required value of

Ne we used N = Ne/
√

det[I − ((� + E)−1E)2] as the population

size in the simulations, to ensure that Ne remains constant as the

strength of selection changes.

Since all our formulas depended on the matrix V of selec-

tion on breeding values (eq. (3)), rather than the matrix � for

selection on the expressed phenotype (eq. (2)), we parameterized

simulations in terms of V, and then transformed them to � before

starting the simulation, using � = V − E (as per eq. (3)), where

E = I under our assumption of uncorrelated environmental ef-

fects with variance 1.

Individual-based simulations were all run over 100,000 gen-

erations. To ensure that the expected genetic covariance matrix

Ḡ was estimated after a pseudo-equilibrium is reached (i.e., at

stationarity), only the 70,000 last iterations from the chain were

used to estimate the mean.

Results
WITHOUT DRIFT, GENETIC CORRELATIONS ARE

UNCHANGED BY SELECTION STRENGTH

We will develop our argument about two traits for simplicity,

but a similar reasoning applies for a larger number of traits. Us-

ing similar assumptions as here, Zhang and Hill (2003) showed

that in an infinite population, and in the limit of rare mutations

of large effect (so-called House-of-Cards regime, HoC below;

Turelli 1984, 1985; Bulmer 1989; Bürger 2000; Johnson and

Barton 2005), the genetic correlation ρG between two traits at

mutation–selection balance with weakly linked loci is

ρG = ρs

√
1 − ρ2

m + ρm

√
1 − ρ2

s√
2 − (ρ2

m + ρ2
s ) +√

(1 − ρ2
s )(1 − ρ2

m )(φ + 1
φ

)
(6)

where φ =
√

φm

φs
. Remarkably, this shows that genetic corre-

lations at mutation–selection balance depend neither on the
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absolute strength of stabilizing selection V −1
s nor on the mag-

nitude of mutational variance Vα, but instead on the ratio of

strengths of stabilizing selection between the two traits, times the

ratio of their mutation variances (summarized by the compound

parameter φ). This means that narrowing the fitness peak, thereby

increasing the strength of stabilizing selection on all traits, does

not tilt the balance of genetic correlations ρG toward selective cor-

relations ρs and away from mutational correlations ρm, as long as

the overall shape of the mutation and selection matrices do not

change. The same is true of increasing the mutational variance

and covariances of all traits by the same factor. In the special

case where φ = 1, such that the the ratio of strengths of stabiliz-

ing selection on the two traits equals the ratio of their mutational

variances (M and V have the same shape), equation (6) further

simplifies as

ρG,φ=1 = ρs

√
1 − ρ2

m + ρm

√
1 − ρ2

s√
1 − ρ2

m +√
1 − ρ2

s

(7)

which only depends on mutational and selective correlations.

This result was obtained under the HoC regime, which is

known to have different properties from a regime of common mu-

tations of weak effect, known as the Gaussian regime (Kimura

1965; Lande 1976; Bulmer 1989; Bürger 2000; Johnson and

Barton 2005). But in fact, genetic correlations also do not de-

pend on the strength of selection under the Gaussian regime. To

see this, we rewrite the equilibrium for the G matrix derived by

Lande (1980) under the Gaussian regime, replacing V and M with

their expressions in equations (1) and (4), to get

G = 2n
√

μVαVs V
1
2
ρ

[
V

− 1
2

ρ MρV
− 1

2
ρ

] 1
2
V

1
2
ρ . (8)

The first scalar term is the same as for the genetic variance of a

single trait at mutation-selection balance in this regime (Kimura

1965; Lande 1976). It shows that the genetic variances and co-

variances of all traits, and hence the size of the G matrix, de-

crease as the strength of stabilizing selection increases (smaller

Vs). The second term is a matrix that captures all the features

of G matrix shape, including genetic correlations. Equation (8)

shows that changing the overall strength of selection V −1
s , or the

scale of mutational variance Vm, only magnifies or shrinks the G
matrix, but does not change genetic correlations in any way, nor

any other aspect of G matrix shape.

Figure 1 shows examples of G matrices under variable

strengths of stabilizing selection (the fitness peak becomes

broader, and selection becomes weaker, as Vs increases, Fig. 1A),

in the Gaussian regime. Continuous ellipses in Figure 1B rep-

resent the analytical prediction for G from equation (8), while

dashed ellipses show results from genetically explicit individual-

based simulations (IBM) using the same parameters, but large fi-

nite population size, Ne = 5000. The prediction that the strength

of stabilizing selection does not affect the orientation of the G
matrix in an infinite population is already close to holding in sim-

ulations with Ne = 5000, indicating that such large populations

behave as effectively infinite ones. The size of the G matrix in-

creases, but its orientation and shape change little as the strength

of selection decreases. This means that the strength of stabilizing

selection affects the genetic variance of each trait (with less vari-

ance under stronger selection) and their covariance, but almost

not their correlation. Figure 2B shows that the genetic correlation

is indeed little influenced by the strength of selection in simu-

lations with Ne = 5000 (dark blue dots in Figure 2B), and re-

mains close to the expected compromise between the mutational

and selective correlations predicted by equation (6) (black line in

Figure 2B), which does not depend on Vs.

Although the Gaussian and HoC regime have very differ-

ent properties in terms of the maintenance of genetic variance

for each trait (Turelli 1985; Bürger 2000), they strikingly lead

to the same genetic correlation among traits in an infinite popu-

lation. This was already suggested in numerical explorations by

Turelli (1985), but we confirmed this here more extensively. In

particular, when φm = φs = 1, such that the mutation and selec-

tion matrices are both proportional to correlation matrices (with

only 1 on the diagonal), then deriving the genetic correlation in

the Gaussian case from the G matrix in equation (8) leads to

equation (7), as in the HoC regime. In the more general case,

an analytical formula also exists for the genetic correlation based

on equation (8), but it is unwieldy. Instead of comparing Gaus-

sian and HoC formulas for genetic correlation, we drew random

matrices V and M from a Wishart distribution (with expectation

I), a natural distribution for covariance matrices, which allows

variance and covariance terms to vary randomly. We then com-

puted the expected G matrix under the Gaussian regime (from

eq. (8)), from which we extracted genetic correlations, which we

then compared to equation (6). Figure 2A shows that the genetic

correlation under the Gaussian regime, which assumes frequent

mutations of small effects, is perfectly predicted by that under

the House-of-Card regime, which instead assumes rare mutations

of large effects. The blue dots in Figure 2C show genetic cor-

relations for different values of the selection parameter Vs, es-

timated from individual-based simulations with parameters that

correspond to the HoC regime. These correlations are very sim-

ilar to those in the Gaussian regime in Figure 2B, and close to

their expectation in equation (6).

In short, genetic correlations at mutation-selection balance

do not change with the overall strength of stabilizing selection,

and this conclusion holds generally across a broad range of mu-

tation and selection parameters, spanning different evolution-

ary regimes. So should we then conclude that correlational se-

lection always has the same influence on genetic correlations,

and never becomes dominated by the influence of mutational
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(A) (B) (C)

Figure 2. Influence of selection strength and genetic drift on genetic correlations under different mutation regimes. (A) The genetic

correlation in an infinite population, at equilibrium between selection and abundant mutations of weak effects (Gaussian approximation,

from eq. (8)) is plotted against its expectation under raremutations of large effects (house-of-cards approximation, eq. (6)), for 500 random

pairs of mutation M and selection V matrices. (B-C) The genetic correlation is plotted against the width of the fitness peakVs, for different

effective sizes Ne. The parameters values in (B) are the same as in Figure 1, corresponding to the Gaussian mutation regime. In (C), the

mutation parameters are instead Vα = 0.05 and μ = 0.0002, corresponding to the House-of-cards regime. Blue points correspond to the

genetic correlation simulated with individual-based models (IBM). The black line represents the analytical expectation without drift (eq.

(6)) in both cases. The blue lines represent the analytical prediction with drift (eq. (9)) in (B), and expectations over 10000 randomly drawn

mutation effects α (from eq. (10)) in (C).

correlations, even as the strength of selection becomes vanish-

ingly small?

DRIFT CONTROLS THE BALANCE BETWEEN

MUTATION AND SELECTION’S EFFECTS ON GENETIC

CORRELATIONS

In fact, genetic correlations may indeed become more similar to

mutational correlations as the strength of selection decreases, but

only in the presence of random genetic drift. In a population with

finite effective size Ne, random genetic drift causes a reduction in

heterozygosity, and thus in additive genetic variance, by a propor-

tion 2Ne per generation. Accounting for this effect, we found that

the expected G matrix at mutation-selection-drift equilibrium in

the Gaussian regime is (Appendix B)

G = 2n
√

μVαVs V
1
2
ρ

[(
κI2 + V

− 1
2

ρ MρV
− 1

2
ρ

) 1
2 − √

κI
]

V
1
2
ρ

κ = Vs

(4Ne)2μVα

(9)

where G denotes an expectation over the stochastic evolution-

ary process (because of random genetic drift). As in equation

(8), the first scalar term in equation (9) is the same as for the

genetic variance of a single trait at mutation-selection balance in

this regime (Kimura 1965; Lande 1976), while the matrix product

determines G matrix shape. Equation (9) shows that a single com-

pound scalar parameter, κ = Vs/[(4Ne)2μVα], determines how the

orientation and shape of the expected G matrix change under

mutation, selection, and drift (since elements of Vρ and Mρ

scale on the order 1 by construction). When Vs � (4Ne)2μVα

(κ very small), the mutation rate and mean selection coefficient

of new mutations are both large relative to the intensity of drift

(proportional to 1/Ne), so genetic correlations are mostly deter-

mined by mutation and selection, with little influence of genetic

drift. In the limit κ → 0, equation (9) tends to the mutation-

selection balance in equation (8). In contrast, drift dominates

when Vs � (4Ne)2μVα (κ very large), and the expected G ma-

trix then becomes increasingly similar to the mutation matrix M.

This can be seen when comparing G matrices in panels B–E in

Figure 1, as well as genetic correlations for different darknesses

of blue in Figure 2B. Furthermore for a given Ne, the genetic

correlation and orientation of the G matrix become more similar

to those of mutation as the strength of selection decreases (in-

creasing Vs, lighter ellipses in Fig. 1B–E, and rightmost values

in Fig. 2B).

We have shown above that the type of mutation-selection

regime (HoC vs Gaussian) does not influence genetic correlations

in an infinite population (Fig. 2A), but is it also the case in a finite

population with substantial genetic drift? For the HoC regime, the

expected G in an infinite population is proportional to the expec-

tation of ααt

αt V−1
s α

over the distribution of mutation effects α (Zhang

and Hill 2003, eq. 2). In a finite population, accounting for the re-

duction in heterozygosity caused by both stabilizing selection and
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random genetic drift, this approximation becomes (adapted from

Burger et al. 1989, ”stochastic house of cards” regime)

G = 4Nenμ E

[
ααt

1 + Neαt V−1
s α

]

= 4nμVsE

[
αραρ

t

Vs/(NeVα) + αρ
t V−1

ρ αρ

]
, (10)

where E [] denotes an expectation over the distribution of muta-

tion effects, and αρ = α/
√

Vα are scaled mutation effects, with

covariance matrix Mρ as per equation (1). Analogously to equa-

tions (8) and (9), the first scalar term in equation (10) equals the

equilibrium genetic variance for a single trait in the HoC regime,

while the expectation includes all the parameters that determine

G matrix shape. Since elements of Vρ and Mρ scale on the order

1 (and hence so do αt V−1
s α and elements of ααt ), the scalar pa-

rameter Vs/(NeVα) alone determines whether the G matrix is more

influenced by mutation, selection, or drift. When Vs � NeVα, drift

can be neglected and the G matrix has the same shape as in the

HoC equilibrium; in particular, the genetic correlation between

two traits is given by equation (6), and is thus the same as in the

Gaussian regime. In contrast when Vs � NeVα, drift dominate and

the G matrix is proportional to M, with correlation ρm.

The stochastic house of cards approximation to the ge-

netic correlation (eq. (10)) is somewhat less accurate at predict-

ing results from individual-based simulations than our stochastic

Gaussian approximation in the corresponding regime (eq. (10),

Fig. 2C, Fig. S5). However, it does capture a similar pattern,

where the genetic correlation tends more rapidly toward the mu-

tational correlational with decreasing strength of selection when

the effective population size is smaller (Fig. 2C).

In summary, accounting for genetic drift in finite popula-

tions, the genetic correlation spans the same range in all mutation

regimes, ranging from the mutational correlation ρm when drift

dominates, to the compromise between mutation and selection

in equation (6) when selection dominates. The mutation regime

(Gaussian vs HoC) only determines how the realized genetic cor-

relation interpolates between these two limit cases. In particular,

the selection strength V −1
s at which genetic correlations transition

from being drift-dominated to selection-dominated is multiplied

by (16Neμ)−1 in the Gaussian regime relative to the HoC regime

(eqs.(8) and (10)). When 16Neμ < 1, this means that stronger

selection is required to overcome the influence of drift when mu-

tations are abundant but with small effects (Gaussian regime) as

compared to rare but with larger effects (and vice versa when

16Neμ > 1). But beyond these changes in the quantitative de-

pendence on the strength of selection (which relate to previous

findings for a single trait, Bürger 2000; Hermisson and Wagner

2004), the qualitative relationship between genetic correlations

and the strength of selection given the effective population size

remains the same across mutation regimes (Fig. 2B and C).

SHAPE, ORIENTATION, AND CORRELATION

Changes in the relative importance of selection versus genetic

drift can influence the shape of the G matrix (determined by its

eigenvalues), its orientation (determined by its eigenvectors), or

both. Any of these effects can translate into changes in genetic

correlations, since the latter are only summaries of G matrices,

which depend on both variances and covariances (and on both

eigenvectors and eigenvalues). In particular, genetic correlations

may change despite little change in orientation, and with no rota-

tion of the axes of the G matrix.

This is illustrated in Fig. 3, which focuses on the special

case where V and M have the same eigenvectors (which occurs

for instance when φs = φm = 1). When this holds, the eigenvec-

tors of G are identical to those of V and M, as demonstrated

in Appendix C. This means that the G matrix does not rotate

when changing the relative importance of drift versus selection;

all that changes are the amounts of variation (eigenvalues) along

the different axes (eigenvectors). Nevertheless, the genetic cor-

relation still changes according to equation (9) in this example.

For instance, when one eigenvalue becomes dominant, the G ma-

trix becomes increasingly elongated along one of the eigenvec-

tors (Fig. 3A, Fig. S4), which translates into larger values of ge-

netic correlations (Fig. 3B). In the more general case where V
and M have different eigenvectors, then changing the relative im-

portance of selection vs drift causes both elongation and rotation

of G (changes in shape and orientation), but without necessarily

causing larger changes in genetic correlations.

Discussion and Conclusion
SUMMARY AND INTERPRETATION OF RESULTS

To what extent are genetic correlations between traits shaped by

natural selection, or imposed by mutation? This question, which

in essence traces back to the debate between mutationists and se-

lectionists in the early days of genetics (recently revived in the

light of molecular evidence, Nei 2013), has received consider-

able attention from evolutionary biologists. Evolutionary quanti-

tative genetic theory has made it clear that, under random mating

and when linkage disequilibrium can be neglected, phenotypic

(co)variances arise from an equilibrium between mutation and

stabilizing selection, and genetic correlations are a compromise

between the correlation of pleitropic mutation effects on traits,

and correlational selection favoring combinations of traits (Lande

1980; Lande and Arnold 1983; Turelli 1985; Jones et al. 2003).

The latter can be related to the orientation and elongation of the

fitness landscape relating the traits to fitness (as illustrated in

Fig. 1A). However beyond this shape of the fitness landscape,

how does the overall strength of selection (size of the ellipses

in Fig. 1A) influence genetic correlations between traits? As
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(A) (B)

Figure 3. Influence of selection strength and genetic drift on genetic correlations in the special case where V and M have the same

eigenvectors (Gaussian regime). (A) Shape and orientation of the G matrix as the width of the fitness peak Vs varies. In this illustrative

example where Ne = 600, the first eigenvector of the G matrix (plain lines, from gray to black) is orientated either fully along the major

axis for selection (eigenvector of V, orange line) or for mutation (eigenvector of M, green line), depending on the selection parameter

Vs. (B) The genetic correlation is plotted against the width of the fitness peak Vs, for different effective sizes Ne as in Figure 2. Note that,

although axes of the G matrix do not rotate, the influence of selection strength and genetic drift on genetic correlations is comparable to

the general case in Figure 2. Parameters are identical to Figure 1, except that φs = φm = 1 such that V and M have the same eigenvectors,

ρm = −0.5, and the strongest selection is forVs = 6 instead of 5. The shape of the V and Mmatrices, as well as G matrices for other values

of Ne, are represented in figure S4.

selection becomes weaker, the fitness peak becomes flatter, with

a broader range of phenotypes having equivalent fitness, so does

that reduce the influence of selection on genetic correlations?

Perhaps surprisingly, the answer is no in an effectively infinite

population, which in our simulations was already close to holding

for a moderate effective size of Ne = 5000. Strikingly, the same

compromise between mutation and selection effects on genetic

correlations holds regardless of the strength of selection, and re-

gardless of whether genetic (co)variances are caused by common

mutations of small effect (Gaussian regime, Kimura 1965; Lande

1980), or rare mutations of large effect (House-of-cards regime,

Turelli 1984, 1985).

However, the strength of selection starts to matter as the ef-

fective populations size Ne becomes smaller, and random genetic

drift plays a larger role. The reason is that for a given Ne, the

strength of selection shifts the balance between drift-dominated

and selection-dominated evolutionary dynamics. Since genetic

correlations equal mutational correlations ρm in the former do-

main, but a compromise between mutation and selection (eq. (6))

in the latter, overall mutation has a stronger influence on genetic

correlations than selection (Fig. 2). Previous analyses of G ma-

trix evolution under mutation and correlational selection in finite

populations has mostly focused on the effect of drift on the sta-

bility of the G matrix over evolutionary time (Jones et al. 2003),

and largely overlooked the influence of drift on the expected G.

In fact, this influence can be substantial, as shown here; in par-

ticular, it determines how the strength of selection affects genetic

correlations.

Genetic correlations are often described as a constraint on

adaptation (Etterson and Shaw 2001; Agrawal and Stinchcombe

2009; Connallon and Hall 2018), but this need not be true, de-

pending on how the orientation of the G matrix relates to that

of directional or fluctuating selection in a changing environment

(Gomulkiewicz and Houle 2009; Duputié et al. 2012; Chevin

2013). In a constant environment as assumed here, the extent to

which genetic correlations constrain adaptation depends on how

the G matrix aligns with the matrix of correlational selection,

represented in Figure 1A. Our analytical and simulation results

show that genetic correlations, and the overall G matrix shape,

differ more from those favored by correlational selection at lower

effective population sizes. Since G becomes more similar to the

mutation matrix M in this case, this could be interpreted as a mu-

tational constraint on evolution (Nei 2013). However, this align-

ment with mutation effects occurs because of a prevalence of ge-

netic drift, which is in fact the main constraint on adaptation in

this case, also causing temporal fluctuations in the mean pheno-

type (Lande 1979) and in the G matrix itself (Jones et al. 2003),

and apparent fluctuating selection (Chevin and Haller 2014).

LIMITATIONS AND POSSIBLE EXTENSIONS

Our analytical results for genetic correlations and the G matrix at

mutation-selection-drift balance in the Gaussian regime (eq. (9))
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are valid under frequent mutation (Kimura 1965; Lande 1980;

Bürger 2000), and we accordingly used high mutation rates in

the corresponding simulations. However, note that the nature

of loci is not explicit in this model, but in any case they do not

represent single nucleotides or even genes. Rather, they represent

large stretches of effectively non-recombining portions of the

genome, which may modify the traits by mutation. Since free

recombination is also assumed across these loci (consistent with

most previous studies), the latter can even be thought of as small

chromosomes, for which mutation rates of the order of 10−2

seem reasonable. In addition, we also present theoretical and

simulation results at much lower mutation rates (House-of-Cards

regime), which lead to similar findings.

We assumed universal pleiotropy, whereby all loci have the

same distribution of mutation effects on all traits. An interesting

extension may be to allow for modular mutation effects, or re-

stricted pleiotropy, whereby each locus can only modify a subset

of traits by mutations (Chevin et al. 2010; Chebib and Guillaume

2017), to investigate whether the mutation regime has a stronger

effect on mutation correlations in these scenarios. In terms of se-

lection, we considered a fitness peak with an optimum, in line

with most theory on the topic, but genetic correlations can also be

favored by other forms of selection, notably disruptive selection

(Bolstad et al. 2015), or negative frequency dependence caused

by individual interactions (Mullon and Lehmann 2019), which

may lead to different dependencies of genetic correlations on the

strength of selection and genetic drift.

We also neglected the influence of linkage disequilibrium

on genetic correlations and the G matrix, in line with previous

theory on the topic (e.g. Jones et al. 2003), where unlinked loci

were also assumed. However, although phenotypic associations

between unlinked loci are individually small, they can collec-

tively have a substantial impact on genetic (co)variances (and

correlations) as the number of loci becomes large and selection

is strong (Online Appendix E and Walsh and Lynch 2018). Our

simulations show that this causes the influence of the strength of

selection on genetic correlations to be reduced as the number of

loci increases (Fig. S7, Fig. S8).

BROADER IMPLICATIONS

Our results lead to predictions about changes in genetic corre-

lations along lifetime. Genetic correlations between traits may

differ among ages, if the phenotypic values at different ages are

partly controlled by different loci. This assumption, which un-

derlies both the mutation-accumulation theory of senescence ap-

plied to quantitative traits (Charlesworth and Hughes 1996) and

the theory of evolution of growth trajectories (Kirkpatrick and

Lofsvold 1992), implies that trait values at different ages can be

considered as different traits (or ’character states’). When this

necessary condition holds, changes in genetic correlations among

ages depend on where different ages lie along the evolution-

ary equilibria delineated above for the G matrix. All mutational

and selective parameters affecting these equilibria may possibly

change with age, but most of these changes are not expected to

be in any particular direction, so their effects should cancel out

across studies. In contrast, we do expect the strength of selec-

tion on all traits to generally decline with increasing age, because

older ages contribute less to total fitness (they have smaller repro-

ductive values, Lande 1982; Charlesworth 1993). All things being

equal, based on our theoretical predictions (Fig. 2), we thus ex-

pect genetic correlations to lean more towards mutational correla-

tions in older ages, but mostly when the effective population size

is small. In contrast in large populations, genetic correlations may

change in any direction (or not change) along lifetime. This pat-

tern can be investigated by measuring genetic correlations among

primary traits (not direct components of fitness) across ages, for

different species that differ in effective population sizes (as esti-

mated by e.g. their molecular polymorphism level).

More broadly speaking, we expect mutational correlations

to impose more constraints on evolutionary trajectories in situa-

tions where the population size has been reduced, such as bottle-

necks during colonization of novel habitats. Since these situations

are also likely to be associated with strong directional selection,

this should represent a double challenge for colonizing species.

Nevertheless, the extent to which mutational correlations per se

impede responses to directional selection is unclear. Even when

genetic correlations are largely shaped by correlational selection

(rather than just by mutation), they may still constrain adapta-

tion, if directional selection in a novel or changing environment

does not align with the shape of the fitness peak (Chevin 2013).

In any case, our clear delineation of when, and how much, the

strength of selection influences genetic correlations, should pro-

vide guidelines for analyzing and interpreting genetic constraints

on adaptation in the wild.
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