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f SARS-CoV-2 presents analogies with the behavior of chemical r

Data analytics and trend extrapolation for future predictions are Proposed models mainly deal with the domestic and in
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h i g h l i g h t s

� The batch reactor dynamics is used to predict SARS-CoV-2 spreading.
� The reactor model can phenomenologically explain the virus spreading.
� The model predicts the peak (day and entity) and the infection extinction.
� Initial Value Problem for ODE has been solved with an unknown initial condition.
� Algorithm robustness and convergence have been tested.
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1. Introduction
Susceptible population (A), active infected population (B), recovered cases (C) and deaths (D) can be
assumed to be molecules of chemical compounds and their dynamics seem well aligned with those of
composition and conversions in chemical syntheses. Thanks to these analogies, it is possible to generate
pandemic predictive models based on chemical and physical considerations and regress their kinetic
parameters, either globally or locally, to predict the peak time, entity and end of the infection with certain
reliability. These predictions can strongly support the emergency plans decision making process. The
model predictions have been validated with data from Chinese provinces that already underwent com-
plete infection dynamics. For all the other countries, the evolution is re-regressed and re-predicted every
day, updating a pandemic prediction database on Politecnico di Milano’s webpage based on the real-time
available data.

especially when such phenomena can be modeled in more robust
and reliable ways (Joseph T. Wu et al., 2020a,b).
terna-

often demanded in simplified models (Buzzi-Ferraris and Manenti,
2011). Linear, cubic or polynomials are the most widespread mod-

tional infection diffusion based on the number of flight passengers
(Chinazzi et al., 2020), person-to-person transmissions (Chan et al.,
els for their easiness of implementation and clearness of result
interpretation (Ryan, 2008). In the practice, an easy prediction is
welcome when some general and macro trends are useful, as it
happens in the global economy, energy markets and resource trad-
ing to quote a few. On the other hand, accuracy and robustness in
the predictions assume more and more relevance when the phe-
nomena to be predicted deal with primary needs, like health, sur-
gical treatments or pandemic situations (Layne et al., 2020), and
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2020) and transmission chain tracking (Grubaugh et al., 2019).
Some models are also attributing a primary role to social interac-
tions (Stevens, 2020), before and after governmental restrictions
and considering how compliant the population is, but no one is try-
ing to search analogies with chemical and physical phenomena
where the process dynamics modeling experience has a long and
consolidated history (CAPE Working Party, 2020; EFCE, 2020;
Gani et al., 2020).

The impressive analogies between the behavior of SARS-CoV-2,
infection diffusion (Chinazzi et al., 2020; Joseph T. Wu et al., 2020a,
b) and chemical reactor dynamics (Fogler, 2006; Froment et al.,
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Nomenclature

Symbols/Acronyms Meaning [UoM]
A Number of people susceptible to infection [Number of

people]
A0 Total amount of people that will be infected during

pandemic elapsing [Number of people]
AIPP Active Infected Population at the Peak [Number of

people]
B Active infected cases [Number of people]
C Recovered cases [Number of people]
D Deceased cases [Number of people]
Cf Recovered cases at pandemic extinction [Number of

people]
Df Deceased cases at pandemic extinction [Number of

people]
fobj Objective function [–]
IED Infection Extinction Day [day]

IPT Infection Peak Time [day]
IVP Initial Value Problem [–]
JHU John Hopkins University [–]
k0i Kinetic constant without sigmoidal modification [1/day]
ki i-th reaction kinetic constant with sigmoidal modifica-

tion [1/day]
Ri i-th reaction [People/day]
TIP Total Infected Population [Number of people]
UW University of Washington [–]

Greek letters
Α Kinetic constant weight parameter [1/day]
Β Kinetic constant time-lag parameter [1]
2009; Levenspiel, 2004), batch reactors in particular, are the sem-
inal idea to develop a generalized mathematical model for infec-
tion spread dynamics. Then, some relevant information, such as
the infection peak, for both time and active infected population,
the end of the pandemic and its origins, can be predicted to
develop appropriate countermeasures.
2. Analogies

Chemical reactors are modeled with reactions and balances.
Reactions identify chemical transformations of molecules through
kinetic mechanisms and mass and energy balances identify the
nature and morphology of the reactor where transformations take
place.

Assuming that each person corresponds to a molecule of a
specific chemical species, the susceptible, healthy, population can
be considered as the reactant (component A). It is worth saying
that A is not the total population of a region or a country, but,
for the scope of the proposed model, it is the total population that
will be infected at the end of the infection. Before the infection, we
have only the susceptible population inside the reacting system.
Infection outbreak starts generating a new component B (reaction
intermediate) representing the active infected people. After picking
up the infection, people have two feasible paths in terms of reac-
tion transformation: recovering through reaction R2 (component
C, cured, healthy immune people) or passing away through reac-
tion R3 (component D, deceased people). The general kinetic mech-
anism for the infection appears as follows:

A!R1 B%
R2

&
R3

C

D

ð1Þ

Each reaction step is governed by a kinetic parametric relation-
ship in the Arrhenius form (Bodke et al., 1999). Kinetic mechanism
(1) takes place in a hypothetical reactor. The active volume for the
reaction is the susceptible population (A). If the population can
move around, the chemical reactor is considered as continuous,
since the chemical compounds can either enter or exit it during
the operations. Inlet and outlet flowrates are properly simulated
by transmission models which have already been proposed in the
virology and transmission literature (Chinazzi et al., 2020;
Grubaugh et al., 2019; Joseph T. Wu et al., 2020a,b). Moreover,
when the starting population is fixed, as it is the case during gov-
ernmental lockdown, the chemical reactor mainly behaves as a
batch process, where inlet and outlet flows are null. This latter case
fits appropriately the current situation in many countries and
regions and the batch reactor balances can reasonably predict the
infection behavior. At the end of the infection, recovered people are
supposed to be immunized. If future evidences will not confirm
any immunization (Gretchen, n.d.; Jiang, 2020), recovered people
will have to be considered reintegrated as part of the healthy pop-
ulation again with the same original probability to be re-infected
by the SARS-CoV-2. The kinetic mechanism will be then furtherly
simplified to:

A¢B ! D ð2Þ
The proposed model is intentionally the easiest one to show the

potential in applying chemical engineering principles to topics
only apparently far away from them. Nevertheless, more sophisti-
cated models will be ideated and implemented to progressively
achieve more reliable predictions.

3. Materials and methods

3.1. Model description

The batch-type reactor model has been implemented in order to
dynamically characterize the evolution of each specie involved in
the kinetic scheme. Batch-type numerical simulation have already
been proposed (Stevens, 2020), however, a stochastic system has
been developed. In this work, the virus spreading is be modelled
as a batch (i.e. an intrinsically dynamic chemical reactor) providing
therefore a phenomenological interpretation of data in order to
monitor and predict the time evolution of the spreading process.
According to the proposed chemical engineering model, people
are represented as molecules, while the batch reactor stands for
the country where the infection is spreading. Following the kinetic
scheme a portion of the whole population is susceptible of conta-
gion (molecule A). The population is therefore progressively
infected (molecule B). At this point, B can follow one of two parallel
reaction paths: either they recover from the virus (molecule C) or
pass away from it (molecule D). Hence, molecule B is the interme-
diate product of the reaction mechanism and it is expected to have
a maximum peak during the infection evolution as well as to com-
pletely disappear at the infection extinction time. The described
reactions and corresponding kinetic constants are reported in
((3)–(5))

A!k1 B ð3Þ



B!k2 C ð4Þ

B!k3 D ð5Þ
Kinetic constants for the reactions are described according to a

modified Arrhenius-type law where the temperature-dependence
is considered negligible due to the isothermal nature of the infec-
tion outbreak. The general equation of the kinetic constant consists
of a pre-exponential factor (ki0) and the time-dependent sigmoid
correction. This correction is tuned by parameters, weight (a)
and time lag (b) to properly follow the dynamic evolution of the
system.

The rationale behind the choice of a sigmoid-time correction
lies in the shape of the sigmoidal function itself. Its focal properties
are the sluggish initial response, followed by an exponential
growth and a final asymptote approach (Stephanopoulos, 1984).
These properties are shaped by additional tuning parameters:
weight (a) and time lag (b). The former is responsible for dilating
or shortening the dynamic response of the function in time while
the latter shifts the response in time causing an anticipation or
delay. This approach is applied with the same values of a and b
to each reaction kinetic constants.

The choice of a kinetic constant as shown in (6) allows to have a
sigmoid-like profile as seen in existing infection models (Akhtar
et al., 2019; Stojanović et al., 2019; K. Wu et al., 2020; Zeng
et al., n.d.):

ki ¼ k0i
1þ exp �a � t þ bð Þ ð6Þ

The chemical reactions rates are considered as first-order in
reactant concentration (in this case, concentration corresponds to
the number of molecules which have a peculiar property):

r1 ¼ k1 � A ð7Þ

r2 ¼ k2 � B ð8Þ

r3 ¼ k3 � B ð9Þ
Therefore, according to the kinetic scheme provided in (1) and

the chemical reaction rates ((7)–(9)) in a batch reactor (Fogler,
2006; Froment et al., 2009; Levenspiel, 2004), the component bal-
ances at isothermal conditions are stated as follows:

dA
dt ¼ �k1 � A

dB
dt ¼ k1 � A� k2 þ k3ð ÞB

dC
dt ¼ k2 � B
dD
dt ¼ k3 � B

8>>>><
>>>>:

ð10Þ

At a first moment, the second order autocatalytic reaction:

Aþ B!ka 2B
representing the infection phenomenon related to contacting

was taken into account as well. However, the same results are
obtained and the computational time almost doubles. The associ-
ated reaction rate ra ¼ kaA � B results indeed orders of magnitude
lower than the reaction (3). This is due to the fact that the suscep-
tible population is much higher than the currently infected people
and the presence of B in the reaction rate expression substantially
lowers the reaction rate final value.

Ordinary Differential Equation (ODE) system (10) stability has
been largely analyzed (Li and Muldowney, 1995). Moreover, it
requires initial conditions for each of the differential equations
provided. Initial conditions for active infected cases (B0), recovered
cases (C0), and death cases (D0) are trivial since they are zero at the
infection beginning. On the other hand, the initial susceptible
population A0ð Þ is unknown since its value can only be derived
from the final value of the sum of the remaining species ðC and
DÞ, considering that, at the extinction of the epidemic, the infected
species Bð Þ is no more available:

A0 B0 C0 D0½ � ¼ Cf þ Df000
� � ð11Þ

The integration of differential systems with initial unknown
conditions is called Initial Value Problem (IVP) (Buzzi-Ferraris
and Manenti, 2015). Since the initial condition A0 highly affects
not only the concentration profile of each species and the peak
dynamics (i.e: time position and intensity) but also the final steady
state condition, a robust numerical strategy should be adopted to
solve the problem associated to system (10) with initial conditions
(11) (Floudas, 1995; Floudas and Pardalos, 2014; Grossmann and
Biegler, 2004).
3.2. Numerical method

ODE system (10) is adopted to analyze infection data provided
by Johns Hopkins University (hereafter JHU) and Washington
University (hereafter WU) websites (John Hopkins University,
2020; University of Washington, 2020). In equation (6) all kinetic

parameters (k01; k
0
2; k

0
3 and infection parametersa and b, weight

and time lag respectively) are unknows and they have to be esti-
mated through data fitting as in typical regression problems
involving model-based optimizations (Buzzi-Ferraris and
Manenti, 2010). In regressions, an optimizer is aimed at minimiz-
ing a least-sum-of-squares objective function (f obj) to match infec-
tion data and model previsions:

f obj ¼ min
k01 ;k

0
2 ;k

0
3 ;a;b

XNdata
i¼1

Bdata � B mod elð Þ2 þ Cdata � C mod elð Þ2
h(

þ Ddata � D mod elð Þ2
i�

ð12Þ

The adopted numerical solution strategy is a global coupling
between minimization and ODE solver blocks-structures imple-
mented in MATLAB 2019b. This numerical problem is a typical
nested optimization problem. The structure of this problem can
be divided in two main different optimization layers: an outer
one and an inner one. The former aims at finding the optimal initial
condition (i.e. A0). The latter evaluates the optimal regression
parameters each time the outer optimization is called (Floudas,
1995; Floudas and Pardalos, 2014; Grossmann and Biegler, 2004).
The problem is solved once a convergence criterion is met. Thus,
the algorithm structure can be summarized as follows:

1. Assignment of a wide range for variableA0;
2. Domain discretization;
3. Iterative search for optimal A0 (outer optimization);
4. For each search: model-based optimization for parameter esti-

mation (inner optimization);
5. Initialization of differential system;
6. Numerical integration;
7. Steps (2) to (5) repeated until convergence.

Main convergence criterion for the outer optimization can be
stated as follows:

Ai
0 � Ai�1

0 < 0:5 ð13Þ
When Ai

0, which is the Total Infected Population (TIP) at the
Infection Extinction Day (IED) estimated at the iteration i, differs
less than 0.5 infected people with respect to the estimation at

the previous iteration Ai�1
0 , the procedure is concluded.



It has been observed that the model is able to reasonably pre-
dict the infection evolution only when the inflectional point of
the sigmoidal function in time is overcome since, there, the con-
cavity change, both in A and B component profiles. At that point,
predictions of the nearing peak in terms of intensity and position
become reliable.
4. Results

4.1. Regression and validation

The proposed mathematical model consists of four ordinary dif-
ferential equations evolving along the time axis and providing the
temporal evolution of: (i) total infected cases; (ii) active infected
cases; (iii) recovered cases; and (iv) death cases. The key-step for
data fitting and predictions deals with the estimation of 5 adaptive
parameters, which concerned with the chemical reaction rates and
the infection dynamics. Each of three chemical reactions have a
specific reaction rate parameter and data collected for SARS-CoV-
2 outbreak in online databases (Dong et al., 2020; John Hopkins
University, 2020) supports their regression process. The remaining
two parameters deal with the Kermack and McKendrick-like trans-
mission models (Anderson, 1991) as well as microbial growth
models (Lin et al., 2000) to identify the projection of total infected
cases at the extinction date of the infection.

The calculation procedure merges two well-consolidated tech-
niques in scientific community of Computer Aided Process Engi-
neering (CAPE Working Party, 2020) and European Federation of
Chemical Engineering (EFCE)’s Working Party: (i) the nested opti-
mization approach (Duran and Grossmann, 1987; Varvarezos
et al., 1992) to overcome model over-parametrization; and (ii)
the robust model-based techniques to identify and correct the
gross errors in measurement, communication and delay in collect-
ing data.
Fig. 1. Model prediction (solid lines) and model validation using UW data (dots) for t
infections (orange); recovered cases (green); and death cases (blue). B) On the right s
subsequent re-regressions of new daily data: the IPT and AIPP (orange); IED (green) an
reader is referred to the web version of this article.)
Data for model regression and validation are acquired from
(University of Washington, 2020) and samples are provided in
Fig. 1. It illustrates the trends for Henan Chinese province, where
the infection extinction day has been achieved. It can be noted that
the proposed model properly interprets the whole dataset consist-
ing of 60 observation days. In particular, relevant information like
the Infection Peak Time (IPT), the Active Infected Population Peak
(AIPP), the Infection Extinction Day (IED) and the Total Infected
Population (TIP) are well predicted.

Nevertheless, the relevant use of the model is the prediction
when the infection dynamics is not yet clearly developed. For the
Henan province, Fig. 1 also shows 4 smaller trends on the right
side, which represent the convergence paths of IPT, AIPP, IED,
and TIP, while the dataset is progressively enlarging day after
day. As it is possible to note, the relevant information can be pre-
dicted largely before the complete evolution of the infection and
with reasonable robustness. After about 20 days since the begin-
ning of data collection, the identification of the peak and extinction
dates are very close to the real final data registered 40 days later.

According to numerical theories, the prediction can be consid-
ered reasonable when the TIP trend has already passed its maxi-
mum rate, which consists of its maximum derivative in
mathematical terms. Before such a point, the predictions are con-
sidered unreliable for two correlated reasons: (i) the first infection
cases are usually identified with uncertain delay time (COVID-19,
the SARS-CoV-2 disease, incubation and identification) and the ini-
tial small amount of the infected is strongly affected by large
errors; (ii) small datasets affected by gross errors cannot be consid-
ered as a good data sample (Buzzi-Ferraris and Manenti, 2011). For
future developments, it would be therefore mandatory to regress
the model not only forward, but backward as well to better predict
the real starting point of the infection in a given population to
overcome the initial lack of information and/or measures.

Model predictions can strongly support the decision-making
process to predispose at the right time materials and logistics for
he Chinese province of Henan. A) On the left side, the trends of: TIP (red); active
ide, the small trends report the convergence paths of predictions considering the
d TIP (red). (For interpretation of the references to colour in this figure legend, the



Table 1
Total infection cases at the 23rd March
01:00PM GMT. Source: JHU.

Total infected cases
(Component A)

Country

81.454 China
59.138 Italy
35.224 US
29.909 Spain
24.873 Germany
21.638 Iran
16.246 France
8.961 Korea, South
7.724 Switzerland
5.745 United Kingdom
hospitals, dedicated buildings, human resources, doctors, health
materials, and medical machines.

4.2. Predictions

According to Johns Hopkins’ database (John Hopkins University,
2020) (updated to 23rd March), the 10 countries largely affected by
COVID-19 are reported in Table 1. In particular the Chinese pro-
vince of Hubei is still the largest region worldwide for TIP and its
predictions are reported in Fig. 2. On the left side, the dynamics
are almost completely evolved and the model is properly fitting
the trends, converging to the TIP with less than 1% error and to
the IPT with 1 day only of error at the day 20 of the infection
(33% of total infection time for Hubei province).

South Korea is the country with the longest historical database
for SARS-CoV-2 infection out of China and predictions are reported
in Fig. 3. Collected data are showing a TIP trend that is still linearly
increasing after the identified AIPP on day 30. It, unavoidably,
means that South Korea is not really behaving like a total batch
reactor: a small, but continuous, inlet flow of infections is still pre-
sent in the country. The model is constantly underestimating the
Fig. 2. Model prediction (solid lines) and model validation using UW data (dots) for the
(green); and death cases (blue). B) The small trends report the convergence paths of pre
and AIPP [people] (orange); IED (green) and TIP (red). Chinese government changed the d
in the trends and the large oscillations in the converging paths in its neighborhoods. (For
to the web version of this article.)
TIP by 7% in the last observations to better robustly fit the remain-
ing relevant information, especially the IED, which is rapidly con-
verging to a shorter time in the last days.

It is worth remarking that the figures represent the profile of A
as the sum of B, C and D. In addition, small charts on the right side
in Figs. 2 and 3 show the predicted main parameters (IPT, AIPP, IED
and TIP) according to the number of days taken into account in the
dataset.

5. Discussion

Thanks to this study, in reaction engineering terms, it is possible
to distinguish four infection stages of epidemics/pandemics:

– the starting stage (infection outbreak). It is the initial part of
the infection from the case 0 to the inflectional point of the TIP.
It is characterized by an increasing infection rate, but with a
small amount of infected cases. Usually, it is affected by rele-
vant errors in measures and wrong identification of infected
cases. This stage has an explosion-like trend and cannot be
modeled in mechanistic manner; moreover, small data affected
by gross errors cannot be a base for model-based predictions;

– the early stage (infection transmission). It is the stage where
the infection is fast spreading and the TIP is enlarging dramati-
cally. It is identified between the inflectional point and the AIPP.
Model predictions become useful to quantify the pandemic
entity. It is worth saying that the nature of this stage and the
following ones differs from the nature of the starting stage:
the starting stage is governed by the natural progression of
the infection in a population, whereas the subsequent stages
are governed by contingency measures adopted by the popula-
tion and governments (forced behavior);

– the mature stage (infection mitigation). It represents the days
where the impact of the infection is decreasing in terms of
active infected cases. It goes from the AIPP to the steady state
of the TIP, which means that new active infections no longer
Chinese province of Hubei. A) TIP (red); active infections (orange); recovered cases
dictions considering the subsequent re-regressions of new daily data: the IPT [day]
ata collection methodology at the infection day 23: this motivates the discontinuity
interpretation of the references to colour in this figure legend, the reader is referred



Fig. 3. Model prediction (solid lines) and model validation using UW data (dots) for South Korea. A) On the left side of the trends of: TIP (red); active infections (orange);
recovered cases (green); and death cases (blue). B) On the right side, the small trends report the convergence paths of predictions considering the subsequent re-regressions
of new data: the IPT [day] and AIPP (orange); IED (green) and TIP (red). South Korea predictions currently underestimate the TIP by 7% to better fit the remaining relevant
information. Such a gap on the IPT is expected to zero in few days since the converging paths are achieving a steady-state. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
occur. In this stage, conversion rate from active infection cases
into recovered and death cases is the highest. It still involves
a relatively large amount of active infected cases and usually
expires when the incubation time has passed since the last
new infection case;

– and the final stage (infection extinction). It starts when the
TIP achieves the steady state and it strongly depends on the
hospital treatments and sickness activity. It is considered con-
cluded when the last active infection case is either recovered
or dead.

The Hubei province belongs to the final stage: South Korea is
just entered the mature stage.

Once all the data and the related convergence paths will be col-
lected, the kinetic parameters governing each phase will be prop-
erly estimated. They will serve as good guesses for numerical
model-based predictions of the next potential pandemics.

The model is progressively improving the predictions every day
and its potential could support all the countries affected by SARS-
CoV-2 pandemic to make decisions and organize supplies and
human resources. For this reason, the mathematical model pro-
posed in this work will be extended and adapted to all the coun-
tries and related regions where available infection data are
provided. A global platform has to be organized soon at the
https://www.super.chem.polimi.it. The aim is to collect all the data
for the SARS-CoV-2 infection dynamics and estimate local and glo-
bal kinetic parameters.
6. Conclusions

Predictions not only based on stochastic approaches, but also on
phenomenological theories, could provide an additional element
for governments and associations to make decision processes
stronger and more robust. The idea of comparing infection dynam-
ics to batch reactor behavior and chemical kinetics seems to pro-
vide good information also in early stages, when the infection is
progressing fast. By definition, decision-making robustness in
emergencies means also to adopt more different tools for future
predictions and more sophisticated models can be proposed to
improve the prediction reliability. Platform and database for
SARS-CoV-2 predictions and, in general, for pandemic predictions,
has been launched at CMIC Dept. ‘‘Giulio Natta” Politecnico di
Milano website with the aim of studying kinetic parameters for
infection outbreak, transmission, mitigation and extinction.
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