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Abstract—The standard multiple-input multiple-output
(MIMO) detectors exploit the available information to resolve
the detection problem. Alternative algorithms, such as bio-
inspired or geometrical detectors, mix exploitation with
exploration to bypass local minima and enhance the results.
This paper examines the benefits of adding exploration to
the traditional tree-based detectors. For this purpose, a new
interpretation of the bio-inspired detector based on the firefly
algorithm (FA) is proposed. It is studied in a tree search
paradigm and extended to soft-outputs. The findings suggest
that the addition of a stochastic exploration to tree-based
detectors significantly improves performance with a small
computational overhead.

Index Terms—MIMO detection, firefly algorithm, soft-output,
exploration vs. exploitation, tree-search, Pareto analysis

I. INTRODUCTION

Multiple-input multiple-output systems have made their way
into most of the standards such as WiFi (IEEE 802.11n/ac),
WiMAX, long-term evolution (LTE), and 5G. This technol-
ogy exploits the spatial components of the wireless channel
to increase link robustness and provide significant capacity
gain via transmit diversity and space-division multiplexing
(SDM). The latter technology improves throughput and link
quality without requiring new frequency bands. However, the
substantial increase in data rates comes at the expense of a
more complex receiver design. Indeed, all data streams add
up in the same time-frequency slot. New detection algorithms
are therefore required to separate the data streams and retrieve
signals transmitted from different antennas. The MIMO re-
ceivers typically rely on pilot signals to get information about
the channel state information (CSI).

In spatial multiplexing MIMO systems, the optimum maxi-
mum likelihood decoding (MLD) problem leads to an integer
least-squares (ILS) problem, which is equivalent to finding
the closest lattice point to a given point. Due to the discrete
search space of the ILS problem, it is NP-hard [1]. Therefore,
it is impossible to find an optimal detection algorithm in
reasonable polynomial calculation time on a Turing machine.
Such an algorithm could exist if P=NP, but this possibility is
considered unlikely, and no algorithm has been found so far
despite intensive researches. Thus, several optimal algorithms,
as well as polynomial heuristics, have been developed to
tackle the MLD detection problem. Both types of algorithms
provide hard and soft outputs versions. Hence, they can both

be coupled with channel coding techniques to improve the
MIMO link quality.

The MLD detection problem is an instance of combinatorial
optimization problem, which seeks to find the best solution
to a problem out of a large discrete set (the feasible set).
In general, combinatorial optimization can be solved using
classical algorithms that rely on a tree representation. Branch
and bound approaches, known as sphere decoding (SD) or
depth-first tree-search, provides an optimal solution in a non-
polynomial time [2]–[6]. These algorithms can detect in an
acceptable time when the number of antennas is limited [7].
The application of Dijkstra’s algorithm, called best-first (BF)
tree-search, is another method providing an optimal result
in a reasonably short time [8]–[10]. However, this type of
detector requires a lot of storage space and is harmed by input
dependent run-time. Breadth-first detectors have been intro-
duced as approximations of the previous algorithms to produce
results in a polynomial time. Thus, the M-algorithm [11]
and its successor, the K-best detector [12]–[14], benefit from
predictable the time and storage utilization, still providing
near-optimal performance.

The above detectors are based just on tree exploitation step
given the available information. Other techniques are available
in literature based on mixing exploitation with exploration
in order to escape from local minima and produce more
reliable results. In particular, bio-inspired metaheuristics such
as ant colony optimization (ACO) [15] or FA [16] have been
proposed. These algorithms are much more complex than
tree-based techniques. However, they are also more flexible.
Indeed, they add an exploration component instead of the pure
exploitation used in tree-based detectors. Another method used
a geometrical approach to perform exploration and exploitation
steps has been recently proposed in [17].

This paper investigates the use of an exploratory element
in common tree-based algorithms. To achieve this goal, we
reformulate the FA detector described in [16] as a tree-path
algorithm associated with an exploratory factor. We propose a
new tree-based detector with parameters that can be adjusted
to allow an exploitation-exploration trade-off. The proposed
detector can provide soft outputs for higher-order modulation
schemes. Moreover, this detector is compared with well-
known tree-based detectors without exploration step and the
geometrical exploration-exploitation detector.



The paper is organized as follows. The MIMO system model
under consideration, the MLD detection problems, and the
QR decomposition are presented in Section II. In Section III,
we introduce the hard-output FA detector, and we extend
it to produce the soft-output in Section IV. In Section VI,
we present the simulation results of the proposed algorithm.
Finally, Section VII concludes the paper.

II. SYSTEM MODEL AND MATHEMATICAL DEFINITIONS

The MIMO model is introduced in Section II-A. Sec-
tion II-B defines the hard-output, and soft-output detection
problems and Section II-C rewrites these problems introducing
the QR decomposition.

A. MIMO Model
We model the n × n MIMO system for a single

time/frequency slot. This model is suitable for any link such
that the interferences between frequency slots and between
time slots are negligible. Let H ∈ Cn×n be the channel
matrix such that Hij is the complex gain corresponding to
the path from antenna j to antenna i. Let Q be the set
of all the constellation symbols available. Let y ∈ Cn be
the signal received on each antenna that corresponds to the
symbols transmitted x ∈ Qn after propagation through the
channel added to the circularly-symmetric Gaussian noise
w ∼ CN (0, σ2). The link model is then expressed as

y = Hx + w. (1)

B. Definition of the Detection Problems
On the one hand, the hard-output detection problem refers

searching for the most reliable transmitted symbols given
the channel state and the received vector. This process is
equivalent to solve the combinatorial optimization problem

argmin
x̂∈Qn

‖y−Hx̂‖2. (2)

We further denote by the objective function the expression

E(x̂) = ‖y−Hx̂‖2. (3)

On the other hand, the soft-output detection problem denotes
the computation of the log-likelihood ratios (LLRs) of each
transmitted bit bij with bij the ith bit encoded in the jth symbol
emitted. The LLRs are commonly approximated using the
max-log approximation

Lij ≈
1

2σ2

(
min

x̂∈X 0
ij

‖y−Hx̂‖2 − min
x̂∈X 1

ij

‖y−Hx̂‖2
)
, (4)

where X kij = {x̂ ∈ Qn : bij = k} is the set of all symbols with
bij equals to k [5], [18], [19]. Most detectors approximate (4)
using a list L ⊂ Qn rather than computing the 2n objective
functions. Therefore, the LLRs expression becomes

Lij ≈
1

2σ2

(
min

x̂∈L∩X 0
ij

‖y−Hx̂‖2 − min
x̂∈L∩X 1

ij

‖y−Hx̂‖2
)
.

(5)
If L∩X kij = ∅, it is assumed that bij = k and Lij is set to its
maximum or minimum value to express the reliability on this
bit.

C. Rewriting using QR Decomposition

Let H = QR be the QR decomposition of the channel
matrix with Q a unitary matrix and R an upper triangular one.
Since Q is an isometry, we can rewrite the objective function
as

E(x̂) = ‖y−Hx̂‖2 = ‖Q∗y−Q∗QRx̂‖2 = ‖ỹ− Rx̂‖2 (6)

with ỹ , Q∗y the rotated and reflected received vector. We
can then introduce the distance di such that

E(x̂) = ‖ỹ− Rx̂‖2 =

n∑
i=1

di (7)

where

di ,

∣∣∣∣∣∣ỹi −
n∑
j=i

Ri,ix̂j

∣∣∣∣∣∣
2

(8)

This new expression allows for the computation of di using
only the i last components of x. Therefore, the detector can
decide on the last component (i.e., the symbol of the last
antenna) without any assumption on the other symbols. Then,
each symbol can be detected from the last to the first without
the need for cross-assumptions.

III. FA-BASED AS A RANDOMIZED TREE-BASED
DETECTOR

The firefly algorithm is a bio-inspired metaheuristic that can
handle the majority of optimization problems. A particular
variant of it has been proposed in [16] to tackle the combina-
torial optimization in the hard-output detection problem (2).
Section III-A reminds the main steps of this detector in the
common swarm-based framework. Section III-B revisits the
FA-based detector as a randomized tree-search to highlight that
the swarm-based framework and the tree-based one overlap.

A. FA as a Swarm-Based Detector

The FA detector, as described in [16], is a swarm-based
bio-inspired meta-heuristic detector. As an illustration, Fig. 1
shows the firefly algorithm implemented for a MIMO system
with 2× 2 antennas using a BPSK modulation scheme. From
a bio-inspired perspective, a transmit antenna can be referred
to as a nest, and each constellation symbol is depicted by
a stationary firefly (i.e the stars). The FA detector simulates
moving bugs (i.e the disks) that have to choose a mate in
each nest, based on their attractiveness. Once a moving firefly
reaches the last nest, its chosen mates correspond to a decoded
symbol vector. For instance, a firefly selecting each time the
biggest star on the figure will detect x̂ = (+1,−1). The swarm
is composed of F bugs that travel at once, and the final result
is the best path selected among all the achieved ones (i.e. the
one with the lower objective function value).

The attractiveness of the stationary firefly i to the moving
firefly m is computed as

βi,m = e−γd
k
i,m , (9)



where γ > 0, k > 1 are two parameters, and di,m the
distance computed using (8) assuming the previous choices
of the firefly m. As discussed in Section II-C, the QR
decomposition allows to compute the attractiveness of a firefly
based on the mates chosen on the previously visited nests
but no assumptions on the next choices are required. The
parameters γ and k control the exploration-exploitation trade-
off. The bigger these parameters are, the more the difference
in the objective function are amplified, and therefore, the more
the detector focus on good children. Conversely, when these
parameters are small, the algorithm is more likely to explore
paths rather than focusing on a few promising ones.

A moving firefly selects a mate in each nest based on
its attractiveness using a non-uniform random choice. For
each nest, the moving firefly m will choose the mate i with
probability

Pi,m =
βi,m∑
j βj,m

(10)

with
∑
j βj,m the sum of the attractiveness of all the fireflies

in this nest. Therefore, the FA swarm explores several possi-
bilities thanks to the stochastic term rather than using only an
exploitation process as in most MIMO detectors.

B. FA as a Randomized Tree-Based Detector

The FA detector may be interpreted as a stochastic tree-
path search. In this case, each stationary firefly in a nest
represents a node in a tree. Besides, a moving firefly run
corresponds to a path from the root to a tree leaf. Fig. 2 shows
the same example as Fig. 1, highlighting the tree structure.
Consequently, decode a message corresponds to build as many
tree paths as the number of moving fireflies. The partial path
is extended following a stochastic process defined by the
probability of (10). The random process can be considered
an exploration since it allows extending the path to nodes that
are not the best, hoping to be compensated for the over-cost
and obtained a better final result.

This paradigm shift provides a more straightforward com-
parison with many other typical detectors such as K-best
or BF. Indeed, the complexity of these algorithms is often
measured through the number of visited nodes. This metric
is now easily accessible for FA. To illustrate, K-Best visits
roughly Kn nodes with K the algorithm parameter whereas
FA accesses Fn nodes. Therefore, this paradigm shift high-
lights that K and F have exactly the same role in evaluating
the complexity of these two detectors. Section VI-A will
introduce a re-evaluation of the FA complexity by exploiting
the tree approach.
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Fig. 1. Representation of FA as a firefly swarm with n = 2 and a BPSK.
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Fig. 2. Representation of FA as tree-search algorithm (n = 2 and BPSK).

IV. PROPOSED SOFT-OUTPUT FA-BASED DETECTOR

In this section, we propose a new detector based on the
FA. Section IV-A introduces the new algorithm that tack-
les the soft-output detection problem defines in II-B. Then,
Section IV-B provides a simplification for the attractiveness
computation.

A. Description of the Soft-Output FA-Based Detector

Most soft-output MIMO detectors rely on the max-log
approximation computed on a restricted list of candidates
as described in Section II-B. The FA-based detector can
easily be adapted to generate a list of rather than a symbol
vector x. Indeed, its detection process is based on the parallel
construction of F paths. Therefore, it is possible to build the
list L from the aggregation of the F paths and derive the LLRs
from equation (5).

Fig. 3 sums up all the steps of the proposed soft-output
detector. This pseudo-code is similar to the hard-output de-
tector except for the aggregation of all the built paths in the
list L. This algorithm can be used as such for any modulation
scheme, including higher-order modulations.

B. Padé Approximant for the Attractiveness Computation

The attractiveness computation requires the evaluation of
an exponential function, which may represent a high cost.
Nevertheless, any approximation of (9) has to keep its major
characteristics, i.e., βi,m is strictly positive and strictly de-
creasing with di,m. Hence, we propose to estimate (9) by the
simplest Padé approximant satisfying these two properties. The
Padé approximant of order (0,1) of the exponential function
is given by

ex ≈ 1

1− x
, (11)

the attractiveness expression becomes

βi,m ≈
1

1 + γdki,m
(12)

This new formulation replaced the exponential with addition
and an inversion, which is easier to compute. In the follow-
ing, the proposed detector is tested using this attractiveness
expression.



Inputs:
• Received vector: y
• QR decomposition of the channel matrix: Q,R
• Noise variance: σ2

Compute ỹ = Q∗y.
Initialize an empty candidate list L = ∅.
for all firefly/path m ∈ {0 . . . F} do

Start at the root node with objective function Em = 0.
for coordinate c = n to 1 do

Evaluate the attractiveness βi,m of each child i.
Compute the probability to select each child using (10).
Select a child randomly according to the probabilities.
Increment the objective function Em by dc from (8).

end for
Add the completed path to the list L.

end for
Approximate LLRs based on σ2, L and (5).
return the approximated LLRs.

Fig. 3. Pseudo-code of the proposed soft-output FA-based detector.
The number of fireflies/paths F ∈ N∗ is set for all the detections.

V. EVALUATION OF THE PROPOSED DETECTOR

This section introduces the evaluation criteria and the sim-
ulation setup in Section V-A and the reference detectors in
Section V-B.

A. Simulation Settings and Evaluation Criteria

The addition of exploration in the tree search and the
proposed algorithm are evaluated according to two opposing
criteria: computational complexity and bit error rate (BER)
performance. The complexity is assessed through the num-
ber of product operations required per detected vector. The
Padé approximant presented in Section IV-B simplifies the
computation of the exponential into a product and division.
The complexity is investigated as a statistic since the detector
behavior is stochastic. The statistics of number of the product
operations and the BER performance are based on Monte-
Carlo simulations. For each SNR, the simulation runs until
200 binary errors occur or 5.105 bits are transmitted. The
data message is encoded by the irregular, systematic LDPC
code of ratio 1/2 from the WiMAX standard IEEE 802.16e.
Each block contains 720 bits of information, and decoding
is performed by 15 iterations of the belief-passing min-
sum algorithm. For simulation codes, see [20]. The balance
between these two competing criteria is explored through a
Pareto analysis. A detector is considered Pareto efficient if
no algorithm can enhance one criterion without degrading the
others. The set of Pareto efficient detectors constitutes the
Pareto front, and selecting one or the other depends on the
complexity-performance trade-off.

B. Reference Detection Algorithms

The new detector will be compared to several well-known
detectors to evaluate its suitability and determine the relevance
of the exploration in the tree-based algorithm. Three detectors

are considered for comparison: two tree-based algorithms
without exploration and a geometrical detector mixing explo-
ration and exploitation. These detectors are selected for their
differences regarding the exploration step and their well-suited
structure for hardware implementation. Those algorithms cre-
ate a list and use the max-log approximation described in (5) to
produce the soft-output values. The remainder of this section
briefly discusses the characteristics of each algorithm. The
number of product operations of the tree-based detector and
the geometrical algorithm was already given in [17].

1) Breadth-first K-best [12]: K-best is a breadth-first tree-
based detector with sub-optimal performance. This algorithm
searches the tree from root to leaf, retaining only a given
number of paths at each tree level. This approximation allows
it to achieve near-optimal performance with a polynomial-time
and storage space. Furthermore, a single parameter adjusts the
complexity-performance trade-off being the number of paths
retained.

2) Best-first tree search [10]: The approximation-free best-
first detectors achieve optimal performance but require a
significant memory space. Reference [10] introduces an ap-
proximated best-first tree search reducing memory usage and
maintaining near-optimal performance. This is achieved by
constraining the size of the node heaps.

3) Geometrical-based detector [17]: The geometrical de-
tector explores based on the channel matrix singular value
decomposition (SVD) and then exploits the intermediate result
through local search. This combination of exploration and
exploitation makes it more efficient than tree-based detectors
in some scenarios. Nevertheless, the lack of hindsight on this
technique, especially on the mathematical aspect, complicates
the refinement of this class of algorithms.

VI. RESULTS ON COMPLEXITY AND PERFORMANCE

Section VI-A evaluates the impact of the exploration on the
complexity compared to the usual tree-search pattern. Then,
Section VI-B explores the performance-complexity trade-off
to assess the proposed detector’s relevance in comparison with
state-of-the-art algorithms.

A. Complexity Cost of Exploration vs. Usual Tree-Search

The conventional tree-based detectors build paths starting
from the root and extending some partial paths. By contrast,
the proposed FA-based detector independently builds F paths
from the root to a leaf. Thus, the same node can be visited
several times when constructing the F paths. It is then
interesting to avoid recomputing the metric and to reuse the
values already calculated. Fig. 4 shows the ratio of the number
of unique nodes to the total number of visited nodes for a 4x4
MIMO system and a 16-QAM. The three boxplots show the
minimum, maximum and quartiles for parameters settings. For
the three tests, k = 3 and only F and γ change. The first two
lines only differ in the number of fireflies/paths. They show
that, as F decreases, the ratio of the number of unique nodes
increases since the total number of nodes decreases. The last
two lines display the evolution of the ratio as a function of



γ. As reported in Section III-A, the more γ dicreases, the
more the detector explores more different nodes. The three
boxplots in Fig. 4 are typical cases of parameter settings. The
boxplots point out that there are always less than 50% unique
nodes. Furthermore, the threshold of 20% unique nodes is
rarely crossed with two third quartiles below this level and one
with a ratio of 24%. This descriptive statistic confirms that it
is interesting to share the results rather than to recompute the
metric each time the node is encountered. We further assume
that each node is computed once for all the paths that visited it.
This assumption change neither the pseudo-code from Fig. 3
nor the results of the detector.
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F = 275, log2( ) = 6

F = 275, log2( ) = 3

F = 130, log2( ) = 3

Fig. 4. Boxplot of the ratio of the number of unique to total amount of visited
nodes. The ratio is displayed as percents, whiskers represent the minimum and
maximum, k = 3 and SNR is set to 17dB.

B. Performance-Complexity Trade-off Analysis

Fig. 5 displays the Pareto analysis of the performance-
complexity trade-off. An exhaustive search sweeps all the
tuning parameters of each algorithm to explore the potential
of each detector. The algorithms are compared based on the
number of products per detected vector and according to the
SNR required for a BER of 1.10−4. The Pareto analysis
demonstrates that the proposed detector is efficient across a
wide operating range from the worst SNRs to the average
regimes where it outperforms K-Best and the geometrical de-
tector. Moreover, the proposed detector shows better flexibility
than Best-First detection. The previous references are only
efficient when complexity is the critical aspect. Indeed, the
proposed detector needs a fair number of fireflies/paths to
achieve reasonable performance and is therefore not adapted
when the complexity must be extremely low.
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Fig. 5. Pareto analysis of Performance versus Complexity for a 16-QAM.

VII. CONCLUSION

In this paper, the bio-inspired FA-based detector has been
redesigned in a tree path paradigm and extended to soft-output.
A Pareto analysis demonstrated its interest compared to several
references. Besides, this result indicates that exploration an ad-
vantage for tree-based detectors. Furthermore, the exploration-
exploitation approach presented is more efficient than the one
used in geometrical detectors.
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