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51

52 Abstract

53 Simulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle 

54 scenarios to support climate-change studies. It is imperative to increase confidence in long-term 

55 predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC 

56 simulated from an ensemble of 26 process‐based C models by comparing simulations to 

57 experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites: Denmark 

58 (two sites), France, Russia, Sweden, the United Kingdom. The decay of SOC in these plots has 

59 been monitored for decades since the last inputs of plant material, providing the opportunity to test 

60 decomposition without the continuous input of new organic material. The models were run 

61 independently over multi-year simulation periods (from 28 to 80 years) in a blind test with no 

62 calibration (Bln) and with three calibration scenarios, each providing different levels of 

63 information and/or allowing different levels of model fitting: a) calibrating decomposition 

64 parameters separately at each experimental site (Spe); b) using a generic, knowledge-based, 

65 parameterisation applicable in the Central European region (Gen); and c) using a combination of 

66 both a) and b) strategies (Mix). We addressed uncertainties from different modelling approaches 

67 with or without spin-up initialisation of SOC. Changes in the multi-model median (MMM) of SOC 

68 were used as descriptors of the ensemble performance. On average across sites, Gen proved 

69 adequate in describing changes in SOC, with MMM equal to average SOC (and standard deviation) 

70 of 39.2 (±15.5) Mg C ha-1 compared to the observed mean of 36.0 (±19.7) Mg C ha-1 (last observed 

71 year), indicating sufficiently reliable SOC estimates. Moving to Mix (37.5±16.7 Mg C ha-1) and 

72 Spe (36.8±19.8 Mg C ha-1) provided only marginal gains in accuracy, but modellers would need 

73 to apply more knowledge and a greater calibration effort than in Gen, thereby limiting the wider 

74 applicability of models.

75
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LIST OF SYMBOLS AND ABBREVIATIONS

Symbol/abbreviation Long version Explanation

System variables

C Carbon Chemical element with atomic 
number 6

SOC Soil organic carbon Carbon stored in soil organic matter

SOM Soil organic matter
The fraction of the soil that consists 
of plant, animal or microbial tissue 
in various stages of decomposition

N Nitrogen Chemical element with atomic 
number 7

Experimentation

LTE Long-term field experiment

Research facility providing data for 
monitoring trends and evaluating 
different agricultural management 
strategies over time

LTBF Long-term bare-fallow 
experimental site

Research facility providing data for 
monitoring trends on bare-fallow 
soils

S1 Site 1 Askov (Denmark) – location 1
S2 Site 2 Askov (Denmark) – location 2
S3 Site 3 Grignon (France)
S4 Site 4 Kursk (Russia)
S5 Site 5 Rothamsted (United Kingdom)
S6 Site 6 Ultuna (Sweden)
S7 Site 7 Versailles (France)
Modelling

M01, …, M34 Model 01, …, model 34 Simulation models (M) 
anonymously coded from 1 to 34

Bln Blind Uncalibrated simulations (blind test)
Gen Generic Generic simulation scenario
Mix Mixed Mixed simulation scenario
Spe Specific Specific simulation scenario

SP Spin-up
Process of running the model from a 
set of conditions to initialise the state 
of C pools

NS No spin-up

Any function (or analytical 
procedures) to make an initial 
partition of C pools (alternative to 
spin-up runs)

Statistics
SD Standard deviation Variation amount of a set of data

MMM Multi-model median Median value of simulated data from 
different models

Obs Observations Observed data

RRMSE Relative root mean square 
error

Aggregate magnitude of the errors in 
predictions relative to the mean of 
observations
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EF Modelling efficiency Predictive power of a model with 
respect to the mean of observations

R2 Coefficient of determination
Proportion of the variance in the 
modelled data that is predictable 
from the observations

r Pearson’s correlation 
coefficient

Degree to which predictions and 
observations are linearly related

P(t)
Paired
Student t-test
probability of I-type error

Probability to reject the true null 
hypothesis of equal means of two 
samples of paired data (i.e. 
predictions and observations)

d Index of agreement

Ratio of the mean square error and 
the potential error represented by the 
largest value that the squared 
difference of each 
prediction/observation pair can 
attain

z z-score transformation

Number of standard deviations by 
which the value of a raw score is 
above or below the mean value of the 
variable of interest

sd Standard deviation Standard deviation units expressing 
z-scores

sdobs
Standard deviation of 
observations

Variation amount of a set of 
observed values

P Predicted value Value of a variable that is generated 
using a model

O Observed value Value of a variable that is actually 
observed

n Number of predicted or 
observed values Number of predicted/observed pairs

i ith predicted or observed 
value

Subscript index of each 
predicted/observed pair

O Mean of observed values Arithmetic mean of actually 
observed data

P Mean of predicted values Arithmetic mean of actually 
observed data

D Mean difference
Arithmetic mean of the differences 
between predicted and observed 
values

SD
Standard deviation of the 
differences

Variation amount of a set of 
differences between predictions and 
observations

p Probability of I-type error
Probability to reject the true null 
hypothesis of null correlation 
between two variables

Agro-climatic metrics

Tamp Temperature amplitude Difference between the highest and 
the lowest temperature in a year
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Tmax Maximum air temperature Average of the highest daily 
temperatures in a year

Prec Precipitation Annual precipitation total

ba De Martonne-Gottman 
aridity index

Indicator of aridity including both 
annual and monthly temperature and 
precipitation

hwa Heatwave frequency

Number of at least seven consecutive 
days when the maximum air 
temperature is higher than the 
average summer (June, July and 
August) maximum temperature of a 
baseline value +3 °C

76 a Supplementary material.
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77 1. INTRODUCTION

78 The ability of soils to sequester and store large amounts of carbon (C) is well known (e.g. 

79 Lehmann and Kleber, 2015). Soil organic carbon (SOC) stocks are crucial for maintaining soil 

80 fertility and preventing erosion and desertification, and they positively influence the provision of 

81 ecosystem services at the local as well as the global scale (e.g. Lal, 2004, 2014). For these reasons, 

82 farmers aim to establish and maintain high organic C stocks in agricultural soils, which have often 

83 been depleted trough historical land use practices (Fuchs et al., 2016; Gardi et al., 2016; Chenu et 

84 al., 2018). The continuing studies on SOC sources and biogeochemical processes in the soil 

85 environment provide key insights into climate-C feedbacks, and help prioritizing C sequestration 

86 initiatives (Gross and Harrison, 2019). In light of the climate change issue, the storage of C and 

87 additional sequestration of atmospheric C have received increasing attention recently (Rumpel et 

88 al., 2018; Whitehead et al., 2018; Lavallee et al., 2020), promoting land management, and agro-

89 ecosystems in particular, as a key mitigation option (e.g. the ‘4 per mille Soils for Food Security 

90 and Climate’ initiative, Minasny et al., 2017; Soussana et al., 2017). However, the slow response 

91 of SOC to changes in management and environmental factors hampers our understanding of how 

92 SOC can be increased in a sustainable manner, especially under changing climatic conditions. 

93 Long-term field experiments (LTEs), in which SOC responses have been observed over several 

94 decades, provide this information and deliver reference data on SOC content for knowledge gain 

95 and model development (Johnston and Poulton, 2018). However, LTEs are costly to maintain, and 

96 it is generally difficult to extrapolate experimental results across space and time (Debreczeni and 

97 Körschens, 2003; Mirtl et al., 2018). Simulation models play a prominent role in SOC research 

98 because they provide a mathematical framework to integrate, examine and test the understanding 

99 of SOC dynamics (Campbell and Paustian, 2015). They can also be used to extrapolate from micro- 

100 (e.g. carbohydrate production during photosynthesis) to macro-scale dynamics (e.g. global C 

101 cycling) (e.g. Gottschalk et al., 2012; Sitch et al., 2003). In particular, complex agricultural and 
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102 environmental models incorporate a mechanistic view of processes and system interactions, in 

103 which the soil components are often represented by different, operationally defined, pools of 

104 different sizes and with different properties (e.g. Parton et al., 2015). The concept of multiple C-N 

105 pools represents C-N dynamics with an idealised description (Hill, 2003). The relative proportion 

106 of C and N (and sometimes lignin to N ratio) in the plant residue is the primary mode to divide 

107 plant inputs (from e.g. leaf litter and root exudates) into fresh litter pools, which then decompose 

108 into SOC (or SOM, i.e. soil organic matter) pools, each being modelled with different residence 

109 (or turnover) times, varying from months for labile products of microbial decomposition to 

110 hundreds to thousands of years for organic substances with firm organic-mineral bonds (e.g. Yadav 

111 and Malanson, 2007; Dungait et al., 2012). Plant material and animal manures are often modelled 

112 to enter the soil environment as either readily decomposable (carbohydrate-like) or resistant (lignin 

113 and cellulose-like) materials. A varying number of pools (often including inert and slow-

114 decomposing organic matter, and microbial biomass) linked by first-order equations is usually 

115 simulating both C and N fluxes within and between each pool (Falloon and Smith, 2010). However, 

116 different models vary considerably in the underlying assumptions and C processes in current 

117 models, e.g. regarding number of pools, type of decomposition kinetics used and processes 

118 regulating SOC retention (Manzoni and Porporato, 2009; Cavalli et al., 2019).

119 Each model offers a distinctive synthesis of scientific knowledge (Brilli et al., 2017) and 

120 multi-model ensembles developed from several models may reduce uncertainties in biological and 

121 physical outputs that occur over large scales, such as regions and continents (e.g. Rötter et al., 

122 2012; Asseng et al., 2013; Ehrhardt et al., 2018). The advantage of using ensemble estimates over 

123 individual models is that caused by compensation of errors across models, and a broader 

124 integration of model processes (Martre et al., 2015). It has been recommended to use model 

125 ensembles for reducing uncertainties in simulations of agricultural production (Asseng et al., 2013; 

126 Bassu et al., 2014; Challinor et al., 2014; Li et al., 2015; Ruane et al., 2016; Maiorano et al., 2017) 
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127 and other biophysical/biogeochemical outputs (Sándor et al., 2017, 2018a; Ehrhardt et al., 2018). 

128 However, after the pioneering study of Smith et al. (1997), who evaluated nine SOC models using 

129 12 datasets from seven LTEs, other modelling studies targeting SOC dynamics have often been 

130 limited in scope. Smith et al. (2012) used four models to assess the effect on SOC of crop residues’ 

131 removal in 14 experiments in North America. Todd-Brown et al. (2013, 2014) performed global 

132 estimates of SOC changes with 11 Earth system models. Kirschbaum et al. (2015) used one 

133 simulation model and two years of eddy covariance measurements collected over an intensively 

134 grazed dairy pasture in New Zealand to better understand the drivers of changes in SOC stocks. 

135 Puche et al. (2019) performed a similar study in France. Using multi-model ensembles in scenario 

136 studies at eight sites worldwide, Basso et al. (2018) highlighted the importance of soil feedback 

137 effects (C and N) on the prediction of wheat and maize yield. We are not aware of any recent 

138 model inter-comparison studies specifically assessing soil C dynamics with several models across 

139 a range of experimental sites. This is a field where there is a need for standardised guidance to 

140 estimate C stocks at various spatial scales (Bispo et al., 2017). A difficulty in testing and comparing 

141 various models (and interpreting model outputs) lies in the interaction between soil and plant 

142 processes so that any of the model-data discrepancies could be due to errors in either component 

143 (e.g. Ehrmann and Ritz, 2014). A rigorous model testing and comparison would require different 

144 model components, e.g. plant and soil modules, to be assessed separately. Bare-fallow plots offer 

145 such an opportunity in that they are plots maintained for decades without any plant inputs. The 

146 changes in SOC stocks therefore result only from decomposition processes. To assess the function 

147 of soil-model components without interaction with plant processes, we conducted a model inter-

148 comparison using a dataset from long-term bare-fallow experiments where plant inputs were zero. 

149 In this study, we refer to bare-fallow plots that were kept free of plants by manual and/or chemical 

150 means for several decades. We used seven bare-fallow treatments included in six long-term 

151 agricultural experiments (>25 years), all located in Europe (Denmark, France, Russia, Sweden and 
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152 United Kingdom). In these plots, the soils became progressively depleted in the more labile SOM 

153 components, as they decomposed, and relatively enriched in more stable SOM (Barré et al., 2010). 

154 The soil C concentrations determined at given years in these sites represented a unique opportunity 

155 to follow the decay of SOC from a multi-model ensemble perspective, without any interference 

156 from new plant C inputs, and conduct a multi-model ensemble comparison. The model inter-

157 comparison included 26 process‐based models from an international modelling community. Some 

158 models only accounted for soils  and used C input from plants as an external input where others 

159 were full agro-ecosystem models that explicitly simulate plant growth and resulting C input into 

160 soils. These models all simulate interactions between the soil-atmosphere continuums in different 

161 ways, but for this comparison all models were run assuming no input of fresh plant-derived C, 

162 allowing the comparison of just the soil components of the models.

163 Here, we assess the models, by comparing multi‐decadal simulations to experimental data 

164 from seven sites in Europe. The primary goal of this study was to assess the multi-model ensemble 

165 in simulating SOC dynamics across bare-fallow sites in Europe. To achieve this goal, model 

166 evaluation against actual measurements was performed before and after model calibration. In 

167 addition, deficient areas in models and their processes were identified, paving the road for future 

168 research directions.

169

170 2. MATERIALS AND METHODS

171 2.1.  Simulation models

172 The ensemble of models consisted of 26 process-based models, mainly developed for crop or 

173 grassland ecosystems (or focussing just on soils) and covering a broad variety of approaches (Table 

174 1). While they are mostly based on first-order decay kinetics of multiple C pools (where C losses 

175 are proportional to SOC stocks with additional modifiers to represent the effects of other factors), 

176 ESOC1 simulates C fluxes with second-order kinetics equations based on concepts applied in 
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177 Schimel and Weintraub (2003) and reviewed in Wutzler and Reichstein (2008). In this case, 

178 organic matter decomposition includes reactions between SOC and decomposers (i.e. a microbial 

179 or enzyme pool). These different approaches depend mainly on alternative ways in which the C 

180 pools are linked. For instance, MONICA is one of the most complex models, considering three 

181 types of organic matter in six conceptual pools, viz. newly added organic matter, living soil 

182 microbial biomass and native non-living soil organic matter, each sub-divided into fast and slowly 

183 decomposing sub-pools. It simulates the turnover of C pools by applying first-order degradation 

184 to each pool due to microbial growth and maintenance respiration (after Abrahamsen and Hansen, 

185 2000). Then, like other models (e.g. CenW), MONICA also includes a coupled N-cycle and 

186 sophisticated temperature and water-balance calculations that act as modifiers of degradation and 

187 respiration rates. The decomposition rates of individual pools in such multi-pool SOC models are 

188 typically controlled by vastly different reaction coefficients that can result in highly nonlinear 

189 behaviour of the overall system (e.g. Caruso et al., 2018). The initial list included 34 models, but 

190 eight of them were excluded from further analysis because they showed severe limitations to run 

191 properly either under bare-fallow soils or under the given climate conditions. For all models, 

192 estimates of SOC were compared with measured SOC data.
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193 Table 1. The process-based simulation models used. Model names were anonymised in the 

194 reporting of simulation results using model codes from M01 to M34, from the initial list of 34 

195 models, the order of models not being identical to that used in the table.

196

Model name Version
C 

poolsa
Spin-up URL or contact for documentation/description References

AMG 2 2 to 3 None

https://www6.hautsdefrance.inra.fr/agroimpact/Nos-

dispositifs-outils/Modeles-et-outils-d-aide-a-la-

decision/AMG-et-SIMEOS-AMG/AMG-model-description

Andriulo et al. (1999); 

Saffih-Hdadi and Mary 

(2008); Clivot et al. (2019)

Apsim 7.9-

r4044

None

Simulation from start of climate 

record (no additional simulation 

period)

APSIM

7.10 r4158

3

Yes

http://www.apsim.info
Keating et al. (2003); 

Holzworth et al. (2014)

CANDY_CIPS

1.0 (but 

always 

implemented 

in newest 

4 None
https://www.ufz.de/export/data/2/95948_CANDY_MANUAL.

pdf

Kuka, (2005); Kuka et al. 

(2007)
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version of 

CANDY 

29.06.2018

CCB 2019.1.16 3 None https://www.ufz.de/index.php?en=44046

Franko et al. (2011); Franko 

and Spiegel (2016); Franko 

and Merbach (2017)

Century 4.0 5 to 7 Yes
https://www2.nrel.colostate.edu/projects/century/MANUAL/ht

ml_manual/man96.html
Parton et al. (1987, 1994)

CenW 4.2 5

Uses an automatic spin-up routine to 

find equilibrium conditions under 

given environmental variables and 

specified system properties

http://www.kirschbaum.id.au/Welcome_Page.htm

Kirschbaum (1999); 

Kirschbaum and Paul 

(2002)

C-TOOL 2014 3
None 

(can be run also with spin-up)

http://envs.au.dk/fileadmin/Resources/DMU/Luft/emission/SI

NKS/C-TOOL_Documentation__2015_.pdf

Taghizadeh-Toosi and 

Olesen (2016); Taghizadeh-

Toosi et al. (2014a, b, 2016)

4.5 2010 Yes

Daily DayCent 
 Daily 

DayCent

4.5 2013

5 to 9 http://www.nrel.colostate.edu/projects/daycent-home.html

Parton et al. (1994, 1998); 

Del Grosso et al. (2001, 

2002)
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Daily 

DayCent 

August 2014

4.5 2013

DNDC CAN 6
Yes

(10 years recommended)
http://www.dndc.sr.unh.edu

Li et al. (2012); Smith et al. 

(2020)

DSSAT … 5

Yes, 

20 years prior to beginning of the 

experiment to estimate the 

proportions of carbon in each organic 

matter pool

http://dssat.net 

Jones et al. (2003); Porter et 

al. (2009); Gijsman et al. 

(2002); White et al. (2011); 

Thorp et al. (2012)

ECOSSE 5.0.1 5 None

https://www.abdn.ac.uk/staffpages/uploads/soi450/ECOSSE%

20User%20manual%20310810.pdf Smith et al. (2007, 2010a, 

b); Bell et al. (2010)

ESOC1 1.0 3 Yes

https://doi.org/10.5281/zenodo.3539484

fmoyano@uni-goettingen.de

Moyano et al. (2018)
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Exp 1 None -

Exp + inert 2 None -

Lorenzo Menichetti 

(lorenzo.menichetti@slu.se)

ICBM … 2 None

martin.bolinder@slu.se

https://www.slu.se

Andrén and Kätterer (1997); 

Andrén et al. (2008)

MONICA 2.0.2 7 None http://monica.agrosystem-models.com

Nendel et al. (2011); Specka 

et al. (2016); Stella et al. 

(2019)

ORCHIDEE 2.0 3 Yes
https://vesg.ipsl.upmc.fr/thredds/fileServer/IPSLFS/orchidee/

DOXYGEN/webdoc_2425/annotated.html
Krinner et al. (2005)

RothC10N

RothC

26.3

4 to 5 None https://www.rothamsted.ac.uk/rothamsted-carbon-model-rothc
Coleman and Jenkinson 

(1999); Farina et al. (2013)

STICS 9.0 2 to 4 None http://www6.paca.inra.fr/stics

Brisson et al. (1998, 2003, 

2008); Coucheney et al. 

(2015)
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YASSO15 15 5 Yes https://en.ilmatieteenlaitos.fi/yasso Tuomi et al. (2009)

197 a Some models/model versions include options for varying C pools (this varying number may depend on the fact that the full 

198 set of pools including fresh C can be optionally simplified in the case of bare-fallow treatments).
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199 2.2. Experimental sites

200 We used data from a network of six long-term bare-fallow experimental sites (LTBF) in Europe 

201 (with two fields located in Askov, Denmark; Barré et al., 2010), to test the ability of the models to 

202 represent SOC dynamics. The sites were located at a range of latitudes between 48° to 59° North 

203 (Table 2; Fig. 1a), with experiments running for at least 28 years, which were used as a test bed 

204 for the models to represent SOC dynamics. Table 2 shows the main characteristics of each site and 

205 provides a brief description of the historical land use and management of the area (more details 

206 are given by Barré et al., 2010 and references therein). The documented history of the experimental 

207 sites referred to the presence of agricultural areas (grassland or cropland), without woodlands. Soil 

208 texture provides evidence of variability in soil physical properties, with a gradient of intermediate 

209 situations between the sandy loam of Askov (Denmark) and the clay loam of Ultuna (Sweden). 

210 Water relations (precipitation minus reference evapotranspiration) indicate positive climatic water 

211 balance for the two North Atlantic sites only (Askov in Denmark and Rothamsted in the United 

212 Kingdom). Mean annual temperatures vary from ~6 °C in the Sweden and Russian sites (Ultuna 

213 and Kursk, respectively) to near 11 °C in the two French sites (Grignon and Versailles). Annual 

214 air temperature amplitudes - from about 14 °C in Rothamsted to near 30 °C in Kursk - indicate 

215 that the study sites span a broad thermal gradient (Fig. 1b), which likely leads to different soil 

216 thermodynamics (e.g. Zhu et al., 2019). Two widely used metrics (aridity index and frequency of 

217 heatwaves; Sándor et al., 2017, 2018a, b) were also calculated to complete the climatic analysis of 

218 study sites (Fig. A, supplementary material).

219
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220

221 Table 2. Long-term bare-fallow experimental sites. Table A in the supplementary material contains 

222 the summary description of the experimental sites.

Experimental sites (country)

General description
S1, S2

Askov

(Denmark)

S3

Grignon

(France)

S4

Kursk

(Russia)

S5

Rothamsted 

(United Kingdom)

S6

Ultuna

(Sweden)

S7

Versailles

(France)

Coordinates Latitude 55.28 48.51 51.73 51.82 59.49 48.48

Longitude 9.07 1.55 36.19 0.35 17.38 2.08

Soil Sand/Silt/Clay (%)
78/12/10

(sandy loam)

16/54/30

(silty clay loam)

5/65/30

(silty clay loam)

13/62/25

(silt loam)

23/41/36

(clay loam)

26/57/17

(silt loam)

Bulk density (Mg m-3) 1.50 1.20 1.13 0.94 1.44 1.30

Bare-fallow years 1956-1985 1959-2007 1965-2001 1959-2008 1956-2007 1929-2008
Experimental 

period
N. of 

data/replicates
30/4, 29/4 11/6 6/0 14/4 18/4 9/6

Initial/final carbon stocks (Mg C ha-1) 52.1/36.4 41.7/25.4 100.3/79.4 71.7/28.6 42.5/26.9 65.5/22.7

Climatea Climate typeb
Dfb (humid 

continental)
Cfb (oceanic)

Dfb (humid 

continental
Cfb (oceanic)

Dfb (humid 

continental
Cfb (oceanic)
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Mean annual precipitation total (mm) 890 584 482 723 457 608

Mean annual cumulative evaporation 

(mm)c
578 662 602 630 546 668

Mean annual air temperature (°C) 7.4 10.7 6.2 9.4 6.0 10.7

Mean annual air temperature range 

(°C)d
17.6 16.8 29.8 14.4 22.8 16.7

ANPP (g C m-2 yr-1) 1.7 1.1 0.9 1.3 0.9 1.2Vegetation 

(historical 

period)e
TNPP (g C m-2 yr-1) 3.3 2.2 1.7 2.5 1.7 2.2

223 a Climatic analysis was performed on longer periods than the experimental periods: 1956-1987/1929-2008/1944-

224 2003/1856-2006/1956-1999/1929-2008.

225 b Köppen-Geiger climate classification (Kottek et al., 2006).

226 c Mean values over the bare-fallow period. Reference evaporation was estimated based on the Thornthwaite (1948) 

227 equation.

228 d Mean difference in temperature between the warmest and the coldest month of the year.

229 e Estimates of aboveground (ANPP) and total (TNPP) net primary productivity based on the precipitation levels of 

230 each site, as provided by Del Grosso et al. (2008) for non-tree dominated systems.
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231

232 (Fig. 1 here)

233
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235 2.3. Study design

236 Model simulations were carried out independently by each modelling team (which included model 

237 developers and users, and field experts of soil C dynamics) on commonly formatted data using 

238 their own approaches and technical background. Harmonising calibration techniques was out of 

239 scope of the inter-comparison exercise. The SOC outputs from each model were compared to data 

240 from the study sites before and after calibration. Calibration mostly focussed on parameters related 

241 to substrate use, C partitioning among pools and decomposition processes. However, rate 

242 equations for C pools often required the calibration of a large number of parameters, which are at 

243 the core of key processes responsible for differences among models in the understanding and 

244 interpretation of SOC processes (number of pools and type of decomposition kinetics used to 

245 represent C turnover). For the uncalibrated (blind test, Bln) simulations, the models were run for 

246 each site using the available data of weather, soil texture and bulk density (model inputs), and the 

247 initial SOC values, with no parameter adjustment other than initialisation based on historical 

248 management and land use. With this information, Bln reflects the ability of the models to simulate 

249 SOC decomposition after plant inputs has stopped, using the original parameter settings and 

250 calibration, simply by removing their components related to new C inputs. At this stage, default 

251 values were mostly used for all decomposition rates. C-pool fraction sizes were adjusted based 

252 only on C-input estimates from the information on land use prior to the establishment of the bare-

253 fallow treatments.

254 After the blind simulations were completed, SOC measurements taken during the bare-

255 fallow period were supplied to each modelling group for the calibration work. Details on 

256 management (tillage), which may have influenced the SOC dynamics before the bare-fallow 

257 treatment, were also provided to improve the initialisation process. It was requested that each 

258 modelling group adjust soil parameters to improve the simulations based on the observed data, 

259 using whatever techniques they normally use, and to document the changes. At this stage, models 
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260 were split into two categories: a) with spin-up (SP) and b) without spin-up (NS). Both SP and NS 

261 models require an initial estimate for SOC content and/or an adjustment of parameters towards 

262 balancing the split between soil C pools. The two classes of models work in the same way using 

263 information about plant residues and root growth that provide the C substrate for SOC dynamics 

264 simulations. NS-type models (e.g. DNDC and RothC) use the initial measured SOC value, where 

265 estimates of C inputs in the background of model runs are obtained with various methods (e.g. 

266 Keel et al., 2017) in order to initialise the SOC pools, which can sometimes be calculated 

267 analytically. In order to keep the legacy effect of previous land-use and past management practices, 

268 in SP models (e.g. DayCent) SOC pools are routinely initialised by running the models to achieve 

269 their own states of equilibrium, where change in C stocks is minimised (e.g. Lardy et al., 2011; 

270 Huntzinger et al., 2013). However, if soils are not at equilibrium (e.g. after a sudden disturbance), 

271 spin-up runs may not always be valid with the risk of starting simulations with biased initial values 

272 (e.g. Wutzler and Reichstein, 2007; Nemo et al., 2017) but a fuller discussion on the “spin-up 

273 problem” (Reynolds et al., 2007) is not within the scope of this paper. Carbon inputs are usually 

274 estimated through sub-models calculating total net primary production (TNPP). As it was not 

275 possible to derive TNPP data from local sources at each study-site, TNPP estimates were obtained 

276 at each site (Table 2) based on precipitation levels according to the approach of Del Grosso et al. 

277 (2008). In this way, the creation of the TNPP database used by modellers was based on an identical 

278 methodology, which is widely used worldwide, though the uncertainty in quantifying productivity 

279 across ecosystems is highlighted (e.g. Wieder et al., 2014).

280 The distinction between SP and NS models can appear somewhat arbitrary as virtually any 

281 model with more than one C pool could be spun-up or, alternatively, a function (or analytical 

282 procedures) can be used to make an initial pool partition. We refer here to common modelling 

283 practice, as performed by users within the constraints imposed by packaged (operational) solutions 

284 of SOC models (for which spin-up procedures may be operationally more difficult) or relying on 
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285 the procedure suggested by previous experience. For instance, although spin-up equilibrium runs 

286 are documented for RothC (e.g. Herbst et al., 2018), it is common practice to initialise three C 

287 pools for subsequent simulations through an internal routine over 10,000 years, with limited model 

288 inputs including clay fraction and weather, and a pre-defined ratio of decomposable over 

289 recalcitrant plant material (e.g. Xu et al., 2011; Weihermüller et al., 2013). Modellers were left to 

290 choose one option or the other when both were available for use in their models (e.g. C-TOOL). 

291 About 40% of the models (10 models) in the study did not use SP processes and set the initial SOC 

292 values manually (using the initial SOC observation).

293 For each model category (SP and NS), two main modelling approaches were identified: site-

294 specific versus generic (single set of parameter values for all the sites). For the site-specific 

295 approach, at each site users informed models about historical management practices and land uses 

296 such as grassland or cropland (with both SP and NS models), SOC decomposition parameters (only 

297 for SP models) or the partitioning of C among different soil pools (only for NS models). With the 

298 generic (not site-specific) approach, model calibration was not applied separately for each 

299 experimental site but simultaneously on all available multi-location datasets to find for each model 

300 parameter values that would be applicable at regional scales. In this case, multi-location calibration 

301 was used to capture generic model parameter values so that the models could still perform well 

302 across a range of climate and management conditions in Europe (Dechow et al., 2019). Site-

303 specific and non-site-specific approaches were variously combined with factors affecting model 

304 initialisation/parameterisation (Table 3) to create simulation scenarios Gen (generic), Mix (mixed) 

305 and Spe (specific).

306 Scenario Mix uses a site-specific approach for the initialisation of C pools with both SP and 

307 NS models and, for each model, a unique calibration of decomposition parameters. Fixed 

308 decomposition rate parameters (but not rate modifiers) were maintained at a constant value 

309 throughout all sites (e.g. the maximum passive pool decomposition rate in M25 was set to 0.003 
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310 yr-1 at all sites), while site-specific climate and soil textural conditions provided supplementary 

311 factors driving the actual decomposition curve (likely in the uncalibrated blind simulations as 

312 well). In scenario Spe, decomposition rates could be changed separately at each experimental site, 

313 which constrained the modelling to a fitting exercise, but made it possible to explore the spatial 

314 variability of model parameters. Scenario Gen ignored base histories of each site: arable crops and 

315 grasslands were not distinguished, past climate conditions were disregarded, and this translated 

316 into discounting the variability in the TNPP levels among sites affecting the starting SOC level.

317

318 Table 3. Modelling approaches and simulation scenarios for spin-up and no spin-up models (Gen: 

319 generic; Mix: mixed; Spe: specific).

Calibration 

scenariosaModel category Factors Approaches

Gen Mix Spe

Site-specific X X
Historical management/land use

Non-site-specific X

Site-specific X

Spin-up (SP) 

based models 
Decomposition processes

Non-site-specific X  X

Site-specific X X
Partitioning of C pools

Non-site-specific X

Site-specific X

No spin-up (NS) 

based models 
Decomposition processes

Non-site-specific X  X

320 a The term ‘generic’, which refers to calibration, here means ‘ubiquitous’ or ‘universal’, since the aim of any model 

321 is to work well under all conditions, without the need to adjust decomposition coefficients. In this case, the model 

322 correctly represents the main processes and integrates the main factors to accurately simulate the C cycle. The 

323 ‘specific’ calibration, which aims at improving the model performance, implicitly suggests an incomplete knowledge 

324 of the SOC turnover. The ‘specific’ calibration allow exploring the spatial variability of model parameters, but this 
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325 amplitude (which is not discussed or reported here) may indicate the extend of degree of the knowledge gap in soil 

326 processes (i.e. model parameters might need a huge adjustment across sites)

327

328 Twenty-six modelling teams participated in the blind test. At calibration stage, 17 teams 

329 completed scenarios Spe and Mix, and 16 the scenario Gen. Some model packages are set to restrict 

330 access to individual parameter values, which did not allow users to carry out some site-specific 

331 scenarios (Mix and Spe). The same outputs were obtained with some models (e.g. RothC, DNDC), 

332 which run blind and generic simulations with non-specific information like the previous land-use 

333 type (arable crop or grassland) and the historical climate. When results from the blind test were 

334 exactly equal to outputs from Gen scenario, they were not included for further analysis. Estimated 

335 and observed SOC values (Mg C ha-1) were compared at blind test and for each calibration 

336 scenario. The agreement between simulations and observations was evaluated by the inspection of 

337 time series graphs and, numerically, through a set of performance metrics (Table 4) combining 

338 difference- and correlation-based metrics (e.g. De Jager et al., 1994; Moriasi al., 2007; 

339 Confalonieri et al., 2009; Bellocchi et al., 2002, 2010).

340

341 Table 4. Model performance metrics (P, predicted value; O, observed value; n, number of P/O 

342 pairs; i, each of P/O pairs; , mean of observed values; , average of the differences between O D

343 predicted and observed values; SD, standard deviation of the differences between estimated and 

344 observed values).

Performance 

metric
Equation Unit Value range and purpose

RRMSE, relative 

root mean square 

error
RRMSE = 100·

∑n
i = 1(Pi ― Oi)2

n

O
%

0 (optimum) to positive infinity: the 

closer the values are to 0, the better the 

model performance
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(Jørgensen et al., 

1986)

EF, modelling 

efficiency

(Nash and 

Sutcliffe, 1970)

EF = 1 ―
∑n

i = 1(Pi ― Oi)2

∑n
i = 1(Oi ― O)2 -

negative infinity to 1 (optimum): the 

closer the values are to 1, the better the 

model

R2 =
∑n

i = 1(Pi ― Oi)·(Oi ― O)

∑n
i = 1(Pi ― P)2·∑n

i = 1(Oi ― O)2

0 (absence of fit of the regression line) 

to 1 (perfect fit of the regression line): 

the closer the values are to 1, the better 

the model

Coefficient of 

determination 

(R2) of the linear 

regression 

estimates versus 

measurements / r, 

Pearson’s 

correlation 

coefficient of

the estimates 

versus 

measurements

(Addiscott and 

Whitmore, 1987)

r = R2

-

-1 (full negative correlation) to 1 (full 

positive correlation): the closer the 

values are to 1, the better the model

P(t), Paired

Student t-test

probability of

means being

equal

P(t) = Probability( D
SD

n
) -

0 (absence of agreement) to 1 (perfect 

agreement): the closer the values are to 

1, the better the model

d, index of 

agreement
d = 1 ―

∑n
i = 1(Oi ― Pi)2

∑n
i = 1(|Pi ― O| + |Oi ― O|)2 -

0 (absence of agreement) to 1

(perfect agreement): the
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(Willmott and 

Wicks, 1980)

closer the values are to 1, the better the 

model

345

346 2.4.  Multi-model and ensemble assessment

347 We first focussed on the quantification of model-data discrepancies and then assessed the 

348 uncertainty of the individual models in comparison with the multi-model ensemble. The modelling 

349 teams provided deterministic model simulation results according to the protocol established, which 

350 meant that: 1) one run was provided for each site; 2) the spread of model results due to parameter 

351 uncertainty was not specifically addressed. The latter would have dramatically increased the range 

352 of model outputs used within the study and would have confounded the uncertainty in calibrated 

353 parameters with the uncertainty in model structure (Wallach and Thorburn, 2017). While the 

354 uncertainty in model predictions could be due to parameterisation, model calibration from different 

355 users (i.e. ensemble of users within ensemble of models) cannot be regarded as the solution to 

356 estimate uncertainty due to parameterization (Confalonieri et al., 2016). As well, different 

357 calibration techniques do not seem to be primarily responsible for differences in model 

358 performance (Wallach et al., 2020) and the contribution of the initialisation to the uncertainty in 

359 SOC changes can be negligible compared to the uncertainty related to the model itself and 

360 simulated systems characteristics (Dimassi et al., 2018). As uncertainty could not be associated 

361 with any individual simulation, we focussed on the analysis of model residuals. We documented 

362 the variability of the multi-model simulation exercise across two stages (blind test and alternative 

363 calibration scenarios), while inspecting how the multi-model median (MMM) converged to the 

364 observations. We used box-plots to compare the variability of estimates by different models (with 

365 focus on multi-year averages) to the observed variability, and we represented model ensembles 

366 with MMM, which has the advantage to exclude distinctly biased model members with a 

367 disproportionate influence on the mean (Rodríguez et al., 2019). The advantage of using MMM 
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368 was established in practical studies in crop and grassland modelling but also on a theoretical basis 

369 (Wallach et al., 2018).

370 We also quantified the relationship among standardised model residuals of SOC, based on 

371 uncalibrated (Bln) and calibrated (Gen, Mix, Spe) simulations. Moreover, we quantified the 

372 relationship between residuals of agro-climatic metrics (annual values): temperature amplitude, 

373 mean maximum temperature and annual precipitation. Arrays of pairwise scatterplots (scatterplot 

374 matrices) were generated with the panel plot option in the R language and environment for 

375 statistical computing (‘panel.smooth’, https://stat.ethz.ch/R-manual/R-

376 devel/library/graphics/html/panel.smooth.html), which also overlaid a local non-parametric 

377 smoother curve (locally estimated scatterplot smoothing) on each plot to give some indication of 

378 trends (after Cleveland, 1979).

379 To explore how MMM varied with the number of models in the ensemble, we performed a 

380 calculation for each z-score transformed MMM, , which was obtained by dividing the 𝑧 =
𝑀𝑀𝑀 ― 𝑂

𝑠𝑑𝑜𝑏𝑠

381 multi-model data deviation from the mean of observations ( ) by the standard deviation of the 𝑂

382 observations (sdobs) (Sándor et al., 2020). A z-score can be placed on the normal distribution curve 

383 to indicate how much it deviates from the mean of the distribution. The units of a z-score are sd 

384 units: zero equals the mean, positive z-scores exceed the mean, and negative z-scores are less than 

385 the mean. A z-score allows comparisons to be made between combinations of models with different 

386 distribution characteristics, i.e. different  and sdobs (used here as practical descriptors of time-𝑂

387 series central tendency and spread). As illustrated in Fig. 2, different sites occupy distinct zones in 

388 the sdobs versus  space. Low variability and low mean SOC observations were found at Askov 𝑂

389 (S1, S2), Grignon (S3) and Utuna (S6). The variability was higher at Rothamsted (S5) and 

390 Versailles (S7), while the mean was the highest at Kursk (S4). None of the site occupies the upper 

391 right quadrant, i.e. high variability and high mean.

392
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393 (Fig. 2 here)

394

395 We calculated z-scores for all possible combinations of sets of k out of n=26 models (k=2, … n). 

396 The minimum number of models providing plausible estimates at each site was that for which the 

397 z-scores lay within the ranges -1 to +1 or -2 to +2. The arbitrary choice of these thresholds was 

398 due to a conventional rule, for which values falling within 1 and 2 times the standard deviation 

399 approximate the 68% (|z|=1) and 95% (|z|=2) confidence limits of a normal distribution, 

400 respectively (after Ehrhardt et al., 2018). R software (https://cran.r-project.org) was used for 

401 statistical analysis and graphical visualization.

402

403 3. RESULTS

404 3.1.  Evaluation of SOC dynamics

405 Fig. 3 show the range of model results (represented by the shaded area) for each scenario and the 

406 multi-model median (MMM hereinafter) together with the measured values. In general, the 

407 greatest spread of model results was found under the Bln scenario, followed by the Gen scenario. 

408 In some cases, the multi-model median of Bln and Gen scenarios overestimate observations (e.g. 

409 at S5, S6 and S7 sites). As expected, the tightest range of model results (simulation envelope) was 

410 found with site-specific simulations. MMM simulations of Spe came closest to the observations. 

411 All the MMM lines were remarkably close to the observations at sites S1, S2 and S3 (Fig. 3), 

412 despite the much wider spread of the individual simulations, while the MMM at other sites differed 

413 more substantially from the observations (e.g. S5, S6 and S7, Fig. 3). Overall, most of the 

414 simulations (Bln, Gen and Mix) tended to overestimate the amount of SOC (e.g. S5, S6 and S7, 

415 Fig. 3).

416 SOC stocks decreased under all bare-fallow sites during the investigated period. At S1, S2, 

417 S3, S4 and S6 (Fig. 3) sites, the decrease in SOC stock was from minimum to moderate whereas 
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418 at S5 and S7 (Fig. 3) SOC loss in the top 0.20 m was more rapid, with initial SOC halved during 

419 ~30 years. The decay tended to be more rapid in the first years and then the rate of loss decreased 

420 (e.g. at S7 site between 1929 and 1962, Fig. 3).

421 (Fig. 3 here) 

422

423 3.2.  Ensemble performance by site

424 Fig. 4 shows a high variability in the multi-model spread of responses at different sites. The results 

425 show that Kursk (S4) soil, which stored the highest amount of SOC, 91.8 Mg C ha-1, was 

426 approximated well by the models, mainly with calibration scenario Spe, with a MMM value of 

427 90.1 Mg C ha-1. For calibration scenario Gen, some underestimation is apparent (84.2 Mg C ha-1). 

428 Site S4 had the narrowest variability in the measured values, whilst the Bln simulation and 

429 calibration scenario Gen had the highest variability. Measured SOC was well estimated at S1, S2 

430 and S3, including with blind simulations, despite several outlying dots, mainly with Bln and Gen 

431 scenarios. The MMM tended to overestimate the measured SOC at S5 (42.5 Mg C ha-1) and S7 

432 (33.0 Mg C ha-1) with some scenarios: Bln, S5: 56.7 Mg C ha-1, S7: 44.49 Mg C ha-1; Mix scenario, 

433 S5: 50.0 Mg C ha-1, S7: 35.5 Mg C ha-1; Gen scenario, S5: 52.1 Mg C ha-1, S7: 40.0 Mg C ha-1. 

434 On the other hand, the MMM of Gen scenarios showed the closest values to the observed median 

435 at S5 and S7 (Fig. 4.).

436 Overall, with some exceptions, the MMM of calibrated runs were within the range of the 

437 25th and 75th percentiles of observations. The Spe scenario provided the best MMM estimation.

438 (Fig. 4 here) 

439 3.3. Individual models versus multi-model ensemble

440 The scatterplot analysis for both each model and the MMM shows that SOC estimates were 

441 improved when moving from the Bln runs (Fig. 5) to the calibration Spe scenario (Fig. 6). Model 

442 performances for calibration Mix and Spe scenarios also showed better simulation results than the 
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443 Bln simulations (see also Appendix A and Appendix B). Considering all the sites and years, the 

444 predictions of some of the models (e.g. M02, M13, M22, M24 and MMM) were close to the 

445 observations even for the blind level simulations (correlation coefficient >0.9, Fig. 5). Simulations 

446 improved even further (correlation coefficient >0.98 for half of the models, Fig. 6) under scenario 

447 Spe.

448 All the correlation coefficients of the simulations by other models also considerably improved with 

449 the site-specific data and got closer to the 1:1 line. For instance, for M31, the spread of simulation 

450 data in the blind simulations (Fig. 5) was mainly caused by incorrect initial SOC estimates for the 

451 different sites. When the model was re-run with correctly set initial SOC amounts (Fig. 6), the 

452 subsequent drawdown of SOC over the bare-fallow period was estimated fairly well.

453 Even with blind simulations, MMM gave results in agreement with the observations (R2=0.94). 

454 This level of agreement was only exceeded by M22 (R2=0.95) and approached by M02 (R2=0.92) 

455 and M13 (R2=0.90). The MMM simulations continued to give the closest agreement with the 

456 observations even under the full site-specific calibrations (R2=0.99) with several other models 

457 performing equally well (i.e. M02, M05, M09, M13, M23, M26). Overall, with some specific 

458 information for model calibration, many models did remarkably well in reproducing the observed 

459 patterns of SOC loss over time.

460

461 (Fig. 5 here)

462

463 (Fig. 6 here)

464

465 3.4. Analysis of model residuals

466 The plots of the discrepancy between MMM and observations (Fig. 7) as a function of time shows 

467 a limited scatter (within ±1) at each site. While Bln, Gen and Mix scenario overestimated the SOC 
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468 decomposition rate at Kursk (where the highest SOC content was measured), the standardized 

469 residuals were around zero at Grignon and both Askov sites during the whole of experimental 

470 period. However, the departure from observations may increase over time especially with Bln and 

471 Gen scenarios at some site (e.g. at Rothamsted, Ultuna, Versailles) indicating that models 

472 underestimate decomposition rates after a few years/decades.

473

474 (Fig. 7 here) 

475

476 Model residuals displayed one versus the other can help establish relationships by exploring the 

477 correlation of residuals from different modelling scenarios, both among them and with external 

478 drivers. Residuals of blind test and calibration scenarios calculated from MMM (Fig. 8) and 

479 individual models (Figs. B1-26 in the supplementary material) were correlated with the mean 

480 annual climate indicators such as the precipitations, maximum temperatures and temperature 

481 amplitudes. When considering the MMM, residuals of Bln were strongly correlated with Gen 

482 (r=0.90) and with Mix (r=0.59) residuals, but less with Spe (r=0.25) residuals, indicating a higher 

483 similarity of the first three approaches, while residuals of Spe were more correlated with those of 

484 Mix (r=0.65) than of Gen (r=0.39).

485 The most prominent effect of annual climate indicators was found at the blind test stage, whose 

486 residuals were negatively correlated with precipitation (r=-0.17) and positively correlated with 

487 Tmax (r=0.41). Combinations of high maximum air temperature and low precipitation values may 

488 thus generate greater errors in blind SOC simulations. Calibration scenario Gen did not show 

489 significant correlations to climate indicators. However, calibration scenario Spe and Gen had 

490 opposite correlations. The annual precipitation positively correlated with Spe residuals (r=0.26) 

491 and with scenario Mix (r=0.15). Annual maximum temperature and scenario Spe negatively 

492 correlated (r=-0.10). These correlations with climate indicators hint that the site-specific 
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493 calibration (scenario Spe) is more sensitive to precipitation than to maximum temperatures. On the 

494 contrary, Bln and Gen simulation residuals showed greater sensitivity to maximum temperatures.

495 Residuals of individual models were approximately equally influenced by precipitation and 

496 temperature drivers, but with differences among models and scenarios (Figs. B1-26 in the 

497 supplementary material). In most of the cases, model residuals were positively correlated with 

498 annual maximum temperatures and negatively correlated with annual precipitation totals (e.g. 

499 M03, M09, M18, M22 for Bln). In some cases, e.g. M09 (Fig. B8 in the supplement), the 

500 correlations among SOC residuals for different scenarios were both positive and negative (r values 

501 ranged from -0.043 to 0.36), and even the effect of climate indicators were different (e.g. for Tmax, 

502 r values ranged from -0.096 to 0.65). In other cases, e.g. M25 (Fig. B18 in the supplement), SOC 

503 residuals were more similar to each other (r-values 0.17-0.80) and the effect of precipitation and 

504 temperature drivers was often important (with r>0.4). It is interesting in this respect that the Spe 

505 residuals had near-zero correlations with climatic drivers, showing a lesser influence of these 

506 factors on model results with this scenario, whereas the Bln scenario showed some correlations 

507 with Tamp (r=0.13), Tmax (r=-0.44) and precipitation (r=0.40). For M25, Gen scenario residuals 

508 (Fig. B18 in the supplement) appeared unrelated with precipitation (r-value near zero), but not with 

509 temperature amplitude (r=0.50) and maximum air temperature (r=-0.56).

510

511 (Fig. 8 here) .

512

513 3.5. Minimum ensemble size

514 We attempted to identify the minimum number of models required to obtain reliable results for 

515 Bln and calibration scenarios Mix, Spe and Gen (Fig. 9 and Appendix C-E). We observed that 

516 there could be large differences in the z-scores obtained across sites with different ensemble sizes 

517 and scenarios. Overall, Bln is characterised by greater z-scores than the calibration scenarios. Our 
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518 analysis suggests that the ensemble size could be reduced to four models (or even fewer) at S3, S6 

519 and S7. For the other sites (e.g. S4), only ensemble sizes of at least 9-10 models reduced z-scores 

520 to within the range from -2 to +2, but this number should be raised to 20 or higher to comply with 

521 the most stringent criterion of z=|1|. A minimum ensemble size of 9-10 models was also identified 

522 with Gen at S4 (Fig. 9), while with Mix and Spe scenarios the number of models could be reduced 

523 down to 7 and 3, respectively (up to about 14 [Gen], 8 [Mix] and 4 [Spe] to comply with z=|1|) 

524 (Appendix C-E).

525

526 (Fig. 9 here) 

527

528 4. DISCUSSION

529 4.1.  Scenarios of ensemble SOC estimates

530 For Bln, Mix, Gen and Spe scenarios, the overall differences between the simulated and the 

531 observed first-year SOC values were −0.46, +3.49, +2.40 and +1.92 Mg C ha-1, respectively, for 

532 the NS models, and +0.58, -0.29, +0.95 and -0.12 Mg C ha-1, respectively, for the SP models. 

533 Despite manually setting the initial SOC values (magnitude of first SOC observation for the 

534 simulation period), the NS models mostly overestimated SOC content in the initial year of the 

535 model run. In first-year estimates of the calibrated (mainly with Spe and Mix scenarios), SP models 

536 deviated less from observations than NS models that overestimated SOC stocks for the first year 

537 with the exception of M25 (+8.4 Mg C ha-1 for Gen), M29 (+18.6, +21.1 and +23.7 Mg C ha-1 for 

538 Spe, Gen and Mix, respectively) and M31 (+25.2 Mg C ha-1 for Gen). In the case of M25, the 

539 model was run with a generic grassland spin-up (i.e. 7,000 years), which was applied to all sites. 

540 Thus, a generic history was simulated without considering the cropping history at each site. This 

541 spin-up protocol affected the simulated SOC, showing the poor ability of Gen scenario to produce 

542 results consistent with observations, which questions the practicality of spin-up processes under 
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543 generic calibration. With M31, there was a greater difference between simulated and observed 

544 SOC values in the initial simulation year and the model gave results that did not correspond to the 

545 observations at all sites (Appendix F), especially under the Bln and Gen scenarios. Though M31 

546 used the initial SOC observation as default parameter, it failed to reproduce the LTBF dynamics 

547 between sites because of large differences in C input to the soil from the former vegetation during 

548 the spin-up period. Consequently, the starting points of the LTBF simulations differed greatly from 

549 the observations, which were overestimated at S1, S2, S3 and S6, and underestimated at S4. 

550 Overall, Mix and Spe calibrations showed better performance indices than the Gen scenario 

551 (Appendix F). We note, however, that M13, for which the SOC pool sizes (humads and humus) 

552 were generically calibrated across sites, produced low RRMSE for Gen (5.7%).

553 The improved calibration knowledge obtained with the site-specific information also improved 

554 model accuracy. Moving from Bln (with knowledge of weather and soil texture, historical land use 

555 and management, and initial SOC; section 2.3) to the Gen scenario, we reproduced SOC data in a 

556 number of European bare-fallow experimental sites with a single set of calibrated, regional-scale 

557 parameter values (regardless of the possible soil, climate and past land-use dissimilarities between 

558 different sites). According to performance indicators in Appendix F, in the Bln simulations the NS 

559 models performed better than the SP models. For instance, average RRMSE and EF were 19.44% 

560 and 0.60, and 26.94% and 0.24, for NS and SP models, respectively. Compared to the Bln scenario, 

561 the discrepancy between the measured and estimated SOC values under the Gen scenario was 

562 slightly reduced with NS models and increased with SP models. Multi-site calibration can be 

563 characterised by lower uncertainty than site-specific calibration, because more data contribute to 

564 the calibration process (e.g. Minunno et al., 2014; Ma et al., 2015). The availability of a variety of 

565 detailed data from multiple sites thus offers the possibility of a genuine multi-location calibration 

566 of the model, assuming that a single calibration across sites is appropriate. The limit of the Gen 

567 scenario calibration was that it did not make it possible to explore the spatial variability of model 
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568 parameters. The latter was done with scenarios Mix and Spe, for which a basic requisite is that 

569 model parameters are not hard coded but configuration files are left open to the users. From Gen 

570 to Mix, parameters describing initial values of each pool were determined separately for each site. 

571 Moving from Mix to Spe, the decomposition parameters became site-specific. Hence, modellers 

572 needed to invest increasingly more knowledge (and more time-demanding calibration effort) than 

573 in Gen. Under these conditions, the improvement of simulations in SP models was evident (up to 

574 70% for some indicators, e.g. RRMSE and EF). On the contrary, NS models only had a slight 

575 improvement in accuracy of simulations from Bln (RRMSE=21.5%; EF=0.58) to Mix 

576 (RRMSE=18.6%, EF=0.55) or Gen (RRMSE=20.5%; EF=0.45). In our analysis, the two types of 

577 models (NS and SP) appear to be suitable for different sets of data. NS-type models, in most cases, 

578 can perform well even when data are limited to climate, initial C and historic land use, while SP 

579 models generally benefit from the availability of more detailed data. All metrics related to the 

580 performance of the SP models were improved with calibration. There were some differences in 

581 model performance among the sites, but site-specific soil or climatic conditions cannot easily 

582 explain such differences.

583 Overall, across the seven LTEs and using simulated and observed SOC data at the end of the 

584 experimental period we observe that the greatest and least differences from observations were 

585 approximately +14.3% with Bln and +2.2% with Spe (Fig. 10). The Gen scenario achieved almost 

586 half the error (+8.9%) of is closest competitor, i.e. the Bln scenario. More than one-third of the 

587 Bln-scenario error is achievable with the Mix scenario (+4.0%).

588

589 (Fig. 10 here) 

590

591 This study has shown that it is difficult to define an a priori criterion that could be used to select 

592 a subset of models that would perform better than others would. In terms of the minimum number 
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593 of models required to obtain reliable results, our study indicates that the suggested minimum 

594 ensemble size (~10 models) proposed by Martre et al. (2015) for crop growth could be a reference 

595 also when model ensembles are implemented to blindly simulate SOC in bare-fallow soils, which 

596 can be reduced down to 3-4 models with a site-specific calibration. These sizes are lower than that 

597 found by Sándor et al. (2020) to provide reliable C-flux estimates in croplands and grasslands (i.e. 

598 ~13 models). While the current study applied the same methodology as Sándor et al. (2020), but 

599 as the present study focuses on one output variable only, SOC, evaluated in simplified systems 

600 (bare-fallow soils), its relative ease of simulation offers great advantages for scenario analyses in 

601 the absence of vegetation cover and plant residues, nor farming practices (only occasional tillage 

602 operations occurred at some sites and were considered by models which can simulate this option). 

603 This is reflected in the several z-scores within the range of -2 and +2, as obtained with a limited 

604 number of models, showing that reduced ensemble sizes can satisfactorily estimate the SOC 

605 content in bare-fallow systems, mainly when site-specific calibration is possible. However, our 

606 analysis of the Russian site (S4), which had low observed variability and high mean (sdobs=6.9, 𝑂

607 =91.8 Mg C ha-1), is challenging because it showed that model ensembles that are too small might 

608 not always guarantee sufficient accuracy in SOC estimates of C-rich soils. An application to the 

609 peatlands located on the Mid‐Russian Upland (e.g. Shumilovskikh et al., 2018) should thus be 

610 considered with caution.

611

612 4.2.  Possibilities for model inaccuracies

613 We presented an approach that uses a correlation matrix (with graphical representation) to account 

614 for possible correlations between Bln, Mix, Gen and Spe residuals and, additionally, climatic 

615 factors (mean air temperature amplitude, maximum air temperature and precipitation total). This 

616 residual analysis helps find correlations among alternative scenarios, which might indicate 

617 comparable scenarios in which error propagation within models is similar, though the way of error 
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618 propagation cannot be easily retrieved from the correlation matrix. This is the case of Bln, Gen 

619 and Mix, whose residuals are highly correlated, while the weak correlations between Spe and other 

620 scenarios highlight the distinct behaviour of the latter. This analysis can also help find correlations 

621 between the SOC output and external drivers, and thus suggest additional predictors that may need 

622 to be included in the models (e.g. Medlyn et al., 2005). This need emerged especially when specific 

623 models were run under Bln, Gen and Mix scenarios, for which some correlations (r>|0.4|) were 

624 obtained between model residuals and drivers of thermal and moisture conditions. A weaker but 

625 significant correlation (r=0.26, p=0.02) was also obtained between Spe residuals and precipitation. 

626 These correlations indicate some limitations related to the response functions of SOC 

627 decomposition to soil temperature and soil moisture, though the relative uncertainties of our model 

628 ensemble are attenuated by the presence in the models of physical and chemical processes that 

629 explain the intra- and inter-annual variability of SOC. We add that such biophysical conditions 

630 affect the microbial activity (e.g. Blagodatskaya and Kuzyakov, 2008; Guenet et al., 2010; Wutzler 

631 and Reichstein, 2013), and care should be taken when extrapolating our results over long time 

632 frames (especially without locally calibrated models, Fig. 7) if no corroborating field evidence for 

633 long-term decay rates can be obtained (e.g. on how models are dealing such situations in which 

634 microbes become increasingly C limited as no new C input by plants occurs; Kuhry and Vitt, 

635 1996).

636

637 5.      CONCLUSIONS AND FUTURE DIRECTIONS

638 This paper on SOC modelling offers a tentative answer to the questions about: (i) whether and to 

639 what extent an ensemble of models performs better than single models, (ii) the minimum ensemble 

640 size that is required to reduce the error below a given threshold, and (iii) the set of data required 

641 to prepare and substantiate ensemble estimates. This study presents a framework for interpretation 

642 of model performance and uncertainties obtained with a set of process-based biogeochemical 
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643 models (individually and in an ensemble) simulating soil C contents in bare-fallow experimental 

644 systems at a variety of European sites. One of the features of SOC modelling today is the huge 

645 amount and variety of models available. Although our analysis did not take into account all sources 

646 of uncertainty (e.g. the influence of the unique choices made by modellers), it enabled the 

647 integration of several modelling teams into an ensemble protocol. Classifying and comparing 

648 different approaches have revealed great model diversity, and is the basis for the development of 

649 dedicated ensemble protocols. In this model inter-comparison, the need to accommodate 

650 challenges experienced by modellers (including C pools of different nature, and optional 

651 initialisation and calibration procedures) was reflected in the co-creation (with modellers and data 

652 providers) of alternative calibration scenarios (Mix, Gen, Spe). As far as we are aware, no previous 

653 multi-model inter-comparison studies have examined differences in such calibration scenarios or 

654 differences between models with or without spin-up.

655 In our study, we did not aim to identify the best model(s) for simulating SOC dynamics for bare-

656 fallows and no probability of success was assigned to prove the suitability of using one model 

657 rather than another. Overall, we showed that a calibration scenario with generic system knowledge 

658 was adequate for providing sufficiently reliable output, but additional site-specific knowledge can 

659 further improve results under certain circumstances. This is operationally relevant because the 

660 effort required to gather calibration data might no longer be feasible for modelling scenarios 

661 moving from single sites to increasingly larger spatial scales. Site-specific calibration could help 

662 refine model estimates. However, geographical locations have characteristics (e.g. soil and climate 

663 conditions, past history) that require specific model structures and local optimisation, and the 

664 application of models may be limited by the ability to provide representative parameter values. 

665 Soil-C model inter-comparisons including more models and experimental data from other regions 

666 should be continued to improve our ability to simulate biogeochemical processes with acceptable 

667 accuracy. Additional assessments are also recommended to complete the analysis of model 
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668 behaviour in the long term (like thousands of years) with constant inputs. While the various models 

669 evaluated here did not include all available modelling approaches used to simulate soil C 

670 dynamics, the present model inter-comparison was large compared to other studies. As such, it is 

671 a distinct improvement over previously published quantitative approaches because it represents a 

672 reasonable sub-population of common and current approaches. In this, we offer a method to allow 

673 a broad ensemble of models to be implemented using existing datasets and current modelling 

674 practices. Overall, this multi-model ensemble sets a precedent for key progress in soil C modelling 

675 because it provides essential information about SOC modelling and opens a path to a more in-

676 depth analysis of the response of individual models and their uncertainties against soil and climate 

677 drivers. Now that we have examined SOC decomposition in-depth without the difficulties of C 

678 input uncertainties, a similar modelling study should be conducted on LTEs that examine both 

679 plant derived C inputs as well as C inputs from manures and other organic materials recycled in 

680 agroecosystems. In fact, under field conditions, the amount of C input is not only an important 

681 factor driving the changes in SOC stocks (including the changes due to tillage), but the amount of 

682 C input also drives the mineralization rate of the SOC (Mary et al., 2020). How simulation models 

683 compare under such conditions is important for improving our ability to evaluate and achieve 

684 climate C goals. With increasing availability of data and computational resources, there are many 

685 opportunities for the SOC modelling community to enrich its offering and to keep up with evolving 

686 methodologies, which would significantly increase transparency of the underpinning science and 

687 modelling practice. A number of recent actions are ongoing under the guidance of international 

688 initiatives such as the European Joint Programme (EJP) on Soil (https://projects.au.dk/ejpsoil). 

689 Started in 2020, the EJP-Soil is undertaking a detailed inventory of models and all available data 

690 sources (e.g. world soil maps, satellite images, downscaled weather data), and appears as an ideal 

691 arena to facilitate the exchange of information and to further explore SOC model developments 

692 and practice.

Page 40 of 80Global Change Biology



693 ACKNOWLEDGEMENTS

694 This study was supported by the project “C and N models inter-comparison and improvement to 

695 assess management options for GHG mitigation in agro-systems worldwide” (CN-MIP, 2014-

696 2017), which received funding by a multi-partner call on agricultural greenhouse gas research of 

697 the Joint Programming Initiative ‘FACCE’ through national financing bodies. S. Recous, R. 

698 Farina, L. Brilli, G. Bellocchi and L. Bechini received mobility funding by way of the French-

699 Italian GALILEO programme (CLIMSOC project). The authors acknowledge particularly the data 

700 holders for the Long Term Bare-Fallows, who made their data available and provided additional 

701 information on the sites: V. Romanenkov, B.T. Christensen, T. Kätterer, S. Houot, F. van Oort, A. 

702 Mc Donald, as well as P. Barré. The input of B. Guenet and C. Chenu contributes to the ANR 

703 “Investissements d’avenir” programme with the reference CLAND ANR-16-CONV-0003. The 

704 input of P. Smith and C. Chenu contributes to the CIRCASA project, which received funding from 

705 the European Union's Horizon 2020 Research and Innovation Programme under grant agreement 

706 no 774378 and the projects: DEVIL (NE/M021327/1) and Soils‐R‐GRREAT (NE/P019455/1). 

707 The input of B. Grant and W. Smith was funded by Science and Technology Branch, Agriculture 

708 and Agri-Food Canada, under the scope of project J-001793. The input of A. Taghizadeh-Toosi 

709 was funded by Ministry of Environment and Food of Denmark as part of the SINKS2 project. The 

710 input of M. Abdalla contributes to the SUPER-G project, which received funding from the 

711 European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 

712 774124.

713

714 AUTHOR CONTRIBUTIONS

715 R. Farina, R. Sándor and G. Bellocchi coordinated the study, contributed to its design, conducted 

716 the analysis of data and produced the first draft of the manuscript. P. Smith, C. Chenu, F. Ehrhardt, 

717 M. A. Bolinder, C. Nendel and J.-F. Soussana contributed to the design of the study and the writing 

Page 41 of 80 Global Change Biology



718 of the manuscript. M. Abdalla, J. Álvaro-Fuentes, M. A. Bolinder, L. Brilli, H. Clivot, M. De 

719 Antoni, C. Di Bene, C. D. Dorich, F. Ferchaud, N. Fitton, R. Francaviglia, U. Franko, D. Giltrap, 

720 B. B. Grant, B. Guenet, M. T. Harrison, M. U. F. Kirschbaum, K. Kuka, L. Kulmala, J. Liski, M. 

721 J. McGrath, E. Meier, L. Menichetti, F. Moyano, N, Reibold, A. Shepherd, W. N. Smith, T. Stella, 

722 A. Taghizadeh-Toosi and E. Tsutskikh performed the model calibrations and runs.

723 C. Dorich, L. Bechini, L. Menichetti, R. Francaviglia, S. Recous, W. Smith, F. Ferchaud, H. Clivot, 

724 M. A. Bolinder, W. Smith, A. Taghizadeh-Toosi, L. Brilli, R. Farina, G. Bellocchi, T. Stella and 

725 U. Franko discussed and decided upon the modelling scenarios at the CN-MIP final meeting 

726 (Rome, 6-7 June 2018). C. Dorich prepared a detailed protocol for second-stage simulations.

727 Those interested in the details of the modelling process are encouraged to contact authors.

728

729 Data Availability Statement

730 The data that support the findings of this study are available from the corresponding author upon 

731 reasonable request and permission of the third parties (i.e. the data holders for the Long Term 

732 Bare-Fallows, V. Romanenkov, B.T. Christensen, T. Kätterer, S. Houot, F. van Oort, A. Mc 

733 Donald, as well as P. Barré).

734

735 REFERENCES

736 Abrahamsen, P., & Hansen, S. (2000). Daisy: an open soil-crop-atmosphere system model. 

737 Environmental Modelling & Software, 15, 313-330. https://doi.org/10.1016/S1364-

738 8152(00)00003-7

739 Addiscott, T. M., & Whitmore, A. P. (1987). Computer simulation of changes in soil mineral 

740 nitrogen and crop nitrogen during autumn, winter and spring. Journal of Agricultural Science, 

741 109, 141-157. https://doi.org/10.1017/S0021859600081089

Page 42 of 80Global Change Biology



742 Andrén, O., & Kätterer, T. (1997). ICBM: The introductory carbon balance model for exploration 

743 of soil carbon balances. Ecological Applications, 7, 1226-1236. https://doi.org/10.1890/1051-

744 0761(1997)007[1226:ITICBM]2.0.CO;2

745 Andrén, O., Kätterer, T., Karlsson, T., & Eriksson, J. (2008). Soil C balances in Swedish 

746 agricultural soils 1990-2004, with preliminary projections. Nutrient Cycling in Agroecosystems, 

747 81, 129–144. https://doi.org/10.1007/s10705-008-9177-z

748 Andriulo, A., Mary, B., & Guerif, J. (1999). Modelling soil carbon dynamics with various cropping 

749 sequences on the rolling pampas. Agronomie, 19, 365–377. 

750 https://doi.org/10.1051/agro:19990504

751 Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A., … Wolf, J. (2013). 

752 Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3, 827–

753 832. https://doi.org/10.1038/nclimate1916

754 Barré, P., Eglin, T., Christensen, B. T., Ciais, P., Houot, S., Kätterer, T., ... Chenu, C. (2010). 

755 Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments. 

756 Biogeosciences, 7, 3839-3850. https://doi.org/10.5194/bg-7-3839-2010

757 Basso, B., Dumont, B., Maestrini, B., Shcherbak, I., Robertson, G. P., Porter, J. R., … Rosenzweig, 

758 C. (2018). Soil organic carbon and nitrogen feedbacks on crop yields under climate change. 

759 Agricultural and Environmental Letters, 3, 180026. https://doi.org/10.2134/ael2018.05.0026

760 Bassu, S., Brisson, N., Durand, J. L., Boote, K., Lizaso, J., Jones, J. W., … Waha, K., 2014. How 

761 do various maize crop models vary in their responses to climate change factors? Global Change 

762 Biology, 20, 2301–2320. https://doi.org/10.1111/gcb.12520

763 Bellocchi, G., Acutis, M., Fila, G., & Donatelli, M. (2002). An indicator of solar radiation model 

764 performance based on a fuzzy expert system. Agronomy Journal, 94, 1222-1233. 

765 https://doi.org/10.2134/agronj2002.1222

Page 43 of 80 Global Change Biology



766 Bellocchi, G., Rivington, M., Donatelli, M., & Acutis, M. (2010). Validation of biophysical 

767 models: issues and methodologies. A review. Agronomy for Sustainable Development, 30, 109-

768 130. https://doi.org/10.1051/agro/2009001

769 Bispo, A., Andersen, L., Angers, D. A., Bernoux, M., Brossard, M., Cécillon, L., … Eglin, T.K. 

770 (2017). Accounting for carbon stocks in soils and measuring GHGs emission fluxes from soils: 

771 do we have the necessary standards? Frontiers in Environmental Science, 12 July 2017. 

772 https://doi.org/10.3389/fenvs.2017.00041

773 Blagodatskaya, Е., & Kuzyakov, Y. (2008). Mechanisms of real and apparent priming effects and 

774 their dependence on soil microbial biomass and community structure: critical review. Biology 

775 and Fertility of Soils, 45, 115–131. https://doi.org/10.1007/s00374-008-0334-y

776 Brilli, L., Bechini, L., Bindi, M., Carozzi, M., Cavalli, D., Conant, R., … Bellocchi, G. (2017). 

777 Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C 

778 and N fluxes. Science of the Total Environment, 598, 445-470. 

779 https://doi.org/10.1016/j.scitotenv.2017.03.208

780 Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M. H., Ruget, F., Nicollaud, B., … Delécolle, R. 

781 (1998). STICS: a generic model for the simulation of crops and their water and nitrogen 

782 balances. I. Theory and parameterization applied to wheat and corn. Agronomie, 18, 311–346. 

783 https://doi.org/10.1051/agro:19980501

784 Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., … Sinoquet, H. (2003). An 

785 overview of the crop model STICS. European Journal of Agronomy, 18, 309-332. 

786 https://doi.org/10.1016/S1161-0301(02)00110-7

787 Brisson, N., Launay, M., Mary, B., & Baudoin, N. (2008). Conceptual basis, formalizations and 

788 parameterization of the STICS crop model. Paris (France): Editions Quae.

Page 44 of 80Global Change Biology



789 Campbell, E. E., & Paustian, K. (2015). Current developments in soil organic matter modeling and 

790 the expansion of model applications: a review. Environmental Research Letters, 10, 123004. 

791 https://doi.org/10.1088/1748-9326/10/12/123004

792 Caruso, T., De Vries, F., Bardgett, R. D., & Lehmann, J. (2018). Soil organic carbon dynamics 

793 matching ecological equilibrium theory. Ecology and Evolution, 8, 11169-11178. 

794 https://doi.org/10.1002/ece3.4586

795 Cavalli, D., Bellocchi, G., Corti, M., Gallina, P. M., & Bechini, L. (2019). Sensitivity analysis of 

796 C and N modules in biogeochemical crop and grassland models following manure addition to 

797 soil. European Journal of Soil Science, 70, 833-846. https://doi.org/10.1111/ejss.12793

798 Challinor, A., Martre, P., Asseng, S., Thornton, P., & Ewert, F. (2014). Making the most of climate 

799 impacts ensembles. Nature Climate Change, 4, 77-80. https://doi.org/10.1038/nclimate2117

800 Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., & Balesdent, J. (2018). Increasing 

801 organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage 

802 Research, 188, 41-52. https://doi.org/10.1016/j.still.2018.04.011

803 Cleveland, W.S. (1979). Robust locally weighted regression and smoothing scatterplots. J. Am. 

804 Stat. Assoc. 74, 829-836. https://doi.org/10.1080/01621459.1979.10481038

805 Clivot, H., Mouny, J. C., Duparque, A., Dinh, J. L., Denoroy, P., Houot, S., … Mary, B. (2019). 

806 Modeling soil organic carbon evolution in long-term arable experiments with AMG model. 

807 Environmental Modelling & Software, 118, 99-113. 

808 https://doi.org/10.1016/j.envsoft.2019.04.004

809 Coleman, K., & Jenkinson, D.S. (1999). RothC-26.3 - A model for the turnover of carbon in soil: 

810 model description and Windows user guide. Harpenden (UK): Lawes Agricultural Trust.

811 Confalonieri, R., Acutis, M., Bellocchi, G., & Donatelli, M. (2009). Multi-metric evaluation of the 

812 models WARM, CropSyst, and WOFOST for rice. Ecological Modelling, 220, 1395-1410. 

813 https://doi.org/10.1016/j.ecolmodel.2009.02.017

Page 45 of 80 Global Change Biology



814 Confalonieri, R., Orlando, F., Paleari, L., Stella, T., Gilardelli, C., Movedi, E., ... Acutis, M. 

815 (2016). Uncertainty in crop model predictions: what is the role of users? Environmental 

816 Modelling & Software, 81, 165-173. https://doi.org/10.1016/j.envsoft.2016.04.009

817 Coucheney, E., Buis, S., Launay, M., Constantin, J., Mary, B., García de Cortázar-Atauri, I., … 

818 Léonard, J. (2015). Accuracy, robustness and behavior of the STICS soil–crop model for plant, 

819 water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in 

820 France. Environmental Modelling & Software, 64, 177-190. 

821 https://doi.org/10.1016/j.envsoft.2014.11.024

822 De Jager, J.M. (1994). Accuracy of vegetation evaporation ratio formulae for estimating final 

823 wheat yield. Water SA, 20, 307-314. Retrieved from 

824 https://journals.co.za/content/waters/20/4/AJA03784738_2194

825 Debreczeni, K., & Körschens, M. (2003). Long-term field experiments of the world. Archives of 

826 Agronomy and Soil Science, 49, 465-483. https://doi.org/10.1080/03650340310001594754

827 Dechow, R., Franko, U., Kätterer, T., & Kolbe, H. (2019). Evaluation of the RothC model as a 

828 prognostic tool for the prediction of SOC trends in response to management practices on arable 

829 land. Geoderma, 337, 463-478. https://doi.org/10.1016/j.geoderma.2018.10.001

830 Del Grosso, S. J., Parton, W. J., Mosier, A. R., Hartman, M. D., Brenner, J., Ojima, D. S., & 

831 Schimel, D. S. (2001). Simulated interaction of carbon dynamics and nitrogen trace gas fluxes 

832 using the DayCent model. In M. J. Shaffer, L. Ma, & S. Hansen (Eds.), Modeling carbon and 

833 nitrogen dynamics for soil management (pp. 303-332). Boca Raton: CRC Press.

834 Del Grosso, S., Ojima, D., Parton, W., Mosier, A., Peterson, G., & Schimel, D. (2002). Simulated 

835 effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges 

836 using the DAYCENT ecosystem model. Environmental Pollution, 1, S75-S83. 

837 https://doi.org/10.1016/S0269-7491(01)00260-3

Page 46 of 80Global Change Biology



838 Del Grosso, S., Parton, W., Stohlgren, T., Zheng, D., Bachelet, D., Prince, S., … Olson, R. (2008). 

839 Global potential net primary production predicted from vegetation class, precipitation, and 

840 temperature. Ecology, 89, 2117-2126. https://doi.org/10.1890/07-0850.1

841 Dimassi, B., Guenet, B., Saby, N. P. A., Munoz, F., Bardy, M., Millet, F., & Martin, M. P. (2018). 

842 The impacts of CENTURY model initialization scenarios on soil organic carbon dynamics 

843 simulation in French long-term experiments. Geoderma, 311, 25-36. 

844 https://doi.org/10.1016/j.geoderma.2017.09.038

845 Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., & Whitmore, A. P. (2012). Soil organic matter 

846 turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781-1796. 

847 https://doi.org/10.1111/j.1365-2486.2012.02665.x

848 Ehrhardt, F., Soussana, J.-F., Bellocchi, G., Grace, P., Mcauliffe, R., Recous, S., … Zhang, Q. 

849 (2018). Assessing uncertainties in crop and pasture ensemble model simulations of productivity 

850 and N2O emissions. Global Change Biology, 24, e603-e616. https://doi.org/10.1111/gcb.13965

851 Ehrmann, J., & Ritz, K. (2014). Plant: soil interactions in temperate multi-cropping production 

852 systems. Plant and Soil, 376, 1-29. https://doi.org/10.1007/s11104-013-1921-8

853 Falloon, P., & Smith, P. (2010). Modelling soil carbon dynamics. In W. L. Kutsch, M. Bahn, & A. 

854 Heinemeyer (Eds.), Soil carbon dynamics: An integrated methodology (pp. 221-244). 

855 Cambridge: Cambridge University Press.

856 Farina, R., Coleman, K., & Whitmore, A. P. (2013). Modification of the RothC model for 

857 simulations of soil organic C dynamics in dryland regions. Geoderma, 200-201, 18-30. 

858 https://doi.org/10.1016/j.geoderma.2013.01.021

859 Franko, U., Kolbe, H., Thiel, E., & Liess, E. (2011). Multi-site validation of a soil organic matter 

860 model for arable fields based on generally available input data. Geoderma, 166, 119-134. 

861 https://doi.org/10.1016/j.geoderma.2011.07.019

Page 47 of 80 Global Change Biology



862 Franko, U., & Spiegel, H. (2016). Modeling soil organic carbon dynamics in an Austrian long-

863 term tillage field experiment. Soil and Tillage Research, 156, 83-90.

864 Franko, U., & Merbach, I. (2017). Modelling soil organic matter dynamics on a bare fallow 

865 Chernozem soil in Central Germany. Geoderma, 303, 93-98. 

866 https://doi.org/10.1016/j.geoderma.2017.05.013

867 Fuchs, R., Schulp, C. J. E., Hengeveld, G. M., Verburg, P. H., Clevers, J. G. P. W., Schelhaas, M.-

868 J., & Herold, M. (2016). Assessing the influence of historic net and gross land changes on the 

869 carbon fluxes of Europe. Global Change Biology, 22, 2526-2539. 

870 https://doi.org/10.1111/gcb.13191

871 Gardi, C., Visioli, G., Conti, F. D., Scotti, M., Menta, C., & Bodini, A. (2016). High Nature Value 

872 Farmland: assessment of soil organic carbon in Europe. Frontiers in Environmental Science, 21 

873 June 2016. https://doi.org/10.3389/fenvs.2016.00047

874 Gijsman, A. J., Hoogenboom, G., Parton, W. J., & Kerridge, P. C. (2002). Modifying DSSAT crop 

875 models for low-input agricultural systems using a soil organic matter-residue module from 

876 CENTURY. Agronomy Journal, 94, 462-474. https://doi.org/10.2134/agronj2002.4620

877 Gottschalk, P., Smith, J. U., Wattenbach, M., Bellarby, J., Stehfest, E., Arnell, N., … Smith, P. 

878 (2012). How will organic carbon stocks in mineral soils evolve under future climate? Global 

879 projections using RothC for a range of climate change scenarios. Biogeosciences, 9, 3151-3171. 

880 https://doi.org/10.3390/soilsystems3020028

881 Gross C. D., & Harrison, R. B. (2019). The case for digging deeper: soil organic carbon storage, 

882 dynamics, and controls in our changing world. Soil Systems, 3, 28. 

883 https://doi.org/10.3390/soilsystems3020028

884 Guenet, B., Neill, C., Bardoux, G., & Abbadie, L. (2010). Is there a linear relationship between 

885 priming effect intensity and the amount of organic matter input? Applied Soil Ecology, 46, 436–

886 442. https://doi.org/10.1016/j.apsoil.2010.09.006

Page 48 of 80Global Change Biology



887 Herbst, M., Welp, G., Macdonald, A., Jate, M., Hädicke, A., Scherer, H., … Vanderborght, J. 

888 (2018). Correspondence of measured soil carbon fractions and RothC pools for equilibrium and 

889 non-equilibrium states. Geoderma, 314, 37-46. 

890 https://doi.org/10.1016/j.geoderma.2017.10.047

891 Hill, M. J. (2003). Generating generic response signals for scenario calculation of management 

892 effects on carbon sequestration in agriculture: approximation of main effects using CENTURY. 

893 Environmental Modelling & Software, 18, 899-913. https://doi.org/10.1016/S1364-

894 8152(03)00054-9

895 Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., … 

896 Keating, B. A. (2014). APSIM - Evolution towards a new generation of agricultural systems 

897 simulation. Environmental Modelling & Software, 62, 327-350. 

898 https://doi.org/10.1016/j.envsoft.2014.07.009

899 Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., … Zhu, Q. 

900 (2013). The North American Carbon Program Multi-scale synthesis and Terrestrial Model 

901 Intercomparison Project-Part 1: Overview and experimental design. Geoscientific Model 

902 Development, 6, 2121-2133. https://doi.org/10.5194/gmd-6-2121-2013

903 Johnston, A. E., & Poulton, P. R. (2018). The importance of long‐term experiments in agriculture: 

904 their management to ensure continued crop production and soil fertility; the Rothamsted 

905 experience. European Journal of Soil Science, 69, 113-125. https://doi.org/10.1111/ejss.12521

906 Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., … 

907 Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 

908 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7

909 Jørgensen, S. E., Kamp-Nielsen, L., Christensen, T., Windolf-Nielsen, J., & Westergaard, B. 

910 (1986). Validation of a prognosis based upon a eutrophication model. Ecological Modelling, 

911 35, 165-182. https://doi.org/10.1016/0304-3800(86)90024-4

Page 49 of 80 Global Change Biology



912 Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. L., Robertson, M. J., Holzworth, D., 

913 … Smith, C. J. (2003). An overview of APSIM, a model designed for farming systems 

914 simulation. European Journal of Agronomy, 18, 267-288. https://doi.org/10.1016/S1161-

915 0301(02)00108-9

916 Keel, S. G., Leifeld, J., Mayer, J., Taghizadeh-Toosi, A., and Olesen, J. E. (2017). Large 

917 uncertainty in soil carbon modelling related to method of calculation of plant carbon input in 

918 agricultural systems. European Journal of Soil Science, 68, 953-863. 

919 https://doi.org/10.1111/ejss.12454

920 Kirschbaum, M.U.F. (1999). CenW, a forest growth model with linked carbon, energy, nutrient 

921 and water cycles. Ecological Modelling, 118, 17–59. https://doi.org/10.1016/S0304-

922 3800(99)00020-4

923 Kirschbaum, M. U. F., Rutledge, S., Kuijper, I. A., Mudge, P. L., Puche, N., Wall, A. M., … 

924 Campbell, D. I. (2015). Modelling carbon and water exchange of a grazed pasture in New 

925 Zealand constrained by eddy covariance measurements. Science of the Total Environment, 512-

926 513, 273-286. https://doi.org/10.1016/j.scitotenv.2015.01.045

927 Kirschbaum, M. U. F., & Paul, K. I. (2002). Modelling carbon and nitrogen dynamics in forest 

928 soils with a modified version of the CENTURY model. Soil Biology & Biochemistry, 34, 341-

929 354. https://doi.org/10.1016/S0038-0717(01)00189-4

930 Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger 

931 climate classification updated. Meteorologische Zeitschrift, 15, 259-263. 

932 https://doi.org/10.1127/0941-2948/2006/0130

933 Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., … Colin 

934 Prentice, I. (2005). A dynamic global vegetation model for studies of the coupled atmosphere-

935 biosphere system. Global Biogeochemical Cycles, 19, GB1015. 

936 https://doi.org/10.1029/2003GB002199

Page 50 of 80Global Change Biology



937 Kuhry, P., & Vitt, D.H. (1996). Fossil carbon/nitrogen ratios as a measure of peat decomposition. 

938 Ecology, 77, 271–275. https://doi.org/10.2307/2265676

939 Kuka, K. (2005). Modellierung des Kohlenstoffhaushaltes in Ackerböden auf der Grundlage 

940 bodenstrukturabhängiger Umsatzprozesse. PhD thesis, Martin-Luther-University Halle-

941 Wittenberg. Retrieved from 

942 https://gepris.dfg.de/gepris/projekt/5247578?context=projekt&task=showDetail&id=5247578

943 & (in German)

944 Kuka, K., Franko, U., & Rühlmann, J. (2007) Modelling the impact of pore space distribution on 

945 carbon turnover. Ecological Modelling, 208, 295–306. 

946 https://doi.org/10.1016/j.ecolmodel.2007.06.002

947 Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. 

948 Science, 304, 1623-1626. https://doi.org/10.1126/science.1097396

949 Lal, R. (2014). Soil conservation and ecosystem services. International Soil and Water 

950 Conservation Research, 2, 36-47. https://doi.org/10.1016/S2095-6339(15)30021-6

951 Lardy, R., Bellocchi, G., & Soussana, J.-F. (2011). A new method to determine soil organic carbon 

952 equilibrium. Environmental Modelling & Software, 26, 1759-1763. 

953 https://doi.org/10.1016/j.envsoft.2011.05.016

954 Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing soil organic matter into 

955 particulate and mineral‐associated forms to address global change in the 21st century. Global 

956 Change Biology, 26, 261-273. https://doi.org/10.1111/gcb.14859

957 Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528, 60-

958 68. https://doi.org/10.1038/nature16069

959 Li, C., Salas, W., Zhang, R., Krauter, C., Rotz, A., & Mitloehner, F. (2012). Manure-DNDC: a 

960 biogeochemical process model for quantifying greenhouse gas and ammonia emissions from 

Page 51 of 80 Global Change Biology



961 livestock manure systems. Nutrient Cycling in Agroecosystems, 93, 163-200. 

962 https://doi.org/10.1007/s10705-012-9507-z

963 Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., … Bouman, B. (2015). Uncertainties 

964 in predicting rice yield by current crop models under a wide range of climatic conditions. Global 

965 Change Biology, 21, 1328-1341. https://doi.org/10.1111/gcb.12758

966 Ma, S., Lardy, R., Graux, A.-I., Ben Touhami, H., Klumpp, K., Martin, R., Bellocchi, G. (2015). 

967 Regional-scale analysis of carbon and water cycles on managed grassland systems. 

968 Environmental Modelling & Software, 72, 356-371. 

969 https://doi.org/10.1016/j.envsoft.2015.03.007

970 Maiorano, A., Martre, P., Asseng, S., Ewert, F., Müller, C., Rötter, R. P., … Zhu, Y. (2017). Crop 

971 model improvement reduces the uncertainty of the response to temperature of multi‐model 

972 ensembles. Field Crops Research, 202, 5-20. https://doi.org/10.1016/j.fcr.2016.05.001

973 Manzoni, S., & Porporato, A. (2009). Soil carbon and nitrogen mineralization: Theory and models 

974 across scales. Soil Biology & Biochemistry, 41, 1355-1379. 

975 https://doi.org/10.1016/j.soilbio.2009.02.031

976 Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rotter, R.P., … Wolf, J. (2015). 

977 Multimodel ensembles of wheat growth: Many models are better than one. Global Change 

978 Biology, 21, 911-925. https://doi.org/10.1111/gcb.12768

979 Mary, B., Clivot, H., Blaszczyk, N., Labreuche, L., & Ferchaud, F. (2020). Soil carbon storage and 

980 mineralization rates are affected by carbon inputs rather than physical disturbance: Evidence 

981 from a 47-year tillage experiment. Agriculture, Ecosystems & Environment, 299, 106972. 

982 https://doi.org/10.1016/j.agee.2020.106972

983 edlyn, B. E., Robinson, A. P., Clement, R., & McMurtrie, R. E. (2005). On the validation of models 

984 of forest CO2 exchange using eddy covariance data: some perils and pitfalls. Tree Physiology, 

985 25, 839-857. https://doi.org/10.1093/treephys/25.7.839

Page 52 of 80Global Change Biology



986 Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., … 

987 Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. 

988 https://doi.org/10.1016/j.geoderma.2017.01.002

989 Minunno, F., Peltoniemi, M., Launiainen, S., & Mäkelä, A. (2014). Integrating ecosystems 

990 measurements from multiple eddy-covariance sites to a simple model of ecosystem process - 

991 are there possibilities for a uniform model calibration? Geophysical Research Abstracts, 16, 

992 EGU2014-10706-3. Retrieved from 

993 https://meetingorganizer.copernicus.org/EGU2014/orals/14065

994 Mirtl, M., Borer, E. T., Djukic, I., Forsius, M., Haubold, H., Hugo, W., Jourdane, J., … Haase, P. 

995 (2018). Genesis, goals and achievements of long-term ecological research at the global scale: a 

996 critical review of ILTER and future directions. Science of the Total Environment, 626, 1439-

997 1462. https://doi.org/10.1016/j.scitotenv.2017.12.001

998 Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., & Veith, T. (2007). Model 

999 evaluation guidelines for systematic quantification of accuracy in watershed simulations. 

1000 Transactions of the ASABE, 50, 885-900. https://doi.org/10.13031/2013.23153

1001 Moyano, F. E., Vasilyeva, N., & Menichetti, L. (2018). Diffusion limitations and Michaelis–

1002 Menten kinetics as drivers of combined temperature and moisture effects on carbon fluxes of 

1003 mineral soils. Biogeosciences, 15, 5031–5045. https://doi.org/10.5194/bg-15-5031-2018

1004 Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - a 

1005 discussion of principles. Journal of Hydrology, 10, 282-290. https://doi.org/10.1016/0022-

1006 1694(70)90255-6

1007 Nemo, R., Klumpp, K., Coleman, K., Dondini, M., Goulding, K., Hastings, A., … Smith, P. 

1008 (2016). Soil organic carbon (SOC) equilibrium and model initialisation methods: an application 

1009 to the Rothamsted Carbon (RothC) model. Environmental Modeling & Assessment, 22, 215-

1010 229.

Page 53 of 80 Global Change Biology



1011 Nendel, C., Berg, M., Kersebaum, K. C., Mirschel, W., Specka, X., Wegehenkel, M., … Wieland, 

1012 R. (2011). The MONICA model: Testing predictability for crop growth, soil moisture and 

1013 nitrogen dynamics. Ecological Modelling, 222, 1614–1625. 

1014 https://doi.org/10.1016/j.ecolmodel.2011.02.018

1015 Parton, W. J., Del Grosso, S., Plante, A. F., Adair, E. C., & Lutz, S. M. (2015). Modeling the 

1016 dynamics of soil organic matter and nutrient cycling. In E. A. Paul (Ed.), Soil microbiology, 

1017 ecology and biochemistry, 4th edition (pp. 505-537). Amsterdam: Elsevier Academic Press.

1018 Parton, W. J., Hartman, M., Ojima, D., & Schimel, D. (1998). DAYCENT and its land surface 

1019 submodel: description and testing. Global and Planetary Change, 19, 35-48. 

1020 https://doi.org/10.1016/S0921-8181(98)00040-X

1021 Parton, W. J., Schimel, D. S., & Cole, C.V., & Ojima, D. S. (1987). Analysis of factors controlling 

1022 soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 

1023 51, 1173–1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x

1024 Parton, W. J., Schimel, D. S., Ojima, D. S., & Cole, C. V. (1994). A general model for soil organic 

1025 matter dynamics: sensitivity to litter chemistry, texture and management. In R. B. Bryant & R. 

1026 W. Arnold (Eds.), Quantitative modeling of soil forming processes (pp. 147–167). Madison, 

1027 WI (USA): SSSA Spec. Pub. 39. ASA, CSSA and SSSA.

1028 Porter, C. H., Jones, J. W., Adiku, S., Gijsman, A. J., Gargiulo, O., & Naab, J. B. (2009). Modeling 

1029 organic carbon and carbon-mediated soil processes in DSSAT v4.5. Operational Research, 10, 

1030 247-278. https://doi.org/10.1007/s12351-009-0059-1

1031 Puche, N. J. B., Senapati, N., Flechard, C. R., Klumpp, K., Kirschbaum, M. U. F, & Chabbi, A. 

1032 (2019). Modelling carbon and water fluxes of managed grasslands: comparing flux variability 

1033 and net carbon budgets between grazed and mowed systems. Agronomy, 9, 183. 

1034 https://doi.org/10.3390/agronomy9040183

Page 54 of 80Global Change Biology



1035 Reynolds, K. M., Thomson, A. J., Köhl, M., Shannon, M. A., Ray, D., & Rennolls, K. (2007).  

1036 Sustainable forestry: from monitoring and modelling to knowledge management and policy 

1037 science. Wallingford: CAB International.

1038 Rodríguez, A., Ruiz-Ramos, M., Palosuo, T., Carter, T. R., Fronzek, S., Lorite, I. J., … Rötter, R. 

1039 P. (2019). Implications of crop model ensemble size and composition for estimates of 

1040 adaptation effects and agreement of recommendations. Agricultural and Forest Meteorology, 

1041 15, 351-362. https://doi.org/10.1016/j.agrformet.2018.09.018

1042 Rötter, R. P., Palosuo, T., Kersebaum, K. C., Angulo, C., Bindi, M., Ewert, F., … Trnka, M. 

1043 (2012). Simulation of spring barley yield in different climatic zones of Northern and Central 

1044 Europe – A comparison of nine crop models. Field Crops Research, 133, 23–36. 

1045 https://doi.org/10.1016/j.fcr.2012.03.016

1046 Ruane, A. C., Hudson, N. I., Asseng, S., Camarrano, D., Ewert, F., Martre, P., … Wolf, J. (2016). 

1047 Multi‐wheat‐model ensemble responses to interannual climate variability. Environmental 

1048 Modelling & Software, 81, 86-101. https://doi.org/10.1016/j.envsoft.2016.03.008

1049 Rumpel, C., Amiraslani, F., Koutika, L. S., Smith, P., Whitehead, D., & Wollenberg, E. (2018). 

1050 Put more carbon in soils to meet Paris climate pledges. Nature, 564, 32-34. 

1051 https://doi.org/10.1038/d41586-018-07587-4

1052 Saffih-Hdadi, K., & Mary, B. (2008). Modeling consequences of straw residues export on soil 

1053 organic carbon. Soil Biology & Biochemistry, 40, 594–607. 

1054 https://doi.org/10.1016/j.soilbio.2007.08.022

1055 Sándor, R., Barcza, Z., Acutis, M., Doro, L., Hidy, D., Köchy, M., … Bellocchi, G. (2017). Multi-

1056 model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean 

1057 grasslands: Uncertainties and ensemble performance. European Journal of Agronomy, 88, 22-

1058 40. https://doi.org/10.1016/j.eja.2016.06.006

Page 55 of 80 Global Change Biology



1059 Sándor, R., Ehrhardt, F., Brilli, L., Carozzi, M., Recous, S., Smith, P., … Bellocchi, G. (2018a). 

1060 The use of biogeochemical models to evaluate mitigation of greenhouse gas emissions from 

1061 managed grasslands. Science of the Total Environment, 642, 292-306. 

1062 https://doi.org/10.1016/j.scitotenv.2018.06.020

1063 Sándor, R., Ehrhardt, F., Grace, P., Recous, S., Smith, P., Snow, V., … Bellocchi, G. (2020). 

1064 Ensemble modelling of carbon fluxes in grasslands and croplands. Field Crops Research, 252, 

1065 107791. https://doi.org/10.1016/j.fcr.2020.107791

1066 Sándor, R., Picon-Cochard, C., Martin, R., Louault, F., Klumpp, K., Borras, D., & Bellocchi, G., 

1067 (2018b). Plant acclimation to temperature: Developments in the Pasture Simulation model. 

1068 Field Crops Research, 222, 238-255. https://doi.org/10.1016/j.fcr.2017.05.030

1069 Schimel, J. P., & Weintraub, M. N. (2003). The implications of exoenzyme activity on microbial 

1070 carbon and nitrogen limitation in soil: a theoretical model. Soil Biology & Biochemistry, 35, 

1071 549–563. https://doi.org/10.1016/S0038-0717(03)00015-4

1072 Shumilovskikh, L. S., Novenko, E., & Giesecke, T. (2018). Long‐term dynamics of the East 

1073 European forest‐steppe ecotone. Journal of Vegetation Science, 29, 416-426. 

1074 https://doi.org/10.1111/jvs.12585

1075 Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., … Venevsky, S. (2003). 

1076 Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ 

1077 dynamic global vegetation model. Global Change Biology, 9, 161-185. 

1078 https://doi.org/10.1046/j.1365-2486.2003.00569.x

1079 Smith, J., Gottshcalk, P., Bellarby, J., Chapman, S., Lilly, A., Towers, W., … Smith, P. (2010a). 

1080 Estimating changes in national soil carbon stocks using ECOSSE – a new model that includes 

1081 upland organic soils. Part I. Model description and uncertainty in national scale simulations of 

1082 Scotland. Climate Research, 45, 179-192. https://doi.org/10.3354/cr00899

Page 56 of 80Global Change Biology



1083 Smith, J., Gottschalk, P., Bellarby, J., Chapman, S., Lilly, A., Towers, W., … Smith, P. (2010b). 

1084 Estimating changes in national soil carbon stocks using ECOSSE - a new model that includes 

1085 upland organic soils. Part II. Application in Scotland. Climate Research, 45, 193-205. 

1086 https://doi.org/10.3354/cr00902

1087 Smith, P., Smith, J., Flynn, H., Killham, K., Rangel-Castro, I., Foereid, B., … Falloon, P., 2007. 

1088 ECOSSE: Estimating Carbon in Organic Soils - Sequestration and Emissions. Final Report. 

1089 SEERAD Report, 166 pp. Retrieved from http://nora.nerc.ac.uk/id/eprint/2233

1090 Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, R. M., Chertov, O. G., … Whitmore, 

1091 A. P. (1997). A comparison of the performance of nine soil organic matter models using datasets 

1092 from seven long-term experiments. Geoderma, 81, 153-225. https://doi.org/10.1016/S0016-

1093 7061(97)00087-6

1094 Smith, W. N., Grant, B. B., Campbell, C. A., McConkey, B. G., Desjardins, R. L., Kröbel, R. & 

1095 Malhi, S. S. (2012). Crop residue removal effects on soil carbon: Measured and inter-model 

1096 comparisons. Agriculture, Ecosystems & Environment, 161, 27-38. 

1097 https://doi.org/10.1016/j.agee.2012.07.024

1098 Smith, W. N., Grant, B., Qi, Z., He, W., VanderZaag, A., Drury, C. F., & Helmers, M. (2020). 

1099 Development of the DNDC model to improve soil hydrology and incorporate mechanistic tile 

1100 drainage: A comparative analysis with RZWQM2. Environmental Modelling & Software, 123, 

1101 104577. https://doi.org/10.1016/j.envsoft.2019.104577

1102 Soussana, J.-F., Lutfalla, S., Ehrhardt, F., Rosenstock, T. S., Lamanna, C., Havlik, P., … Lal, R. 

1103 (2017). Matching policy and science: Rationale for the '4 per 1000 - soils for food security and 

1104 climate' initiative. Soil and Tillage Research, 188, 3-15. 

1105 https://doi.org/10.1016/j.still.2017.12.002

1106 Specka, X., Nendel, C., Hagemann, U., Pohl, M., Hoffmann, M., Barkusky, D., … van Oost, K. 

1107 (2016). Reproducing CO2 exchange rates o a crop rotation at contrasting terrain positions using 

Page 57 of 80 Global Change Biology



1108 two different modelling approaches. Soil and Tillage Research, 156, 219–229. 

1109 https://doi.org/10.1016/j.still.2015.05.007

1110 Stella, T., Mouratiadou, I., Gaiser, T., Berg-Mohnicke, M., Wallor, E., Ewert, F., & Nendel, C. 

1111 (2019). Estimating the contribution of crop residues to soil organic carbon conservation. 

1112 Environmental Research Letters 14, 094008. https://doi.org/10.1088/1748-9326/ab395c

1113 Taghizadeh–Toosi, A., Christensen, B. T., Hutchings, N. J., Vejlin, J., Kätterer, T., Glendining, 

1114 M., & Olesen, J. E. (2014a). C-TOOL: A simple model for simulating whole-profile carbon 

1115 storage in temperate agricultural soils. Ecological Modelling, 292, 11-25. 

1116 https://doi.org/10.1016/j.ecolmodel.2014.08.016

1117 Taghizadeh-Toosi, A., Olesen, J. E., Kristensen, K., Elsgaard, L., Østergaard, H. S., Lægdsmand, 

1118 M., … Christensen, B. T. (2014b). Changes in carbon stocks of Danish agricultural mineral 

1119 soils between 1986 and 2009. European Journal of Soil Science, 65, 730-740. 

1120 https://doi.org/10.1111/ejss.12169

1121 Taghizadeh-Toosi, A., & Olesen, J. E. (2016). Modelling soil organic carbon in Danish agricultural 

1122 soils suggests low potential for future carbon sequestration. Agricultural Systems, 145, 83-89. 

1123 https://doi.org/10.1016/j.agsy.2016.03.004 

1124 Taghizadeh-Toosi, A., Christensen, B. T., Glendining, M., & Olesen, J. E. (2016). Consolidating 

1125 soil carbon turnover models by improved estimates of belowground carbon input. Scientific 

1126 Reports, 6, 32568. https://doi.org/10.1038/srep32568

1127 Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical 

1128 Review, 38, 55-94. https://doi.org/10.2307/210739

1129 Thorp, K. R., White, J. W., Porter, C. H., Hoogenboom, G., Nearing, G. S., & French, A. N. (2012). 

1130 Methodology to evaluate the performance of simulation models for alternative compiler and 

1131 operating system configurations. Computers and Electronics in Agriculture, 81, 62-71. 

1132 https://doi.org/10.1016/j.compag.2011.11.008

Page 58 of 80Global Change Biology



1133 Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. 

1134 A. G., & Allison, S. D. (2013). Causes of variation in soil carbon simulations from CMIP5 

1135 Earth system models and comparison with observations. Biogeosciences, 10, 1717–1736. 

1136 https://doi.org/10.5194/bg-10-1717-2013

1137 Todd-Brown, K. E. O., Randerson, J. T., Hopkins, F., Arora, V., Hajima, T., Jones, C., … Allison, 

1138 S. D. (2014). Changes in soil organic carbon storage predicted by Earth system models during 

1139 the 21st century. Biogeosciences, 11, 2341–2356. https://doi.org/10.5194/bg-11-2341-2014

1140 Tuomi, M., Thum, T., Järvinen, H., Fronzek, S., Berg, B., Harmon, M., … Liski, J. (2009). Leaf 

1141 litter decomposition - Estimates of global variability based on Yasso07 model. Ecological 

1142 Modelling, 220, 3362-3371. https://doi.org/10.1016/j.ecolmodel.2009.05.016

1143 Wallach, D., Martre, P., Liu, B., Asseng, S., Ewert, F., Thonburn, P.J., … Zhang, Z. (2018). Multi-

1144 model ensembles improve predictions of crop-environment-management interactions. Global 

1145 Change Biology, 24, 5072-5083. https://doi.org/10.1111/gcb.14411

1146 Wallach, D., Palosuo, T., Thorburn, P., Seidel, S. J., Gourdain, E., Asseng, S., … Zhu, Y. (2020). 

1147 How well do crop models predict phenology, with emphasis on the effect of calibration? 

1148 bioRxiv, March 30, 2020. https://doi.org/10.1101/708578

1149 Wallach, D., & Thorburn, P. J. (2017). Estimating uncertainty in crop model predictions: Current 

1150 situation and future prospects. European Journal of Agronomy, 88, A1-A7. 

1151 https://doi.org/10.1016/j.eja.2017.06.001

1152 Weihermüller, L., Graf, A., Herbst, M., & Vereecken, H. (2013). Simple pedotransfer functions to 

1153 initialize reactive carbon pools of the RothC model. European Journal of Soil Science, 64, 567-

1154 575. https://doi.org/10.1111/ejss.12036

1155 White, J. W., Hoogenboom, G., Kimball, B. A., & Wall, G. W. (2011). Methodologies for 

1156 simulating impacts of climate change on crop production. Field Crops Research, 124, 357-368. 

1157 https://doi.org/10.1016/j.fcr.2011.07.001

Page 59 of 80 Global Change Biology



1158 Whitehead, D., Schipper, L. A., Pronger, J., Moinet, G. Y., Mudge, P. L., Pereira, R. C., … Camps-

1159 Arbestain, M. (2018). Management practices to reduce losses or increase soil carbon stocks in 

1160 temperate grazed grasslands: New Zealand as a case study. Agriculture, Ecosystems & 

1161 Environment, 265, 432-443. https://doi.org/10.1016/j.agee.2018.06.022

1162 Wieder, W. R., Boehnert, J., & Bonan, G. B. (2014). Evaluating soil biogeochemistry 

1163 parameterizations in Earth system models with observations. Global Biogeochemical Cycles, 

1164 28, 211-222. https://doi.org/10.1002/2013GB004665

1165 Willmott, C. J., & Wicks, D. E. (1980). An empirical method for the spatial interpolation of 

1166 monthly precipitation within California. Physical Geography, 1, 59-73. 

1167 https://doi.org/10.1080/02723646.1980.10642189

1168 Wutzler, T., & Reichstein, M. (2007). Soils apart from equilibrium - consequences for soil carbon 

1169 balance modelling. Biogeosciences, 4, 125-136. https://doi.org/10.5194/bg-4-125-2007

1170 Wutzler, T., & Reichstein, M. (2008). Colimitation of decomposition by substrate and 

1171 decomposers - a comparison of model formulations. Biogeosciences, 5, 749–759. 

1172 https://doi.org/10.5194/bg-5-749-2008

1173 Wutzler, T., & Reichstein, M. (2013). Priming and substrate quality interactions in soil organic 

1174 matter models. Biogeosciences, 10, 2089–2103. https://doi.org/10.5194/bg-10-2089-2013

1175 Xu, X., Wen L., & Kiely, G. (2011). Modeling the change in soil organic carbon of grassland in 

1176 response to climate change: Effects of measured versus modelled carbon pools for initializing 

1177 the Rothamsted Carbon model. Agriculture, Ecosystems & Environment, 140, 372-381. 

1178 https://doi.org/10.1016/j.agee.2010.12.018

1179 Yadav, V., & Malanson, G. (2007). Progress in soil organic matter research: litter decomposition, 

1180 modelling, monitoring and sequestration. Progress in Physical Geography, 31, 131-154. 

1181 https://doi.org/10.1177/0309133307076478Zhu, D., Ciais, P., Krinner, G., Maignan, F., Puig, 

1182 A.J., & Hugelius, G. (2019). Controls of soil organic matter on soil thermal dynamics in the 

Page 60 of 80Global Change Biology



1183 northern high latitudes. Nature Communications, 10, 3172. https://doi.org/10.1038/s41467-

1184 019-11103-1

1185

Page 61 of 80 Global Change Biology

https://doi.org/10.1038/s41467-019-11103-1
https://doi.org/10.1038/s41467-019-11103-1


1186 Appendix A 

1187 Multi-year, multi-site comparison of individual model simulation of SOC (Mg C ha-1): multi-

1188 model medians (MMM) from Mix scenario simulations (17 models) versus observations. 

1189 (coloured symbols represent sites as in Fig. 1).

1190

1191
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1192 Appendix B 

1193 Multi-year, multi-site comparison of individual model simulation of SOC (Mg C ha-1): multi-

1194 model medians (MMM) from Gen scenario simulations (16 models) versus observations. 

1195 (coloured symbols represent sites as in Fig. 1).
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1199 Appendix C

1200 z-scores calculated with different ensemble sizes for SOC estimates obtained with Bln scenario at 

1201 different experimental sites. Black lines show median values. Boxes delimit the 25th and 75th 

1202 percentiles. Whiskers are 10th and 90th percentiles. Circles indicate outliers. Coloured bands mark 

1203 two critical values: z=|1| (light purple) and z=|2| (light blue).
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1208 Appendix D

1209 z-scores calculated with different ensemble sizes for SOC estimates obtained with Mix scenario at 

1210 different experimental sites. Black lines show median values. Boxes delimit the 25th and 75th 

1211 percentiles. Whiskers are 10th and 90th percentiles. Circles indicate outliers. Coloured bands mark 

1212 two critical values: z=|1| (light purple) and z=|2| (light blue).

1213
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1215 Appendix E

1216 z-scores calculated with different ensemble sizes for SOC estimates obtained with Spe scenario at 

1217 different experimental sites. Black lines show median values. Boxes delimit the 25th and 75th 

1218 percentiles. Whiskers are 10th and 90th percentiles. Circles indicate outliers. Coloured bands mark 

1219 two critical values: z=|1| (light purple) and z=|2| (light blue).

1220

1221

1222
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1223 Appendix F

1224 Individual and multi-model ensemble (MMM) performance metrics (as in Table 4) for blind (Bln) 

1225 and calibration scenarios (Mix, Spe and Gen as in Table 3) across sites. Red (italic) and blue (bold) 

1226 numbers indicate the worst and best performances by metric, respectively.

Model

Pe
rf

or
m

an
ce

 

m
et

ri
c

Sc
en

ar
io

M01 M02 M03 M04 M05 M06 M07 M09 M12 M13 M16 M18 M19 M20 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M34

MMM

R2

B
ln 0.73 0.92 0.67 0.83 0.79 0.86 0.76 0.89 0.83 0.90 0.33 0.81 0.69 0.63 0.95 0.76 0.92 0.41 0.86 0.76 0.92 0.21 0.82 0.35 0.57 0.80 0.94

G
en NA 0.39 NA NA NA NA NA 0.79 NA 0.97 0.90 NA NA 0.56 0.87 NA 0.89 0.09 0.86 0.93 0.91 0.82 0.93 ~0.00 NA 0.85 0.95

M
ix NA 0.91 NA 0.90 0.91 NA NA 0.89 NA 0.99 NA NA 0.83 0.41 0.98 0.56 0.94 0.49 0.99 0.95 NA 0.91 0.84 0.87 NA 0.82 0.97

Sp
e 0.97 0.99 NA 0.98 0.99 NA NA 0.99 NA 0.99 0.96 NA NA 0.96 0.98 0.99 NA 0.91 0.99 0.97 0.88 0.93 0.98 0.94 NA NA 0.99

d
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B
ln 0.88 0.97 0.84 0.93 0.90 0.89 0.90 0.97 0.93 0.97 0.71 0.94 0.85 0.79 0.99 0.89 0.97 0.73 0.95 0.91 0.95 0.59 0.95 0.52 0.85 0.93 0.98

G
en NA 0.71 NA NA NA NA NA 0.93 NA 0.99 0.97 NA NA 0.66 0.96 NA 0.97 0.53 0.95 0.97 0.97 0.81 0.97 0.23 NA 0.94 0.98

M
ix NA 0.97 NA 0.96 0.97 NA NA 0.97 NA ~1.00 NA NA 0.89 0.69 ~1.00 0.79 0.98 0.81 ~1.00 0.98 NA 0.76 0.96 0.96 NA 0.93 0.99

Sp
e 0.99 ~1.00 NA ~1.00 ~1.00 NA NA ~1.00 NA ~1.00 0.99 NA NA 0.99 ~1.00 0.99 NA 0.97 ~1.00 0.99 0.95 0.76 0.99 0.98 NA NA ~1.00

RRMSE (%)

B
ln 24.1 10.9 28.0 18.6 21.9 21.9 23.1 12.5 17.7 11.8 28.6 15.5 27.2 33.1 7.9 25.4 11.0 36.6 14.0 24.0 14.4 48.4 16.3 69.1 27.7 16.3 10.4

G
en NA 30.8 NA NA NA NA NA 17.9 NA 5.7 11.5 NA NA 51.3 14.0 NA 12.1 49.4 14.5 12.7 10.9 37.9 12.4 92.1 NA 15.8 10.6

M
ix NA 11.0 NA 12.6 11.5 NA NA 11.7 NA 3.8 NA NA 23.3 45.6 4.4 29.0 8.9 33.0 4.2 9.4 NA 46.5 14.4 13.4 NA 15.9 7.2
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Sp
e 6.5 3.4 NA 5.0 3.2 NA NA 3.8 NA 3.8 8.2 NA NA 6.7 4.4 5.0 NA 14.5 4.1 6.2 14.9 46.2 5.5 8.7 NA NA 3.2

P(t)

B
ln ~0.00 ~0.00 ~0.00 ~0.00 ~0.00 ~0.00 ~0.00 ~0.00 ~0.00 ~0.00 0.64 0.02 ~0.00 ~0.00 0.31 ~0.00 ~0.00 ~0.00 0.45 0.05 ~0.00 ~0.00 0.13 ~0.00 ~0.00 0.01 ~0.00

G
en NA ~0.00 NA NA NA NA NA ~0.00 NA 0.13 0.17 NA NA ~0.00 ~0.00 NA 0.08 0.04 ~0.00 ~0.00 0.06 ~0.00 ~0.00 ~0.00 NA ~0.00 ~0.00

M
ix NA ~0.00 NA ~0.00 ~0.00 NA NA 0.55 NA 0.31 NA NA ~0.00 ~0.00 0.76 ~0.00 0.54 ~0.00 0.31 ~0.00 NA ~0.00 0.24 ~0.00 NA ~0.00 0.49

Sp
e 0.46 0.99 NA 0.06 0.03 NA NA 0.85 NA 0.34 ~0.00 NA NA 0.12 0.93 ~0.00 NA ~0.00 ~1.00 0.29 ~0.00 ~0.00 ~0.00 0.68 NA NA 0.83

EF

B
ln 0.52 0.90 0.49 0.72 0.60 0.60 0.56 0.87 0.74 0.88 0.33 0.80 0.39 0.09 0.95 0.47 0.90 -0.11 0.84 0.53 0.83 -0.93 0.78 -2.95 0.37 0.78 0.91

G
en NA 0.22 NA NA NA NA NA 0.73 NA 0.97 0.89 NA NA -1.17 0.84 NA 0.88 -0.49 0.83 0.87 0.90 -0.19 0.87 -6.00 NA 0.79 0.93
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M
ix NA 0.90 NA 0.87 0.89 NA NA 0.89 NA 0.99 NA NA 0.55 -0.72 0.98 0.31 0.93 0.34 0.99 0.93 NA -0.78 0.83 0.85 NA 0.79 0.97

Sp
e 0.97 0.99 NA 0.98 0.99 NA NA 0.99 NA 0.99 0.94 NA NA 0.96 0.98 0.98 NA 0.87 0.99 0.97 0.82 -0.76 0.97 0.94 NA NA 0.99

1227
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Fig. 1. Location (a) and characterisation of the study sites (b) with respect to mean annual temperature (°C) 
and mean annual temperature range (°C). Details about study sites are in Table 2. 
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Fig. 2. Standard deviation (SD) and mean of SOC observations at the study sites (details are in Table 2). 
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    Fig. 3. Temporal changes of soil organic carbon (SOC, Mg C ha-1) observations (Observed, purple square) 
and simulations: blind (Blind, blue) simulations (26 models); three calibration scenarios, Generic (16 

models, pink), Mixed (17 models, green) and Specific (17 models, grey) at all sites ( as in Table 2). Lines 
represent the multi-model median (MMM) of the simulations and shaded area represents the simulation 

envelope 
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Fig. 4. Soil organic carbon (SOC, Mg C ha-1) at each site (as in Table 2), for blind simulations (Blind, (26 
models), three calibration scenarios (Mixed, 17 models; Specific and Generic, 16 models) and observations 
(Observed). For each boxplot, black horizontal lines show the multi-model median. Boxes delimit the 25th 

and 75th percentiles. Whiskers are 10th and 90th percentiles. Dots indicate outliers. 
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Fig. 5. Multi-year, multi-site comparison of individual model simulation of SOC (Mg C ha-1): multi-model 
medians (MMM) from blind simulations (26 models as in Table 1) versus observations (coloured symbols 

represent sites as in Fig. 1). 
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Fig. 6. Multi-year, multi-site comparison of individual model simulation of SOC (Mg C ha-1): multi-model 
medians (MMM) from Specific scenario simulations (17 models as in Table 1) versus observations (coloured 

symbols represent sites as in Fig. 1). 
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Fig. 7. Standardized model residuals ( (MMM-O)/〖sd〗_obs ) over time for blind (Blind) simulations and 
calibration scenarios Mixed, Specific and Generic at each site. 
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Fig. 8. Scatterplot correlation matrix of SOC (Mg C ha-1) model residuals of multi-model medians (MMM) for 
blind simulations (Blind) and calibrations scenarios (Generic, Mixed and Specific as in Table 3), and the 

annual climate metrics maximum temperature (Tmax), mean temperature amplitude (Tamp) and 
precipitation (Prec). Overlaid (red line) is a local non-parametric smoother curve. 
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Fig. 9. z-scores calculated with different ensemble sizes for SOC estimates obtained with Generic scenario at 
different experimental sites. Black lines show median values. Boxes delimit the 25th and 75th percentiles. 
Whiskers are 10th and 90th percentiles. Circles indicate outliers. Coloured bands mark two critical values: 

z=|1| (light purple) and z=|2| (light blue). 
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Fig. 10. Multi-site averages (vertical bars) and standard deviations (vertical lines) of observed and estimated 
(ensemble multi-model median) values of SOC (Mg C ha-1) in the last year of the experimental period. The 
ensemble modelling was applied with blind simulations (Blind) and calibration scenarios (Mixed, Specific and 

Generic as in Table 3). 
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