
HAL Id: hal-03081725
https://hal.science/hal-03081725v1

Submitted on 20 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-triangular self-synchronizing stream ciphers
Julien Francq, Loic Besson, Paul Huynh, Philippe Guillot, Gilles Millérioux,

Marine Minier

To cite this version:
Julien Francq, Loic Besson, Paul Huynh, Philippe Guillot, Gilles Millérioux, et al.. Non-triangular
self-synchronizing stream ciphers. IEEE Transactions on Computers, 2022, 71 (1), pp.134-145.
�10.1109/TC.2020.3043714�. �hal-03081725�

https://hal.science/hal-03081725v1
https://hal.archives-ouvertes.fr

1

Non-Triangular Self-Synchronizing Stream Ciphers
Julien Francq, Löıc Besson, Paul Huynh, Philippe Guillot, Gilles Millerioux and Marine Minier

Abstract—In this paper, we propose an instantia-
tion, called Stanislas, of a dedicated Self-Synchronizing
Stream Cipher (SSSC) involving an automaton with
finite input memory using non-triangular state transi-
tion functions. Previous existing SSSC are based on au-
tomata with shifts or triangular functions (T–functions)
as state transition functions. Our algorithm Stanislas
admits a matrix representation deduced from a general
and systematic methodology called Linear Parameter
Varying (LPV). This particular representation comes
from the automatic theory and from a special property
of dynamical systems called flatness.

Hardware implementations and comparisons with
some state-of-the-art stream ciphers on Xilinx FPGAs
are presented. It turns out that Stanislas provides bigger
throughput than the considered stream ciphers (syn-
chronous and self-synchronizing) when straightforward
implementations are considered. Moreover, its synchro-
nization delay is much smaller than the SSSC Mous-
tique (40 clock cycles instead of 105) and the standard
approach CFB1-AES128 (40 clock cycles instead of
128).

Index Terms—Self-Synchronizing Stream Ciphers,
automata with finite input memory, flatness, hardware
implementations.

I. Introduction
Self-Synchronizing Stream Ciphers (SSSCs) were

patented in 1946. The basic principle of such ciphers is to
encrypt every plaintext symbol with a transformation that
only involves a fixed number of previous ciphertext symbols.
Therefore, every ciphertext symbol is correctly deciphered
provided that previous symbols have been properly received.
This self-synchronization property has many advantages
and is especially relevant to group communications. In this
respect, since 1960, specific SSSCs have been designed and
are still used to provide bulk encryption (for Hertzian line,
RNIS link, etc.) in military applications or governmental
radio mobile networks [1], [2].

The canonical form of the SSSC combines a shift register,
which acts as a state register with the ciphertext as input,
together with a filtering function that provides the running
key stream. The cryptographic complexity of the canonical

This work was partially supported by the French National Agency
of Research under the grants number ANR-13-INSE-0005-01 and by
the french PIA project “Lorraine Université d’Excellence”, reference
ANR-15-IDEX-04-LUE.

Julien Francq and Löıc Besson were with Airbus CyberSecurity, 1
Bd Jean Moulin, CS 40001, MetaPole, 78996 Élancourt Cedex

Paul Huynh and Marine Minier are with Université de Lor-
raine, CNRS, Inria, LORIA, F-54000 Nancy, France, email:
firstname.name@loria.fr

Philippe Guillot is with Université Paris 8, LAGA, UMR 7539,
France, email: philippe.guillot@univ-paris8.fr

Gilles Millerioux is with Université de Lorraine, CNRS, CRAN,
UMR 7039, France, email: gilles.millerioux@univ-lorraine.fr

form of the SSSC lies in the filtering function. In the
early 90s, studies have been performed [1], [3] to propose
secure designs of SSSCs. These works have been followed
by effective constructions ([4], [5], [6]). What motivates the
present proposal for a new SSSC is that, till now, all of
these SSSC schemes have been broken ([7], [8], [9], [10],
[11]). And up to our knowledge, since 10 years, no other
proposals of SSSCs has been made. Clearly, SSSCs can
be naturally built using a block cipher by applying the
Cipher Feedback (CFB) mode. However, the computational
cost of CFB is one full block cipher operation per digit.
So for single-bit digits, it is n times less efficient than
synchronous stream encryption modes such as Output
Feedback (OFB) or Counter (CTR) Mode, with n the
block length. For example, AES in single-bit CFB mode
(as defined as “CFB1-AES128” in NIST SP 800-38a [12])
is 128 times less efficient than AES in CTR mode. As
a consequence, it seems interesting to propose dedicated
SSSCs and consider them as a category of primitives on
their own.

The aim of the present paper is to propose a new
framework, along with an instantiation called Stanislas,
to design SSSCs. The design approach is based on both
the special feature of Finite State Machines admitting
a matrix representation, called LPV (Linear Parameter
Varying) automata and on a property of dynamical systems
named flatness coming from control theory. Flatness is
interpreted in terms of the structure of the adjacency
matrix of a graph associated to the automaton from
which self-synchronization can be easily characterized. The
matrix representation is thus a generalization of Rational
Linear Finite State Machines [13], [14]. The use of flatness
for the sake of cryptography has been first proposed
in [15]. It has been shown that flatness characterizes
the self-synchronization property. Moreover, the matrix
representation allows to design automata which can be
more general than T–functions as it was the case over the
past years (see [16], [6] as examples). One of the benefits of
this approach is that we could introduce nonlinearities with
proved properties in the matrix representation, what a shift
register does not always permit. Due to this peculiarity,
the class of admissible automata to act as SSSCs is thereby
enlarged.

In the present paper, a complete cipher, called Stanislas
(for Secure Transmission Algorithm with Non triangular
Iterative Structure Looking After Self-synchronization) and
designed from the LPV framework, is described. The Key
Schedule, the design rationale and the security analysis
are provided. Next, hardware implementation results on
Xilinx FPGA platforms of Stanislas are performed and
compared with some state-of-the art competitors: some

2

Synchronous Stream Ciphers coming from eSTREAM port-
folio (Trivium [17] and Grain [18]), one SSSC (Moustique)
and the only known feedback mode (the NIST-standardized
CFB1-AES128). Interestingly, Stanislas provides the highest
throughput on Xilinx Spartan-6 XC6SLX75T FPGAs
compared to its stream ciphers and SSSC competitors,
implemented in a straightforward manner. Moreover, with
the same comparison conditions, its synchronization delay
is much smaller than the SSSC Moustique (40 clock
cycles instead of 105) and the standard approach CFB1-
AES128 (40 clock cycles instead of 128), which provides
a decisive advantage for applications when low-latency
synchronization is required (e.g., Telecom).

The paper is organized as follows. Section II recalls
the theoretical results linking together flatness and SSSC.
Section III presents the new SSSC Stanislas. The design ra-
tionale and the security analysis are detailed in Section IV.
Finally, Section V provides hardware implementation
results and comparisons. Section VI concludes this paper.

II. Theoretical Foundations and Flatness
After few generalities on stream ciphers, it is recalled in

this section the main results of [15] concerning the design
of SSSC based on the property of flatness.

A. Generalities on Stream Ciphers
For a stream cipher, it must be given an alphabet A, that

is, a finite set of basic elements named symbols. The set
A stands in this paragraph as a general notation without
any specific alphabet. Typically, A could be composed of
1 or several bits elements. Hereafter, the index t ∈ N will
stand for the discrete-time. On the transmitter part, the
plaintext (also called information or message) m ∈ M
(M is the message space) is a string of plaintext symbols
mt ∈ A. Each plaintext symbol is encrypted, by means of
an encryption (or ciphering) function e, according to:

ct+r = e(zt+r,mt), (1)

where zt ∈ A is a so-called keystream (or running key)
symbol delivered by a keystream generator. The function
e is invertible for any prescribed zt. The resulting symbol
ct ∈ A is the ciphertext symbol. The integer r ≥ 0
stands for a potential delay between the plaintext mt and
the corresponding ciphertext ct+r. This is explained by
computational or implementation reasons, see [16] for
example. Consequently, for stream ciphers, the way how to
encrypt each plaintext symbol changes on each iteration.
The resulting ciphertext c ∈ C (C is called the ciphertext
space), that is the string of symbols ct, is conveyed to the
receiver through a public channel.
At the receiver side, the ciphertext ct is deciphered
according to a decryption function d which depends
on a running key ẑt ∈ A delivered, similarly to the
cipher part, by a keystream generator. The decryption
function d obeys the following rule. For any two keystream
symbols ẑt+r, zt+r ∈ A, it holds that

m̂t+r := d(ct+r, ẑt+r) = mt whenever ẑt+r = zt+r. (2)

Equation (2) means that the running keys zt and ẑt must
be synchronized for a proper decryption. The generators
delivering the keystreams are parametrized by a secret key
denoted by K ∈ K (K is the secret key space). The distinct
classes of stream ciphers (synchronous or self-synchronizing)
differ each other by the way on how the keystreams are
generated and synchronized. Next, we detail the special
class of stream ciphers called Self-Synchronizing Stream
Ciphers.

B. Keystream Generators for Self-Synchronizing Stream
Ciphers

A well-admitted approach to generate the keystreams has
been first suggested in [1]. It is based on the use of so-called
finite state automata with finite input memory as described
below. This is typically the case in the cipher Moustique
[19]. At the ciphering side, the automaton delivering the
keystream takes the form:{

xt+1 = fK(xt,mt),
zt+r = hK(xt)

(3)

where xt ∈ A is the internal state, f is the next-state
transition function parametrized by K ∈ K. As previously
stressed, the delay b is introduced to cope with special sit-
uations, in particular when the computation of the output
(also called filtering) delivered by the function h involves r
successive operations processed at time instants t, . . . , t+r.
Those operations will be here matrix multiplications as
detailed later in Equation (14). Substituting mt by its
expression (2) yields an automaton described by{

xt+1 = gK(xt, ct+r),
zt+r = hK(xt)

(4)

If such an automaton has finite input memory, it means
that, by iterating (4) a finite number of times, there exists
a function `K and a finite integer M such that

xt = `K(ct+r−1, . . . , ct+r−M), (5)

and thus,

zt+r = hK(`K(ct+r−1, . . . , ct+r−M)). (6)

Actually, the fact that the keystream symbol can be written
in the general form

zt+r = σK(ct−`, . . . , ct−`′), (7)

with σK a function involving a finite number of past
ciphertexts from time t− ` to t− `′ (`, `′ ∈ Z), is a
common feature of the SSSC. Equation (7) is called the
canonical equation.

Remark 1: The benefits of implementing the recursive
forms (3) or (4) instead of directly implementing the
canonical form (7) is that we can obtain nonlinear functions
σK of high complexity by implementing simpler nonlinear
functions fK or gK . The complexity results from the
successive iterations which act as composition operations.

3

At the deciphering side, the automaton takes the form{
x̂t+1 = gK(x̂t, ct+r),
ẑt+r = hK(x̂t)

(8)

where x̂t is the internal state. Similarly to the cipher part,
the automaton having a finite input memory, it means that,
by iterating Equation (8) a finite number of times, one also
obtains

x̂t = `K(ct+r−1, . . . , ct+r−M),

and thus,

ẑt+r = hK(`K(ct+r−1, . . . , ct+r−M)).

Hence, it is clear that after a transient time of maximal
length equal to M , it holds that, for t ≥M ,

x̂t = xt and ẑt+r = zt+r. (9)

In other words, the generators synchronize automatically
after at most M iterations. Hence, the decryption is
automatically and properly achieved after at most M
iterations too. No specific synchronizing protocol between
the cipher and the decipher is needed. This explains
the terminology Self-Synchronizing Stream Ciphers. The
integer M is called the synchronization delay.

Hereafter, the considered automata will be assumed to
operate on the q elements finite field F = Fq where q is a
prime power.

C. Flat LPV Automata and SSSC
For the automaton described by (3) (or the equivalent

automaton described by (4) after substitution) to get a fi-
nite input memory feature (see (5)), the solutions proposed
in the open literature call for state transition functions gK
in the form of shifts or more generally T–functions (T for
Triangle). It is recalled that T–functions are functions that
propagate dependencies in one direction only. Till now,
none of the proposed SSSCs has involved non-triangular
state transition functions although T–functions are known
to suffer from weaknesses [9]. Indeed, T–functions induce
a propagation of differential properties which make them
easier to cryptanalyse. It is explained by the fact that no
systematic methodology for constructing finite automata
with finite input memory and involving general non-
triangular state transition functions was proposed so far.
Actually, in [15], a particular class of automata called flat
LPV (Linear Parameter-Varying) has been introduced and
it has been shown that this class allows to define such an
expected systematic methodology. Let us recall what is a
flat automaton.

Definition 1: An automaton described by the dynamics
f verifying

xt+1 = f(xt,mt) (10)

where xt ∈ Fn is the state, mt ∈ F is the input, is said to
be flat, if there exists a function

h : Fn × F→ F
ct = h(xt,mt)

such that all system variables can be expressed as a function
of ct and a finite number of its backward and forward shifts.

The output ct is called the flat output. Hence, by definition,
there exists a function F such that

xt = F
(
ct+t0 , . . . , ct+t1

)
(11)

where t0 and t1 are Z-valued integers. A central remark
is that (11) is nothing but the canonical equation of an
SSSC (compare with (5)). As a direct consequence, a flat
automaton is equivalent to being an SSSC and thus is
central for design perspectives.

LPV automata, defined over a field F, are described by
the following state space representation:

xt+1 = Aρ(t)xt +Bmt (12)

xt ∈ Fn is the state vector, mt ∈ F is the input. The
matrices A ∈ Fn×n and B ∈ Fn×1 are respectively the
dynamical matrix and the input matrix. The output ct is
defined as

ct = Cxt (13)

with C ∈ F1×n the output matrix. The matrix B is the
input matrix and defines the component xit on which the
symbol mt is added. Let us note that mt can be added
to several components. Such a system is called Linear
Parameter-Varying because it is written with a linear
dependency with respect to the state vector. The set of all
varying parameters of A are collected on a vector denoted
by

ρ(t) =
[
ρ1(t), ρ2(t), ..., ρL(t)

]
∈ FL

where L is the total number of non-zero (possibly varying)
entries. Such automata can exhibit nonlinear dynamics.
Indeed, the nonlinearity is obtained by defining the varying
parameters ρi(t) as nonlinear functions ϕi : Fs+1 → F
of the output ct (or a finite number of shifts) ρi(t) =
ϕi(ct, ct−1, · · · , ct−s) with s a natural number. Let us
notice that the notation ρi(t) (usual in the literature for
LPV systems) is somehow abusive because it does not
reflect an explicit dependency with respect to the time t
but on quantities, here ct, indexed with t. Furthermore, the
LPV structure is suitable to construct non triangular state
transition functions. Indeed, because of the varying entries,
the state transition function is not triangular if there does
not exist a common and constant triangularization basis
over the whole set of matrices Aρ(t) with ρ(t) ∈ FL. Hence,
it suffices to select the position of the varying parameters
ρi(t) in the matrix A accordingly.

As a simple illustration, the automaton governed by
Equation (12) with the setting

Aρ(t) =

 a 0 1
ρ1(t) ρ2(t) 0
a 1 1

 , B =

1
0
0

with a a constant element in F, ρ1(t) = ct · ct−1 and
ρ2(t) = (ct−2)2, is an LPV automaton and does not admit
a constant triangularization basis.

4

A flat LPV automaton is an LPV automaton of which
state vector xt verifies (11).

Let us recall from [15] the main proposition which allows
to define a family of SSSCs based on LPV automata. For
brevity, we introduce the following notation. For t2 ≥ t1,
denote by

∏t1
l=t2 Aρ(l) the product of matrices Aρ(l) from

t2 to t1. For t2 < t1, define
∏t1
l=t2 Aρ(l) = 1n (the identity

matrix of dimension n). Finally, let T be the scalar defined
by T = C

∏t=r−1
l=t+1 Aρ(l)B.

Proposition 1: If the LPV finite state automaton defined
by (12) is flat, defining the keystream with delay r as

zt+r = C
∏t
l=t+r−1Aρ(l)xt (14)

and the ciphering function as

ct+r = zt+r + Tmt, (15)

the set of equations (12), (14) and (15) define the ciphering
part of an SSSC.

On the other hand, consider the finite state automaton
with internal state x̂t with dynamics given by

x̂t+1 = Pρ(t:t+r)x̂t +BT −1ct+r (16)

with

Pρ(t:t+r) = Aρ(t) −BT −1C

t∏
l=t+r−1

Aρ(l) (17)

along with the keystream ẑt defined as

ẑt+r = C
∏t
l=t+r−1Aρ(l)x̂t (18)

and the deciphering function obeying

m̂t+r = T −1(ct+r − ẑt+r). (19)

Then, the set of equations (16-19) define the deciphering
part of an SSSC.
The proof given in [15] consists in showing that, if the LPV
finite state automaton defined by (12) is flat, then there
exists an integer M such that the synchronization error
xk− x̂t+r reaches zero after a finite transient time of length
M . The integer M is the synchronization delay. Actually,
it is shown that flatness is equivalent to the existence of
an integer M such that for all t ≥ 0,

Pρ(t+M−1:t+M−1+r)Pρ(t+M−2:t+M−2+r) · · ·Pρ(t:t+r) = 0
(20)

where the product (20) results from the composition of the
state transition functions of the deciphering automaton.
Let us note that T and r are independent.

This LPV framework for the design of SSSC is new
regarding the literature devoted to the design of SSSC.
In particular, it really differs from the serial and parallel
constructions proposed in the 90s by Maurer [1].

According to Remark 1, implementing the recursive form
(12) and (16) instead of the canonical form (5) is more
efficient from a computational point of view.

It is recalled that the non-linearity is obtained by
defining the values of every varying parameters ρi(t)
(i = 1, . . . , L) involved in the matrices of (12-19) as non-
linear functions ϕi of a finite number of past cryptograms

(ρi(t) = ϕi(ct, ct−1, · · · , ct−s)). Those functions will be
implemented in the form of S-boxes denoted S.

ϕi : Fs+1 → F (21)
(ct, ct−1, · · · , ct−s) 7→ S(ct, ct−1, · · · , ct−s, SKi)

where SKi is the subkey number i derived from the
secret key denoted with K.

The point is that the LPV automaton defined by (12)
must be flat for any secret key K and any realization of ρ(t).
In other words, flatness must be a generic property of (12).
Designing an LPV automaton (12) which is generically
flat relies on an admissible realization of a corresponding
structured linear system. A structured linear system is
a linear system only defined by the sparsity pattern of
the state space realization matrices. In other words, for a
structured linear system, we distinguish between the entries
that are fixed to zero and the other ones that can take
any value in F, including the ones which are time-varying.
Hence, a structured linear discrete-time system, denoted
by ΣΛ, is a system that admits the form:

ΣΛ : xt+1 = IAxt + IBmt. (22)

The entries of the matrices of (22) are ‘0’ or ‘1’. In
particular, the entries A(i, j) of IA (resp. B(i) of IB)
that are ‘0’ mean that there are no relation (dynamical
interaction) between the state xit+1 at time t+ 1 and the
state xjt at time t (resp. the state xit+1 at time t+ 1 and
the input mt at time t). The entries that are ‘1’ mean that
there is a relation. As a simple example, let us consider
again the LPV system with the setting

Aρ(t) =

 a 0 1
ρ1(t) ρ2(t) 0
a 1 1

 , B =

1
0
0

where a is a constant element in F, ρ1(t) and ρ2(t) are
varying parameters in F. The dynamical matrix and the
input matrix IA and IB of the corresponding structured
linear system read:

IA =

1 0 1
1 1 0
1 1 1

 , IB =

1
0
0

 .

As a consequence, if the structural linear system (22)
derived from (12) is flat, the flatness will hold for any
ρ(t) or equivalently any nonlinearity ϕi (any S-box will be
admissible). Hence, the challenge is to define a methodology
to construct flat linear structural systems. It is the purpose
of the graph-based approach provided in [20] which follows
the steps recalled in Appendix B. Roughly speaking, given
a triplet (n, r, na) with n the dimension of the state, r the
delay and na the number of non-zero entries of the matrix
A, a digraph G(ΣΛ) is constructed according to given rules
and the matrices IA and IB are derived.

The triplet (n, r, na), the number of non-linear functions
ϕi and their locations in the matrix IA determine a
family of flat LPV-based SSSC. Next subsection aims at

5

summarizing the steps needed for the design of such a
family. Then, a particular instantiation, leading to the
SSSC called Stanislas, is given in next section.

1) Summary for the construction of SSSC from a flat
LPV-based automaton: Choose a triplet (n, r, na) with n
the dimension of the state, r the delay and na the number
of non-zero entries of the matrix A.

Step S1: Choose a component xit on which the plaintext
symbol mt is added. It follows that B = (0 . . . 1 0 . . . 0)t
(the entries 1 is located at column i).

Step S2: Choose a component xit (i ∈ {1, . . . , n})
as the desired flat output yt = xit. It follows that
C = (0 · · · 0 1 0 . . . 0) (the only entry 1 is located at
the i-th column of C). It can be shown that for the special
case when B = (1 0 . . . 0), i must be equal to r for yt = xit
to be a flat output.

Step S3: Construct the corresponding digraph G(ΣΛ)
according to Step 1-5 given in Appendix B and derive the
matrices IA and IB of the structured linear system ΣΛ.

Step S4: Replace some of the non-zero entries of IA
by a nonlinear function ρi(t) = ϕi(ct, ct−1, · · · , ct−s) to
construct the matrix Aρ(t) of (12) and set B = IB . Not all
‘1’ entries of IA must be assigned to a non-linear function.
Some of them can be merely constant. The choice must
obey a trade-off between complexity of the architecture
and security (a matter discussed in next section). Since
the construction ensures structural flatness, any choice will
preserve the self-synchronization property.

Step S5: Complete the design by deriving the equations
of Proposition 1. In particular, calculate the matrix (17)
governing the state transition function of the automata
(16) ensuring the deciphering.

Example: Consider the triplet (n = 2, r = 2, na = 5).
Choose

B =
(

1
0

)
, C = (0 1).

The particular setting of the matrix C means that the
component x2

t of the state vector of the LPV system (12)
is the desired flat output.
For na = 5, Steps 1-5 given in Appendix B give

IA =
(

1 1
1 1

)
, IB =

(
1
0

)
. (23)

Let us keep constant and equal to 1 the first three entries
of A and let the fourth entry be a nonlinear function. It is
denoted by ρ1(t). This finally leads to the following matrix
Aρ(t):

Aρ(t) =
(

1 1
1 ρ1(t)

)
.

Calculate Pρ(t:t+2) = Aρ(t)−BCAρ(t+1)Aρ(t). One obtains

Pρ(t:t+2) =
(
−ρ1(t+1) −ρ1(t)ρ1(t+1)

1 ρ1(t)

)
.

Next sections are devoted to the specifications, design
rationale and security analysis of a complete SSSC based
on flat LPV dynamical systems as described above. The
cipher is called Stanislas for Secure Transmission Algorithm

with Nontriangular Iterative Structure Looking After Self-
synchronization.

III. Specification of the flat LPV-based SSSC
Stanislas

Stanislas operates over the 16 elements of the finite field
F16 defined as: F16 = F2[X]/(X4 + X + 1), the addition
being the componentwise exclusive or, simply denoted +,
and the multiplication, denoted by ·, being the polynomial
multiplication modulo the primitive polynomial X4 +X+1.

A. Equations of Stanislas
The internal state xt ∈ F40

16 of the cipher consists in
a vector of dimension n = 40 with 4-bit components
considered as elements in F16. The input mt and the output
ct of the ciphering function are 4-bit respective elements in
F16. See Fig. 1 for a graphical representation of Stanislas.

1) Ciphering equations: The ciphering equation defines
the next internal state xt+1 ∈ F40

16 and the cipher output
ct ∈ F16. Note also that all elements that compose the
matrix Aρ(t) and the vectors B and C are elements of F16.
The ciphering equation obeys, for t ≥ 0,

cipher:

{
xt+1 = Aρ(t)xt +Bmt

ct+1 = Cxt+1
(24)

where B is the column vector equal to B =
(1F16 , 0F16 , . . . , 0F16)T and C is the row vector equal to
C = (0F16 , 0F16 , 1F16 , 0F16 , . . . , 0F16) with the 1F16 compo-
nent located at column r = 3. In other words, the only
non-zero component of C which equals 1F16 is the third
component. Hence, the ciphertext symbol consists in the
third component of the internal state. Let us note that in
general, the ciphertext obeys Equation (13). Hence, the
ciphertext results from a linear combination of the state
vector components. Here, we propose a construction for
which the linear combination reduces to the selection of one
component. To guarantee a self-synchronization property
(otherwise stated, to ensure Equation (20)), the component
that is selected must coincide with r, the delay of the
system. This is why here, r = 3.

The matrix Aρ(t) is a 40× 40 dimensional matrix (see
Fig. 2 of Appendix). The entries aij of Aρ(t) are either 0
of F16, or 1 of F16 or a nonlinear function of ct. Among
them, na = 115 entries are non-zero coefficients and L = 80
entries correspond to nonlinear functions ϕi (i = 1, . . . , 80).
Each function ϕi depends on the current ciphertext symbol
ct (s = 0 in Equation (21)) and on a subkey SKi of K.
This subkey SKi thus defines the corresponding function
ϕi which depends on only one ciphertext symbol ct as
shown on Fig. 1.

ϕi : F16 → F16
ct 7→ S(ct ⊕ SKi)

(25)

where the subkey SKi is a 4-bit word derived from the
secret key K as described in the Key Schedule of subsection
III-A3 detailed further on. The function S is the bijective S-
Box extracted from Piccolo [21]. It is defined on 4-bit words

6

by Table I. The entries aij according to their location (row
i, column j for i, j ∈ {1, . . . , 40}) are given in Appendix A
in a symbolic manner. In the symbolic representation of
Aρ(t), denoted AS , the functions ϕi (i = 1, . . . , 80) are
assigned to the entries of S. Thus, the first line of the Fig. 1
corresponds to the first row of the matrix AS applied to the
internal state xt to produce the corresponding coefficient
of the internal state xt+1 (combined with mt to produce
ct+1).

TABLE I
S-box in hexadecimal notation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) E 4 B 2 3 8 0 9 1 A 7 F 6 C 5 D

In other words, taking into account the particular
structure of the matrices B and C with only one non-zero
coefficient, the ciphering process is governed by:

x1
t+1 =

∑n
j=1 a1jx

j
t +mt

xit+1 =
∑n
j=1 aijx

j
t , i = 2, · · · , n

ct+1 = Cxt+1 = x3
t+1

(26)

2) Deciphering equations: The deciphering is governed
by two equations defined, for t ≥ 0, by

decipher:

{
x̂t+1 = Pρ(t:t+r)x̂t +BT −1ct+r
m̂t+r = T −1(ct+r − C

∏t
l=t+r−1Aρ(l)x̂t)

(27)
where the 40 × 40-dimensional matrix Pρ(t:t+r) over F16
verifies Pρ(t:t+r) = Aρ(t)−BT −1C

∏t
l=t+r−1Aρ(l) and T =

C
∏t+1
l=t+r−1Aρ(l)B.

Otherwise stated, the deciphering consists of two equa-
tions. The first one achieves the computation of the next
internal state x̂t+1 from the current state x̂t and the delayed
ciphertext ct+r. The second equation ensures the recovery
of the plaintext symbol mt. The self-synchronization
between the internal states xt and x̂t of the cipher and
the decipher automata and thus a proper decryption are
guaranteed, by construction, after a finite transient time.

Let X[i] denotes the i-th row of a matrix X. Taking into
account the particular structure of the matrices A, B and
C, the delay r = 3, and noticing that T equals one, the
deciphering process is governed by:

x̂1
t+1 =

(
Pρ(t:t+3)[1] · x̂t

)
+ ct+3

x̂it+1 =
(
Pρ(t:t+3)[i] · x̂t

)
i = 2, · · · , 40

m̂t+3 =
(
Aρ(t+2)Aρ(t+1)Aρ(t)

)
[3] · x̂t + ct+3

(28)

where
Pρ(t:t+3)[1] = Aρ(t)[1]−

(
Aρ(t+2)Aρ(t+1)Aρ(t)

)
[3]

Pρ(t:t+3)[i] = Aρ(t)[i], 2 ≤ i ≤ n.
(29)

3) Key Schedule: The matrix A consists of na = 115
non-zero entries, and among them, L = 80 are functions
ϕi depending on the subkey SKi. Thus, the Key Schedule
process aims at generating 80 subkeys of 4-bit length:
SK1, · · · , SK80 from the 80-bit master key K arranged
as 20 words K1, . . . ,K20 of 4-bit length. To do so, the
ciphering equations (26) with mt = 0 are used. During this
process, the parameters SKi involved in the functions ϕi

(see Equation (25)) are set to zero. The internal state
x0 is initialized by duplicating the master key K as
(x1

0 · · ·x20
0) = (K1 · · ·K20) and (x21

0 · · ·x40
0) = (K1 · · ·K20).

Then, the initial internal state x0 is updated ten times by
using equations (26) with mt = 0 for t = 0, . . . , 9.

After those ten iterations, the ten subkeys
SK1, . . . , SK10 are respectively initialized with the
following components of the internal state x10: x1

10, x2
10,

x7
10, x10

10, x17
10, x18

10, x22
10, x26

10, x28
10, x34

10. This process is
repeated 7 more times to initialize the other subkeys
SK10i+1, . . . , SK10i+10, for i = 0, . . . , 7.

B. Ciphering Process
The plaintext consists of ` elements of F16: m =

m0 · · ·m`−1. The initial state x0 is first initialized with
40 random elements of F16. These initial values are kept
secret and are not transmitted to the decipher even if it is
possible to recover the secret key. The way those elements
are randomly picked is out of the scope of this paper. Only
consider that you have a source of randomness. x0 could
be considered as a secret nonce.

Then randomly pick n−1 = 39 elements m−39, · · · ,m−1
of F16 as the synchronization sequence which is placed
before the plaintext. It is recalled that at most n = 40
iterations are needed for the self-synchronization to be
achieved.

Then, because of the parameter value r = 3 that induces
a delay, randomly pick r − 1 = 3 − 1 = 2 more elements
m`,m`+1 of F16 that will be placed at the end of the
plaintext sequence m to process the two last plaintext
symbols. Finally, the sequence that must feed the cipher is
m? = m−39, . . . ,m0, . . . ,m`,m`+1.

The resulting ciphertext consists of the sequence
c−39, . . . , c`+1 of (`+ 41) symbols in F16, computed with
the ciphering Equations (26) using Matrix AS given in
Appendix A for t in −39, · · · , `+ 1:

x1
t+1 = S(x20

t ⊕ SK0)⊕ S(x26
t ⊕ SK1)

⊕S(x29
t ⊕ SK2)⊕ S(x40

t ⊕ SK3)⊕mt

x2
t+1 = x1

t ⊕ S(x2
t ⊕ SK4)⊕ S(x31

t ⊕ SK5)
⊕S(x35

t ⊕ SK6)
x3
t+1 = x2

t ⊕ S(x3
t ⊕ SK7)

x4
t+1 = S(x2

t ⊕ SK8)⊕ S(x3
t ⊕ SK9)

...
ct+1 = x3

t+1

Those equations are the ones given in Fig. 1 corresponding
with the coefficients of the Matrix AS .

Note that the Matrix AS given in Appendix A could
be seen as one round of a block cipher applied on a state
with 40 many 4-bit words where after each round the 4-
bit word x3 is outputted whereas the 4-bit word x0 is
completely updated by other 4-bit words. At each clock,
each 4-bit word crosses at least one S-box, except the 4-bit
word x1 that could be considered as a temporary variable
(as it receives the 4-bit message mt). Note also that the
updated rule for most of the variables xi (5 ≤ i ≤ 40)
could be written as xit+1 = S(xi−1

t ⊕ SKk) ⊕ f(xi−2
t) or

7

S(xi−1
t ⊕SKk)⊕f(xi−2

t)⊕S(xjt ⊕SKk′) for given j, k and
k′ and where f is the identity or the S-box S. It could be
seen as a generalization of the so-called L-scheme with a
circular permutation used in the block cipher MISTY1 with
balanced inputs/outputs. The complete ciphering process
of Stanislas is illustrated on Fig. 1.

C. Deciphering Process
The decipher receives the cryptogram consisting of `+

41 symbols c−39, . . . , c`+1 in F16. The internal state x̂0 is
initialized to an arbitrary value, for example the zero value.

Then, the deciphering Equations (28)-(29) are applied
to recover a ` + 41-length message m̂ = m̂−41, . . . m̂`−1.
The plaintext sequence is recovered as the last ` symbols
m = m̂0 . . . m̂`−1.

Remark 2: It could be surprising that a part of the
ciphering process directly depends on a secret nonce (i.e.
x0). Instead, we could imagine that an 80-bit IV is used
to generate the first value x0 adding an IV schedule to the
Key Schedule process. First, generate the subkeys using
the Key Schedule, then initialize the internal state with the
concatenation of the IV and of the key. Then, apply again
the Key Schedule process (but including the generated
subkeys SKi in the S-boxes) to initialize the internal state
x0. But, note that in this case, the particular property
that the internal states (that must be kept secret) of the
ciphering part and of the deciphering part are not required
to be equal is lost. Indeed, in this case where an IV is used,
we will suppose that the internal state will be computed
in the same way in both sides.

The matrix A consists of na = 115 non-zero entries,
and among them, L = 80 are functions ϕi depending on
the subkey SKi. Thus, the Key Schedule process aims at
generating 80 subkeys of 4-bit length: SK1, · · · , SK80 from
the 80-bit master key K arranged as 20 words K1, . . . ,K20
of 4-bit length. To do so, the ciphering equations (26) with
mt = 0 are used. During this process, the parameters
SKi involved in the functions ϕi (see Equation (25))
are set to zero. The internal state x0 is initialized by
duplicating the master key K as (x1

0 · · ·x20
0) = (K1 · · ·K20)

and (x21
0 · · ·x40

0) = (K1 · · ·K20). Then, the initial internal
state x0 is updated ten times by using equations (26) with
mt = 0 for t = 0, . . . , 9.

IV. Design Rationale and Security Analysis
In this section, we motivate the choices of the field on

which the cryptosystem operates, the dimension n of the
internal state, the delay r and the structure of the matrix
A. Most of the choices rest on security criteria, other ones
take into account practical considerations, regarding in
particular the hardware implementation issues.

A. Design Rationale
a) Field on which the cryptosystem operates: Galois

field GF (16): Any quantities mt, ct, components of xt and
x̂t and non-linear functions ϕi (S-boxes) inputs are 4-bit
data. It is motivated by the fact that the cryptosystem is

intended to be implemented on a digital equipment. Hence,
field extensions and so, power of two are required. On the
other hand, 8-bit would be too heavy for an embedded
algorithm. In particular, S-boxes would involve too many
logic gates.

b) Dimension n: 40: As the internal state components
are 4-bit words, a dimension n = 40 provides an internal
state of 160 bits and thus a security level of 80 bits. Indeed,
to prevent time-memory trade-off attack [22] (an attack
which is a trade-off between exhaustive search and table
look-up), the internal state must be two times longer than
the key length which defines the security level. This level
is compatible with a real-world application.

c) Delay r: 3: The more the delay, the more the
algebraic degree of the entries of Pρ(t:t+r), recalling that
Pρ(t:t+r) involves the product of r matrices (see (29)). Thus,
for a good resistance against an algebraic attack ([23]), the
algebraic degree should be as large as possible. On the other
hand, the more the delay, the more the complexity of im-
plementation and the less the computational performances.
The delay r = 3 results from a trade-off between security
with respect to algebraic attacks (to increase the overall
algebraic degree) and ease of implementation (especially
the implementation of the P deciphering matrix which
involves several S-box multiplications (see Equation (17)
in the general case and (29) for Stanislas)).

d) Structure of the matrices A and P : We recall that
the matrix A (and thus P from the computation (29)) is
derived from the construction of a digraph (see Appendix
B) from which an adjacency matrix IA is extracted. More
precisely, the adjacency matrix IA determines the entries
of Aρ(t) that are zero and the others that are possibly
non-zero. The number na of edges in the digraph G(ΣΛ)
corresponds to the number of non-zero entries of IA. Hence,
the number na also determines the number of non-zero
entries of the state transition matrix P . Beyond the number
of non-zero entries, their location (row and column) must
also be chosen. Finally, it must be decided whether a non-
zero entry will be 1 or will correspond to an S-box. All those
issues have been addressed by considering several criteria
regarding the security, in particular the good resistance
to classical attacks and the good diffusion delay, while
satisfying a trade-off with respect to the computational
complexity for the sake of implementation. Let us introduce
symbolic representations of Aρ(t) and Pρ(t) denoted by AS
and PS where the coefficients of AS and PS belong to
Z[S], S representing any non-linear function. The following
considerations on AS and PS can be made.

Diffusion Delay and Depth. The diffusion delay and
the depth are properties related to the consideration of
the powers ApS and of P pS as p, a natural integer, increases.
Indeed, the power of matrices results from the successive
iterations of the ciphering and the deciphering process.
Let p denotes the power of a matrix Z ∈ Mn(GF (16)).
The diffusion delay, introduced in [14], is the smallest
value, denoted by d0, of p such that Zp does not have
any zero coefficient. In other words, it is the smallest value
of p such that each element of the initial internal state x0

8

x1
t

x2
t

x3
t

...

x38
t

x39
t

x40
t

· · · ϕ0 ϕ1 · · · ϕ2 · · · ϕ3

...
...

· · · · · · ϕ4 ϕ5 · · · ϕ6 · · ·

S(x20
t ⊕ SK0)⊕ S(x26

t ⊕ SK1)⊕ S(x29
t ⊕ SK2)⊕ S(x40

t ⊕ SK3)

x1
t ⊕ S(x2

t ⊕ SK4)⊕ S(x31
t ⊕ SK5)⊕ S(x35

t ⊕ SK6)

x36
t ⊕ S(x27

t ⊕ SK74)⊕ S(x37
t ⊕ SK75)

x37
t ⊕ S(x10

t ⊕ SK76)⊕ S(x38
t ⊕ SK77)

x38
t ⊕ S(x39

t ⊕ SK78)⊕ S(x8
t ⊕ SK79)

· · · · · · · · · ϕ7 · · · · · ·
x2
t ⊕ S(x3

t ⊕ SK7)

· · · ϕ74 · · · ϕ75 · · · · · ·

· · · · · · ϕ76 · · · ϕ77 · · · · · ·

· · · · · · · · · ϕ78 · · · ϕ79 · · ·

AS · xt

x3
t+1

x1
t+1

x2
t+1

...

x38
t+1

x39
t+1

x40
t+1

ct+1
ciphertext

· · ·· · ·· · ·c`+2c−39, · · · , c`+1

synchronisation

mt (plaintext)

ct+1

Fig. 1. The complete ciphering process of Stanislas with ϕi(xj
t) = S(xj

t ⊕ SKi). xi
t and xi

t+1 are the coefficients of the internal state at
time t and time t + 1. mt represents a plaintext symbol (4 bits), cj the ciphertext symbols (4 bits) where c−39, · · · , c`+2 are required for
synchronisation. The equations of the lines are derived from the coefficients of the rows of the Matrix AS .

has influenced every element of xt for t ≥ d0. The depth,
introduced in [24], is the smallest value, denoted by d1, of
p such that any entry of Zp are polynomials of degree at
least 1. We are looking for the smallest values of d0 and
d1.

Algebraic Degree. Considering the matrix resulting
from successive powers of AS and PS , we are first interested
in ensuring that at least one entry has the largest algebraic
degree. To this end, we must add a cycle on the r-th vertex
of the digraph G(ΣΛ), which equivalently means that the
entry of AS and PS located at row r and column r must be
an S-box. Furthermore, the evolution of this quantity, after
successive iterations, must meet an ideal shape: it must
increase by one at each iteration, must remain constant
and equal to its maximum value as long as possible and
finally must drop down to zero (let us recall that after 40
iterations, due to (20), the product reaches exactly zero).

Full-Rank Matrix. The fact that AS is a full-rank
matrix is a necessary condition to ensure a full diffusion
of the internal state and to maximize the dependency
between the involved terms at time t and the involved
terms at time t+1. Moreover, this condition guarantees that
the encryption process does not collapse. By construction
(see Appendix B) to ensure flatness, every element of the
subdiagonal of IA from the r-th one is 1. Hence, for AS to
be full-rank, each column and each row must contain at
least one non-zero element. And yet, by construction, only
the r− 1 first elements of the last column can be non-zero.
Hence, one of them must be non-zero. From the digraph
point of view, it means that at least one of the r − 1 first
vertices must be connected to the last vertex.

The symbolic matrix AS which has been finally selected
is given in Appendix A. It has been obtained after

700000 random runs performed under the aforementioned
constraints: best diffusion delay and depth, algebraic degree
(especially increase by 1 at each iteration), full-rank matrix.
Several matrices correspond to the best choices (we add a
sum indicator without weighing) and we finally chose the
one with the best implementations for AS and for PS . The
symbolic matrix PS can be directly obtained by considering
Equations (29). The matrix AS involves na = 120 non-zero
entries and its number of S-boxes is L = 80. The matrix
extracted from AS and PS by removing the first r rows and
columns have a special feature. The lower subdiagonal is
full of coefficients S (corresponding to S-boxes and denoted
SB in the symbolic representation) and the subsubdiagonal
just above is full of 1. Thus, each line has at least one
S-box to ensure that the internal state xt is updated in
a non-linear way: this corresponds to a non-linear shift
register.

The corresponding diffusion delay, d0 = 7, could be
considered as a good diffusion delay with regard to the
synchronization delay that equals 40 (the system dimen-
sion). Indeed, the worst diffusion delay is equal to 40 and
the best diffusion delay of 1 could only be reached with a
matrix full of non-zero coefficients. Thus, we consider that
a diffusion delay of 7 is a sufficiently good compromise
between the best diffusion delay and a reasonable number
of non-zero coefficients.

Let us notice that the dimension n of the system is
the upper bound of the diffusion delay. Indeed, due to
(20), the product reaches exactly zero in GF (16) since the
synchronization is achieved after at most 40 iterations. The
depth is d1 = 7 and is the best that we manage to achieve.

e) S-box: Various classifications of 4-bit S-boxes exist
in the literature [25], [26], [27]. For the sake of hardware

9

optimization, the same S-box has been used to define
the L = 80 nonlinear functions ϕi. Two kinds of criteria
have been considered: theoretical and practical. On one
hand, we have selected S-boxes to satisfy the maximum
differential probability and the maximum (absolute) linear
bias 2−2, the algebraic degree 3, and no fixed-point.
Four S-boxes that satisfy those criteria and that have
simple algebraic expressions (i.e. a minimal number of
non-linear transformations) have been selected, each one
corresponding respectively to the four classes proposed in
[27].

From an implementation point of view, it turns out that
the S-box depicted in Table I induces the smallest gate
count. It is the Piccolo S-box ([21]). The area is around
23 Gate Equivalents (GEs)1. It involves four NOR gates,
three XOR gates and one XNOR gate. Let us notice that
the masking method can be applied using only three shares,
making this S-box suitable for efficient threshold (i.e. side-
channel protected) implementations.

f) Key Schedule: The Key Schedule has been chosen
to reuse existing circuit while sufficiently mixing together
the key words. To do so, we use the already implemented
matrix A by applying it a sufficient number of times when
looking at the diffusion degree and at the induced algebraic
degree. The extracted 4-bit words of the internal state xt -
at positions 1, 2, 7, 10, 17, 18, 22, 26, 28, 34 - have been
chosen to be among the ones that depend of the maximum
number of other elements of xt to ensure to maximize the
diffusion effect of the initial state x0.

From a theoretical point of view, if we consider that each
S-box behaves as a random function (i.e. it has a behavior
sufficiently near the one of a true random function) and
using the direct extension of Lemma 9 and Theorem 7 of
[28], we could say, that after d0 + 2 of the matrix A on the
input x0, the applied transformation behaves as a random
function. In other words, the operations done to fulfill the
subkey words behaves as a random function.

B. Security Analysis
The following section focuses on the security of Stanislas

against known attacks. We claim a 80-bit security level
which corresponds to the key length (we could not have a
security level greater than the key length). Moreover, this
security level is also achieved regarding the length of the
main register: 160 bits. Indeed, the Guess-and-Determine
attacks described in [22] imply to double the length of
the used register compared to the key length to achieve
a security level corresponding to the key length. Thus,
we try to derive security bounds for all known attacks
against Stanislas and we found no attacks that work with a
complexity smaller than 280 operations which corresponds
with our security claim.

Moreover, it has been proven in [29] that the canonical
form of an SSSC is secure against Chosen Plaintext Attacks
(IND-CPA secure) but not against Chosen Ciphertext
Attacks (IND-CCA security). We do not claim any security

1Section V describes the meaning of GE metric.

result in this last model. Moreover, we suppose that the
attacker has no access to the key and to the initial value
of the internal state x0. To prevent collision search attack,
we limit the size of each plaintext to 264 4-bit words.

First, it seems very difficult to analyze the security of
Stanislas in its true settings (i.e. the 160-bit internal state
x0 is a secret nonce). In those settings, we could only say
that:
• the time-memory-data trade-off attacks described in

[30], [31], [22] apply when the internal state is smaller
than two times the key length. This is why we choose
the length of the internal state to be twice the key
length to prevent this kind of attacks.

• Guess-and-Determine Attacks [22] consist in guessing
a part of the state to further determine the remaining
part of the state. Thus, at time t, suppose that we
know x2

t , x3
t and of course, ct. Thus, we could suppose

that we observe n consecutive outputs from ct to ct+n.
Thus, how much does it cost to recover the induced
subkey SKi? First, from the equation x3

t+1 = x2
t ⊕

S(x3
t ⊕ SK7), we could directly compute SK7. Thus,

we could derive the successive value of x2
t from t to n.

Thus, from x2
t we derive non-linear equations where

the unknowns are x1
t , x31

t , x35
t , SK5, SK4 and SK6

and the known terms are x2
t to x2

t+n. Thus, as the
Algebraic Normal Form (ANF) of the S-box has 2
equations with 4 terms, 1 equation with 9 terms and
1 equation with 7 terms, each new x2

t will induce a
system of 4× 3× (n+ 1) + 3× 4 = 12n+ 24 unknown
binary variables with 4 equations with in total 24
non-linear terms. Thus, we could not solve the system
without guessing a part of it whatever the n value.
Even considering that we guess a part of the system,
the combinatorial explosion seems clear because each
value of the internal state depend on at least one other
value. Thus, we conjecture here that Stanislas is safe
against this type of attacks since, even if a part of the
internal state is guessed, each 4-bit word of this state
is updated through a XOR with a 4-bit word of subkey
and an S-box. Moreover, since the diffusion delay of
AS is d0 = 7, this leads to guess after 7 outputs all
the key. Thus, guessing a part of the state allows to
guess a part of the key which, in then, amounts to a
guess-and-determine attack with a complexity greater
than the key exhaustive search.

Thus, instead, when looking at classical attacks, we will
use the model described in Remark 2 where the initial
state is derived in its first components after 20 iterations
of the matrix AS applied on the concatenation of an IV
and of the master key K and in its last components after
14 more iterations. Those settings could be considered as
a degrading mode of the original Stanislas specifications.
Thus considering that the attacker has full access to the IV,
we obtain the following bounds against classical attacks.

Differential / Linear Cryptanalysis: we compute
the lower bounds on the minimal number of active S-boxes
for the computation of the internal state with Remark 2.

10

To do so, we implement the model of Remark 2 using
Constraint Programming to explore all the possible paths in
the induced graph. Then, we obtain that, for the differential
case, after 7 iterations, a minimal number of 38 S-boxes has
been crossed, after 10 iterations, 46, after 14 iterations, 65.
As the differential probability of the chosen S-box is equal
to 2−2, we could guarantee that the 80-bit key exhaustive
search is less expensive than passing through more than
40 S-boxes, which is the case after 10 iterations of the AS
matrix. In the same way, for the linear case, we obtain after
7 iterations, 35 active S-boxes, after 10 iterations, 41 and
after 14 iterations, 59. Thus, for the same reason, after 10
iterations, a 80-bit key exhaustive search is more efficient.

Algebraic Attacks: This kind of attacks [23] is possible
when the overall degree of the induced system of equations
does not sufficiently increase at each clock. Especially, if
the overall degree d in each of the n unknown variables
(the key variables for example) of the system is such that
(nd)2.5 is lower than the security bounds, it means that it is
faster to solve the induced system by Gaussian elimination
(considering that each new monomial is a new unknown
variable) than trying all the keys of the system. Thus, we
want to prevent this attack from happening as described
below. The algebraic degree of each S-box component is the
best one: equal to 3. Thus, each passing through an S-box
increases the degree in the equations describing the internal
state and in the equations describing the key. Even if the
SKi linearly depends on the master key bits K1, · · · ,K80
(there are 80 key bits that are unknown), if we write the
number of variables after crossing the first S-box, we have
(80)3 monomials depending on the unknown key bits, after
the second pass we obtain (80)6 monomials also depending
on the unkonwn key bits and so on. Thus, if we apply those
estimations using the bounds on the number of active S-
boxes of the differential/linear case, after 10 iterations,
we have 46 active S-boxes, which means that the number
of unknowns (considering that each new monomial is a
new unknown) is lower bounded after 10 iterations by
(80)3×46 ≈ 2872,16 where 80 are the unknowns coming from
the master key, 3 is the algebraic degree of the S-box and
46 is the number of crossed S-boxes. Thus, we conjecture
that the complexity of the best algebraic attack is greater
than the 80-bit key exhaustive search.

Cube Attacks: As established in [32], a cipher is vulner-
able to cube attacks if an output bit can be represented as
a sufficiently low degree polynomial over GF (2) of key and
input bits. It works by summing an output bit value for all
possible values of a subset of public input bits, chosen such
that the resulting sum is a linear combination of secret
bits. Repeated application of this technique gives a set
of linear relations between secret bits that can be solved
to discover these bits. In [33], the authors analyzed this
kind of attacks on the block cipher Piccolo, especially its
S-box. They stated that after 8 rounds, no relation with 63
input bits could be found. The minimal number of S-boxes
crossed for 8 Piccolo rounds is 58 whereas in our case, it
is 46 after 10 iterations. So we conjecture that we cross a
sufficient number of S-boxes after few iterations to prevent

having low degree relations between secret key bits and
public input bits.

In summary, we conjecture that most of the usual attacks
which apply in the stream cipher context have a complexity
greater than the exhaustive key search for Stanislas.

V. Hardware Performance and Implementation
Aspects

We give hereafter the implementation results of a
straightforward implementation of Stanislas. It produces
one 4-bit word of ciphertext per clock cycle. Subkeys
are computed in the initialization step using the Key
Schedule and stored in dedicated registers, before the
cipher state processing. The same material is used for
the cipher state and the Key Schedule processes. The
hardware implementation of Stanislas is not an optimized
version targeting any specific performance. The main area
occupation comes from the matrix update as it carries
big registers during all the calculations. Those registers
are the internal state which are mixed with the subkeys
either with binary addition or multiplication. This means
updating a 40× 4 bits register all along the matrix update.
During ciphering process, the matrix update is solely made
of S-boxes and XOR of 4-bit words. The lowest line of
the matrix in terms of area occupation is made of 1 S-
box and 2 additionnal XORs, the biggest of 4 S-boxes
and 8 additional XORs. The deciphering process implies
adding 23 multiplications, 28 S-boxes and 39 XORs to the
previous total which makes deciphering heavier in terms
of area occupation. The matrix is implemented line by
line, calculated straightfowardly following the equations
as depicted in Fig. 1. The S-boxes are implemented in a
Look-Up-Table (LUT) way, so we let the compiler do its
own optimizations. Our Stanislas implementation combines
both the encryption and decryption process in order to ease
comparisons with other (synchronous or self-synchronizing)
stream ciphers.

We implemented Stanislas in VHDL and we provide in
Table II FPGA hardware implementations and performance
comparisons with synchronous SCs Trivium [17] and
Grain [18], final members of the eSTREAM portfolio,
another SSSC Moustique and the AES-based SSSC CFB1-
AES128 as defined in NIST SP 800-38a [12]. The chosen
FPGA platform for our benchmark is the Xilinx Spartan-6
XC6SLX75T, package FGG676. High effort of the Xilinx
ISE Design Suite has been put on area reduction. Post-
place-and-route results are provided.

To get Trivium, Grain, Moustique and CFB1-AES128
implementation results, we have designed our own VHDL
straightforward reference implementations, without further
optimization in mind. For this latter, we have implemented
the potential S-boxes as LUTs, to be consistent with the
S-boxes LUT implementations of Stanislas.

At first sight, we can check that some well-known
properties are visible in the results. For example, Trivium
and Grain are very compact, which can be explained
by their low combinatorial gate counts. Moreover, the
number of initialization cycles needed for Trivium, Grain

11

Area Init. Synchro. Freq. TP
(slices) (cycles) (cycles) (MHz) (Mbps)

Trivium 47 1603 0 191 191
Grain 48 256 0 355 355

Moustique 166 105 105 309 309
CFB1-AES128 745 0 128 73 849

Stanislas 701 66 40 95 380

TABLE II
Xilinx Spartan-6 XC6SLX75T (FPGA) Straightforward

Implementation Results.

and Moustique is consistent with the specifications: e.g.,
Trivium needs a warm-up phase of minimum 1152 steps.
This number is really low for Stanislas where it just consists
in a Key Schedule and it is equal to 0 for CFB1-AES128
where the key is processed on the fly.

Surprisingly, straightforward implementation of Stanislas
provides the best throughput (TP) compared to the other
stream ciphers, even self-synchronizing. The reason is
that one 4-bit word is processed by clock cycle, so the
throughput is given by: 95 × 4 (bits) = 380 Mbps. That
justifies our design choice of processing 4-bit words instead
of individual bits. Compared to the standard approach
CFB1-AES128, the time needed for synchronization is also
shorter, along with a smaller area.

This encouraging result has to be mitigated if we consider
the combined metric TP/Area as shown on Table III. This
latter allows to estimate the cost of optimized parallel
implementations, where many bits can be processed in
parallel, at the expense of additional area.

TP/Area (Mbps/slice)
Trivium 4.06

Grain 7.39
Moustique 1.86

CFB1-AES128 1.13
Stanislas 0.54

TABLE III
Combined Metric TP/Area (Mbps/Slice on Xilinx Spartan-6

XC6SLX75T FPGA).

As we can see, due to its lowest TP/Area value, straight-
forward implementation of Stanislas will suffer from the
comparisons of its competitors’ optimized versions. We can
then estimate, in Table IV, the upper bounds of theoretical
implementation results of all Stanislas competitors when
all of them are unrolled versions which process 4 bits per
clock cycle, as Stanislas.

Area (slices) TP (Mbps)
Trivium 188 764

Grain 192 1420
Moustique 664 1236

CFB4-AES128 2980 3396
Stanislas 701 380

TABLE IV
Theoretical Implementation Results of some (SS)SCs on
Xilinx Spartan-6 XC6SLX75T FPGA for 4-bit Versions

As we can see, CFB4-AES128 mode has a 4-fold through-
put speedup, beating Stanislas proposal with a significant
margin, and it requires only 32 steps for synchronization.
But it implies to occupy a big amount of FPGA slices,
which is not always affordable for some constrained appli-
cations.

Future works will include the study of the cost of side-
channel protected Stanislas implementations.

VI. Conclusion
An instantiation, called Stanislas, of a dedicated Self-

Synchronizing Stream Ciphers (SSSC) has been proposed.
Its main peculiarity comes from the fact that it involves an
automaton with finite input memory using non-triangular
state transition functions. The construction is based on a
general and systematic methodology that uses automata
(called Linear Parameter Varying, LPV) admitting a matrix
representation and a special property called flatness. The
security analysis allows to conjecture that most of the
usual attacks which apply in the stream cipher context
have a complexity greater than the key exhaustive search
for Stanislas. But, Stanislas could not be considered having
a small hardware footprint.

However, when straightforward implementations are
considered, Stanislas provides bigger throughput than the
considered stream ciphers, and its intrinsic synchronization
delay is much smaller than the SSSC Moustique (40 clock
cycles instead of 105) and the standard approach CFB1-
AES128 (40 clock cycles instead of 128).

Moreover, the number of surviving Self-Synchronizing
Stream Ciphers after a phase of public cryptanalysis time
is equal to zero. So, we hope that Stanislas will be the first
one and we encourage the symmetric key cryptographic
community to cryptanalyze it.

References
[1] U. M. Maurer, “New approaches to the design of self-

synchronizing stream ciphers,” in Advances in Cryptology -
EUROCRYPT ’91, ser. Lecture Notes in Computer Science,
vol. 547. Springer, 1991, pp. 458–471.

[2] R. A. Rueppel, Analysis and design of stream ciphers. Springer
Science & Business Media, 2012.

[3] J. Daemen, R. Govaerts, and J. Vandewalle, “On the design of
high speed self-synchronizing stream ciphers,” in Proc. of the
ICCS/ISITA’92 conference, vol. 1, Singapore, November 1992,
pp. 279–283.

[4] P. Hawkes, M. Paddon, G. G. Rose, and W. V. Miriam, “Primi-
tive specification for sss,” e-Stream Project, Tech. Rep., 2004,
available at: http://www.ecrypt.eu.org/stream/ciphers/sss/sss.
pdf.

[5] P. Sarkar, “Hiji-Bij-Bij: A New Stream Cipher with a Self-
Synchronizing Mode of Operation,” 2003.

[6] J. Daemen and P. Kitsos, “The self-synchronizing stream cipher
moustique,” in New Stream Cipher Designs - The eSTREAM
Finalists, ser. Lecture Notes in Computer Science. Springer,
2008, vol. 4986, pp. 210–223.

[7] A. Joux and F. Muller, “Loosening the KNOT,” in Fast Software
Encryption - FSE 2003, ser. Lecture Notes in Computer Science,
vol. 2887. Springer, 2003, pp. 87–99.

[8] ——, “Two attacks against the HBB stream cipher,” in Fast
Software Encryption - FSE 2005, ser. Lecture Notes in Computer
Science, vol. 3557. Springer, 2005, pp. 330–341.

[9] ——, “Chosen-ciphertext attacks against MOSQUITO,” in Fast
Software Encryption - FSE 2006, ser. Lecture Notes in Computer
Science, vol. 4047. Springer, 2006, pp. 390–404.

[10] E. Käsper, V. Rijmen, T. E. Bjørstad, C. Rechberger, M. J. B.
Robshaw, and G. Sekar, “Correlated keystreams in moustique,”
in Progress in Cryptology - AFRICACRYPT 2008, ser. Lecture
Notes in Computer Science, vol. 5023. Springer, 2008, pp.
246–257.

[11] V. Kĺıma, “Cryptanalysis of hiji-bij-bij (HBB),” IACR Cryptol-
ogy ePrint Archive, Report 2005/3, 2005.

[12] M. Dworkin, “Nist special publication 800-38a, recommendation
for block cipher modes of operation-methods and techniques,”
National Institute of Standards and Technology/US Department
of Commerce, 2001. [Online]. Available: https://csrc.nist.gov/
publications/detail/sp/800-38a/final

12

[13] F. Arnault, T. P. Berger, C. Lauradoux, M. Minier, and
B. Pousse, “A new approach for fcsrs,” in Selected Areas in
Cryptography - SAC 2009, ser. Lecture Notes in Computer
Science, vol. 5867. Springer, 2009, pp. 433–448.

[14] F. Arnault, T. P. Berger, M. Minier, and B. Pousse, “Revisiting
lfsrs for cryptographic applications,” IEEE Trans. Information
Theory, vol. 57, no. 12, pp. 8095–8113, 2011.

[15] B. Dravie, P. Guillot, and G. Millérioux, “Design of self-
synchronizing stream ciphers: A new control-theoretical
paradigm,” in IFAC World Congress, (IFAC 2017), Toulouse,
France, July 2017.

[16] J. Daemen and P. Kitsos, “The Self-Synchronizing Stream
Cipher MOSQUITO: eSTREAM Documentation, Version 2,”
eSTREAM, ECRYPT Stream Cipher Project, Report 2005/018,
2005, available online at http://www.ecrypt.eu.org/stream/
p3ciphers/mosquito/mosquito.pdf.

[17] C. D. Cannière and B. Preneel, “Trivium,” in New Stream
Cipher Designs - The eSTREAM Finalists, ser. Lecture Notes
in Computer Science. Springer, 2008, vol. 4986, pp. 244–266.

[18] M. Hell, T. Johansson, A. Maximov, and W. Meier, “The grain
family of stream ciphers,” in New Stream Cipher Designs - The
eSTREAM Finalists, ser. Lecture Notes in Computer Science.
Springer, 2008, vol. 4986, pp. 179–190.

[19] E. Kasper, V. Rijmen, E. Bjorstad, C. Rechberger, M. Rob-
shaw, and G. Sekar, “Correlated Keystreams in MOUSTIQUE,”
ESTREAM Project, Tech. Rep., 2004.

[20] G. Millerioux and T. Boukhobza, “Characterization of flat out-
puts for LPV discrete-time systems: A graph-oriented approach,”
in 54th IEEE Conference on Decision and Control, CDC 2015.
IEEE, 2015, pp. 759–764.

[21] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita,
and T. Shirai, “Piccolo: An ultra-lightweight blockcipher,” in
Cryptographic Hardware and Embedded Systems - CHES 2011,
ser. Lecture Notes in Computer Science, vol. 6917. Springer,
2011, pp. 342–357.

[22] M. E. Hellman, “A cryptanalytic time-memory trade-off,” IEEE
Trans. Information Theory, vol. 26, no. 4, pp. 401–406, 1980.

[23] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient
algorithms for solving overdefined systems of multivariate polyno-
mial equations,” in Advances in Cryptology - EUROCRYPT 2000,
ser. Lecture Notes in Computer Science, vol. 1807. Springer,
2000, pp. 392–407.

[24] T. P. Berger and M. Minier, “Some results using the matrix
methods on impossible, integral and zero-correlation distin-
guishers for feistel-like ciphers,” in Progress in Cryptology -
INDOCRYPT 2015, ser. Lecture Notes in Computer Science,
vol. 9462. Springer, 2015, pp. 180–197.

[25] C. D. Cannière, “Analysis and Design of Symmetric Encryption
Algorithms,” Ph.D. dissertation, Katholieke Universiteit Leuven,
2007.

[26] G. Leander and A. Poschmann, “On the classification of 4 bit
s-boxes,” in Arithmetic of Finite Fields, First International
Workshop, WAIFI 2007, ser. Lecture Notes in Computer Science,
vol. 4547. Springer, 2007, pp. 159–176.

[27] M.-J. O. Saarinen, “Cryptographic Analysis of All 4 x 4 - Bit
S-Boxes,” IACR Cryptology ePrint Archive, Report 2011/218,
2005.

[28] U. M. Maurer, “Indistinguishability of random systems,” in
Advances in Cryptology - EUROCRYPT 2002, ser. Lecture Notes
in Computer Science, vol. 2332. Springer, 2002, pp. 110–132.

[29] B. Dravie, P. Guillot, and G. Millérioux, “Security proof of the
canonical form of self-synchronizing stream ciphers,” Des. Codes
Cryptography, vol. 82, no. 1-2, pp. 377–388, 2017.

[30] S. Babbage, “A Space/Time Trade-Off in Exhaustive Search
Attacks on Stream Ciphers,” in European Convention on Security
and Detection, no. 408. IEEE Conference Publication, 1995.

[31] A. Biryukov and A. Shamir, “Cryptanalytic time/memory/data
tradeoffs for stream ciphers,” in Advances in Cryptology -
ASIACRYPT 2000, ser. Lecture Notes in Computer Science,
vol. 1976. Springer, 2000, pp. 1–13.

[32] I. Dinur and A. Shamir, “Cube attacks on tweakable black box
polynomials,” in Advances in Cryptology - EUROCRYPT 2009,
ser. Lecture Notes in Computer Science, vol. 5479. Springer,
2009, pp. 278–299.

[33] H. Sato, M. Mimura, and H. Tanaka, “Analysis of division
property using milp method for lightweight blockcipher piccolo,”

in 2019 14th Asia Joint Conference on Information Security
(AsiaJCIS), 2019, pp. 48–55.

[34] A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse,
F. Maltey, M. Meulien, M. Mezzarobba, C. Pernet, N. Thiéry
et al., Calcul mathématique avec Sage. available online: https:
//hal.inria.fr/inria-00540485v2/document, 2013.

Julien Francq received the Ph.D. degree
in Computer Science domain in 2009 from
the Université de Montpellier (France). He
is now working in Naval Group company as
a cryptography, data science and hardware
security expert in the Naval Cyber Laboratory.
One of his main research interests is the security
and the efficiency of (hardware/software) im-
plementations of cryptography against (math-
ematical/physical) attacks.

Loic Besson started working in Airbus Cyber-
Security company in 2017. In 2018, he started
his Ph.D. in implementations of symmetric
cryptography primitives in the company Hen-
soldt France.

Paul Huynh has started his Ph.D. at Uni-
versité de Lorraine in 2017. He works on
lightweight cryptography.

Philippe Guillot received the Ph.D. degree
in 1999, from the Université de Caen. He is an
Assistant Professor at Université Paris 8 and
he is interested in symmetric cryptography and
their hardware implementations.

Gilles Millerioux received his Ph.D. from
INSA Toulouse in 1997 and his French Habil-
itation in 2004 from Université Henri Poincaré
- Nancy 1. Between 1998 and 2005 he has
been Associate professor at Université Henri
Poincaré - Nancy 1. Since 2005, he is Profes-
sor at Polytech Nancy and at the Centre de
Recherche en Automatique de Nancy (CRAN).
His main research interest concerns control
theory and its application to cryptography.

Marine Minier received the Ph.D. degree
in 2002, from the Université de Limoges and
the French Habilitation from the Université
de Lyon in 2012. In 2005, she joined the
INSA de Lyon and the CITI Laboratory, as an
Assistant Professor. Since 2016, she is professor
at Université de Lorraine and at the LORIA
Lab. Her research interests include Symmetric
Key Cryptography and Security in WSNs.

13

Appendix A
The Matrix AS

The matrix AS is given in Fig. 2.

Appendix B
Construction of the Matrices of the SSSC

A digraph G(ΣΛ) describing the structured linear system
associated to the state equations (12), is the combination
of a vertex set V and an edge set E . The vertices represent
the states and the input components of ΣΛ while the edges
describe the dynamic relations between these variables. One
has V = X∪{m} where X is the set of state vertices defined
as X =

{
x1, . . . , xn} and m is the input vertex. The edge

set is E = EA ∪ EB, with EA =
{

(xi,xj) |A(i, j) 6= 0
}

and
EB =

{
(m,xi) |B(i) 6= 0

}
. The entries of Aρ(t) correspond

to the weights of the edges in the digraph. For convenience,
we will denote by vj, (j = 0, . . . , n) a vertex of the digraph
G(ΣΛ) regardless of whether it is the input or a state vertex.

Given a triplet (n, r, na) with n the dimension of
the state, r the delay and na the number of non-zero
entries of the matrix A, the construction of the digraph
G(ΣΛ) related to the system ΣΛ involves the following steps.

The system ΣΛ is of dimension n and thus, the digraph
G(ΣΛ) involves n+ 1 vertices. The input is assigned to the
vertex denoted by v0. The other n vertices are denoted by
v1, . . . ,vn. Let vr be the vertex that corresponds to the
flat output vr.

Step 1: For, i = 0, . . . , n− 1, add the edges (vi,vi+1).
There are r edges which connect v0 to vr. Hence, the
delay of the automaton is r.

After Step 1, this line topology corresponds to quite
trivial dynamical systems since it corresponds to state
transition functions in the form of simple shifts. Let us
recall that we aim at designing an automaton possibly
involving state transition functions more general than
T–functions. A shift is a special and trivial T–function.
To this end, the following steps provide a way of adding
edges (vi,vj) while guaranteeing flatness.

Step 2: Add the edges (vr+i,vr+i+1) for i = 1, . . . , n−
r − 1. Step 2 allows vertex vj, j = r + 1, . . . , n to have
a predecessor. Indeed, if not so, the dynamics of the
corresponding vertex vj would reduce to xjk+1 = 0 and
would be clearly useless. The resulting path is a so-called
main directed path and is depicted in Figure 3.

Step 3: Add the edges (vr,vi), i = 1, . . . , n that connect
the vertex vr to any other vertices of the graph (except
the vertex v0 related to the input).

Step 4: For every vertex vi, i = 1, . . . , r − 1, add the
directed edge (vi,vj) for j = 1, . . . , i.

The graph obtained after Step 1-4 is depicted in Figure 4.

Step 5: For every vertex vi, i = r + 1, . . . , n, add the
directed edge (vi,vj) for j = 1, . . . , r and j = i+ 2, . . . , n.

The resulting digraph after completion of Step 1-5 is
depicted in Figure 5.

To sum up, the digraph G(ΣΛ) is parametrized by the
triplet (n, r, na). The number of vertices of the digraph is
equal to n + 1. Indeed, there are n vertices assigned to
the state components and one assigned to the input. The
delay r is the number of edges in the main directed path.
The integer na defines the desired number of edges in the
digraph G(ΣΛ). It must satisfy na ≤ nM , where nM is the
maximal number of edges resulting from the construction
Step 1-5. A simple counting leads to:

nM = n(n+ 1)
2 + r. (30)

During the construction, at each step, we can decide
whether we actually add the edges or not. That introduces
flexibility in the perspective of providing distinct graphs
and thus, distinct SSSC as detailed in Subsection II-C1.

Finally, the matrices IA and IB of the structural system
ΣΛ can be extracted from the adjacency matrix, denoted by
I, associated to the digraph G(ΣΛ). Indeed, the adjacency
matrix I associated to the digraph G(ΣΛ) is the (n+ 1)×
(n+ 1) matrix

I =

0 ItB
0

ItA...
0

 (31)

where ItA and ItB stands respectively for the transpose of
the structured matrices IA and IB. The entries Iij are
defined as follows for 1 ≤ i, j ≤ n

Iij =
{

1 if there exists an edge from vj to vi

0 otherwise. (32)

The adjacency matrix associated to G(ΣΛ), obtained
after completion of Step 1-5, is given by

v0 v1 v2 v3 · · · vr vr+1 · · · vn−1 vn

v0 0 1 0 0 · · · 0 · · · 0 0 0
v1 0 1 1 0 · · · 0 · · · 0 0 0
v2 0 1 1 1 · · · 0 · · · 0 0 0
v3 0 1 1 1 · · · 0 · · · 0 0 0
...

...
...

...
...

. . . 0 0 0 0 0
vr 0 1 1 1 · · · 1 1 1 1 1

vr+1 0 1 1 1 · · · 1 0 1 1 1
...

...
...

...
...

...
...

...
.

...
vn−1 0 1 1 1 · · · 1 0 0 0 1
vn 0 1 1 1 · · · 1 0 0 0 0

The open source software Sagemath [34] has been used to
elaborate the digraph G(ΣΛ) corresponding to the triplet

14

Fig. 2. The Matrix AS .

v0 v1 v2 vr−1 vr vn

Fig. 3. Digraph obtained after completion of Step 1-2. The vertex
vr corresponds to the flat output

v0 v1 v2 vr−1 vr vr+1 vi vn

Fig. 4. Graph obtained after Step 1-4.

v0 v1 v2 vr−1 vr vr+1 vi vn

Fig. 5. Graph obtained after completion of Step 1-5.

(n = 40, r = 3, na = 120). The construction has been
performed on an Intel CORE i7 CPU 2.26 GHz running
Linux Ubuntu 14.04. All experiments ran single-threaded

on the processors. It took 21 ms on the computer to obtain
the digraph G(ΣΛ).

