Julien Francq

Loïc Besson

Paul Huynh

Philippe Guillot
email: philippe.guillot@univ-paris8.fr

Gilles Millerioux
email: gilles.millerioux@univ-lorraine.fr

Marine Minier

Non-Triangular Self-Synchronizing Stream Ciphers

Keywords: Self-Synchronizing Stream Ciphers, automata with finite input memory, flatness, hardware implementations

In this paper, we propose an instantiation, called Stanislas, of a dedicated Self-Synchronizing Stream Cipher (SSSC) involving an automaton with finite input memory using non-triangular state transition functions. Previous existing SSSC are based on automata with shifts or triangular functions (T -functions) as state transition functions. Our algorithm Stanislas admits a matrix representation deduced from a general and systematic methodology called Linear Parameter Varying (LPV). This particular representation comes from the automatic theory and from a special property of dynamical systems called flatness. Hardware implementations and comparisons with some state-of-the-art stream ciphers on Xilinx FPGAs are presented. It turns out that Stanislas provides bigger throughput than the considered stream ciphers (synchronous and self-synchronizing) when straightforward implementations are considered. Moreover, its synchronization delay is much smaller than the SSSC Moustique (40 clock cycles instead of 105) and the standard approach CFB1-AES128 (40 clock cycles instead of 128).

I. Introduction

Self-Synchronizing Stream Ciphers (SSSCs) were patented in 1946. The basic principle of such ciphers is to encrypt every plaintext symbol with a transformation that only involves a fixed number of previous ciphertext symbols. Therefore, every ciphertext symbol is correctly deciphered provided that previous symbols have been properly received. This self-synchronization property has many advantages and is especially relevant to group communications. In this respect, since 1960, specific SSSCs have been designed and are still used to provide bulk encryption (for Hertzian line, RNIS link, etc.) in military applications or governmental radio mobile networks [START_REF] Maurer | New approaches to the design of selfsynchronizing stream ciphers[END_REF], [START_REF] Rueppel | Analysis and design of stream ciphers[END_REF].

The canonical form of the SSSC combines a shift register, which acts as a state register with the ciphertext as input, together with a filtering function that provides the running key stream. The cryptographic complexity of the canonical form of the SSSC lies in the filtering function. In the early 90s, studies have been performed [START_REF] Maurer | New approaches to the design of selfsynchronizing stream ciphers[END_REF], [START_REF] Daemen | On the design of high speed self-synchronizing stream ciphers[END_REF] to propose secure designs of SSSCs. These works have been followed by effective constructions ([START_REF] Hawkes | Primitive specification for sss[END_REF], [START_REF] Sarkar | Hiji-Bij-Bij: A New Stream Cipher with a Self-Synchronizing Mode of Operation[END_REF], [START_REF] Daemen | The self-synchronizing stream cipher moustique[END_REF]). What motivates the present proposal for a new SSSC is that, till now, all of these SSSC schemes have been broken ([START_REF] Joux | Loosening the KNOT[END_REF], [START_REF]Two attacks against the HBB stream cipher[END_REF], [START_REF]Chosen-ciphertext attacks against MOSQUITO[END_REF], [START_REF] Käsper | Correlated keystreams in moustique[END_REF], [START_REF] Klíma | Cryptanalysis of hiji-bij-bij (HBB)[END_REF]). And up to our knowledge, since 10 years, no other proposals of SSSCs has been made. Clearly, SSSCs can be naturally built using a block cipher by applying the Cipher Feedback (CFB) mode. However, the computational cost of CFB is one full block cipher operation per digit. So for single-bit digits, it is n times less efficient than synchronous stream encryption modes such as Output Feedback (OFB) or Counter (CTR) Mode, with n the block length. For example, AES in single-bit CFB mode (as defined as "CFB1-AES128" in NIST SP 800-38a [START_REF] Dworkin | Nist special publication 800-38a[END_REF]) is 128 times less efficient than AES in CTR mode. As a consequence, it seems interesting to propose dedicated SSSCs and consider them as a category of primitives on their own.

The aim of the present paper is to propose a new framework, along with an instantiation called Stanislas, to design SSSCs. The design approach is based on both the special feature of Finite State Machines admitting a matrix representation, called LPV (Linear Parameter Varying) automata and on a property of dynamical systems named flatness coming from control theory. Flatness is interpreted in terms of the structure of the adjacency matrix of a graph associated to the automaton from which self-synchronization can be easily characterized. The matrix representation is thus a generalization of Rational Linear Finite State Machines [START_REF] Arnault | A new approach for fcsrs[END_REF], [START_REF] Arnault | Revisiting lfsrs for cryptographic applications[END_REF]. The use of flatness for the sake of cryptography has been first proposed in [START_REF] Dravie | Design of selfsynchronizing stream ciphers: A new control-theoretical paradigm[END_REF]. It has been shown that flatness characterizes the self-synchronization property. Moreover, the matrix representation allows to design automata which can be more general than T -functions as it was the case over the past years (see [START_REF] Daemen | The Self-Synchronizing Stream Cipher MOSQUITO: eSTREAM Documentation, Version 2[END_REF], [START_REF] Daemen | The self-synchronizing stream cipher moustique[END_REF] as examples). One of the benefits of this approach is that we could introduce nonlinearities with proved properties in the matrix representation, what a shift register does not always permit. Due to this peculiarity, the class of admissible automata to act as SSSCs is thereby enlarged.

In the present paper, a complete cipher, called Stanislas (for Secure Transmission Algorithm with Non triangular Iterative Structure Looking After Self-synchronization) and designed from the LPV framework, is described. The Key Schedule, the design rationale and the security analysis are provided. Next, hardware implementation results on Xilinx FPGA platforms of Stanislas are performed and compared with some state-of-the art competitors: some Synchronous Stream Ciphers coming from eSTREAM portfolio (Trivium [START_REF] Cannière | New Stream Cipher Designs -The eSTREAM Finalists[END_REF] and Grain [START_REF] Hell | The grain family of stream ciphers[END_REF]), one SSSC (Moustique) and the only known feedback mode (the NIST-standardized CFB1-AES128). Interestingly, Stanislas provides the highest throughput on Xilinx Spartan-6 XC6SLX75T FPGAs compared to its stream ciphers and SSSC competitors, implemented in a straightforward manner. Moreover, with the same comparison conditions, its synchronization delay is much smaller than the SSSC Moustique (40 clock cycles instead of 105) and the standard approach CFB1-AES128 (40 clock cycles instead of 128), which provides a decisive advantage for applications when low-latency synchronization is required (e.g., Telecom).

The paper is organized as follows. Section II recalls the theoretical results linking together flatness and SSSC. Section III presents the new SSSC Stanislas. The design rationale and the security analysis are detailed in Section IV. Finally, Section V provides hardware implementation results and comparisons. Section VI concludes this paper.

II. Theoretical Foundations and Flatness

After few generalities on stream ciphers, it is recalled in this section the main results of [START_REF] Dravie | Design of selfsynchronizing stream ciphers: A new control-theoretical paradigm[END_REF] concerning the design of SSSC based on the property of flatness.

A. Generalities on Stream Ciphers

For a stream cipher, it must be given an alphabet A, that is, a finite set of basic elements named symbols. The set A stands in this paragraph as a general notation without any specific alphabet. Typically, A could be composed of 1 or several bits elements. Hereafter, the index t ∈ N will stand for the discrete-time. On the transmitter part, the plaintext (also called information or message) m ∈ M (M is the message space) is a string of plaintext symbols m t ∈ A. Each plaintext symbol is encrypted, by means of an encryption (or ciphering) function e, according to:

c t+r = e(z t+r , m t), (1)
where z t ∈ A is a so-called keystream (or running key) symbol delivered by a keystream generator. The function e is invertible for any prescribed z t . The resulting symbol c t ∈ A is the ciphertext symbol. The integer r ≥ 0 stands for a potential delay between the plaintext m t and the corresponding ciphertext c t+r . This is explained by computational or implementation reasons, see [START_REF] Daemen | The Self-Synchronizing Stream Cipher MOSQUITO: eSTREAM Documentation, Version 2[END_REF] for example. Consequently, for stream ciphers, the way how to encrypt each plaintext symbol changes on each iteration. The resulting ciphertext c ∈ C (C is called the ciphertext space), that is the string of symbols c t , is conveyed to the receiver through a public channel. At the receiver side, the ciphertext c t is deciphered according to a decryption function d which depends on a running key z t ∈ A delivered, similarly to the cipher part, by a keystream generator. The decryption function d obeys the following rule. For any two keystream symbols z t+r , z t+r ∈ A, it holds that

m t+r := d(c t+r , z t+r) = m t whenever z t+r = z t+r . (2)
Equation (2) means that the running keys z t and z t must be synchronized for a proper decryption. The generators delivering the keystreams are parametrized by a secret key denoted by K ∈ K (K is the secret key space). The distinct classes of stream ciphers (synchronous or self-synchronizing) differ each other by the way on how the keystreams are generated and synchronized. Next, we detail the special class of stream ciphers called Self-Synchronizing Stream Ciphers.

B. Keystream Generators for Self-Synchronizing Stream Ciphers

A well-admitted approach to generate the keystreams has been first suggested in [START_REF] Maurer | New approaches to the design of selfsynchronizing stream ciphers[END_REF]. It is based on the use of so-called finite state automata with finite input memory as described below. This is typically the case in the cipher Moustique [START_REF] Kasper | Correlated Keystreams in MOUSTIQUE[END_REF]. At the ciphering side, the automaton delivering the keystream takes the form:

x t+1 = f K (x t , m t), z t+r = h K (x t) (3)
where x t ∈ A is the internal state, f is the next-state transition function parametrized by K ∈ K. As previously stressed, the delay b is introduced to cope with special situations, in particular when the computation of the output (also called filtering) delivered by the function h involves r successive operations processed at time instants t, . . . , t + r. Those operations will be here matrix multiplications as detailed later in Equation [START_REF] Arnault | Revisiting lfsrs for cryptographic applications[END_REF]. Substituting m t by its expression (2) yields an automaton described by

x t+1 = g K (x t , c t+r), z t+r = h K (x t) (4)
If such an automaton has finite input memory, it means that, by iterating (4) a finite number of times, there exists a function K and a finite integer M such that

x t = K (c t+r-1 , . . . , c t+r-M), (5)
and thus,

z t+r = h K (K (c t+r-1 , . . . , c t+r-M)). (6)
Actually, the fact that the keystream symbol can be written in the general form

z t+r = σ K (c t-, . . . , c t-), (7)
with σ K a function involving a finite number of past ciphertexts from time t -to t -(, ∈ Z), is a common feature of the SSSC. Equation (7) is called the canonical equation.

Remark 1:

The benefits of implementing the recursive forms (3) or (4) instead of directly implementing the canonical form [START_REF] Joux | Loosening the KNOT[END_REF] is that we can obtain nonlinear functions σ K of high complexity by implementing simpler nonlinear functions f K or g K . The complexity results from the successive iterations which act as composition operations.

At the deciphering side, the automaton takes the form

x t+1 = g K (x t , c t+r), z t+r = h K (x t) (8)
where x t is the internal state. Similarly to the cipher part, the automaton having a finite input memory, it means that, by iterating Equation (8) a finite number of times, one also obtains xt = K (c t+r-1 , . . . , c t+r-M), and thus,

ẑt+r = h K (K (c t+r-1 , . . . , c t+r-M)).
Hence, it is clear that after a transient time of maximal length equal to M , it holds that, for t ≥ M ,

x t = x t and z t+r = z t+r . (9
)
In other words, the generators synchronize automatically after at most M iterations. Hence, the decryption is automatically and properly achieved after at most M iterations too. No specific synchronizing protocol between the cipher and the decipher is needed. This explains the terminology Self-Synchronizing Stream Ciphers. The integer M is called the synchronization delay.

Hereafter, the considered automata will be assumed to operate on the q elements finite field F = F q where q is a prime power.

C. Flat LPV Automata and SSSC

For the automaton described by (3) (or the equivalent automaton described by (4) after substitution) to get a finite input memory feature (see [START_REF] Sarkar | Hiji-Bij-Bij: A New Stream Cipher with a Self-Synchronizing Mode of Operation[END_REF]), the solutions proposed in the open literature call for state transition functions g K in the form of shifts or more generally T -functions (T for Triangle). It is recalled that T -functions are functions that propagate dependencies in one direction only. Till now, none of the proposed SSSCs has involved non-triangular state transition functions although T -functions are known to suffer from weaknesses [START_REF]Chosen-ciphertext attacks against MOSQUITO[END_REF]. Indeed, T -functions induce a propagation of differential properties which make them easier to cryptanalyse. It is explained by the fact that no systematic methodology for constructing finite automata with finite input memory and involving general nontriangular state transition functions was proposed so far. Actually, in [START_REF] Dravie | Design of selfsynchronizing stream ciphers: A new control-theoretical paradigm[END_REF], a particular class of automata called flat LPV (Linear Parameter-Varying) has been introduced and it has been shown that this class allows to define such an expected systematic methodology. Let us recall what is a flat automaton.

Definition 1: An automaton described by the dynamics f verifying

x t+1 = f (x t , m t) (10)
where x t ∈ F n is the state, m t ∈ F is the input, is said to be flat, if there exists a function

h : F n × F → F c t = h(x t , m t)
such that all system variables can be expressed as a function of c t and a finite number of its backward and forward shifts.

The output c t is called the flat output. Hence, by definition, there exists a function F such that

x t = F c t+t0 , . . . , c t+t1 [START_REF] Klíma | Cryptanalysis of hiji-bij-bij (HBB)[END_REF] where t 0 and t 1 are Z-valued integers. A central remark is that [START_REF] Klíma | Cryptanalysis of hiji-bij-bij (HBB)[END_REF] is nothing but the canonical equation of an SSSC (compare with (5)). As a direct consequence, a flat automaton is equivalent to being an SSSC and thus is central for design perspectives. LPV automata, defined over a field F, are described by the following state space representation:

x t+1 = A ρ(t) x t + Bm t (12
)
x t ∈ F n is the state vector, m t ∈ F is the input. The matrices A ∈ F n×n and B ∈ F n×1 are respectively the dynamical matrix and the input matrix. The output c t is defined as

c t = Cx t (13
)
with C ∈ F 1×n the output matrix. The matrix B is the input matrix and defines the component x i t on which the symbol m t is added. Let us note that m t can be added to several components. Such a system is called Linear Parameter-Varying because it is written with a linear dependency with respect to the state vector. The set of all varying parameters of A are collected on a vector denoted by

ρ(t) = ρ 1 (t), ρ 2 (t), ..., ρ L (t) ∈ F L
where L is the total number of non-zero (possibly varying) entries. Such automata can exhibit nonlinear dynamics. Indeed, the nonlinearity is obtained by defining the varying parameters ρ i (t) as nonlinear functions ϕ i : F s+1 → F of the output c t (or a finite number of shifts)

ρ i (t) = ϕ i (c t , c t-1 , • • • , c t-s
) with s a natural number. Let us notice that the notation ρ i (t) (usual in the literature for LPV systems) is somehow abusive because it does not reflect an explicit dependency with respect to the time t but on quantities, here c t , indexed with t. Furthermore, the LPV structure is suitable to construct non triangular state transition functions. Indeed, because of the varying entries, the state transition function is not triangular if there does not exist a common and constant triangularization basis over the whole set of matrices A ρ(t) with ρ(t) ∈ F L . Hence, it suffices to select the position of the varying parameters ρ i (t) in the matrix A accordingly.

As a simple illustration, the automaton governed by Equation [START_REF] Dworkin | Nist special publication 800-38a[END_REF] with the setting

A ρ(t) =   a 0 1 ρ 1 (t) ρ 2 (t) 0 a 1 1   , B =   1 0 0   with a a constant element in F, ρ 1 (t) = c t • c t-1 and ρ 2 (t) = (c t-2) 2
, is an LPV automaton and does not admit a constant triangularization basis.

A flat LPV automaton is an LPV automaton of which state vector x t verifies [START_REF] Klíma | Cryptanalysis of hiji-bij-bij (HBB)[END_REF].

Let us recall from [START_REF] Dravie | Design of selfsynchronizing stream ciphers: A new control-theoretical paradigm[END_REF] the main proposition which allows to define a family of SSSCs based on LPV automata. For brevity, we introduce the following notation. For t 2 ≥ t 1 , denote by t1 l=t2 A ρ(l) the product of matrices A ρ(l) from t 2 to t 1 . For t 2 < t 1 , define t1 l=t2 A ρ(l) = 1 n (the identity matrix of dimension n). Finally, let T be the scalar defined by T = C t=r-1 l=t+1 A ρ(l) B. Proposition 1: If the LPV finite state automaton defined by (12) is flat, defining the keystream with delay r as

z t+r = C t l=t+r-1 A ρ(l) x t (14
)
and the ciphering function as

c t+r = z t+r + T m t , (15
)
the set of equations (12), (14) and (15) define the ciphering part of an SSSC. On the other hand, consider the finite state automaton with internal state x t with dynamics given by x t+1 = P ρ(t:t+r) x t + BT -1 c t+r [START_REF] Daemen | The Self-Synchronizing Stream Cipher MOSQUITO: eSTREAM Documentation, Version 2[END_REF] with

P ρ(t:t+r) = A ρ(t) -BT -1 C t l=t+r-1
A ρ(l) [START_REF] Cannière | New Stream Cipher Designs -The eSTREAM Finalists[END_REF] along with the keystream z t defined as

z t+r = C t l=t+r-1 A ρ(l) x t (18
)
and the deciphering function obeying

m t+r = T -1 (c t+r -z t+r). (19
)
Then, the set of equations [START_REF] Daemen | The Self-Synchronizing Stream Cipher MOSQUITO: eSTREAM Documentation, Version 2[END_REF][START_REF] Cannière | New Stream Cipher Designs -The eSTREAM Finalists[END_REF][START_REF] Hell | The grain family of stream ciphers[END_REF][START_REF] Kasper | Correlated Keystreams in MOUSTIQUE[END_REF] define the deciphering part of an SSSC. The proof given in [START_REF] Dravie | Design of selfsynchronizing stream ciphers: A new control-theoretical paradigm[END_REF] consists in showing that, if the LPV finite state automaton defined by (12) is flat, then there exists an integer M such that the synchronization error x k -x t+r reaches zero after a finite transient time of length M . The integer M is the synchronization delay. Actually, it is shown that flatness is equivalent to the existence of an integer M such that for all t ≥ 0,

P ρ(t+M -1:t+M -1+r) P ρ(t+M -2:t+M -2+r) • • • P ρ(t:t+r) = 0 (20
)
where the product [START_REF] Millerioux | Characterization of flat outputs for LPV discrete-time systems: A graph-oriented approach[END_REF] results from the composition of the state transition functions of the deciphering automaton. Let us note that T and r are independent.

This LPV framework for the design of SSSC is new regarding the literature devoted to the design of SSSC. In particular, it really differs from the serial and parallel constructions proposed in the 90s by Maurer [START_REF] Maurer | New approaches to the design of selfsynchronizing stream ciphers[END_REF].

According to Remark 1, implementing the recursive form (12) and (16) instead of the canonical form (5) is more efficient from a computational point of view.

It is recalled that the non-linearity is obtained by defining the values of every varying parameters ρ i (t) (i = 1, . . . , L) involved in the matrices of [START_REF] Dworkin | Nist special publication 800-38a[END_REF][START_REF] Arnault | A new approach for fcsrs[END_REF][START_REF] Arnault | Revisiting lfsrs for cryptographic applications[END_REF][START_REF] Dravie | Design of selfsynchronizing stream ciphers: A new control-theoretical paradigm[END_REF][START_REF] Daemen | The Self-Synchronizing Stream Cipher MOSQUITO: eSTREAM Documentation, Version 2[END_REF][START_REF] Cannière | New Stream Cipher Designs -The eSTREAM Finalists[END_REF][START_REF] Hell | The grain family of stream ciphers[END_REF][START_REF] Kasper | Correlated Keystreams in MOUSTIQUE[END_REF] as nonlinear functions ϕ i of a finite number of past cryptograms

(ρ i (t) = ϕ i (c t , c t-1 , • • • , c t-s))
. Those functions will be implemented in the form of S-boxes denoted S.

ϕ i : F s+1 → F (21) (c t , c t-1 , • • • , c t-s) → S(c t , c t-1 , • • • , c t-s , SK i)
where SK i is the subkey number i derived from the secret key denoted with K.

The point is that the LPV automaton defined by (12) must be flat for any secret key K and any realization of ρ(t). In other words, flatness must be a generic property of [START_REF] Dworkin | Nist special publication 800-38a[END_REF]. Designing an LPV automaton [START_REF] Dworkin | Nist special publication 800-38a[END_REF] which is generically flat relies on an admissible realization of a corresponding structured linear system. A structured linear system is a linear system only defined by the sparsity pattern of the state space realization matrices. In other words, for a structured linear system, we distinguish between the entries that are fixed to zero and the other ones that can take any value in F, including the ones which are time-varying. Hence, a structured linear discrete-time system, denoted by Σ Λ , is a system that admits the form:

Σ Λ : x t+1 = I A x t + I B m t . (22
)
The entries of the matrices of (22) are '0' or '1'. In particular, the entries A(i, j) of I A (resp. B(i) of I B) that are '0' mean that there are no relation (dynamical interaction) between the state x i t+1 at time t + 1 and the state x j t at time t (resp. the state x i t+1 at time t + 1 and the input m t at time t). The entries that are '1' mean that there is a relation. As a simple example, let us consider again the LPV system with the setting

A ρ(t) =   a 0 1 ρ 1 (t) ρ 2 (t) 0 a 1 1   , B =   1 0 0  
where a is a constant element in F, ρ 1 (t) and ρ 2 (t) are varying parameters in F. The dynamical matrix and the input matrix I A and I B of the corresponding structured linear system read:

I A =   1 0 1 1 1 0 1 1 1   , I B =   1 0 0   .
As a consequence, if the structural linear system [START_REF] Hellman | A cryptanalytic time-memory trade-off[END_REF] derived from (12) is flat, the flatness will hold for any ρ(t) or equivalently any nonlinearity ϕ i (any S-box will be admissible). Hence, the challenge is to define a methodology to construct flat linear structural systems. It is the purpose of the graph-based approach provided in [START_REF] Millerioux | Characterization of flat outputs for LPV discrete-time systems: A graph-oriented approach[END_REF] which follows the steps recalled in Appendix B. Roughly speaking, given a triplet (n, r, n a) with n the dimension of the state, r the delay and n a the number of non-zero entries of the matrix A, a digraph G(Σ Λ) is constructed according to given rules and the matrices I A and I B are derived. The triplet (n, r, n a), the number of non-linear functions ϕ i and their locations in the matrix I A determine a family of flat LPV-based SSSC. Next subsection aims at summarizing the steps needed for the design of such a family. Then, a particular instantiation, leading to the SSSC called Stanislas, is given in next section.

1) Summary for the construction of SSSC from a flat LPV-based automaton: Choose a triplet (n, r, n a) with n the dimension of the state, r the delay and n a the number of non-zero entries of the matrix A.

Step S1: Choose a component x i t on which the plaintext symbol m t is added. It follows that B = (0 . . . 1 0 . . . 0) t (the entries 1 is located at column i).

Step S2: Choose a component x i t (i ∈ {1, . . . , n}) as the desired flat output y t = x i t . It follows that C = (0 • • • 0 1 0 . . . 0) (the only entry 1 is located at the i-th column of C). It can be shown that for the special case when B = (1 0 . . . 0), i must be equal to r for y t = x i t to be a flat output.

Step S3: Construct the corresponding digraph G(Σ Λ) according to Step 1-5 given in Appendix B and derive the matrices I A and I B of the structured linear system Σ Λ .

Step S4: Replace some of the non-zero entries of I A by a nonlinear function 12) and set B = I B . Not all '1' entries of I A must be assigned to a non-linear function. Some of them can be merely constant. The choice must obey a trade-off between complexity of the architecture and security (a matter discussed in next section). Since the construction ensures structural flatness, any choice will preserve the self-synchronization property.

ρ i (t) = ϕ i (c t , c t-1 , • • • , c t-s) to construct the matrix A ρ(t) of (
Step S5: Complete the design by deriving the equations of Proposition 1. In particular, calculate the matrix [START_REF] Cannière | New Stream Cipher Designs -The eSTREAM Finalists[END_REF] governing the state transition function of the automata (16) ensuring the deciphering.

Example: Consider the triplet (n = 2, r = 2, n a = 5). Choose

B = 1 0 , C = (0 1).
The particular setting of the matrix C means that the component x 2 t of the state vector of the LPV system (12) is the desired flat output.

For n a = 5, Steps 1-5 given in Appendix B give

I A = 1 1 1 1 , I B = 1 0 . (23
)
Let us keep constant and equal to 1 the first three entries of A and let the fourth entry be a nonlinear function. It is denoted by ρ 1 (t). This finally leads to the following matrix A ρ(t) :

A ρ(t) = 1 1 1 ρ 1 (t)
.

Calculate P ρ(t:t+2) = A ρ(t) -BCA ρ(t+1) A ρ(t) . One obtains

P ρ(t:t+2) = -ρ 1 (t+1) -ρ 1 (t)ρ 1 (t+1) 1 ρ 1 (t) .
Next sections are devoted to the specifications, design rationale and security analysis of a complete SSSC based on flat LPV dynamical systems as described above. The cipher is called Stanislas for Secure Transmission Algorithm with Nontriangular Iterative Structure Looking After Selfsynchronization.

III. Specification of the flat LPV-based SSSC

Stanislas Stanislas operates over the 16 elements of the finite field F 16 defined as: F 16 = F 2 [X]/(X 4 + X + 1), the addition being the componentwise exclusive or, simply denoted +, and the multiplication, denoted by •, being the polynomial multiplication modulo the primitive polynomial X 4 +X +1.

A. Equations of Stanislas

The internal state x t ∈ F 40 16 of the cipher consists in a vector of dimension n = 40 with 4-bit components considered as elements in F 16 . The input m t and the output c t of the ciphering function are 4-bit respective elements in F 16 . See Fig. 1

x t+1 = A ρ(t) x t + Bm t c t+1 = Cx t+1 (24
)
where B is the column vector equal to B = (1 F16 , 0 F16 , . . . , 0 F16) T and C is the row vector equal to C = (0 F16 , 0 F16 , 1 F16 , 0 F16 , . . . , 0 F16) with the 1 F16 component located at column r = 3. In other words, the only non-zero component of C which equals 1 F16 is the third component. Hence, the ciphertext symbol consists in the third component of the internal state. Let us note that in general, the ciphertext obeys Equation [START_REF] Arnault | A new approach for fcsrs[END_REF]. Hence, the ciphertext results from a linear combination of the state vector components. Here, we propose a construction for which the linear combination reduces to the selection of one component. To guarantee a self-synchronization property (otherwise stated, to ensure Equation (20)), the component that is selected must coincide with r, the delay of the system. This is why here, r = 3.

The matrix A ρ(t) is a 40 × 40 dimensional matrix (see Fig. 2 of Appendix). The entries a ij of A ρ(t) are either 0 of F 16 , or 1 of F 16 or a nonlinear function of c t . Among them, n a = 115 entries are non-zero coefficients and L = 80 entries correspond to nonlinear functions ϕ i (i = 1, . . . , 80). Each function ϕ i depends on the current ciphertext symbol c t (s = 0 in Equation (21)) and on a subkey SK i of K. This subkey SK i thus defines the corresponding function ϕ i which depends on only one ciphertext symbol c t as shown on Fig. 1.

ϕ i : F 16 → F 16 c t → S(c t ⊕ SK i) (25
)
where the subkey SK i is a 4-bit word derived from the secret key K as described in the Key Schedule of subsection III-A3 detailed further on. The function S is the bijective S-Box extracted from Piccolo [START_REF] Shibutani | Piccolo: An ultra-lightweight blockcipher[END_REF]. It is defined on 4-bit words by Table I. The entries a ij according to their location (row i, column j for i, j ∈ {1, . . . , 40}) are given in Appendix A in a symbolic manner. In the symbolic representation of A ρ(t) , denoted A S , the functions ϕ i (i = 1, . . . , 80) are assigned to the entries of S. Thus, the first line of the Fig. 1 corresponds to the first row of the matrix A S applied to the internal state x t to produce the corresponding coefficient of the internal state x t+1 (combined with m t to produce c t+1). In other words, taking into account the particular structure of the matrices B and C with only one non-zero coefficient, the ciphering process is governed by:

x 1 t+1 = n j=1 a 1j x j t + m t x i t+1 = n j=1 a ij x j t , i = 2, • • • , n c t+1 = Cx t+1 = x 3 t+1 (26)
2) Deciphering equations: The deciphering is governed by two equations defined, for t ≥ 0, by decipher:

x t+1 = P ρ(t:t+r) x t + BT -1 c t+r m t+r = T -1 (c t+r -C t l=t+r-1 A ρ(l) x t) (27
= A ρ(t) -BT -1 C t l=t+r-1 A ρ(l) and T = C t+1 l=t+r-1 A ρ(l) B.
Otherwise stated, the deciphering consists of two equations. The first one achieves the computation of the next internal state xt+1 from the current state xt and the delayed ciphertext c t+r . The second equation ensures the recovery of the plaintext symbol m t . The self-synchronization between the internal states x t and x t of the cipher and the decipher automata and thus a proper decryption are guaranteed, by construction, after a finite transient time.

Let X[i] denotes the i-th row of a matrix X. Taking into account the particular structure of the matrices A, B and C, the delay r = 3, and noticing that T equals one, the deciphering process is governed by: [START_REF] Maurer | Indistinguishability of random systems[END_REF] where

x 1 t+1 = P ρ(t:t+3) [1] • x t + c t+3 x i t+1 = P ρ(t:t+3) [i] • x t i = 2, • • • , 40 m t+3 = A ρ(t+2) A ρ(t+1) A ρ(t) [3] • x t + c t+3
P ρ(t:t+3) [1] = A ρ(t) [1] -A ρ(t+2) A ρ(t+1) A ρ(t) [3] P ρ(t:t+3) [i] = A ρ(t) [i], 2 ≤ i ≤ n. (29
)
3) Key Schedule: The matrix A consists of n a = 115 non-zero entries, and among them, L = 80 are functions ϕ i depending on the subkey SK i . Thus, the Key Schedule process aims at generating 80 subkeys of 4-bit length: SK 1 , • • • , SK 80 from the 80-bit master key K arranged as 20 words K 1 , . . . , K 20 of 4-bit length. To do so, the ciphering equations (26) with m t = 0 are used. During this process, the parameters SK i involved in the functions ϕ i (see Equation [START_REF] Cannière | Analysis and Design of Symmetric Encryption Algorithms[END_REF]) are set to zero. The internal state x 0 is initialized by duplicating the master key K as

(x 1 0 • • • x 20 0) = (K 1 • • • K 20) and (x 21 0 • • • x 40 0) = (K 1 • • • K 20).
Then, the initial internal state x 0 is updated ten times by using equations [START_REF] Leander | On the classification of 4 bit s-boxes[END_REF] with m t = 0 for t = 0, . . . , 9.

After those ten iterations, the ten subkeys SK 1 , . . . , SK 10 are respectively initialized with the following components of the internal state x 10 : x 1 10 , x 2 10 , x 7 10 , x 10 10 , x 17 10 , x 18 10 , x 22 10 , x 26 10 , x 28 10 , x 34 10 . This process is repeated 7 more times to initialize the other subkeys SK 10i+1 , . . . , SK 10i+10 , for i = 0, . . . , 7.

B. Ciphering Process

The plaintext consists of elements of

F 16 : m = m 0 • • • m -1 .
The initial state x 0 is first initialized with 40 random elements of F 16 . These initial values are kept secret and are not transmitted to the decipher even if it is possible to recover the secret key. The way those elements are randomly picked is out of the scope of this paper. Only consider that you have a source of randomness. x 0 could be considered as a secret nonce.

Then randomly pick n -1 = 39 elements m -39 , • • • , m -1 of F 16 as the synchronization sequence which is placed before the plaintext. It is recalled that at most n = 40 iterations are needed for the self-synchronization to be achieved.

Then, because of the parameter value r = 3 that induces a delay, randomly pick r -1 = 3 -1 = 2 more elements m , m +1 of F 16 that will be placed at the end of the plaintext sequence m to process the two last plaintext symbols. Finally, the sequence that must feed the cipher is m = m -39 , . . . , m 0 , . . . , m , m +1 .

The resulting ciphertext consists of the sequence c -39 , . . . , c +1 of (+ 41) symbols in F 16 , computed with the ciphering Equations (26) using Matrix A S given in Appendix A for t in -39, • • • , + 1:

x 1 t+1 = S(x 20 t ⊕ SK 0) ⊕ S(x 26 t ⊕ SK 1) ⊕S(x 29 t ⊕ SK 2) ⊕ S(x 40 t ⊕ SK 3) ⊕ m t x 2 t+1 = x 1 t ⊕ S(x 2 t ⊕ SK 4) ⊕ S(x 31 t ⊕ SK 5) ⊕S(x 35 t ⊕ SK 6) x 3 t+1 = x 2 t ⊕ S(x 3 t ⊕ SK 7) x 4 t+1 = S(x 2 t ⊕ SK 8) ⊕ S(x 3 t ⊕ SK 9) . . . c t+1 = x 3 t+1
Those equations are the ones given in Fig. 1 corresponding with the coefficients of the Matrix A S .

Note that the Matrix A S given in Appendix A could be seen as one round of a block cipher applied on a state with 40 many 4-bit words where after each round the 4bit word x 3 is outputted whereas the 4-bit word x 0 is completely updated by other 4-bit words. At each clock, each 4-bit word crosses at least one S-box, except the 4-bit word x 1 that could be considered as a temporary variable (as it receives the 4-bit message m t). Note also that the updated rule for most of the variables x i (5 ≤ i ≤ 40) could be written as

x i t+1 = S(x i-1 t ⊕ SK k) ⊕ f (x i-2 t) or S(x i-1 t ⊕ SK k) ⊕ f (x i-2 t
) ⊕ S(x j t ⊕ SK k) for given j, k and k and where f is the identity or the S-box S. It could be seen as a generalization of the so-called L-scheme with a circular permutation used in the block cipher MISTY1 with balanced inputs/outputs. The complete ciphering process of Stanislas is illustrated on Fig. 1.

C. Deciphering Process

The decipher receives the cryptogram consisting of + 41 symbols c -39 , . . . , c +1 in F 16 . The internal state x 0 is initialized to an arbitrary value, for example the zero value.

Then, the deciphering Equations (28)-(29) are applied to recover a + 41-length message m = m -41 , . . . m -1 . The plaintext sequence is recovered as the last symbols m = m 0 . . . m -1 .

Remark 2: It could be surprising that a part of the ciphering process directly depends on a secret nonce (i.e. x 0). Instead, we could imagine that an 80-bit IV is used to generate the first value x 0 adding an IV schedule to the Key Schedule process. First, generate the subkeys using the Key Schedule, then initialize the internal state with the concatenation of the IV and of the key. Then, apply again the Key Schedule process (but including the generated subkeys SK i in the S-boxes) to initialize the internal state x 0 . But, note that in this case, the particular property that the internal states (that must be kept secret) of the ciphering part and of the deciphering part are not required to be equal is lost. Indeed, in this case where an IV is used, we will suppose that the internal state will be computed in the same way in both sides.

The matrix A consists of n a = 115 non-zero entries, and among them, L = 80 are functions ϕ i depending on the subkey SK i . Thus, the Key Schedule process aims at generating 80 subkeys of 4-bit length: SK 1 , • • • , SK 80 from the 80-bit master key K arranged as 20 words K 1 , . . . , K 20 of 4-bit length. To do so, the ciphering equations (26) with m t = 0 are used. During this process, the parameters SK i involved in the functions ϕ i (see Equation (25)) are set to zero. The internal state x 0 is initialized by duplicating the master key K as (x

1 0 • • • x 20 0) = (K 1 • • • K 20) and (x 21 0 • • • x 40 0) = (K 1 • • • K 20).
Then, the initial internal state x 0 is updated ten times by using equations (26) with m t = 0 for t = 0, . . . , 9.

IV. Design Rationale and Security Analysis

In this section, we motivate the choices of the field on which the cryptosystem operates, the dimension n of the internal state, the delay r and the structure of the matrix A. Most of the choices rest on security criteria, other ones take into account practical considerations, regarding in particular the hardware implementation issues.

A. Design Rationale a)

Field on which the cryptosystem operates: Galois field GF [START_REF] Daemen | The Self-Synchronizing Stream Cipher MOSQUITO: eSTREAM Documentation, Version 2[END_REF]: Any quantities m t , c t , components of x t and xt and non-linear functions ϕ i (S-boxes) inputs are 4-bit data. It is motivated by the fact that the cryptosystem is intended to be implemented on a digital equipment. Hence, field extensions and so, power of two are required. On the other hand, 8-bit would be too heavy for an embedded algorithm. In particular, S-boxes would involve too many logic gates.

b) Dimension n: 40: As the internal state components are 4-bit words, a dimension n = 40 provides an internal state of 160 bits and thus a security level of 80 bits. Indeed, to prevent time-memory trade-off attack [START_REF] Hellman | A cryptanalytic time-memory trade-off[END_REF] (an attack which is a trade-off between exhaustive search and table look-up), the internal state must be two times longer than the key length which defines the security level. This level is compatible with a real-world application.

c) Delay r: 3: The more the delay, the more the algebraic degree of the entries of P ρ(t:t+r) , recalling that P ρ(t:t+r) involves the product of r matrices (see [START_REF] Dravie | Security proof of the canonical form of self-synchronizing stream ciphers[END_REF]). Thus, for a good resistance against an algebraic attack ([START_REF] Courtois | Efficient algorithms for solving overdefined systems of multivariate polynomial equations[END_REF]), the algebraic degree should be as large as possible. On the other hand, the more the delay, the more the complexity of implementation and the less the computational performances. The delay r = 3 results from a trade-off between security with respect to algebraic attacks (to increase the overall algebraic degree) and ease of implementation (especially the implementation of the P deciphering matrix which involves several S-box multiplications (see Equation [START_REF] Cannière | New Stream Cipher Designs -The eSTREAM Finalists[END_REF] in the general case and (29) for Stanislas)).

d) Structure of the matrices A and P : We recall that the matrix A (and thus P from the computation (29)) is derived from the construction of a digraph (see Appendix B) from which an adjacency matrix I A is extracted. More precisely, the adjacency matrix I A determines the entries of A ρ(t) that are zero and the others that are possibly non-zero. The number n a of edges in the digraph G(Σ Λ) corresponds to the number of non-zero entries of I A . Hence, the number n a also determines the number of non-zero entries of the state transition matrix P . Beyond the number of non-zero entries, their location (row and column) must also be chosen. Finally, it must be decided whether a nonzero entry will be 1 or will correspond to an S-box. All those issues have been addressed by considering several criteria regarding the security, in particular the good resistance to classical attacks and the good diffusion delay, while satisfying a trade-off with respect to the computational complexity for the sake of implementation. Let us introduce symbolic representations of A ρ(t) and P ρ(t) denoted by A S and P S where the coefficients of A S and P S belong to Z[S], S representing any non-linear function. The following considerations on A S and P S can be made.

Diffusion Delay and Depth. The diffusion delay and the depth are properties related to the consideration of the powers A p S and of P p S as p, a natural integer, increases. Indeed, the power of matrices results from the successive iterations of the ciphering and the deciphering process. Let p denotes the power of a matrix Z ∈ M n (GF (16)). The diffusion delay, introduced in [START_REF] Arnault | Revisiting lfsrs for cryptographic applications[END_REF], is the smallest value, denoted by d 0 , of p such that Z p does not have any zero coefficient. In other words, it is the smallest value of p such that each element of the initial internal state x 0

x 1 t x 2 t x 3 t . . . x 38 t x 39 t x 40 t • • • ϕ 0 ϕ 1 • • • ϕ 2 • • • ϕ 3 • • • • • • ϕ 4 ϕ 5 • • • ϕ 6 • • • S(x 20 t ⊕ SK 0) ⊕ S(
• • • • • • • • • ϕ 7 • • • • • • x 2 t ⊕ S(x 3 t ⊕ SK 7) • • • ϕ 74 • • • ϕ 75 • • • • • • • • • • • • ϕ 76 • • • ϕ 77 • • • • • • • • • • • • • • • ϕ 78 • • • ϕ 79 • • • A S • x t x 3 t+1 x 1 t+1 x 2 t+1
. . .

x 38 t+1 x 39 t+1 x 40 t+1 c t+1 ciphertext • • • • • • • • • c +2 c -39 , • • • , c +1 synchronisation m t (plaintext) c t+1
Fig. 1. The complete ciphering process of Stanislas with ϕ i (x j t) = S(x j t ⊕ SK i). x i t and x i t+1 are the coefficients of the internal state at time t and time t + 1. mt represents a plaintext symbol (4 bits), c j the ciphertext symbols (4 bits) where c -39 , • • • , c +2 are required for synchronisation. The equations of the lines are derived from the coefficients of the rows of the Matrix A S .

has influenced every element of x t for t ≥ d 0 . The depth, introduced in [START_REF] Berger | Some results using the matrix methods on impossible, integral and zero-correlation distinguishers for feistel-like ciphers[END_REF], is the smallest value, denoted by d 1 , of p such that any entry of Z p are polynomials of degree at least 1. We are looking for the smallest values of d 0 and d 1 .

Algebraic Degree. Considering the matrix resulting from successive powers of A S and P S , we are first interested in ensuring that at least one entry has the largest algebraic degree. To this end, we must add a cycle on the r-th vertex of the digraph G(Σ Λ), which equivalently means that the entry of A S and P S located at row r and column r must be an S-box. Furthermore, the evolution of this quantity, after successive iterations, must meet an ideal shape: it must increase by one at each iteration, must remain constant and equal to its maximum value as long as possible and finally must drop down to zero (let us recall that after 40 iterations, due to [START_REF] Millerioux | Characterization of flat outputs for LPV discrete-time systems: A graph-oriented approach[END_REF], the product reaches exactly zero).

Full-Rank Matrix. The fact that A S is a full-rank matrix is a necessary condition to ensure a full diffusion of the internal state and to maximize the dependency between the involved terms at time t and the involved terms at time t+1. Moreover, this condition guarantees that the encryption process does not collapse. By construction (see Appendix B) to ensure flatness, every element of the subdiagonal of I A from the r-th one is 1. Hence, for A S to be full-rank, each column and each row must contain at least one non-zero element. And yet, by construction, only the r -1 first elements of the last column can be non-zero. Hence, one of them must be non-zero. From the digraph point of view, it means that at least one of the r -1 first vertices must be connected to the last vertex.

The symbolic matrix A S which has been finally selected is given in Appendix A. It has been obtained after 700000 random runs performed under the aforementioned constraints: best diffusion delay and depth, algebraic degree (especially increase by 1 at each iteration), full-rank matrix. Several matrices correspond to the best choices (we add a sum indicator without weighing) and we finally chose the one with the best implementations for A S and for P S . The symbolic matrix P S can be directly obtained by considering Equations [START_REF] Dravie | Security proof of the canonical form of self-synchronizing stream ciphers[END_REF]. The matrix A S involves n a = 120 non-zero entries and its number of S-boxes is L = 80. The matrix extracted from A S and P S by removing the first r rows and columns have a special feature. The lower subdiagonal is full of coefficients S (corresponding to S-boxes and denoted SB in the symbolic representation) and the subsubdiagonal just above is full of 1. Thus, each line has at least one S-box to ensure that the internal state x t is updated in a non-linear way: this corresponds to a non-linear shift register.

The corresponding diffusion delay, d 0 = 7, could be considered as a good diffusion delay with regard to the synchronization delay that equals 40 (the system dimension). Indeed, the worst diffusion delay is equal to 40 and the best diffusion delay of 1 could only be reached with a matrix full of non-zero coefficients. Thus, we consider that a diffusion delay of 7 is a sufficiently good compromise between the best diffusion delay and a reasonable number of non-zero coefficients.

Let us notice that the dimension n of the system is the upper bound of the diffusion delay. Indeed, due to [START_REF] Millerioux | Characterization of flat outputs for LPV discrete-time systems: A graph-oriented approach[END_REF], the product reaches exactly zero in GF (16) since the synchronization is achieved after at most 40 iterations. The depth is d 1 = 7 and is the best that we manage to achieve.

e) S-box: Various classifications of 4-bit S-boxes exist in the literature [START_REF] Cannière | Analysis and Design of Symmetric Encryption Algorithms[END_REF], [START_REF] Leander | On the classification of 4 bit s-boxes[END_REF], [START_REF] Saarinen | Cryptographic Analysis of All 4 x 4 -Bit S-Boxes[END_REF]. For the sake of hardware optimization, the same S-box has been used to define the L = 80 nonlinear functions ϕ i . Two kinds of criteria have been considered: theoretical and practical. On one hand, we have selected S-boxes to satisfy the maximum differential probability and the maximum (absolute) linear bias 2 -2 , the algebraic degree 3, and no fixed-point. Four S-boxes that satisfy those criteria and that have simple algebraic expressions (i.e. a minimal number of non-linear transformations) have been selected, each one corresponding respectively to the four classes proposed in [START_REF] Saarinen | Cryptographic Analysis of All 4 x 4 -Bit S-Boxes[END_REF].

From an implementation point of view, it turns out that the S-box depicted in Table I induces the smallest gate count. It is the Piccolo S-box ([START_REF] Shibutani | Piccolo: An ultra-lightweight blockcipher[END_REF]). The area is around 23 Gate Equivalents (GEs) 1 . It involves four NOR gates, three XOR gates and one XNOR gate. Let us notice that the masking method can be applied using only three shares, making this S-box suitable for efficient threshold (i.e. sidechannel protected) implementations.

f) Key Schedule: The Key Schedule has been chosen to reuse existing circuit while sufficiently mixing together the key words. To do so, we use the already implemented matrix A by applying it a sufficient number of times when looking at the diffusion degree and at the induced algebraic degree. The extracted 4-bit words of the internal state x tat positions 1, 2, 7, 10, 17, 18, 22, 26, 28, 34 -have been chosen to be among the ones that depend of the maximum number of other elements of x t to ensure to maximize the diffusion effect of the initial state x 0 .

From a theoretical point of view, if we consider that each S-box behaves as a random function (i.e. it has a behavior sufficiently near the one of a true random function) and using the direct extension of Lemma 9 and Theorem 7 of [START_REF] Maurer | Indistinguishability of random systems[END_REF], we could say, that after d 0 + 2 of the matrix A on the input x 0 , the applied transformation behaves as a random function. In other words, the operations done to fulfill the subkey words behaves as a random function.

B. Security Analysis

The following section focuses on the security of Stanislas against known attacks. We claim a 80-bit security level which corresponds to the key length (we could not have a security level greater than the key length). Moreover, this security level is also achieved regarding the length of the main register: 160 bits. Indeed, the Guess-and-Determine attacks described in [START_REF] Hellman | A cryptanalytic time-memory trade-off[END_REF] imply to double the length of the used register compared to the key length to achieve a security level corresponding to the key length. Thus, we try to derive security bounds for all known attacks against Stanislas and we found no attacks that work with a complexity smaller than 2 80 operations which corresponds with our security claim.

Moreover, it has been proven in [START_REF] Dravie | Security proof of the canonical form of self-synchronizing stream ciphers[END_REF] that the canonical form of an SSSC is secure against Chosen Plaintext Attacks (IND-CPA secure) but not against Chosen Ciphertext Attacks (IND-CCA security). We do not claim any security 1 Section V describes the meaning of GE metric.

result in this last model. Moreover, we suppose that the attacker has no access to the key and to the initial value of the internal state x 0 . To prevent collision search attack, we limit the size of each plaintext to 2 64 4-bit words.

First, it seems very difficult to analyze the security of Stanislas in its true settings (i.e. the 160-bit internal state x 0 is a secret nonce). In those settings, we could only say that:

• the time-memory-data trade-off attacks described in [START_REF] Babbage | A Space/Time Trade-Off in Exhaustive Search Attacks on Stream Ciphers[END_REF], [START_REF] Biryukov | Cryptanalytic time/memory/data tradeoffs for stream ciphers[END_REF], [START_REF] Hellman | A cryptanalytic time-memory trade-off[END_REF] apply when the internal state is smaller than two times the key length. This is why we choose the length of the internal state to be twice the key length to prevent this kind of attacks. • Guess-and-Determine Attacks [START_REF] Hellman | A cryptanalytic time-memory trade-off[END_REF] consist in guessing a part of the state to further determine the remaining part of the state. Thus, at time t, suppose that we know x 2 t , x 3 t and of course, c t . Thus, we could suppose that we observe n consecutive outputs from c t to c t+n . Thus, how much does it cost to recover the induced subkey SK i ? First, from the equation

x 3 t+1 = x 2 t ⊕ S(x 3
t ⊕ SK 7), we could directly compute SK 7 . Thus, we could derive the successive value of x 2 t from t to n. Thus, from x 2 t we derive non-linear equations where the unknowns are x 1 t , x 31 t , x 35 t , SK 5 , SK 4 and SK 6 and the known terms are x 2 t to x 2 t+n . Thus, as the Algebraic Normal Form (ANF) of the S-box has 2 equations with 4 terms, 1 equation with 9 terms and 1 equation with 7 terms, each new x 2 t will induce a system of 4 × 3 × (n + 1) + 3 × 4 = 12n + 24 unknown binary variables with 4 equations with in total 24 non-linear terms. Thus, we could not solve the system without guessing a part of it whatever the n value. Even considering that we guess a part of the system, the combinatorial explosion seems clear because each value of the internal state depend on at least one other value. Thus, we conjecture here that Stanislas is safe against this type of attacks since, even if a part of the internal state is guessed, each 4-bit word of this state is updated through a XOR with a 4-bit word of subkey and an S-box. Moreover, since the diffusion delay of A S is d 0 = 7, this leads to guess after 7 outputs all the key. Thus, guessing a part of the state allows to guess a part of the key which, in then, amounts to a guess-and-determine attack with a complexity greater than the key exhaustive search. Thus, instead, when looking at classical attacks, we will use the model described in Remark 2 where the initial state is derived in its first components after 20 iterations of the matrix A S applied on the concatenation of an IV and of the master key K and in its last components after 14 more iterations. Those settings could be considered as a degrading mode of the original Stanislas specifications. Thus considering that the attacker has full access to the IV, we obtain the following bounds against classical attacks.

Differential / Linear Cryptanalysis: we compute the lower bounds on the minimal number of active S-boxes for the computation of the internal state with Remark 2.

To do so, we implement the model of Remark 2 using Constraint Programming to explore all the possible paths in the induced graph. Then, we obtain that, for the differential case, after 7 iterations, a minimal number of 38 S-boxes has been crossed, after 10 iterations, 46, after 14 iterations, 65. As the differential probability of the chosen S-box is equal to 2 -2 , we could guarantee that the 80-bit key exhaustive search is less expensive than passing through more than 40 S-boxes, which is the case after 10 iterations of the A S matrix. In the same way, for the linear case, we obtain after 7 iterations, 35 active S-boxes, after 10 iterations, 41 and after 14 iterations, 59. Thus, for the same reason, after 10 iterations, a 80-bit key exhaustive search is more efficient.

Algebraic Attacks: This kind of attacks [START_REF] Courtois | Efficient algorithms for solving overdefined systems of multivariate polynomial equations[END_REF] is possible when the overall degree of the induced system of equations does not sufficiently increase at each clock. Especially, if the overall degree d in each of the n unknown variables (the key variables for example) of the system is such that (n d) 2.5 is lower than the security bounds, it means that it is faster to solve the induced system by Gaussian elimination (considering that each new monomial is a new unknown variable) than trying all the keys of the system. Thus, we want to prevent this attack from happening as described below. The algebraic degree of each S-box component is the best one: equal to 3. Thus, each passing through an S-box increases the degree in the equations describing the internal state and in the equations describing the key. Even if the SK i linearly depends on the master key bits K 1 , • • • , K 80 (there are 80 key bits that are unknown), if we write the number of variables after crossing the first S-box, we have (80) 3 monomials depending on the unknown key bits, after the second pass we obtain (80) 6 monomials also depending on the unkonwn key bits and so on. Thus, if we apply those estimations using the bounds on the number of active Sboxes of the differential/linear case, after 10 iterations, we have 46 active S-boxes, which means that the number of unknowns (considering that each new monomial is a new unknown) is lower bounded after 10 iterations by (80) 3×46 ≈ 2 872,16 where 80 are the unknowns coming from the master key, 3 is the algebraic degree of the S-box and 46 is the number of crossed S-boxes. Thus, we conjecture that the complexity of the best algebraic attack is greater than the 80-bit key exhaustive search.

Cube Attacks: As established in [START_REF] Dinur | Cube attacks on tweakable black box polynomials[END_REF], a cipher is vulnerable to cube attacks if an output bit can be represented as a sufficiently low degree polynomial over GF [START_REF] Rueppel | Analysis and design of stream ciphers[END_REF] of key and input bits. It works by summing an output bit value for all possible values of a subset of public input bits, chosen such that the resulting sum is a linear combination of secret bits. Repeated application of this technique gives a set of linear relations between secret bits that can be solved to discover these bits. In [START_REF] Sato | Analysis of division property using milp method for lightweight blockcipher piccolo[END_REF], the authors analyzed this kind of attacks on the block cipher Piccolo, especially its S-box. They stated that after 8 rounds, no relation with 63 input bits could be found. The minimal number of S-boxes crossed for 8 Piccolo rounds is 58 whereas in our case, it is 46 after 10 iterations. So we conjecture that we cross a sufficient number of S-boxes after few iterations to prevent having low degree relations between secret key bits and public input bits.

In summary, we conjecture that most of the usual attacks which apply in the stream cipher context have a complexity greater than the exhaustive key search for Stanislas.

V. Hardware Performance and Implementation

Aspects We give hereafter the implementation results of a straightforward implementation of Stanislas. It produces one 4-bit word of ciphertext per clock cycle. Subkeys are computed in the initialization step using the Key Schedule and stored in dedicated registers, before the cipher state processing. The same material is used for the cipher state and the Key Schedule processes. The hardware implementation of Stanislas is not an optimized version targeting any specific performance. The main area occupation comes from the matrix update as it carries big registers during all the calculations. Those registers are the internal state which are mixed with the subkeys either with binary addition or multiplication. This means updating a 40 × 4 bits register all along the matrix update. During ciphering process, the matrix update is solely made of S-boxes and XOR of 4-bit words. The lowest line of the matrix in terms of area occupation is made of 1 Sbox and 2 additionnal XORs, the biggest of 4 S-boxes and 8 additional XORs. The deciphering process implies adding 23 multiplications, 28 S-boxes and 39 XORs to the previous total which makes deciphering heavier in terms of area occupation. The matrix is implemented line by line, calculated straightfowardly following the equations as depicted in Fig. 1. The S-boxes are implemented in a Look-Up-Table (LUT) way, so we let the compiler do its own optimizations. Our Stanislas implementation combines both the encryption and decryption process in order to ease comparisons with other (synchronous or self-synchronizing) stream ciphers.

We implemented Stanislas in VHDL and we provide in Table II FPGA hardware implementations and performance comparisons with synchronous SCs Trivium [START_REF] Cannière | New Stream Cipher Designs -The eSTREAM Finalists[END_REF] and Grain [START_REF] Hell | The grain family of stream ciphers[END_REF], final members of the eSTREAM portfolio, another SSSC Moustique and the AES-based SSSC CFB1-AES128 as defined in NIST SP 800-38a [START_REF] Dworkin | Nist special publication 800-38a[END_REF]. The chosen FPGA platform for our benchmark is the Xilinx Spartan-6 XC6SLX75T, package FGG676. High effort of the Xilinx ISE Design Suite has been put on area reduction. Postplace-and-route results are provided.

To get Trivium, Grain, Moustique and CFB1-AES128 implementation results, we have designed our own VHDL straightforward reference implementations, without further optimization in mind. For this latter, we have implemented the potential S-boxes as LUTs, to be consistent with the S-boxes LUT implementations of Stanislas.

At first sight, we can check that some well-known properties are visible in the results. For example, Trivium and Grain are very compact, which can be explained by their low combinatorial gate counts. Moreover, the number of initialization cycles needed for Trivium, Grain and Moustique is consistent with the specifications: e.g., Trivium needs a warm-up phase of minimum 1152 steps. This number is really low for Stanislas where it just consists in a Key Schedule and it is equal to 0 for CFB1-AES128 where the key is processed on the fly. Surprisingly, straightforward implementation of Stanislas provides the best throughput (TP) compared to the other stream ciphers, even self-synchronizing. The reason is that one 4-bit word is processed by clock cycle, so the throughput is given by: 95 × 4 (bits) = 380 Mbps. That justifies our design choice of processing 4-bit words instead of individual bits. Compared to the standard approach CFB1-AES128, the time needed for synchronization is also shorter, along with a smaller area.

This encouraging result has to be mitigated if we consider the combined metric TP/Area as shown on Table III. This latter allows to estimate the cost of optimized parallel implementations, where many bits can be processed in parallel, at the expense of additional area. As we can see, due to its lowest TP/Area value, straightforward implementation of Stanislas will suffer from the comparisons of its competitors' optimized versions. We can then estimate, in Table IV As we can see, CFB4-AES128 mode has a 4-fold throughput speedup, beating Stanislas proposal with a significant margin, and it requires only 32 steps for synchronization. But it implies to occupy a big amount of FPGA slices, which is not always affordable for some constrained applications.

Future works will include the study of the cost of sidechannel protected Stanislas implementations.

VI. Conclusion

An instantiation, called Stanislas, of a dedicated Self-Synchronizing Stream Ciphers (SSSC) has been proposed. Its main peculiarity comes from the fact that it involves an automaton with finite input memory using non-triangular state transition functions. The construction is based on a general and systematic methodology that uses automata (called Linear Parameter Varying, LPV) admitting a matrix representation and a special property called flatness. The security analysis allows to conjecture that most of the usual attacks which apply in the stream cipher context have a complexity greater than the key exhaustive search for Stanislas. But, Stanislas could not be considered having a small hardware footprint.

However, when straightforward implementations are considered, Stanislas provides bigger throughput than the considered stream ciphers, and its intrinsic synchronization delay is much smaller than the SSSC Moustique (40 clock cycles instead of 105) and the standard approach CFB1-AES128 (40 clock cycles instead of 128).

Moreover, the number of surviving Self-Synchronizing Stream Ciphers after a phase of public cryptanalysis time is equal to zero. So, we hope that Stanislas will be the first one and we encourage the symmetric key cryptographic community to cryptanalyze it.

Appendix A The Matrix A S

The matrix A S is given in Fig. 2.

Appendix B Construction of the Matrices of the SSSC

A digraph G(Σ Λ) describing the structured linear system associated to the state equations [START_REF] Dworkin | Nist special publication 800-38a[END_REF], is the combination of a vertex set V and an edge set E. The vertices represent the states and the input components of Σ Λ while the edges describe the dynamic relations between these variables. One has V = X∪{m} where X is the set of state vertices defined as X = x 1 , . . . , x n and m is the input vertex. The edge set is E = E A ∪ E B , with E A = (x i , x j) |A(i, j) = 0 and E B = (m, x i) |B(i) = 0 . The entries of A ρ(t) correspond to the weights of the edges in the digraph. For convenience, we will denote by v j , (j = 0, . . . , n) a vertex of the digraph G(Σ Λ) regardless of whether it is the input or a state vertex.

Given a triplet (n, r, n a) with n the dimension of the state, r the delay and n a the number of non-zero entries of the matrix A, the construction of the digraph G(Σ Λ) related to the system Σ Λ involves the following steps.

The system Σ Λ is of dimension n and thus, the digraph G(Σ Λ) involves n + 1 vertices. The input is assigned to the vertex denoted by v 0 . The other n vertices are denoted by v 1 , . . . , n . Let v r be the vertex that corresponds to the flat output v r .

Step 1: For, i = 0, . . . , n -1, add the edges (v i , v i+1). There are r edges which connect v 0 to v r . Hence, the delay of the automaton is r.

After Step 1, this line topology corresponds to quite trivial dynamical systems since it corresponds to state transition functions in the form of simple shifts. Let us recall that we aim at designing an automaton possibly involving state transition functions more general than T -functions. A shift is a special and trivial T -function. To this end, the following steps provide a way of adding edges (v i , v j) while guaranteeing flatness.

Step 2: Add the edges (v r+i , v r+i+1) for i = 1, . . . , nr -1. Step 2 allows vertex v j , j = r + 1, . . . , n to have a predecessor. Indeed, if not so, the dynamics of the corresponding vertex v j would reduce to x j k+1 = 0 and would be clearly useless. The resulting path is a so-called main directed path and is depicted in Figure 3.

Step 3: Add the edges (v r , v i), i = 1, . . . , n that connect the vertex v r to any other vertices of the graph (except the vertex v 0 related to the input).

Step 4: For every vertex v i , i = 1, . . . , r -1, add the directed edge (v i , v j) for j = 1, . . . , i.

The graph obtained after Step 1-4 is depicted in Figure 4.

Step 5: For every vertex v i , i = r + 1, . . . , n, add the directed edge (v i , v j) for j = 1, . . . , r and j = i + 2, . . . , n.

The resulting digraph after completion of Step 1-5 is depicted in Figure 5.

To sum up, the digraph G(Σ Λ) is parametrized by the triplet (n, r, n a). The number of vertices of the digraph is equal to n + 1. Indeed, there are n vertices assigned to the state components and one assigned to the input. The delay r is the number of edges in the main directed path. The integer n a defines the desired number of edges in the digraph G(Σ Λ). It must satisfy n a ≤ n M , where n M is the maximal number of edges resulting from the construction Step 1-5. A simple counting leads to:

n M = n(n + 1) 2 + r. (30
)
During the construction, at each step, we can decide whether we actually add the edges or not. That introduces flexibility in the perspective of providing distinct graphs and thus, distinct SSSC as detailed in Subsection II-C1.

Finally, the matrices I A and I B of the structural system Σ Λ can be extracted from the adjacency matrix, denoted by I, associated to the digraph G(Σ Λ). Indeed, the adjacency matrix I associated to the digraph G(Σ Λ) is the (n + 1) × (n + 1) matrix

I =      0 I t B 0 I t A . . . 0      (31)
where I t A and I t B stands respectively for the transpose of the structured matrices I A and I B . The entries I ij are defined as follows for 1 ≤ i, j ≤ n

Julien

 Francq received the Ph.D. degree in Computer Science domain in 2009 from the Université de Montpellier (France). He is now working in Naval Group company as a cryptography, data science and hardware security expert in the Naval Cyber Laboratory. One of his main research interests is the security and the efficiency of (hardware/software) implementations of cryptography against (mathematical/physical) attacks. Loic Besson started working in Airbus Cyber-Security company in 2017. In 2018, he started his Ph.D. in implementations of symmetric cryptography primitives in the company Hensoldt France. Paul Huynh has started his Ph.D. at Université de Lorraine in 2017. He works on lightweight cryptography. Philippe Guillot received the Ph.D. degree in 1999, from the Université de Caen. He is an Assistant Professor at Université Paris 8 and he is interested in symmetric cryptography and their hardware implementations. Gilles Millerioux received his Ph.D. from INSA Toulouse in 1997 and his French Habilitation in 2004 from Université Henri Poincaré -Nancy 1. Between 1998 and 2005 he has been Associate professor at Université Henri Poincaré -Nancy 1. Since 2005, he is Professor at Polytech Nancy and at the Centre de Recherche en Automatique de Nancy (CRAN). His main research interest concerns control theory and its application to cryptography. Marine Minier received the Ph.D. degree in 2002, from the Université de Limoges and the French Habilitation from the Université de Lyon in 2012. In 2005, she joined the INSA de Lyon and the CITI Laboratory, as an Assistant Professor. Since 2016, she is professor at Université de Lorraine and at the LORIA Lab. Her research interests include Symmetric Key Cryptography and Security in WSNs.

Fig. 2 .Fig. 3 .Fig. 4 .

 234 Fig. 2. The Matrix A S .

Fig. 5 .

 5 Fig. 5. Graph obtained after completion of Step 1-5.

 (n = 40, r = 3, n a = 120). The construction has been performed on an Intel CORE i7 CPU 2.26 GHz running Linux Ubuntu 14.04. All experiments ran single-threaded on the processors. It took 21 ms on the computer to obtain the digraph G(Σ Λ).

 for a graphical representation of Stanislas. 1) Ciphering equations: The ciphering equation defines the next internal state x t+1 ∈ F 40 16 and the cipher output c t ∈ F 16 . Note also that all elements that compose the matrix A ρ(t) and the vectors B and C are elements of F 16 . The ciphering equation obeys, for t ≥ 0,

cipher:

 x 26 t ⊕ SK 1) ⊕ S(x 29 t ⊕ SK 2) ⊕ S(x 40 t ⊕ SK 3)

	x 1 t ⊕ S(x 2 t ⊕ SK 4) ⊕ S(x 31 t ⊕ SK 5) ⊕ S(x 35 t ⊕ SK 6)
	x 36 t ⊕ S(x 27 t ⊕ SK 74) ⊕ S(x 37 t ⊕ SK 75)
	x 37 t ⊕ S(x 10 t ⊕ SK 76) ⊕ S(x 38 t ⊕ SK 77)
	x 38 t ⊕ S(x 39 t ⊕ SK 78) ⊕ S(x 8 t ⊕ SK 79)

TABLE II

 II

	Xilinx Spartan-6 XC6SLX75T (FPGA) Straightforward
	Implementation Results.

TABLE III

 III

	Combined Metric TP/Area (Mbps/Slice on Xilinx Spartan-6
	XC6SLX75T FPGA).

 , the upper bounds of theoretical implementation results of all Stanislas competitors when all of them are unrolled versions which process 4 bits per clock cycle, as Stanislas.

		Area (slices)	TP (Mbps)
	Trivium	188	764
	Grain	192	1420
	Moustique	664	1236
	CFB4-AES128	2980	3396
	Stanislas	701	380

This work was partially supported by the French National Agency of Research under the grants number ANR-13-INSE-0005-01 and by the french PIA project "Lorraine Université d'Excellence", reference ANR-15-IDEX-04-LUE.

The open source software Sagemath [START_REF] Casamayou | Calcul mathématique avec Sage[END_REF] has been used to elaborate the digraph G(Σ Λ) corresponding to the triplet