
HAL Id: hal-03081712
https://hal.science/hal-03081712

Submitted on 18 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-level adaptation for Adaptive Multipreconditioned
FETI

Christophe Bovet, Augustin Parret-Fréaud, Pierre Gosselet

To cite this version:
Christophe Bovet, Augustin Parret-Fréaud, Pierre Gosselet. Two-level adaptation for Adap-
tive Multipreconditioned FETI. Advances in Engineering Software, 2021, 152, pp.102952.
�10.1016/j.advengsoft.2020.102952�. �hal-03081712�

https://hal.science/hal-03081712
https://hal.archives-ouvertes.fr


Two-level adaptation for Adaptive Multipreconditioned FETI
Christophe Bovet1, Augustin Parret-Fréaud2 and Pierre Gosselet3,4

1Onera – The French Aerospace Lab, F-92322 Châtillon, France
2Safran Tech, Rue des Jeunes Bois, Châteaufort, CS 80112 78772 Magny-Les-Hameaux, France

3LMT, ENS Paris-Saclay / CNRS, 61 avenue du Président Wilson, 94235 Cachan, France
4LaMcube, Univ. Lille / CNRS / Centrale Lille, F-59000, Lille, France

preprint version of doi: 10.1016/j.advengsoft.2020.102952

Abstract

This article introduces two strategies to reduce the memory cost of the Adaptive Multiprecon-
ditioned FETI method (AMPFETI) while preserving its capability to solve ill conditioned systems
efficiently. Their common principle is to gather search directions into aggregates which are frequently
adapted in order to achieve the best compromise between the decrease of the solver error and the
computational resources employed. The methods are assessed on two weak scalability studies on
highly heterogeneous problems up to 10368 cores and half a billion of unknowns, and on two ill-
conditioned industrial applications, related to the numerical homogenization of solid propellant and
to the simulation of a multiperforated aircraft combustion chamber.
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1 Introduction
The continuous increase of high performance computing resources naturally appeals the engineers to take
into account more complex physical phenomena and to simulate fine scale models. In the area of solid
mechanics, for instance, this can be exemplified by the inclusion of small geometric details (microper-
forations, convoluted blade cooling channels. . . ), or complex nonlinear heterogeneous materials (woven
composite, crystal plasticity. . . ). After the discretization of the involved partial differential equations,
this results in large sparse linear(ized) systems which range from millions to billions of unknowns, and
which are very often ill-conditioned.

Non overlapping domain decomposition methods, such as the Balancing Domain Decomposition
(BDD) [20] or the Finite Element Tearing and Interconnecting (FETI) [13] and their constrained variants
FETI-DP [10] and BDDC [8], provide a favorable framework to solve these linear systems in parallel. Re-
cently developed domain decomposition methods, such as the ML-FETI-DP [31] or the HTFETI [22], are
able to tackle really large-size problems while exhibiting a really good scalability. Indeed, these methods
are well adapted to supercomputers since they rely on both iterative and direct solvers. Usually each
subdomain is assigned to one computer node (or one socket) where a multithreaded direct solver is used.
An interface problem is solved between subdomains with a Krylov solver (MPI parallelism) to obtain the
global solution.

Thanks to this combination of direct and iterative solvers, domain decomposition methods are usually
more robust than traditional iterative solvers as they ensure a logarithmic bound in H/h on the condition
number, where h is the characteristic size of the finite element and H that of a subdomain [32]. Despite
that, real engineering applications frequently exhibit pathological components that hinder the convergence
of the underlying Krylov solver, such as jagged interfaces, bad aspect ratios, strong heterogeneities
misplaced with respect to the interface, incompressibility etc.

Two kinds of strategy have been proposed to increase the robustness of domain decomposition solvers.
The first strategy is to detect a priori the local contributions which are known to penalize the convergence,
and to remove them by augmenting the Krylov solver. The problematic local information can be identified
through local generalized eigenvalue problems [30, 28, 21] or reused from a previous solution [9, 12, 25, 14,
19]. The second strategy is to use a block Krylov solver [24, 15] or a multipreconditioned Krylov solver
[7, 29, 4]. Multipreconditioning is well adapted to the FETI and BDD methods because of the additive
nature of their classical preconditioners. Moreover, this technique has been successfully applied to solve
non symmetric systems [16, 3] for which finding the suitable augmentation is still an open question.
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The fast growing search space produced by a multipreconditioned solver is the key ingredient to
ensure a fast convergence. In the original Simultaneous FETI method (SFETI, which corresponds to
multipreconditioned conjugate gradient applied to FETI) [15], the algorithm generates at each iteration
as many search directions as there are subdomains in the decomposition. However, these extra search
directions need to be stored in memory which can become problematic in case of a large number of
subdomains. To reduce the memory requirement of SFETI, a sparse storage format has recently been
proposed in [23]. An alternative trail is followed in Adaptive Multipreconditioned FETI (AMPFETI)
[4, 3, 5]: among the search directions generated by the subdomains, only the ones that are identified as
useful for the convergence are kept individually, the others are reduced by summation as done in classical
FETI [29]. Thanks to this test, the size of the generated search space is significantly reduced compared
to SFETI. In [4], the AMPFETI’s capability to solve ill-conditioned systems has been assessed up to 500
subdomains and 100 millions of unknowns. Note that for now, multipreconditioned solvers have been
tested with FETI and BDD domain decomposition methods, but they could also be employed with the
FETI-DP and BDDC methods.

The aim of this paper is to present two improvements of AMPFETI allowing addressing larger ill-
conditioned problems. First, a better control of the memory requirement is achieved by aggregating search
direction candidates before multipreconditioning. The paper provides guidelines for the construction of
the aggregates. Second, in order to accelerate the convergence even more, aggregates are updated at each
iteration in order to generate better search directions.

The article is organized as follows: Section 2 gives a short presentation of Adaptive Multiprecon-
ditioned FETI; then Section 3 details the methodology proposed to gather the search directions into
adaptive aggregates. Scalability results on academic benchmarks are provided in Section 4 and Section 5
presents two realistic industrial simulations. Section 6 concludes the paper.

2 Adaptive multipreconditioned FETI: a short reminder
Adaptive multipreconditioned FETI is the combination of the FETI domain decomposition method [13,
11] and the adaptive multipreconditioned conjugate gradient solver [29, 7].

2.1 The FETI linear system
Let us consider the linear system of equation Ku = f arising from the finite element discretization of a
linear mechanical problem defined on domain Ω. Let u denote the vector of generalized displacement and
f the vector of generalized forces. In the present study, we assume that the stiffness matrixK is symmetric
positive definite. Let (Ωs)16s6Nd

be a non overlapping partition of Ω such that: ∀s 6= p, Ωs
⋂

Ωp = ∅
and Ω̄ =

⋃Nd

s=1 Ω̄s where Ω̄s is the closure of Ωs.
The interface between two subdomains s and p is denoted by Υsp = Ω̄s

⋂
Ω̄p and the union of all

interfaces of the subdomain s is denoted by Υs. The set gathering all interfaces is denoted by Υ.
In the FETI method, a Lagrange multiplier field λ that connects subdomains is introduced and the

global linear system Ku = f is substituted by an equivalent substructured formulation

Ksus =fs + T s>Bs>λs ∀ 1 6 s 6 Nd (1)
Nd∑
s=1

BsT sus =0 (2)

where T s : Ωs → Υs are trace operators and Bs are signed Boolean assembly operators on the global
interface. From a mechanical point of view, equations (1) express the equilibrium of all subdomains
and (2) corresponds to the continuity of the displacement across interfaces. Then, the local equilibrium
is expressed in terms of interface unknown. Schur complements (Ss) naturally arise and, after some
algebraic manipulations, the classical FETI system is formed:(

F G
G> 0

)(
λ
β

)
=
(
d
e

)
(3)

where

e = −
(
f1>R1| . . . |fNd

>
RNd

)>
; d = −

Nd∑
s=1

BsT sKs†fs

F =
Nd∑
s=1

BsSs†Bs> ; Ss = Ks
bb −Ks

biK
s−1

ii Ks
ib
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G =
(
B1T 1R1| . . . |BNdTNdRNd

)
The Schur complement Ss is computed by condensing out the internal degrees of freedom (index i) on the
boundary (index b). Ss† denotes the generalized inverse of Ss in case the kernelRs ofKs is not restricted
to zero. The second row, G>λ = e, is associated with the constraint that each subdomain must remain
self-equilibrated. The vector β contains the rigid body mode coefficients of each subdomains. This vector
is computed after λ has been found (see [13]).

Please note that the FETI operator F is never assembled since only the result of a multiplication by
F is needed. Instead of solving a saddle point system, an initialization–projection strategy is applied and
λ is sought as:

λ = λ0 + Πλ̃ ; G>λ0 = e ; G>Π = 0

The projector Π is of the form Π = I −AG(G>AG)−1G>, where A is a symmetric positive definite
matrix most often chosen among the classical preconditioners S̃ and the identity matrix.

Substituting this form into (3), and pre-multiplying by Π> leads to the final linear system:

Π>FΠλ̃ = Π>(d− Fλ0) (4)

In the classical FETI method, the system (4), is solved with a preconditioned conjugate gradient. The
usual preconditioner is a scaled sum of (approximation of) Schur complements:

S̃ =
Nd∑
s=1

B̃sŠsB̃s> (5)

where (B̃s) are scaled assembly operators such that:(
Nd∑
s=1

BsB̃s>

)
Bj = Bj , ∀ 1 6 j 6 Nd

Local approximations Šs of Ss can be chosen among Ss (Dirichlet preconditioner), Ks
bb (Lumped pre-

conditioner) and diag(Ks
bb) (Superlumped preconditioner). In the following, we will single out the sub-

domains’ contribution to the operator and to the preconditioner, and we will use the notation:

F s = BsSs†Bs> ; S̃s = B̃sŠsB̃s>

2.2 Multipreconditioned FETI
There are many cases in which the preconditioned conjugate gradient used in the FETI algorithm con-
verges very slowly or does not converge at all, even with state-of-the-art choices of the preconditioner.
A typical pathological case is strong material heterogeneity misplaced with respect to the interface be-
tween subdomains [27]. Such a situation cannot be avoided for the simulation of solid propellant (see
Section 5.1).

Recently, multipreconditioned strategies [26, 15, 5, 4] were proposed to solve these hard problems.
In these methods, the contribution of each subdomain to (5) is considered as a separate preconditioner
which, at each iteration, supplies one direction inside a search space of dimension Nd. All these strategies
rely on multipreconditioned Krylov solvers [16, 3] and more specifically multipreconditioned conjugate
gradient (MPCG) [7].

If ri+1 denotes the residual at iteration i+1, the classical preconditioned conjugate gradient generates
a search space of dimension 1 materialized by the preconditioned residual zi+1, multipreconditioned
conjugate gradient generates a larger search space, spanned by Nd vectors gathered in the matrix Zi+1:

zi+1 =
Nd∑
s=1

S̃sri+1 ; Zi+1 =
[
S̃1ri+1, . . . , S̃

Ndri+1
]

(6)

The optimality conditions of conjugate gradient enables to compute the best combinations of the columns
of Zi+1 at each iteration, whereas classical preconditioned conjugate gradient corresponds to the fixed
choice zi+1 = Zi+11 (with 1 =

(
1, . . . , 1

)>).
Algorithm 1 presents multipreconditioned FETI combined with the adaptive τ -test and an aggregation

procedure described in Section 3. To recover the original multipreconditioned FETI, forget the τ -test of
line 12, consider Ck = {Ωk} ∀ 1 6 k 6 Na = Nd, and use the definition (6) of Zi+1 at line 13.
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Figure 1: Cubic mesh with regular decomposition

In [19] it was shown that multipreconditioning permits to explore the subspace spanned by the “bad
eigenvectors” detected by the Generalized Eigenvalues in the Overlaps (GenEO) algorithm, and thus it
leads to a more stable convergence on ill-conditioned problems. But multipreconditioning comes with a
high price. Indeed, the original multipreconditioned FETI generates at each iteration, two matrices Wi

and Qi (see Algorithm 1). Since, a full reorthogonalization is mandatory, all these matrices need to be
stored.

To set the ideas, let us consider a regular cubic mesh with a cubic domain decomposition, and let n
denote the number of nodes per subdomain edge (see Figure 1 and Figure 3). The memory footprint of
all the elements of the sequences (Wi)i and (Qi)i is O(n2Ndniter) and for (∆i)i it is O(N2

dniter). This
may become prohibitive when the number of subdomains Nd scales with the same rate as n does.

As mentioned in the introduction, one possibility to reduce the memory requirement of MPFETI is
to express all operations in terms of (Zi)i instead of (Wi,Qi)i. Indeed, contrarily to (Wi,Qi)i, (Zi)i is
sparse (the contribution of one subdomain only affects its neighbors). (Zi)i is thus much less expensive
to store. This strategy, described in [23], comes with many algebraic manipulations.

Algorithm 1: AMPFETI with local τ -test and aggregation
Input: Convergence threshold ε > 0, adaptation threshold τ > 0, initial partition PNa

1 Π = I −AG(G>AG)−1G>

2 λ̃0 = AG(G>AG)−1e

3 r0 = Π>(d− F λ̃0)

4 Z0 =
(∑

Ωs∈C1
S̃sr0| . . . |

∑
Ωs∈CNa

S̃sr0

)
5 W0 = ΠZ0
6 λ0 = 0, i = 0
7 while ‖ri‖ > ε do
8 Qi = FWi

9 ∆i = Q>i Wi ;γi = Z>i ri ;αi = ∆†iγi
10 λi+1 = λi +Wiαi

11 ri+1 = ri −Π>Qiαi

12 tCi =
(Wiαi)>

∑
Ωs∈C F

s(Wiαi)
r>i+1

∑
Ωs∈C S̃

sri+1

13 Zi+1 = concatenate({
∑

Ωs∈C S̃
sri+1 ; tCi < τ},

∑
tC

i
>τ

∑
Ωs∈C S̃

sri+1)

14 Wi+1 = ΠZi+1 for 0 ≤ j ≤ i do
{

Φi,j = Q>j Wi+1

Wi+1 ←Wi+1 −Wj∆†jΦi,j

15 return λ̃0 + Πλi

2.3 Adaptive multipreconditioned FETI
A major improvement of MPCG is the addition of an adaptive process [29] which allows singling out
useful search directions. Before being inserted in the search subspace, a criterion enables to forecast
the effectiveness of the search directions provided by the subdomains with regard to the convergence.
Depending on a user parameter τ which can be linked with a target relative reduction of the F -norm of
the error, the adaptive criterion chooses between 1 and Nd search directions. In [29], two variants of the
adaptive process were proposed:
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• A global adaptive test (called Global τ -test) in which either all search directions are kept (leading
to a full MPCG iteration), or they are all reduced to one direction (leading to a classical PCG).

• A local adaptive test (called Local τ -test) in which each search direction is considered individually.
This variant allows a much finer selection of search direction candidates. But the local test is
significantly more expensive to compute than the global test.

The adaptive algorithms [4] start from the full subspace generated by multipreconditioning (6), but
now the columns are only considered as potential search directions (hence the superscript p):

Zp
i+1 =

[
S̃1ri+1, . . . , S̃

Ndri+1
]

(7)

With the Global τ -test, the effect of multipreconditioning can be forecast by the quantity (with
Algorithm 1 notations):

tGi = γ>i αi

r>i+1zi+1
(8)

which is almost costless to compute. If tGi is less than a certain criterion τ then it is worth multiprecon-
ditioning using Zp

i+1 as search space, else the classical FETI approach with one dimensional search space
zi+1 already performs satisfyingly.

With the Local τ -test, the contribution to the decrease of the error of each vector resulting from the
local preconditioning S̃sri+1 can be estimated individually. This estimate is given by the scalar tsi :

tsi = (Wiαi)>F s(Wiαi)
r>i+1S̃

sri+1
(9)

where all quantities defined at iteration i are known.
Note that computing the local test is significantly more expensive than the global one. If tsi is less

than a certain criterion τ , then the vector is worth being isolated, else it can be harmlessly combined
with other little-contributing vectors. Let Ii be the set of subdomains (Ωs) such that tsi < τ , the actual
search subspace then can be written as:

Zi+1 =

[. . . , S̃sri+1, . . .
]

s∈Ii
,
∑
s/∈Ii

S̃sri+1

 (10)

We refer to [29] and [4] to get more details about the adaptive tests.
Algorithm 1 presents Local AMPFETI combined with an aggregation procedure which will be de-

scribed in Section 3. To recover the original Local AMPFETI, just consider Ck = {Ωk} ∀ 1 6 k 6 Na =
Nd.

It is worth noting that unfortunately, AMPFETI cannot be combined with the sparse storage strategy
of [23]. Indeed, for a given iteration j, all the columns (before selection) of the previous preconditioned
residual (. . . , S̃sri, . . .)s;i<j need to be stored in order to rebuild the selected search directions, even if
they are scarce.

3 Two-level adaptive strategy
3.1 Gathering search direction into aggregates
Even with a very stringent test, the memory requirement of the original AMPFETI may become high
when the system to be solved is ill-conditioned and the number of subdomains is large.

As a complement to the selection threshold τ , we propose to choose a priori the granularity of the
multipreconditioning by gathering search directions into aggregates. Indeed, the MPCG framework is
not limited to starting from individual contributions from subdomains as in (7).

Let PNa
= (Ck)1≤k≤Na

be a partition of the subdomains’ connectivity graph into Na 6 Nd aggregates.
We can then propose Na potential search directions under the form:

Zp
i+1 =

 ∑
Ωs∈C1

S̃sri+1, . . . ,
∑

Ωs∈CNa

S̃sri+1

 (11)

Then, the adaptive τ -test can be applied on each aggregate’s contribution, as described in Algorithm 1.
In the end, at most Na vectors are retained and used by the solver, then the memory footprint for the
storage of (Wi)i and (Qi)i can not exceed O(n2Naniter) and O(N2

aniter) for (∆i)i.
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Figure 2: Illustration of a subdomain’s connectivity graph. The graph is decomposed in two colors (blue
and red). The dashed line represents the separation. The cut of the partition is ωe(Ω1,Ω3) +ωe(Ω2,Ω3).

An interesting point is that the one-aggregate case (Na = 1) corresponds to the genuine FETI method
equipped with a classical conjugate gradient.

In practice, the partition (Ck)1≤k≤Na
is provided by a graph partitioning library such as Metis [18].

More precisely, let G =
({

Ω1, . . . ,ΩNd
}
,Υ
)
be the subdomain’s connectivity graph. Subdomains (Ωs)

are the graph vertexes. There is an edge between two subdomains (Ωs,Ωp) if they share one interface
Υsp.

The choice of optimal weights is hard to now a priori. In this Section, uniform weights are applied to
vertexes and edges. In Section 3.3, weights coming from the value of the local τ -test will be employed.
Graph partitioning algorithms aim to provide a partition that minimizes both the unbalance and the cut
of the partition. In our case, the unbalance is not critical, whereas minimizing the cut is essential. The
cut of the partition is given by:

cut (PNa) =
∑
k<p

cut (Ck, Cp) =
∑
k<p

∑
Ωr∈Ck

Ωs∈Cp

ωe (Ωr,Ωs)
(12)

where ωe(Ωr,Ωs) is the weight of the edge between Ωr and Ωs.
The cut is directly linked to the spread of the preconditioned residual Zi, which controls the perfor-

mance of the algorithm (see Section 2.3 in [4]) since it drives the cost of the computation of FWi which
is operated as:

FWi = FZi − (FAG)(G>AG)−1G>Zi −
i−1∑
j=0

Qj∆†jΦi,j

The matrix (FAG) is computed during the initialization and the last critical point is the computation
of:

FZi =
Nd∑
s=1

F sZi

Computing all F sZi means parallel resolution of local problems (with direct solvers) with multiple right-
hand sides. The matrix Zi is sparse and the cut of the partition directly defines the number of right-hand
sides. Indeed, due to the aggregation, F s needs only to be applied on the columns of Zi which correspond
to aggregates containing either Ωs or one of its neighbors Ωs. That is why, the cut of the partition has
to be minimized.

Aggregation is thus a simple tool to control the cost of the multipreconditioning. The remaining
question is, for a given number of aggregates Na, how to choose the partition that leads to the fastest
decrease of the error while preserving a low cut. Giving a general answer to this question seems to be
out of reach, anyhow it is possible to derive efficient heuristics.

In the simple case of a soft matrix with localized stiff inclusions, it has been observed that the
subdomains in the vicinity of the heterogeneity contain more numerical information [4]. This information
was properly caught by the local adaptive test since the search direction proposed by these subdomains
were more often selected.

Starting from this observation, two different strategies to adapt the aggregates over the iterations
are presented in the following. Both are based on the value of the local adaptive test. In Section 3.2,
Section 3.3 and in all numerical tests, the number of aggregates Na is fixed over the iterations. This is
not a limitation of the method, but a technical choice since a more efficient memory reuse is obtained in
the code by keeping Na constant.
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3.2 Discrete aggregate adaptation
At each iteration, the Na aggregates are separated into three disjoint groups depending on the value of
the adaptive test.

PNa
= Sc

⊔
Jc

⊔
U

The set Sc :=
{
C ∈ PNa

| tCi � τ
}
contains aggregates that are candidates to be split since, according

to the value of the local τ -test, they contain valuable information to achieve convergence. Conversely, the
set Jc :=

{
C ∈ PNa

| tCi � τ
}
gathers the aggregates that are candidate to be joined. Aggregates that

are not in the two previous sets remain unchanged U := PNa
\ (Jc ∪ Sc). The “much greater” and “much

less” relations are defined by two heuristics linked with the cardinal of the aggregate. The proposition
tCi � τ is considered to be true if tCi cardC ≤ τ . Analogously, the proposition tCi � τ is considered to
be true if tCi / cardC ≥ τ . Once the aggregates have been classified, various strategies can be used to
actually perform the merger and the split.

Join strategies Two strategies are described in Algorithm 2 and 3. The former simply proposes to join
aggregates two-by-two if they are connected, i.e. if they contain, at least, two neighboring subdomains.
This strategy makes aggregates smoothly evolve and it preserves their connectivity. The latter joins all
the connected components of the subgraph associated with the aggregates to be joined. It induces a more
massive adaptation while still ensuring the connectivity.

For both algorithms, aggregates are sorted with respect to the value of (tCi / card (C))C to favor the
largest values of the τ -test : aggregates associated with large (tCi / card (C)) are joined first.

After the joining step, the number of aggregates has decreased and some free space is available for
the split step.

Algorithm 2: Join strategy based on a two-by-two merging.
Input : Set of aggregates selected for join J i

c , criteria (tCi / card (C))C

Output: Set of actually joined aggregates AJ i
c

1 Sort J i
c in descending order with respect to (tCi / card (C))

2 Build the subgraph GJ = (J i
c ,ΥC)

3 AJ i
c = {}

4 for Cp ∈ J i
c do

5 for Cq ∈ J i
c \ {Cp} do

6 if Cp and Cq are connected then
7 Insert Cp ∪ Cq in AJ i

c

8 Remove Cp and Cq from J i
c

9 break

10 Return AJ i
c

Algorithm 3: Join strategy based on the connected components of the subgraph.
Input : Set of aggregates selected for join J i

c , criteria (tCi / card (C))C

Output: Set of actually joined aggregates AJ i
c

1 Sort J i
c in descending order with respect to (tCi / card (C))

2 Build the subgraph GJ = (J i
c ,ΥC)

3 Compute the connected components of GJ (via Depth First Traversal)
4 AJ i+1

c = {}
5 foreach connected component P of GJ do
6 Insert (∪C∈PC) in AJ i

c

7 Remove (C)C∈P from J i
c

8 Return AJ i
c

Split strategies In the same way, two split strategies are described in Algorithm 4 and 5. Algorithm 4
proposes to bisect aggregates as long as there is free space available (keep in mind that total number of
aggregates is fixed). Algorithm 5 enables to split selected aggregates into more than two parts.

7



Algorithm 4: Split strategy based on aggregates bisection.
Input : Set of aggregates selected for split Si

c, criteria (tCi card (C))C , free space
Output: Set of actually split aggregates ASi

c

1 Sort Si
c in ascending order with respect to (tCi card (C))

2 ASi+1
c = {}

3 for Cp ∈ Si
c do

4 if freespace is available then
5 Append bisect(Cp, 2) to ASi

c

6 Update the freespace

7 Return ASi
c

Algorithm 5: Split strategy based on a uniform partitioning of aggregates.
Input : Set of aggregates selected for split Si

c, criteria (tCi card (C))C , F (free space)
Output: Set of actually split aggregates ASi

c

1 Sort Si
c in ascending order with respect to (tCi card (C))

2 ASi
c = {}

3 P = ones(card(Si
c))

4 while F > 0 (free space is available) do
5 for Cp ∈ Si

c do
6 if P (p) < card(Cp) then
7 P (p)← P (p) + 1
8 F ← F − 1 (update the free space)

9 for Cp ∈ Si
c do

10 Split Cp into P (p) parts
11 Append the parts to ASi

c

12 Return ASi
c

Algorithm 6 summarizes the adaptation process. For computational efficiency there is a one-iteration
delay between the classification and the aggregates update. Indeed, with this delay the local contribution
to the preconditioned residual Zp

i does not need to be recomputed.
The discrete adaptation has the advantage to present a negligible computational cost. However, the

evolution of the aggregates may be really slow, even stopped, when the number of aggregates is much
smaller than the number of subdomains (see Section 4). This phenomenon has motivated the development
of a more continuous process presented hereafter.

Algorithm 6: AMPFETI with discrete aggregate adaptation based on the local τ -test.
Input: Initial aggregate partition split and join strategies.

1 AMPFETI initialization (`1 – `6)
2 while ‖ri‖ > ε do
3 AMPFETI beginning of iteration (`8 – ` 11 )
4 Adapt aggregates according to (Si

c,J i
c ,U i)

5 Local test with the newly formed aggregates (`12)
6 Classify aggregates in (Si+1

c ,J i+1
c ,U i+1)

7 AMPFETI end of iteration (`13 – ` 14 )

3.3 Aggregate adaptation via weighted graph partitioning
At each iteration, a new partition (Ck)1≤k≤Na is computed by a graph partitioning library. The value of
the τ -test is used to define the vertexes’ weight in the graph, leading to a balanced partition.

More precisely, the weights are proportional to 1/tCi in order to correctly adapt aggregates. With this
choice, the vertex weight is really high when the local τ -test has detected some “meaningful information”.
It thus produces aggregates with few subdomains in these areas. In the case of heterogeneous plates with
localized inclusions (see Section 4.2), it leads to small aggregates near the heterogeneity for instance. All

8



the subdomains of a given aggregate C are assigned the same vertex weight:

∀Ωs ∈ C, ωv(Ωs) = 1
1 + tC

i∑Na

k=1
tk

i

(13)

As can be seen in (13), the value of the τ -test tCi is normalized with respect to the values coming from
all aggregates. When the number of aggregates is small, this strategy is expected to give better results
than the discrete one since the adaptation is much less constrained. The computational cost remains
small since the number of edges of the subdomain connectivity graph remains low because this graph
only concerns short range interactions.

Algorithm 7: Aggregate adaptation via weighted graph partitioning based on the local τ -test.
Input: Initial aggregate partition

1 AMPFETI initialization (`1 – `6)
2 while ‖ri‖ > ε do
3 AMPFETI start of iteration (`8 – ` 11 )
4 Call the graph partitioner and adapt the aggregates
5 Local test with the newly formed aggregates (`12)
6 Compute the vertex weights (ω(Ωs))16s6Nd

7 AMPFETI end of iteration (`13 – ` 14 )

4 Numerical results
In this section, the performance of the AMPFETI variants are compared. Section 4.1 compares the results
obtained by AMPFETIG and AMPFETIL with various numbers of fixed aggregates. A weak scalability
study on a checkerboard heterogeneous cube emphasizes that grouping search directions into aggregates
provides a better control of the memory footprint without significantly degrading the time to solution.
In Section 4.2, the benefit of the two-level adaptive strategy of AMPFETIL is demonstrated with a weak
scalability test with localized inclusions. Let us note that FETI and MPFETI algorithms are not taken
into account here. A detailed comparison of FETI, MPFETI, AMPFETI showing the good performance
of AMPFETI can be found in [4].

Remarks on the implementation and hardware computing resources The solvers have been
implemented in the finite element suite Z-Set 9.01. All the computations presented in this section have
been performed using the Part 1 of the Occigen supercomputer. This supercomputer is made of Haswell
bi-processors (E5-2690V3@2.6 GHz) which are interconnected with an Infiniband FDR 56 Gb/s network.
In all configurations, MUMPS solver (version 5.1.2) [2] is used in association with the BLAS library
provided by Intel 17.2 MKL for local solves. The Pardiso direct solver is used to solve the coarse
problem. Eigen library2 is used for dense linear algebra. Communication are handled by the OpenMPI
library.

4.1 Weak scalability study on a highly heterogeneous checkerboard cube
This subsection is dedicated to the study of AMPFETI’s scalability. The test-case is a cube with checker-
board heterogeneity pattern. Automatic graph partitioning is employed, which results in numerical diffi-
culties spread all over the structure, making it uninteresting to try adapting aggregates. The performance
of AMPFETIG is also mentioned since this variant of the solver seems well suited to that configuration.

For nc ∈ {5, 6, 7, 8, 9, 10, 11}, we consider a set of three-dimensional heterogeneous cubes made of
n3

c identical sub-cubes (see Figure 3). Each sub-cube is discretized with the same ruled mesh made
of 110592 eight-node brick elements (c3d8), leading to a total number of approximately n3

c × 352, 947
degrees of freedom. With this setup, the H/h ratio equals to 48 where h is the diameter of the finite
elements and H that of a typical subdomain. The cube is clamped on one face and subjected to a
prescribed unitary displacement in the three space directions on the opposite face, all other faces being
traction-free. The material behavior is isotropic linear elastic, with a Poisson’s coefficient of 0.3 and two
values of Young’s modulus assigned following a checkerboard pattern in order to obtain a coefficient jump
E1/E2 between two adjacent sub-cubes. Two ratios of Young’s modulus are used: 103 and 106. Finally,
an unstructured decomposition in Nd = n3

c subdomains is obtained with a graph partitioning software
which leads to interfaces not aligned with the heterogeneity. For a given number of subdomains, the

1http://www.zset-software.com/
2http://eigen.tuxfamily.org/
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(a) Checkerboard cube. Red and blue
areas correspond to the two different
materials.

(b) Automatic decomposition. Each
color represents a different subdomain.

Figure 3: Heterogeneous cube (configuration with Nd = 216, nc = 6).

nc Nd #DOFs total #DOFs on interface #cores
5 125 41,992,563 2,645,043 750
6 216 72,412,707 4,785,987 1296
7 343 114,818,259 7,752,734 2058
8 512 171,199,875 11,641,947 3072
9 729 243,548,211 17,084,832 4374
10 1000 333,853,923 23,613,033 6000
11 1331 444,107,667 32,187,410 7986
12 1728 576,300,099 42,008,133 10368

Table 1: Checkerboard cube, weak parallel scalability: configurations.

partitioning is computed once and reused for all solvers configurations and for both coefficient jumps.
The choice Nd = n3

c , combined with the use of an automatic graph partitioning software leads to a lot of
traversing heterogeneities that are known to strongly deteriorate the convergence of the FETI method.
Such a configuration is represented in Figure 3 for nc = 6. Six cores are allocated to each subdomain,
a shared memory parallelism is used at several steps including (but not limited to) local operators and
coarse problem factorization. The study starts from 125 subdomains and goes up to 1728 subdomains
which corresponds to a total number of 10368 cores and 576 millions unknowns.

All algorithms are equipped with the best state of the art preconditioner and projector, they use
a combination of Primal Schur complement and stiffness scaling. The convergence is triggered when
‖ri‖/‖r0‖ ≤ ε. The convergence criterion ε is set to 10−6 and the τ -test threshold is set to 10−2.
The influence of the choice of the preconditioner, projector and threshold is discussed at length in [4].
Several numbers of aggregates have been tested Na ∈ {32, 64, 125}. Table 1 summarizes the different
configurations.

The results are shown in Figures 4-5. The letter G (resp. L) stands for AMPFETI with the global
τ -test (resp. local τ -test), the appended number indicates the number of aggregates. The total wall
time includes the setup, the factorization of local operators and the convergence loop of the algorithm.
For both AMPFETIG and AMPFETIL, and whatever the Young’s modulus ratio, the same behavior is
observed.

• The number of iterations needed to achieve convergence slightly increases with the number of
subdomains. This behavior is not uncommon for such high level of heterogeneity and automatic
decomposition. In GENEO’s approaches, it is often observed that the number of modes to be
eliminated per subdomains increases with the number of subdomains. In AMPFETI approaches,
the bad modes must be captured through extra iterations, at least one iteration per bad mode,
before superconvergence can be observed.

• Regarding the time to solution, a change of slope is clearly visible after 729 subdomains (nc =
9). This change of slope is induced by two phenomena. First, the time spent in building and
solving the coarse problem strongly increases when the number of subdomains becomes large in our
implementation. For now, G>AG is communicated to all “subdomains” and all of them perform
the factorization with a multithreaded solver (redondant work). A global communication with a
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significant amount of data happens here. The implementation of a better strategy, inspired from
[17], will be considered in the future. Also, a superlinear increase of the cost of all MPI_Allreduce
operations involved by the full reorthogonalization is observed (even if the increase of the search
space size is limited).

• As expected, the size of the search space decreases with the use of smaller number of aggregates.
For the largest test case (Nd = 1728) and whatever the heterogeneity, the search space generated
with 32 aggregates is approximately 15% smaller than the one produced with 125 aggregates. The
increase of the time to solution is limited since the additional time induced by the higher number
of iterations is somehow compensated by time saved in the orthogonalization.

• The increase of the number of iterations with respect to Nd is slightly faster when the Young’s
modulus ratio is 106. It was expected because nc also increases leading to more and more material
coefficent jumps in the global problem and thus deteriorating the condition number.

11



5 6 7 8 9 10 11 12

N
1/3
d

0

1000

2000

3000

T
o
ta

l
ti

m
e

[s
] G125

G64

G32

L125

L64

L32

750 1296 2058 3072 4374 6000 7986 10368
Number of cores

(a) Total wall time.

5 6 7 8 9 10 11 12

N
1/3
d

100

200

300

400

N
u

m
b

er
of

it
er

a
ti

o
n

s

G125

G64

G32

L125

L64

L32

750 1296 2058 3072 4374 6000 7986 10368
Number of cores

(b) Number of iterations.

5 6 7 8 9 10 11 12

N
1/3
d

0

2500

5000

7500

10000

12500

S
ea

rc
h

sp
ac

e
si

ze G125

G64

G32

L125

L64

L32

750 1296 2058 3072 4374 6000 7986 10368
Number of cores

(c) Minimization space size.

Figure 4: Checkerboard cube, weak parallel scalability (E1/E2 = 103): wall time, number of iterations
and minimization space size.
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Figure 5: Checkerboard cube, weak parallel scalability (E1/E2 = 106): wall time, number of iterations
and minimization space size.
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4.2 Weak scalability study on a three dimensional elastic plate with stiff
inclusions

While the previous section has shown the benefit of gathering search directions into aggregates, this
section highlights the advantage of the two-level adaptation. Only AMPFETI with the local τ -test is
shown here since it is the only algorithm that is concerned with this adaptation.

(a) Heterogeneous 3D plate pattern. (b) Test case with 2 × 2 repetition.

Figure 6: Weak scalability with localized inclusions.

The pattern is defined by a three-dimensional heterogeneous plate made of a soft matrix and stiff
inclusions. In this pattern, two hundred inclusions are inserted in two strips 0 ≤ x ≤ 0.2 xmax and
0.6 xmax ≤ x ≤ 0.8 xmax (see Figure 6). The matrix behavior is isotropic elastic linear with a Poisson’s
coefficient of 0.45. All spherical inclusions have a Poisson’s coefficient of 0.3. The Young’s modulus of
the inclusions are randomly selected using uniform distribution, such that the maximum Young modulus
ratio Einclusion/Ematrix is 106. The plate is clamped on one side and subjected to a prescribed unitary
displacement in the three space directions on the opposite side, all other faces remain traction-free. The
pattern is discretized with a ruled mesh made of 125×125× 10 eight-node brick elements (c3d8), leading
to a number of 174, 636 nodes. To perform the weak scalability study, this pattern is repeated in the
directions x and y, and an unstructured decomposition is obtained with a partitioning software. The
number of subdomains per pattern is 120. Thus, the study starts from 2× 2 patterns (480 subdomains)
and goes up to 7×7 patterns (5880 subdomains). Since subdomains are really small in this test case (about
5, 000 unknowns per subdomain), only one core is attributed to each one. Table 2 summarizes the different
configurations. All algorithms are equipped with stiffness scaling and Dirichlet preconditioner for S̃ and
A. The convergence is triggered when ‖ri‖/‖r0‖ ≤ ε. The convergence criterion ε is set to 10−6 and the
τ -test threshold is set to 10−2. Several numbers of aggregates have been used Na ∈ {32, 64, 125, 216}. For
each number of aggregates, the adaptation based on weighted graph partitioning and two combinations of
discrete split and join strategies have been tested. Table 3 gives the correspondence between the legend
and the adaptation strategy presented in Section 3. The letter L stands for the non-adaptive AMPFETI
with local test.

The results are summarized in Tables 4 - 7. Figure 8 compares the scalability of the L2 variant whereas
Figure 7 presents a focus on the 5880-subdomain case.

We observe that for all cases the convergence of the two-level adaptive variants is faster than the
fixed aggregates variant (L). As shown in Tables 4 and Tables 5, when the number of aggregates is much
smaller than the number of subdomains, all discrete adaptation variants remain inactive and do not
provide any improvement. This is not the case for the continuous variant. As seen in Figure 8, the L2

variant always leads to fewer iterations than the fixed aggregate configuration. For the case with 5880
subdomains and 64 aggregates, the gain is about 22%. More, the search space size for both configurations
is approximately equal. Because of the small size of the subdomains (about 5000 unkowns), the gain in

Nd #DOFs total #cores
480 2,079,033 480
1080 4,665,408 1080
1920 8,283,033 1920
3000 12,931,908 3000
4320 18,612,033 4320
5880 25,323,408 5880

Table 2: Three dimensional plate with stiff inclusions, weak parallel scalability: studied configurations.

14



Discrete evolution of aggregates Evolution of aggregates via graph partitioning
Variant Split strategy Join strategy Variant Cost function

A Bisection Two-by-Two L2 Linear (13)
B Uniform Only connected

Table 3: Three dimensional plate with stiff inclusions, weak parallel scalability: tested combinations.

terms of number of iterations has little effect on the time to solution. Indeed, the time spent in local
solves is much less than the time spent in the coarse problem. So even if a gain is obtained in terms of
iteration, it is not so much visible in the computational time. This setup was chosen to be able to reach
a large number of subdomains without consuming too much computational resources.

The search space size reduction is about 10% between Na = 32 and Na = 216. The aggregate
process leads to moderate gain here because, contrary to the checkerboard test case, the local τ -test of
AMPFETIL does not saturate here but remains “frugal”.

As presented in Figure 7, with the two-level adaptation method, the algorithm usually keeps selecting
search directions a little longer, which means more relevant search directions are generated.

Nd 480 1080 1920 3000 4320 5880
Number of iterations

L 83 118 184 267 336 389
A 83 118 184 267 336 389
B 83 118 184 267 336 389
L2 80 96 155 217 274 342

Search space dimension
L 1014 2076 3571 5603 7689 10381
A 1014 2076 3571 5603 7689 10381
B 1014 2076 3571 5603 7689 10381
L2 1081 1995 3520 5607 7712 10548

Time to solution (s)
L 8.865 33.9 191.0 249 455 911
A 8.777 30.0 132.1 207 445 945
B 8.79 29.5 200.5 208 463 922
L2 9.013 28.7 81.9 201 440 843

Table 4: Weak scalability with heterogeneous inclusions: summary of results for the case with 32 aggre-
gates. The user parameter τ is set to 0.01.

Nd 480 1080 1920 3000 4320 5880
Number of iterations

L 68 79 124 161 190 259
A 65 79 124 161 190 259
B 65 79 124 161 190 259
L2 64 69 106 140 168 202

Search space dimension
L 1047 2130 3631 5732 7821 10723
A 1062 2130 3631 5732 7821 10723
B 1092 2130 3631 5732 7821 10723
L2 1206 2204 3645 5682 7774 10722

Time to solution (s)
L 10.08 30.26 98.5 208 444 791
A 9.075 28.97 85.1 213 390 790
B 9.072 33.56 85.6 212 386 756
L2 10.09 28.98 85.0 211 444 750

Table 5: Weak scalability with heterogeneous inclusions: summary of results for the case with 64 aggre-
gates. The user parameter τ is set to 0.01.

A focus on aggregates evolution In order to “feel” how the algorithm behaves, we propose to
visualize the aggregates evolution given by the variant B on the test case with 480 subdomains with 120
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Nd 480 1080 1920 3000 4320 5880
Number of iterations

L 56 59 87 108 126 153
A 52 55 87 108 126 153
B 51 56 87 108 126 153
L2 56 53 81 102 114 130

Search space dimension
L 1229 2339 3732 6188 8003 11065
A 1400 2222 3732 6188 8003 11065
B 1361 2341 3732 6188 8003 11065
L2 1271 2443 4038 5927 7939 10781

Time to solution (s)
L 10.33 30.61 105.1 201 413 741
A 10.85 27.02 79.5 192 361 750
B 10.49 30.3 80.9 234 432 746
L2 10.44 30.12 97.7 191 418 757

Table 6: Weak scalability with heterogeneous inclusions: summary of results for the case with 125
aggregates. The user parameter τ is set to 0.01.

Nd 480 1080 1920 3000 4320 5880
Number of iterations

L 51 47 72 86 109 117
A 48 42 66 88 102 117
B 47 41 71 86 102 117
L2 49 46 65 83 89 96

Search space dimension
L 1502 2697 4229 6621 8809 11252
A 1449 2599 4181 6367 8761 11252
B 1522 2671 4021 6412 8761 11252
L2 1529 2800 4313 6374 8413 11118

Time to solution (s)
L 11.66 33.86 85.4 199 427 756
A 11.04 29.52 83.5 191 476 768
B 11.51 31.4 78.5 198 418 776
L2 11.51 31.1 83.9 288 419 738

Table 7: Weak scalability with heterogeneous inclusions: summary of results for the case with 216
aggregates. The user parameter τ is set to 0.01.

aggregates. In Figure 9b-9f, each dot represents a subdomain. These dots are situated at the gravity
center of subdomains and they are linked if they belong to the same aggregate. Figure 9a is an above view
of the geometry allowing to compare the aggregates evolution with the position of the stiff inclusions.
Starting from a uniform distribution of aggregates, as soon as the second iteration, the algorithm generates
“small” aggregates close to the stiff inclusions. After iteration 11, the distribution obtained is the final
one. In Figure 9f, one can observe that close to the inclusions, allmost all aggregates only contain one
subdomain. Conversely, aggregates localized in the homogeneous part of the problem gather several, and
sometimes many, subdomains.
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(a) Convergence results with 32 aggregates.
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(b) Convergence results with 64 aggregates.
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(c) Convergence results with 125 aggregates.
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(d) Convergence results with 216 aggregates.

Figure 7: Weak scalability test with localized inclusions, focus on the results for the case with 5880
subdomains.
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Figure 8: Weak scalability test with localized inclusions, focus on the results of the graph based update
of aggregates: wall time, number of iterations and minimization space size.
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(a) Above view of the problem.
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(c) Aggregates at iteration 2.
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(d) Aggregates at iteration 4.
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(f) Aggregates at iteration 11 (final).

Figure 9: Aggregates evolution for variant B with 480 subdomains and 120 aggregates. Each dot repre-
sents a subdomain. Dots are linked if they belong to the same aggregate.
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5 Applications to real engineering problems
This section presents some typical real engineering problems where the use of the AMPFETI solver is
essential to achieve convergence.

5.1 Numerical homogenization of the mechanical behavior of solid propel-
lants

Solid propellants are energetic materials composed of an organic matrix and numerous metallic inclusions.
Due to the large dispersion of the sizes of the particles, this type of material brings several space scales into
play. The simulation of a Representative Volume Element (RVE) with the finite element method leads to
many unknowns, making the use of iterative solvers mandatory. However, the numerical homogenization
of this type of material with domain decomposition methods is a challenging problem since it gathers
almost all classical hard points that penalize the convergence of iterative solvers.

First, the material is highly heterogeneous, the jump in Young modulus between the matrix and
the metallic inclusions is approximately 105. Because of the high density of inclusions in the RVE,
heterogeneity is very frequently misplaced with respect to the domain decomposition interface. Also,
elements of the mesh of the matrix that are located between two close inclusions often exhibit poor
quality factors which degrade even more the condition number of the linear system to be solved. More,
the organic matrix is almost incompressible, and mixed pressure–displacement–volume variation finite
element needs to be used [1] (if a linear elastic behavior is assumed for the matrix, the Poisson coefficient
is 0.499).

(a) Finite element mesh of the RVE,
the red and yellow colors correspond
to two different types of inclusions.

(b) Domain decomposition in 448 sub-
domains.

(c) Von Mises stress field, the white
color characterises low stresses area.

Figure 10: Numerical homogenization of the mechanical behavior of solid propellants.

This is a typical case where the AMPFETI solver is needed to achieve convergence. As an example, we
present some results on the linearized problem. Figure 10a shows the finite element mesh and the domain
decomposition for one distribution of particles. The finite element mesh contains 5,494,528 quadratic
tetrahedrons and the global system has 22 millions of degrees of freedom; 448 subdomains are used for
the partitioning. The computation is run on 448 cores (MPI parallelism only). Figure 11 shows the
convergence of the solver and the generated search space for various configurations. The curves G448
and L448 correspond to the original AMPFETI (with one subdomain per aggregate, G means global
τ -test, L means local τ -test). Although the inclusions are spread out over all the RVE, all local variants
generate a smaller search space than their global counterpart. It is especially visible when comparing
G448 with L448. The use of aggregates allow to reduce the search space size without degrading too much
the convergence. Here, the second level of adaptation (L2112 and L256) leads to the same results as the
one level (L112 and L56). It may be explained by the fact that inclusions are spread out over all the
RVE and not localized.
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(b) Evolution of the total search space size.

Figure 11: Solid propellant: convergence and search space size. The local preconditioner is the Dirichlet
one with a k-scaling. The user parameter τ is 0.01.

5.2 High fidelity simulation of a multiperforated aircraft combustion cham-
ber

Aircraft combustion chambers are complex systems subjected to strong thermomechanical loading. To
estimate the fatigue lifespan, several full load cycles need to be simulated. Thanks to AMPFETI, the
simulation can be performed in a reasonable CPU time, while taking into account the anisothermal elas-
toviscoplastic highly nonlinear material and the fine description of the geometry. The material used is
modeled with a complex elasto-viscoplastic law. This law has two potentials, the first potential is elasto-
viscoplastic, it includes a Norton flow, two hardening mechanisms (one kinematic and one isotropic).
The second potential is viscoplastic with a Norton flow. All material parameters are temperature depen-
dant. Also, a complete set of 1200 micro-perforations is modeled and their influence on the stress and
temperature field can be analyzed.

Figure 12a shows the domain decomposition. A zoom on the finite element mesh close to the perfora-
tions is visible in Figure 12b. The finite element mesh contains quadratic tetrahedrons and hexahedrons,
the global system has approximately 25 million degrees of freedom. There are 576 subdomains, the com-
putation is run on 3456 cores (hybrid MPI–OpenMP parallelism). Because of the material nonlinearity,
a Newton-Raphson scheme is needed and AMPFETI is used as a linear solver for the successive tangent
linear systems. Each Newton iteration lasts approximately one minute, this time includes the resolution
of the tangent system and the integration of the nonlinear material law. As an example, the Von mises
stress field at some instant of the cycle is shown in12c.

Figure 13 shows the convergence of the solver and the generated search space for various configurations
for the first tangent system. The curve L576 corresponds to the original AMPFETI (with one subdomain
per aggregate). Again, the use of aggregates allows a significant reduction of the search space size
without degrading too much the convergence. Also, the second level of adaptivity (L2288 and L2144)
leads approximately to the same results as their one level counterparts.
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(a) 576-subdomain decomposition.

(b) Finite element mesh. (c) Von mises stress fields

Figure 12: Multiperforated aircraft combustion chamber simulation.
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(b) Evolution of the total search space size.

Figure 13: Multiperforated aircraf combustion chamber: convergence and search space size for the first
tangent system. The local preconditioner is the Dirichlet one with a k-scaling. The user parameter τ is
0.1.
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6 Conclusion and perspectives
This paper presents strategies to reduce the memory cost of the Adaptive Multipreconditioned FETI
method.

First, the gathering of search directions into aggregates allows a better control of the memory require-
ments of the solver since it limits the search space growth per iteration. It is especially useful for large
scale ill conditioned systems.

Then, a second level of adaptation has been introduced to improve the convergence by updating
aggregates at each iteration. It is especially efficient when the computation complexity is localized in
few subdomains and when the number of multipreconditioning aggregates is small in comparison to the
number of subdomains. The update of the multipreconditioning aggregates makes use of the local τ -test.
Two evolution strategies have been derived. The first one is based on aggregates classification into three
sets (split candidates, join candidates, unchanged); the update of aggregates looks like a discrete system
with a limited number of states. This strategy has the advantage to be costless, but it may be inadequate
when the number of aggregates is too small. The second one, based on weighted graph partitioning, is
more flexible but has a higher computational cost.

The benefits of these modifications have been assessed with two weak scalability studies going up to
10368 cores and 576 millions of unknowns. Finally, two engineering simulations leading to ill-conditioned
systems have been presented. In these simulations, the use of AMPFETI was essential to achieve con-
vergence.

One perspective of this work is to replace the sum in the gathering process by a weighted sum and
to look for optimal coefficients. Other perspectives are to associate multipreconditioning with classical
deflation and restarting techniques and to propose adaptive strategy for the non symmetric case.
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