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S U M M A R Y
Monitoring the small variations of a medium is increasingly important in subsurface geophysics
due to climate change. Classical seismic surface wave dispersion methods are limited to
quantitative estimations of these small variations when the variation ratio is smaller than
10 per cent, especially in the case of variations in deep media. Based on these findings, we
propose to study the contributions of the Rayleigh wave phase velocity derivative with respect
to frequency. More precisely, in the first step of assessing its feasibility, we analyse the effects
of the phase velocity derivative on the inversion of the fundamental mode in the simple case of
a two-layer model. The behaviour of the phase velocity derivative is first analysed qualitatively:
the dispersion curves of phase velocity, group velocity and the phase velocity derivative are
calculated theoretically for several series of media with small variations. It is shown that
the phase velocity derivatives are more sensitive to variations of a medium. The sensitivity
curves are then calculated for the phase velocity, the group velocity and the phase velocity
derivative to perform quantitative analyses. Compared to the phase and group velocities, the
phase velocity derivative is sensitive to variations of the shallow layer and the deep layer
shear wave velocity in the same wavelength (frequency) range. Numerical data are used and
processed to obtain dispersion curves to test the feasibility of the phase velocity derivative in
the inversion. The inversion results of the phase velocity derivative are compared with those of
phase and group velocities and show improved estimations for small variations (variation ratio
less than 5 per cent) of deep layer shear wave velocities. The study is focused on laboratory
experiments using two reduced-scale resin-epoxy models. The differences of these two-layer
models are in the deep layer in which the variation ratio is estimated as 16.4 ± 1.1 per cent
for the phase velocity inversion and 17.1 ± 0.3 per cent for the phase velocity derivative. The
latter is closer to the reference value 17 per cent, with a smaller error.

Key words: Inverse theory; Time-series analysis; Acoustic properties; Surface waves and
free oscillations.

1 I N T RO D U C T I O N

The subsurface media are particularly affected by climate change
and associated climatic events through variations in water table lev-
els and fluid transfers in the unsaturated zone, known as the Critical
Zone. These phenomena create alteration zones that can potentially
lead to collapses. For these reasons, monitoring mechanical changes
in the subsurface media in areas of human activity, particularly when
they involve buildings, is becoming increasingly important. These
needs are therefore among the key issues of current geophysical
research.

Among non-destructive seismic approaches for assessing the me-
chanical properties of shallow underground media, the properties
of surface waves are widely used due to the energy they transport
and their long propagation distances (Socco & Strobbia 2004; Foti
et al. 2018). Using the dispersion of surface waves in a layered
structure, the properties of the medium are inferred by solving an
inverse problem. This method, as a standard procedure for surface
wave analysis, contains three steps: (1) acquisition, (2) process-
ing for extracting the dispersion data that will serve as the inver-
sion input data and (3) the inversion whose output parameters are
shear wave velocity, compressional-wave velocity and density, as
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function of depth. Classically the phase velocity dispersion is used
for subsurface investigations, and the group velocity dispersion is
used for seismology approaches. The common methods to extract
these two dispersion data are recalled below.

A sensitivity study by Bhattacharya (2015) showed that group ve-
locity is more efficient than phase velocity to explore the anisotropic
nature of a medium. The multiple filter method (MFM) proposed by
Dziewonski et al. (1969) is based on bandpass frequency filters to
analyse earthquake signals. Using different bandpass filters, waves
with frequencies around the centre frequency are isolated. Thus,
the delay between the source wavelet and the arrival of the signal,
both filtered for the current frequency, is used for assessing the
group velocity corresponding to the current frequency. The main
difficulty in using the multiple filter technique is the possible in-
terference between higher modes when the envelope of the filtered
signals is not sharp enough to contain a very narrow frequency band
(Gabriels et al. 1987). Based on MFM, the reassignment method
(Kodera et al. 1976; Auger & Flandrin 1995) calculates the centre
of gravity of a signal pulse, which helps improve the accuracy of
the group velocity assessment. Pedersen et al. (2003) developed a
good adaptation for both synthetic seismograms and field data relat-
ing to shallow earth structures. However, the reassignment can blur
the distinction between waves that are located close together, thus
generating complexity in the time–frequency domain. In addition,
in the case of strong frequency dispersion, the phase velocity can
be efficiently extracted for several modes if a large set of receivers
is involved (Socco & Strobbia 2004). Thus, as mentioned by these
authors, this dispersion data, that is, the phase velocity, is commonly
used in subsurface investigation. The principal of its extraction is
explained below.

Indeed, the classical measurement set-up for subsurface geo-
physics applications involves a set of several receivers for a process-
ing method called MASW (multichannel analysis of surface waves).
This approach, first implemented by geophysicists in the 1980s for
near-surface characterization (McMechan & Yedlin 1981; Gabriels
et al. 1987) and improved in the following decades (Park et al. 1998;
Foti et al. 2000), is the most commonly used method in the case
of geophysical Near Surface investigations. By applying an active
source and a linear array of receivers, the MASW method enhances
the production rate in the field and makes the processing of the
data faster, less subjective, and more robust compared to classical
one-source one-receiver systems (Foti et al. 2014). The processing
stage consists in extracting from recordings the dispersion data that
will be inverted. With the MASW approach, the dispersion data
comprises the dispersion curves of the phase velocity. Several sig-
nal processing techniques can be used for extracting it, such as the
f –k transform (Yilmaz 2001), the τ–p transform (McMechan &
Yedlin 1981), the phase-difference method (Mokhtar et al. 1988;
Park et al. 1998), or the linear Radon transform (Luo et al. 2008).
The phase-difference method, achieved by processing an optimiza-
tion of the τ–p transform, provides a high spectrum resolution of
the dispersion diagram with an optimized number of receivers (Park
et al. 1998; Socco et al. 2010; Xia 2014). It has been chosen for
this study. For this procedure, the Fourier Transform is applied to
each signal of the seismic shot. After normalizing the amplitude,
a phase shift correction is applied to each frequency component
as a function of the receiver-source distance, through a series of
possible phase velocities. The corrected frequency components are
summed over the entire shot to obtain a dispersion diagram in the
v–f domain. On the latter, the areas of maximum values correspond
to the extracted phase velocity estimated as a function of frequency
for the fundamental mode and the excited higher modes.

Whatever the dispersion data used (i.e. group or phase velocity),
the general approach of dispersion inversion of surface waves makes
it possible to characterize the propagating media for investigating
the Earth on a global scale up to the first metre deep or even the sub-
millimetre scale, depending on the propagating wavelength range
used. Thus, surface wave analysis should be suitable for monitoring
the mechanical variations of the subsurface. For example, Planès
et al. (2016) used the passive seismic-interferometry technique to
analyse internal erosion in earth dams and levees. They were able
to monitor a 20 per cent reduction in surface wave velocity on a
canal embankment model and a 30 per cent variation in a field-scale
levee testing experiment. The same technique has been used on a
sea levee in the Netherlands, using traffic noise on a bridge and
the noise from a wind turbine as sources, and a 3–5 per cent incre-
ment of the group velocity was estimated during low tide (Planès
et al. 2017). Joubert et al. (2018) applied the cross-correlation and
deconvolution methods of seismic noise, to estimate a variation of
less than 10 per cent of relative surface wave velocity as a function
of increasing sea level. It is noteworthy that these authors did not
apply any inversion processing to their data sets.

Indeed, in the case of slight modifications in the medium, the in-
version method must discriminate small parameter variations lead-
ing to several issues that alter the efficiency of the process and
degrade its potential. These inaccuracies are due to accuracy limits
in acquisition, dispersion data extraction, or inversion processes.
Note that using passive measurements makes possible to continu-
ously record the signal without any action at the source from the
geophysicist. The problem of measurement errors is different from
the active set-up, but the inversion process is similar with the same
limit problems. To overcome the problem of acquisition and phase
velocity extraction, different works have proposed new approaches
as a function of field conditions. For example, Le Feuvre et al. (2015)
improved the determination of subsurface shear wave velocity from
ambient noise using cross-correlations and beamforming. Dangeard
et al. (2018) proposed a statistical approach for estimating picking
errors in the case of standard surface wave inversion for time-lapse
studies. The latter tackled the repeatability issue of the method but
did not overcome the Realistic Error, the term given by O’Neill
(2004), who used a statistical approach to define an uncertainty law
for the extraction of the phase velocity. Studies on these effects
(O’Neill 2004; Lai et al. 2005) proved that the uncertainty in sur-
face wave measurements has a greater impact on low frequencies,
making it more difficult to assess deep media variations precisely.
More recently, studies in a two-layer medium (Wang et al. 2018)
showed that conventional phase velocity dispersion curve inversion
is not capable of estimating a variation ratio lower than 10 per cent
in the deep layer. Other possibilities for increasing the efficiency of
results could be used to tackle the inversion process, for example the
misfit function, which can be based on different norms or diagram
distances (e.g. Wang et al. 2019).

We can summarize the needs and problems described above as
follows. The publications on dike monitoring mentioned show the
interest of surface waves to identify areas of damage and water pen-
etration. In order to monitor detailed evolutions before a potential
break, the methodology must allow identifying small variations in
surface wave velocity. This is not straightforward or even possible
for the inversion of surface wave dispersion in the current classical
procedure. In order to improve its performances, different levers
can be used, some of which have been analysed in the literature,
such as errors on measurements and dispersion data extraction, or
the distance norm between estimated and recorded data. However,
despite the progress made in these studies, the results available are
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not sufficient to make the methodology effective if phase velocity
variations are lower than 20 per cent. Therefore, we propose here to
study another lever that is complementary to the previous ones.

In this framework, our concern is to study the effect of the
Rayleigh phase velocity derivative with respect to frequency dVph/df
(abbreviated as PVD). More particularly, our aim is to study its sen-
sitivity and impact on the convergence and precision of the inver-
sion results. This proposition is based on the idea that information
on the variation of a medium’s properties as a function of depth
is contained in the variation of the phase velocity as a function
of frequency and thus potentially in the phase velocity derivative.
Consequently, the PVD could provide more sensitive information
on the shear wave velocity depth profile in the medium. First, to
analyse the sensitivity of the PVD, qualitative and quantitative ap-
proaches regarding its behaviour will be implemented before testing
it on the inversion process. For these analyses, all the stages of the
methods (including the geometry of the measurement set-up and
the inversion process) follow the most usual procedures for geo-
physical approaches in shallow media. The inversion method used
is summarized hereafter.

The inversion stage consists in assessing the shear wave velocity
1-D model from surface wave dispersion data. To do this, a local
or a global optimization method can be used. The global approach,
which is used for our study, makes it possible to explore the pa-
rameter space without defining any initial model. It provides a set
of possible models associated with a value of the misfit function.
The latter indicates the error level, for example, thanks to an L2
norm, between the dispersion data extracted from measurements
and those theoretically calculated. More precisely, the global opti-
mization method used for this study is based on the neighbourhood
algorithm (NA), commonly used by geophysicists. The NA is a
stochastic search method in a given parameter space, making use of
Voronoi cells to compute the misfit function in the parameter space
(Sambridge 1999). Like other global inversion methods (genetic
algorithm, simulated annealing, etc.), the NA generates pseudo-
random samples in the parameter. The originality of NA is that the
new samples generated at each iteration are guided and improved
by the previous ones. A later study by Wathelet (2008) improved
the capacity of random model generation in a parameter space with
irregular boundaries.

All these process stages will be used here for a two-layer medium
with increasing shear wave and compressional-wave velocities as a
function of depth, and for the fundamental mode which is considered
as the most preponderant in this case (Socco et al. 2010; Foti et al.
2014). The aim is to determine the fundamental effects of the PVD
on the most basic underground medium in the 1D case. The paper
is organized as follows:

In a first part below, the two-layer reference model, the PVD
dVph/df, and its extraction are presented. In the second part, the
behaviour of the PVD is analysed qualitatively by observing its
variations over a frequency range for small velocity modifications.
In the next part, the theoretical sensitivity of the PVD is calcu-
lated and analysed. All these features are compared to those of the
traditional dispersion data: the phase velocity and the group ve-
locity of Rayleigh Waves. Then, inversion tests are provided and
analysed in the two last parts. These tests are performed respec-
tively on theoretical dispersion curves and on experimental data
recorded in the laboratory using two-layer resin models with a
shear wave velocity difference equal to 17 per cent in the deep layer.
These measurement data sets are obtained to simulate at reduced
scale field recordings carried out for typical shallow underground
media.

2 D E F I N I T I O N A N D F O R M U L AT I O N O F
T H E P H A S E V E L O C I T Y D E R I VAT I V E

In a homogeneous isotropic elastic linear medium, Rayleigh wave
velocity is independent of frequency. The Rayleigh phase velocity
Vph and group velocity Vg are equal. However, in a multilayered
medium, phase and group velocities are functions of the angular
frequency ω (with the relation ω = 2π f and f being the frequency)
and wavenumber k, and defined as follows:

Vph = ω

k
(1)

Vg = dω

dk
. (2)

The Rayleigh phase velocity can be written as a function of
frequency, wavenumber and medium parameters mj (shear wave
velocity Vs, compressional-wave velocity Vp, layer thickness h and
density ρ) with j ∈ [1, 4]:

Vph = f (Vs, Vp, h, ρ, ω, k). (3)

Then, the phase velocity derivative can be expressed as follows:

dVph =
[

∂Vph

∂ω

]
k,m j

dω +
[

∂Vph

∂k

]
ω,m j

dk

+
4∑
i

[
∂Vph

∂m j

]
k,ω

dm j . (4)

Since the medium parameters are independent of frequency, we
can write dm j/dω = 0. Then, dividing by the term dω on both sides
of eq. (4) gives

dVph

dω
=

[
∂Vph

∂ω

]
k,m j

+
[

∂Vph

∂k

]
ω,m j

dk

dω
. (5)

The partial derivatives of phase velocity with respect to frequency[
∂Vph/∂ω

]
k

= 1/k and to wavenumber
[
∂Vph/∂k

]
ω

= −ω/k2 are
substituted in eq. (5):

dVph

dω
= 1

k
− ω

k2

dk

dω
, (6)

and with the definition of group velocity in eq. (2):

dVph

dω
= 1

k
− ω

k2

1

Vg
. (7)

Therefore, the analytical formulation of the phase velocity deriva-
tive with respect to frequency is

dVph

d f
= Vph(Vg − Vph)

f Vg
. (8)

Eq. (8) shows that the phase velocity derivative can be formulated
as a function of the group and phase velocities, according their
theoretical definitions. Note that since surface waves are mostly
sensitive to shear wave velocity (Takeuchi et al. 1972; Lai & Rix
1998; Aki & Richards 2002), only shear wave velocity variations
are considered in the following study (see sensitivity formulations
in Section 4). To study the PVD dVph/df, sensitivity to small varia-
tions is first analysed qualitatively and compared with the Rayleigh
wave phase and group velocities. The study is based on a two-layer
medium whose parameters are given in Table 1 with Vpi being the
compressional-wave velocity of the ith layer, Vsi the shear wave ve-
locity, ρ the density and ν i the Poisson’s ratio. The thickness of the
top layer is 8 m and the deep layer is assumed to be semi-infinite.

To understand the basic behaviour of dVph/df, the study proposed
here deals with a 1-D two-layer model as it is the most basic medium.
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Table 1. Parameters of a two-layer reference model. Vp: compressional-wave veloc-
ity; Vs: shear wave velocity; ρ: density; ν: Poisson’s ratio; h: layer thickness.

Layer (i) V ref
pi

(m s−1) V ref
si

(m s−1) ρref
i (kg m−3) νref

i href
i (m)

1 1000 600 1500 0.22 8
2 2000 1100 2200 0.28 ∞

The parameter values are chosen to be typical of simple subsurface
media, as an illustrative case for the qualitative analysis. However,
the analysis below is based on non-dimensional observations in
order to be generalizable.

3 PA R A M E T R I C S T U DY

Based on the reference model given in Table 1, we conducted a
qualitative analysis of the inversion input data Vph, Vg and the PVD
with respect to frequency, dVph/df, to highlight the effects of the
shear wave velocity and first layer depth variations. The Geopsy
software (Wathelet et al. 2004) is used to calculate the theoretical
phase and group dispersion curves. The computation of the theoret-
ical dispersion curve is based on the eigenvalue problem originally
described by Thomson (1950) and Haskell (1953) and then modi-
fied by Dunkin (1965). The propagator matrix method (Gilbert &
Backus 1966) is used to solve the eigenvalue problem in a 1-D
stratified medium. The root search is based on the Lagrange poly-
nomial, which efficiently speeds up the calculations. Thanks to the
rapidity of the computation, a series of phase and group dispersion
curves are calculated for various media following the variation ratio
defined as

α(Vsi ) = 	Vsi

V ref
si

= V var
si

− V ref
si

V ref
si

(9)

with V ref
si

being the reference shear wave velocity given in Table 1
and V var

si
the variable shear wave velocity of the medium. The dis-

persion curves are calculated in a frequency band [1, 150] H z and
represented as a function of wavelength normalized by the interface
depth h1 in order to obtain results that can be generalized as much
as possible to other similar cases (i.e. other ranges of values but
similar ratios compared to the propagating wavelength).

3.1 Vs1 variation

The shear wave velocity of the first layer varies with a variation
ratio α(Vs1 ) ∈ [−5, 5] per cent and a corresponding Poisson’s ratio
ν1 ∈ [0.17, 0.26]. Fig. 1 shows, on the left, the phase and group
velocities of the Rayleigh wave, as well as dVph/df, as a function
of λ

h1
. The right-hand part of Fig. 1 shows variations of dispersion

data (	Vph, 	Vg, 	∂ f Vph), normalized by the reference dispersion
curves

(	X )norm = 	X

X ref
× 100% = Xvar − X ref

X ref
× 100% (10)

with X being the dispersion data and Xref the reference dispersion
data when α(Vs1 ) = 0.

Fig. 1 shows that Vph and Vg vary over a wider range than dVph/df
for the wavelength range taken into account. However, the values
of the dispersion data variations are higher when normalized by the
reference model values. As expected, it can be seen that when the
shear wave velocity of the first layer varies, the variations of Vph are
larger for short wavelengths, that is, higher frequencies. Also, for λ

≥ 4h1, they become very weak, which makes them indistinguishable

from each other. Regarding the group velocity, the variations are
also larger for shorter wavelengths and the maximum is reached for
λ ≈ 3h1.

dVph/df curves present variations over a different frequency range.
Indeed, dVph/df tends to zero for lower wavelengths for which the
Rayleigh wave penetrates only in the shallow layer. When λ ≈
3.2h1, where the values of δVph/δ f are minimum, their variations
are significant and reach a normalized value equal to 20 per cent for
a 5 per cent variation of velocity whereas it is about 10 per cent for
the group velocity. (	∂ fVph)norm = 0 at λ ≈ 5h1 and when λ ≥ 5h1,
the variations are not as large as at short wavelengths. However, they
are more visible than the second lobes at (	Vph)norm or (	Vg)norm.

Regarding the behaviour for λ = 3.2h1, a physical explanation
can be given by analysing the cumulative amplitude of displacement
in depth depending on the wavelength. The figures are presented
in Appendix B. Indeed, for the wavelength λ = 3.2h1, the nor-
malized amplitude of the particle displacement is 0.5 at the depth
corresponding to the interface between the two media and the nor-
malized cumulative amplitude is 0.5 (see Fig. B1 in Appendix B).
This means that at the wavelength λ = 3.2h1, 50 per cent of the
cumulative amplitude of the surface wave propagates in the shallow
layer and 50 per cent in the deep layer. Therefore, at this point, the
propagation of the Rayleigh wave is influenced by both media. The
cumulative amplitude derivative with respect to wavelength con-
firms that the variation is highest at λ = 3.2h1 around the interface.
By varying the frequency slightly, the dominant influence comes
from the shallow or deep layer, depending on the direction of the
variation. This corresponds to the inflection point of the phase ve-
locity curve, where the absolute value of the first derivative (as a
function of frequency) is maximal.

3.2 Vs2 variation

The shear wave velocity of a semi-infinite medium varies with the
variation of ratio α(Vs2 ) ∈ [−5, 5] per cent which gives a Poisson’s
ratio of ν2 ∈ [0.25, 0.31]. Variations of phase and group velocities
(Vph, Vg) and the derivative of phase velocity dVph/df are shown in
Fig. 2.

It can be seen that the phase velocity is sensitive to variations
of the deep layer at long wavelengths and the variations become
increasingly larger as the wavelength grows. The same occurs for
the group velocity: (	Vg)norm equals zero at short wavelengths and
increases as the wavelength increases. The values of (	Vg)norm is
maximum when λ ≈ 3.4h1 and returns to zero at λ ≈ 5.3h1. Then,
with a change of sign, the variations of the group velocity are
significant at long wavelengths. Variations of Vs2 do not change the
minima δVph/δ f location at λ = 3.2h1. The variation of dVph/df is
maximum and decreases gradually along the wavelength with an
inflection point around λ = 5.3h1 where (	Vg)norm = 0.

3.3 h1 variation

The PVD is a derivative of the phase velocity as a function
of frequency, and which is used to calculate the phase velocity
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Figure 1. (a) Dispersion curves of the Rayleigh wave phase velocity (top), group velocity (middle) and phase velocity derivative (bottom) with the variation
ratio α(Vs1 ) = ±5 per cent. (b) Normalized variations with respect to the dispersion curves of the reference model.

Figure 2. (a) Dispersion curves of the Rayleigh wave phase velocity (top), group velocity (middle) and phase velocity derivative (bottom) with the variation
of ratio α(Vs2 ) = ±5 per cent. (b) Normalized variations with respect to reference model dispersion curves.

gradient. In a two-layer medium, the depth of the first layer
changes the slope of the phase velocity dispersion curve. In
the following we consider a variation in the depth of the first
layer.

Interestingly, for a two-layer medium, the gradient of both the
phase and group velocity dispersion curves with respect to wave-
length is a linear function related to the thickness of the shal-
low layer, causing the minimum phase velocity derivative to occur
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at λ = 3.25h1. Normalized variations (Fig. 3) show that the group
velocity is more sensitive to changes in the depth of a shallow
medium than the phase velocity, while the variations of the phase
velocity derivative are much larger.

It is important to note that (	∂ fVph)norm approaches infinity at
a short wavelength for h1 = 4 m and 6 m. This is because when
calculating the relative difference, the reference curve approaches
zero at a short wavelength, but the absolute difference between the
reference and variation curves is relatively large, leading to a ratio
close to infinity. This reflects the instability of the PVD at high fre-
quencies, which demands precise processing of the measurement
data, since small changes of data may cause huge deviations in the
inversion results, thus affecting the overall assessment of the media.
This requires more attention especially for inversion, as discussed
in Section 5: Inversion Tests. However, in this first stage of the
study, the results indicate that the high sensitivity of the PVD could
lead to more accurate assessment of the evaluation properties of
the depth profile Vs. Indeed, the sensitivity of the PVD under study
is high at intermediate frequencies for which the dispersion data
are generally stable if the frequency range of the source is chosen
correctly. This would therefore permit distinguishing small differ-
ences between two media or small variations between two states of
the same medium, such as in the case of monitoring the variation
of water penetration in sea dikes (Planès et al. 2017; Joubert et al.
2018), or the water content in granular material (Pasquet et al. 2016;
Dangeard et al. 2018).

Before testing this numerically with the inversion process, we
propose in the following part to analyse the theoretical sensitivity
behaviour of the PVD. This approach will provide a general result
regarding the points identified above.

4 S E N S I T I V I T Y K E R N E L S

The formulation of the sensitivity of the inversion input data to
changes in a medium parameter is given by the partial derivative of
this inversion data with respect to the medium parameter. Sensitivity
can thus be calculated for the fundamental mode which is the subject
of this study. It is intended to provide quantitative information on the
effect of the medium variation on the inversion input data of interest,
prior to future studies on the effects of higher modes, following the
same principle. Here we follow the approach established by Aki
& Richards (2002) for Love waves and apply it to Rayleigh waves
to quantitatively compare the behaviour of the different inversion
input data analysed, that is, phase velocity, group velocity and the
phase velocity derivative with respect to frequency. In the first step,
Hamilton’s principle is applied to the Lagrangian density of the
Rayleigh wave to deduce the fractional change in phase velocity at
a given frequency[

δVph

Vph

]
ω

= 1

4VgVph I k2

(∫ ∞

0
(kr1 + dr2

dz

)2

δ�dz

+
∫ ∞

0

(
2k2r 2

1 +2

(
dr2

dz

)2

+
(

kr2−dr1

dz

)2
)

δμdz

−
∫ ∞

0

(
ω2

(
r 2

1 + r 2
2

)
δρdz

)
, (11)

with z being the depth, � and μ Lamé coefficients, r1(k, ω, z)
and r2(k, ω, z) Rayleigh displacement vectors in the horizontal
and vertical directions, respectively, and I = 1

2

∫ ∞
0 ρ(r 2

1 + r 2
2 )dz the

energy integral. Aki & Richards (2002) described the method used
to calculate the partial derivative of the Love phase velocity with

respect to the medium parameter. Here, we perform the same work
for the Rayleigh wave to obtain the following formulation:[

∂Vph

∂�

]
μ,ρ,ω

= 1

4Vg I k2

(
kr1 + dr2

dz

)2

, (12)[
∂Vph

∂μ

]
�,ρ,ω

= 1

4Vg I k2

[
2k2r 2

1

+2

(
dr2

dz

)2

+
(

kr2 − dr1

dz

)2
]

, (13)

[
∂Vph

∂ρ

]
μ,�,ω

= − 1

4Vg I k2

(
ω2

(
r 2

1 + r 2
2

))
. (14)

Given the equations of Vp, Vs as a function of �, μ, ρ:
Vp = √

(� + 2μ)/ρ and Vs = √
μ/ρ, the sensitivity of the Rayleigh

phase velocity as a function of depth, that is, the partial derivatives
of Vph as a function of the medium’s parameters (Vs, Vp and ρ) can
be formulated as follows:[

∂Vph

∂Vp

]
Vs,ρ,ω

= Vpρ

2Vg I k2

(
kr1 + dr2

dz

)2

, (15)

[
∂Vph

∂Vs

]
Vp,ρ,ω

= Vsρ

2Vg I k2

[(
kr2 − dr1

dz

)2

− 4kr1
dr2

dz

]
, (16)

[
∂Vph

∂ρ

]
Vp,Vs,ω

= Vp

2ρ

[
∂Vph

∂Vp

]
Vs,ρ,ω

+ Vs

2ρ

[
∂Vph

∂Vs

]
Vp,ρ,ω

− 1

4Vg I k2
ω2

(
r 2

1 + r 2
2

)
. (17)

Since there is no analytical expression for group velocity sensi-
tivity (Aki & Richards 2002), the sensitivity kernels for both the
group velocity and the phase velocity derivative are calculated nu-
merically. For group velocity, we use Taylor’s theorem.

Vg(m) = Vg(m0) +
[

∂Vg

∂m

]
m0

(m − m0) + h1(m)(m − m0), (18)

with m representing the medium’s parameters and limm→m0 h1(m) =
0. Under this condition, we write[

∂Vg

∂m

]
m0

= Vg(m) − Vg(m0)

m − m0
. (19)

For a given medium, the Rayleigh phase velocity can be expressed
as a function of the frequency and the medium’s parameters: Vph =
f(ω, Vs, Vp, ρ). The total derivative of the phase velocity is written
as

dVph = ∂Vph

∂ω
dω +

∑ ∂Vph

∂m
dm (20)

with m a vector of the medium parameters Vs, Vp and ρ, which are
independent of frequency, we obtain:

dVph

dω
= ∂Vph

∂ω
+

∑ ∂Vph

∂m

dm

dω
= ∂Vph

∂ω
. (21)

According to the symmetry of second derivatives in mathematics,
we can write:

∂

∂ω

(
∂Vph

∂m

)
= ∂

∂m

(
∂Vph

∂ω

)
= ∂

∂m

(
dVph

dω

)
. (22)

Thus, the sensitivity kernel of the phase velocity derivative can
be assessed numerically by calculating the gradient of ∂Vph/∂m
related to the frequency. The latter was calculated previously as
the Rayleigh phase velocity sensitivity. The resulting sensitivity
kernels for each inversion input data, that is, phase velocity, group
velocity and its derivative, for the fundamental mode, are presented
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Figure 3. (a) Dispersion curves of the Rayleigh wave phase velocity (top), group velocity (middle) and phase velocity derivative (bottom) with depth variation
h1 ∈ [4, 12]m, as a function of wavelength. (b) Dispersion curves as a function of normalized wavelength. (c) Normalized variations of the dispersion data.

Figure 4. Rayleigh phase velocity sensitivity kernel (top), group velocity
sensitivity kernel (middle) and phase velocity derivative sensitivity (below)
with respect to the shear wave velocities of the shallow layer (Vs1 ) and the
deep layer Vs2 . Sensitivity values normalized by the maximum value of
sensitivity with respect to Vs1 and presented as a function of wavelength
normalized by the depth of the shallow layer h1.

in Fig. 4 as a function of normalized wavelength. Note that, as
mentioned previously, for this study, the sensitivity is calculated
and presented as related only to the shear wave velocity parameter.
In Fig. 4, the blue curves show the sensitivity of the inversion input
data to variations of shear wave velocity of the shallow layer (Vs1 )
and orange curves show the shear wave velocity of the half-space
Vs2 variations. To make the results comparable, all the curves are
normalized by the maximum sensitivity value of each inversion
input data.

In Fig. 4, it can be seen that with Vs1 variations, both Vph and Vg,
have high sensitivity values at short wavelength. However, when
variations occur in the deep layer (Vs2 ), it is necessary to have a
long wavelength to obtain more sensitivity, but precise estimation
of the medium is difficult due to high uncertainties (Lai et al. 2005).
In contrast, the resulting sensitivity of the PVD is found to be sig-
nificant at λ ≈ 3.4h1 for both Vs1 and Vs2 variations. From the
standpoint of inversion, regarding this two-layer reference medium,
this behaviour indicates that the shear wave velocity variations oc-
curring in whichever layer can be estimated by the phase velocity
derivative over a limited range of wavelengths, where the phase
velocity derivative is sensitive.

The analysis of the sensitivity kernel in Fig. 4 is in good agree-
ment with the previous qualitative analysis shown in Fig. 3. The
maximum sensitivity and largest variations of the phase velocity
derivative occur for the same order of wavelength (λ ≈ 3.4h1). In
addition, the sensitivity kernels for models with different first layer
depths (h1) but with the same shear wave velocities are also cal-
culated. The same conclusion as for the qualitative analysis is also
found: the maximum sensitivity of the phase velocity derivative still
occurs for λ ≈ 3.2h1, under the assumption of fixed model shear
wave velocities.

5 I N V E R S I O N T E S T S

In the previous two sections, we discussed the sensitivity of the PVD
dVph/df both qualitatively and quantitatively. In this part, we apply
dVph/df in a numerical inversion problem to verify its feasibility.
Three types of dispersion data are taken as inversion input data:
Vph, Vg and dVph/df. For that, theoretical dispersion curves of Vph

and Vg are calculated using Geopsy software (Wathelet et al. 2004).
The PVD is then calculated using eq. (8). Note that, since only the
fundamental mode is tackled, the dispersion curve calculated is that
of the fundamental mode only.
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The parameters of the reference model are presented in Table 1
and we assume that the medium has undergone minor changes
such that its shear wave velocities change with variation ratios
α(Vsi ) ≤ 5 per cent. The dispersion curves are calculated for the
reference model and the models with shear wave velocity variations
in a frequency range [1, 160] Hz with a frequency sampling step of
0.5 Hz. This frequency band has been chosen for these inversion
tests because it corresponds to that of an ideal pulse source centred
on 50 Hz, this central value being itself typical of a hammer shot
used in subsurface geophysics. Fig. 5 presents the dispersion curves
of the three dispersion data, as function of frequency.

5.1 Misfit function and a priori information

The dispersion data are tested below for an inversion process by a
global optimization through the NA, as indicated in Section 1: the
NA computes the misfit function in the parameter space, where the
pseudo-random samples are generated at each iteration by making
use of Voronoi cells, and then guided and improved by the samples
generated at the previous iteration. Each sample corresponds to one
ground model (i.e. a set of the research parameters: Vs of each layer
in the model) and corresponds to one calculated dispersion curve
using Geopsy software. The objective (also called misfit) function
is defined as the L2 norm relative difference between measured and
calculated inversion data values, xmes and xcal respectively, in the
frequency domain

misfit =

√√√√ 1

N f

N f∑
i

(
xmes − xcal

xmes
)2, (23)

where Nf is the number of inversion input data in the frequency
domain, x is the inversion input data, Vph, Vg or dVph/df. We define
an indicator function such that its value is between 0 and 1:

P = e−misfit. (24)

In our inversion, the compressional-wave velocity Vp, the first
layer depth h1 and the density ρ are fixed, only the shear wave
velocities of both layers Vsi are inverted and are searched in the do-
main [−20 per cent, +20 per cent] × V ref

si
. NA needs several tuning

parameters in an inversion process: ns0 = 50 the number of samples
randomly distributed in the parameter space as well as the Voronoi
cells number at the initial iteration; nr = 5 the number of best cells
to consider for the next iteration; ns = 10 the number of new gener-
ating samples at each selected cell; and ni = 15 the total number of
iteration. Finally, a total of 800 (= ns0 + nr × ns × ni ) models are
calculated in each inversion.

5.2 Inversion results of Vph and Vg

Figs 6 and 7 present the inversion results of the phase velocity and
the group velocity, respectively, with each dot corresponding to one
inverted model. Black dots are inversion results for the reference
medium (α = 0) and blue dots are inverted models for the medium
with the variation α > 0, the red dots represent α < 0. A maximum
probability value of 99 per cent (99%Pmax) is used as a limit for all
the inversion models in each inversion, which means only the models
with P ≥ 0.99 Pmax are selected as acceptable. In each figure, the
top four images show the selected inversion results when small
variations occur in the shallow medium (α(Vs1 )), and the bottom
four correspond to the cases of small variations in the deep medium
(α(Vs2 )).

For both the phase velocity and the group velocity (Figs 6 and 7),
when small variations occur in the shallow medium α(Vs1 ), those
greater than 3 per cent can be well estimated because the inversion
results can be clearly distinguished from those of the reference
model. When the variation is equal to 2 per cent, the inversion
results begin to overlap and when α(Vs1 ) = 1 per cent, the inversion
results cannot be separated. For variations in the deep medium
(α(Vs2 )), the inversion results overlap when α(Vs2 ) = 4 per cent.
Therefore, in this two-layer medium, the classical inversion method
can estimate variations of the shear wave velocity in the shallow
medium which are greater than 3 per cent. However, for variations
in the deep medium, only variations greater than 5 per cent can be
estimated.

5.3 Inversion results of dVph/df

As shown in section 3, the qualitative analysis of the behaviour of the
PVD, dVph/df tends to zero at high frequencies (short wavelengths)
where the shear wave velocity variation is small (see Fig. 5), which
causes the objective function to tend to infinity. Consequently, the
inversion of dVph/df tends to find models that better fit the dispersion
curves at high frequencies. To avoid this problem, we propose here to
invert a combined dispersion curve by using the derivative of the dis-
persion velocity for lower frequencies and dispersion velocities for
the higher frequencies. The frequency limit between the two ranges
is chosen here in order to integrate the derivative of the phase veloc-
ity over a sufficiently wide range including the zone of maximum
sensitivity. According to the sensitivity curves of dVph/df (Fig. 4),
dVph/df is most sensitive when λ ∈ [2, 6]h1 = [16, 48] m, which
corresponds to the frequency range [20, 40] Hz in the tested case.
Thus, the combined dispersion curve is dVph/df when f < 60 Hz
and Vph when f ≥ 60 Hz. Note that the frequency range limits for
dVph/df have been chosen here by considering the part of the disper-
sion curves featuring the higher variations but it remains arbitrary.
This choice for the limits values could be driven by a benchmark
test approach in further studies with the objective to automatically
recover the optimum values of the frequencies boundaries.

Fig. 8 shows that the combined data inversion has a quasi-
equivalent estimation for the shallow layer Vs1 . But when varia-
tions occur in the deep medium, the inversion of the combined data
better estimates small Vs2 variations. The normalized convergence
curve of the indicator P in Fig. 9 shows that all inversion processes
converge after around 300 iterations and the number of selected
models for both inversions varies between [550, 650]. In order to
obtain a clearer view of the selected models, they are presented
quantitatively in Fig. 10.

The inversion results of the combined dispersion curve and Vph

are shown in Fig. 10: the inverted shear wave velocities are plotted
as a function of the variation ratio α. The black line presents the
expected values, and the coloured zones show, extreme inverted
values for Vph (red zone) and the combined dispersion curve (grey
zone), respectively, which correspond to extreme Vs values in Fig. 8.
The advantage of combined data inversion is obvious for Vs2 because
the result area is narrower around the expected value. In the next
section, the procedure is tested with real laboratory measurements.

6 A P P L I C AT I O N O N R E A L DATA F RO M
L A B O R AT O RY M E A S U R E M E N T S

Two reduced-scale models made of epoxy resin (Fig. A1), were
designed to validate and illustrate our results experimentally. The
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Figure 5. Theoretical dispersion curves of the reference medium (Table 1). (a) Vph, (b) Vg and (c) dVph/df.

Figure 6. Vph inversion results. Each dot corresponds to one inverted model with the colours representing reference and shear wave velocity variation media.
Black: α(Vsi ) = 0; red: α(Vsi ) < 0; blue: α(Vsi ) > 0.

Figure 7. Vg inversion results. Each dot corresponds to one inverted model with the colours representing reference and shear wave velocity variation media.
Black: α(Vsi ) = 0; red: α(Vsi ) < 0; blue: α(Vsi ) > 0.
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Figure 8. Combined data inversion results. Each dot corresponds to one inverted model with the colours representing reference and shear wave velocity
variation media. Black: α(Vsi ) = 0; red: α(Vsi ) < 0; blue: α(Vsi ) > 0.

Figure 9. Normalized probability curves for Vph, Vg and combined disper-
sion curves as function of iteration number.

parameters and dimensions of the first model (named baseline) are
given in Table 2. Using the sample parameters provided by previ-
ous studies on this type of resin (Filippi et al. 2019), we calculated
the size of the model to minimize and delay the boundary effects.
Moreover, the latter are reduced because the borders of the mod-
els are rounded using a radius larger than or equal to the central
wavelength (Pageot et al. 2015). The radius of the rounded borders
is 12 mm (r ≈ VR/ f ) and is identical for both resin models. The
second model (named repeatline) was similar to the first one but
with a higher shear wave velocity in depth. The variation ratio is
α(Vs2 ) = 17 per cent as Vs2 = 1100 m s−1 for the repeatline model
(model parameters of the repeatline are available in Table A1 in
Appendix A).

6.1 Model measurements

The measurements were conducted in the MUSC (Measurement at
Ultrasonic SCale) laboratory which permits carrying out seismic
analogical measurements at reduced scale (Bretaudeau et al. 2011).

The scale ratio between the numerical and experimental model di-
mensions is 1000, that is, 1 m in the numerical model is 1 mm in
the laboratory model, and 1 Hz corresponds to 1 kHz (Pageot et al.
2017). A Ricker wavelet with a central frequency of 100 kHz was
generated with a dry contact point piezoelectric transducer and the
signals were recorded with a moving laser interferometer, with a
sampling rate equal to 10 MHz (see Fig. A1a in Appendix A for
an illustration of the experimental set-up). More specifications of
the MUSC measurement bench are available in (Bretaudeau et al.
2011) for any reproduction of the experiment. Fig. A1(b) in Ap-
pendix A shows the position of the piezo-electric source and the
measurement points of the laser receivers (maximum offset equal
to 90 mm with a space of 1 mm). Like all the recordings published
from the MUSC bench, the measurements are available to the sci-
entific community and can be obtained as free data on request by
email.

Seismograms measured on the two models were then analysed
and processed. Fig. 11(a) shows the measured baseline and re-
peatline seismograms. The phase velocity dispersion diagrams are
extracted from the measured seismograms, using the phase-shift
method (Fig. 11b). The dispersion diagrams are calculated in the
frequency range [10, 150] Hz and at each frequency, the phase ve-
locity is searched in the velocity range [500, 1500] m s−1 with the
velocity resolution equal to 2 m s−1. They are then normalized by
the maximum value at each frequency and the value of the contour
line plotted is 0.5. The difference is visible between the diagrams
at low frequency, which corresponds to velocity variations in the
deep layer. The Vph dispersion curves are then extracted by auto-
matic picking and their gradients give the dVph/df dispersion curves
(Fig. 12).

It should be pointed out that the PVD is extracted here using the
gradient of the measured phase velocity curve instead of using the
group velocity as proposed in eq. (8). As he matter of fact, the high
contrast of the shear wave velocity between the two layers, which
gives a very steep variation of the group velocity as a function of
frequency (i.e. a high dispersion), makes the choice of the frequency
filter range, in the MFM procedure described in introduction, too
difficult for accurately defining the group velocity required in eq. (8)
for dVph/df. Indeed, a wide frequency range can bias the central
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Figure 10. Inversion results of shear wave velocities for (a) shallow layer Vs1 and (b) deep layer Vs2 , using Vph and dVph/df separately. The black line presents
the exact shear wave velocity value for each variation ratio α.

Table 2. Baseline model parameters and dimensions. hi: layer thickness; l and w: length and width
of model. Scale ratio between the numerical and the experimental model dimensions is 1000.

Layer
Vpi (m
s−1)

Vsi (m
s−1)

ρi (kg
m−3) νi hi (mm) l (mm) w (mm)

1 1300 703 450 0.29 8.0 265 235
2 2048 933 1300 0.37 203 265 235

frequency where the group velocity is searched; on the contrary, a
narrow frequency range cannot contain enough energy to estimate
the group velocity properly. This critical point of the group velocity
assessment, above the scope of this study, should be tackled in
further approaches, as mentioned in the final discussion of this
paper.

As previously stated, only the fundamental mode is inverted. The
cut-off frequency at high frequencies is fixed at 90 kHz to avoid
the higher mode perturbation for both baseline and repeatline mod-
els. The signals at low frequency (below 35 kHz), which presents
a low signal-to-noise ratio and requires unavailable large receiver
offset to be correctly assessed and mitigate the near field effects
as highlighted by Bodet et al. (2009), who recommend a mini-
mum frequency such as the maximum wavelength is lower than
half of the receiver offset, are not used. According to these criteria,
in the following, the frequency band is chosen in [35, 90] Hz for
both models. See Fig. A2 for a better visualization. However, as
mentioned in the previous part concerning the theoretical tests, a
further study should deal with the frequencies boundaries that can
be automatically defined for optimal results.

The PVD dVph/df and the classical dispersion data Vph are now
inverted to perform an accurate evaluation of the difference between
the two models. As in Section 5, the inversions are carried out us-
ing Vph and combined dispersion curves. The combined dispersion
curve consists of dVph/df at medium frequencies ( f ∈ [42, 70] Hz)
and Vph at low and high frequencies ( f ∈ [35, 42] ∪ [70, 90] Hz).
These limits are defined to avoid both an oscillation effect at
low frequencies and a normalization problem at high frequen-
cies. In the following, we invert the dVph/df dispersion curve,
without the normalization in the misfit function, and discuss its
robustness.

6.2 Inversion results

In the Neighborhood Algorithm inversion process, we consider the
compressional-wave velocity and density set as provided in Table 2.
The shear wave velocities of each layer are searched in the range
Vs1 ∈ [500, 900] m s−1, Vs2 ∈ [800, 1200] m s−1 and in the depth of
the first layer in the range h1 ∈ [7.2, 8.8] m. Fig. 13 shows the
resulting couples of shear wave velocities (Vs1 , Vs2 ) recovered by
all the inversion processes, where Vs1 and Vs2 correspond to the
shallow and deep layer, respectively. The results are shown for
all three inversions: solely Vph, solely dVph/df, combined Vph and
dVph/df curves. There are 1520 models (ns0 = 20, nr = 10, ns = 10,
ni = 20) in each inversion process and the convergence indicator
curves are plotted in Fig. 14. The convergence curves of Vph and
combined data inversions tend towards the same level but reach
a lower value for dVph/df because of the non-normalization in the
misfit function.

The result scatter plots in Fig. 13 focus more on the true value on
the Vs1 axis when Vph is considered for the inversion than when it
is for the other inversion data. However, dVph/df and the combined
data inversions give better estimations on Vs2 , as we can see better
discrimination between the results of the baseline and repeatline
models. To analyse the inversion results quantitatively, histograms
of inverted models are shown in Fig. 15, as a function of inverted
Vs1 and Vs2 , separately. μb and σ r are mean values and standard
deviations for each group of models where ‘b’ represents the base-
line and ‘r’ the repeatline. As there is no variation in the shallow
layer between baseline and repeatline, the two inverted Vs1 should
be identical.

Compared to dVph/df and combined data inversion, Vph inversion
provides inverted Vs1 values with smaller standard deviations for
both baseline and repeatline, which corresponds to the more focused
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Figure 11. (a) Measured seismograms for the baseline model (orange) and the repeatline model (blue), normalized by maximum values at each trace. (b)
Dispersion diagrams for the baseline (orange) and the repeatline (blue), normalized by the maximum value at each frequency. The value of the contour line is
equal to 0.5. The measured seismograms and the dispersion diagrams are presented separately in Fig. A2 for a clear display of each one.

results in Fig. 13. In Fig. 15(a), the two histograms of combined
data inversion are superimposed but the differences between μb and
μr are significant due to several bigger inverted Vs1 values of the
repeatline (the part between 710 and 750 m s−1).

The assessment of the deep layer variation is presented in
Fig. 15(b). The variation ratio α(Vs2 ) is equal to 16.0 ± 0.7 per cent
for Vph alone, 16.4 ± 1.1 per cent for dVph/df alone and 17.1 ± 0.3
per cent for combined data inversions. The result of Vph is smaller
than the reference value 17 per cent, and the error of the dVph/df

inversion result is larger than that of the other two inversions. The
result of the combined data inversion is not only the closest to the
expected reference value but it also has the smallest error. The im-
provement of the combined approach on the experimental data may
seem small. However, the relative error with respect to the true
model is divided by 2 and 6 depending on the data set, and the
standard deviation is divided by 1.7 in both cases.

Using the mean values of the inverted models in Fig. 15, the
calculated dispersion curves and the measured dispersion curves
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Figure 12. Measured dispersion curves of (a) the phase velocity Vph and (b) the phase velocity derivative dVph/df. The combined data of baseline and repeatline
consist of non-grey parts of the blue and red curves in the two images, respectively.

Figure 13. Inversion results of baseline (red) and repeatline (blue).

Figure 14. Probability curves for baseline inversion using Vph, dVph/df and
combined dispersion curves, respectively.

are plotted for the baseline and the repeatline in Fig. 16. We can
see that the dispersion curve calculated from the inversion results
of dVph/df is wholly above the measured curves, in both Figs 16(a)
and (b) although their corresponding derivative curves fit well with
the trend measured in (c) and (d). Indeed, two ”parallel” dispersion
curves share one gradient curve, which means using only dVph/df
for the optimization search in the inversion process can result in the
identification of several solutions that do not correspond to the real
model. The combined data method avoids this problem since Vph

replaces dVph/df at both low and high frequencies. Thus, when using
the combined data in inversion, both the high sensitivity of dVph/df
and the calibration value to Vph are taken into account. The results
of the combined data inversion in Figs 16(c) and (d) are closer to
the minimum values of the measured curves.

Viewed globally it should be noted that the MASW approach
involves several steps regarding the overall indeterminacy of the
method: the measurements and their uncertainties, the extraction
of the dispersion data, the convergence of the inversion process
according to the criterion of the cost function and the inversion input
data and its sensitivity. This study proposed to explore the effects

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/224/1/649/5901438 by  ao.w

ang@
univ-eiffel.fr on 01 D

ecem
ber 2020



662 A. Wang et al.

(a)

(b)

Figure 15. Density histograms of baseline (blue) and repeatline (orange) inverted models as a function of (a) Vs1 and (b) Vs2 . The surface of each histogram
is equal to 1.

of introducing the derivative of the Rayleigh wave phase velocity
(PVD) in the process, independently of the issue of the measurement
errors. Indeed, dissociating the effects of the different key elements
of the process is crucial for the first stage. However further works
will attempt to associate the effects of the measurements errors in
order to identify their impacts. Thus, integrating the effect of errors
on the data will contribute to the feasibility of the method in specific
cases.

7 C O N C LU S I O N A N D D I S C U S S I O N

In this paper, the derivative of the Rayleigh wave phase velocity
dVph

d f
is introduced in the surface wave inversion method, to estimate small
variations in media (variation ratio smaller than 10 per cent). Based

on two-layer media, we discussed the performance of the PVD
when small variations occur in both layers, in particular shear wave
velocity variations. In the qualitative analysis, the dispersion curves
of Vph, Vg and dVph/df were calculated theoretically for several series
of two-layer media with variations of shear wave velocities and
the depth of the shallow layer. dVph/df displayed greater sensitivity
compared to the phase and group velocities, especially for the deep
layer variations: for the deep layer when the shear wave velocity
variation was equal to 5 per cent, the variation of dVph/df was around
18 per cent while it was only 5 per cent for Vph and Vg. Then, in the
quantitative analysis, the calculation of sensitivity curves confirmed
that dVph/df contained information from both layers when λ ≈ 3.4h1.
As a reminder, the sensitivity of Vph and Vg follows the following
rule: a variation of the shallow layer provided high sensitivity at
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Figure 16. Phase velocity dispersion curves for the measured data of (a) baseline and (b) repeatline, and their corresponding inverted models from different
inversion data. Phase velocity derivative dispersion curves for the measured data of (c) baseline and (d) repeatline, and their corresponding inverted models.

a short wavelength while a long wavelength was needed for high
sensitivity to variation in the deep layer.

The feasibility of using dVph/df was then verified numerically by
inverting the dispersion curves calculated from synthetic noisy sig-
nals. The high sensitivity of dVph/df was particularly interesting but
it should be used with care in the inversion process, due to its high
oscillation in the case of noise and to the derivative property which
leads to confusion with the Vph curves that share the same gradient
in the frequency domain. To avoid this problem, we proposed to use
combined data that consists of Vph and dVph/df. We verified that the
combined data contained both the high sensitivity of dVph/df and
the robustness of Vph at the same time. Then, two two-layer models
made of resin-epoxy were used to illustrate this result experimen-
tally. The difference between them was a 17 per cent variation of
shear wave velocity in the deep layer. The Vph inversion estimated
the variation of the deep layer at (16.4 ± 1.1) per cent while the com-
bined data inversion estimated the variation of the medium at (17
± 0.3) per cent. Moreover, regarding the expected velocity values

of the deep layer, the combined method gives more precise results
with a smaller error, which are divided by 1.9 and 6.9 depending
on the data set as well as standard deviations divided by 1.7. This
improvement makes sense when looking at changes in media for
small variations such as in continuous monitoring.

The methodology proposed, which combined the two inversion
data, used the performance of each one valid over distinct frequency
ranges, and combined them over the whole frequency range of the
measured data. The results showed that it is an appropriate inversion
strategy because it allows using the phase velocity derivative over the
frequency range for which it is most sensitive. We proposed to define
this frequency range according to the feature of the phase velocity
derivative: its use was limited to the part for which it presented a
minimum, without taking into account the areas for which the result
of the calculation showed strong oscillations at lower frequencies or
the plateau area for the higher frequencies. However, this criterion
remained qualitative here and could be the subject of further studies
in the near future. It will also be interesting to analyse the behaviour
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of the PVD for higher modes. Indeed, the experiments, which were
carried out on two-layer epoxy resin models, confirmed that dVph/df
is complementary to Vph in the inversion. Work is now in progress
using epoxy resin models with smaller variations of mechanical
properties, and time-lapse inversion.

Moreover, other major points should be investigated in further
studies: the experimental tests in the last part on real measurements
have highlighted the complexity of using the low-frequency signal.
The dispersion uncertainties for the lowest frequencies in the case
of subsurface measurements are due, on the one hand, to the effects
of near fields and, on the other hand, to the ratio between phase
shift and wavelength (Bodet et al. 2009). Therefore, we propose,
for future studies, to characterize all the uncertainties, including
those for lower frequencies, for the phase velocity but also for
the calculation of its derivative. The range of uncertainty for each
frequency can be linked to the width of the lobe envelope associated
with the fundamental mode in the dispersion diagram. The limits
of this lobe can be computed analytically as proposed by (Wang
et al. 2020). Derivatives of these limits as a functions of frequency,
also analytically available, could identify the uncertainty associated
with the phase velocity derivative. The effects of these uncertainties
on inversion by the method proposed in this article could be further
addressed by including it in the misfit weighting.

Finally, in the experimental tests, the phase velocity derivative
was calculated by the gradient of the phase velocity and not by eq. (8)
which uses the group velocity. The latter is indeed very difficult to
evaluate in a robust way when the contrast between the two media
is strong and implies a high-velocity dispersion: in this case, the
choice of the filter width is critical and beyond the scope of the
present study. Therefore, we propose, for future studies, to analyse
the impact of the velocities contrast on the choice of this filter and
the values from which assessment of the phase velocity derivative
is more interesting by calculating the phase velocity gradient.
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multi-channel analysis of surface waves with cross-correlations and
beamforming. Application to a sea dike, J. Appl. Geophys., 114,
36–51.

Luo, Y., Xia, J., Miller, R.D., Xu, Y., Liu, J. & Liu, Q., 2008. Rayleigh-wave
dispersive energy imaging using a high-resolution linear radon transform,
Pure appl. Geophys., 165(5), 903–922.

McMechan, G.A. & Yedlin, M.J., 1981. Analysis of dispersive waves by
wave-field transformation, Geophysics, 46(6), 869–874.
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A P P E N D I X A : T W O - L AY E R R E S I N
M O D E L S A N D E X P E R I M E N TA L S E T - U P

The two resin models are presented in Fig. A1(a). The experimental
set-up consists of a piezo-electric transducer (Fig. A1b) as a point
source and a laser interferometer to measure the wave propagation
(Fig. A1c). For the experimental tests, the piezo-electric source is
fixed on the horizontal harm visible in Fig. A1(c) below the laser
interferometer. Fig. A1 (d) provides information on the positions
of the source and the receivers, with the dimensions of the resin
models.

The model parameters of the baseline are available in Table 2.
The models consist of two superimposed plates. The pink upper
part is machined in a layer of industrial epoxy resin (polyurethane).
The lower part is molded underneath this plate from an epoxy resin
mixture (casting polyurethane) with an additional filler (hydrated
alumina) which gives it specific Vs velocity properties. The choice
of the amount of filler included in the polymerized mixture was de-
cided on the basis of information provided in previous experimental
studies (Pageot et al. 2015; Métais 2016; Filippi et al. 2019). The
filled resins finally used in this study were also tested by independent
measurements. The parameters of the repeatline model are given in
Table A1. Fig. A2 presents separately the measured seismograms
and the corresponding dispersion diagrams of the baseline and the
repeatline.

A P P E N D I X B : R AY L E I G H WAV E
D I S P L A C E M E N T A N D C U M U L AT I V E
E N E RG Y

For the two-layer model in Table 1, we can calculate the Rayleigh
wave velocity and the corresponding displacement vectors for hor-
izontal and vertical components. Fig B1(a) presents the total dis-
placement vector d(λ, z) (square root of the horizontal and vertical
displacements), as a function of the normalized wavelength (λ/h1)
and depth (z/h1). Fig B1(b) presents the cumulative amplitude D(λ,
z), with its definition

D(λ, z) =
∫ z

0
d(λ, z)dz. (B1)
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Table A1. Repeatline model parameters and dimensions. hi: layer thickness; l and w: length and
width of model. Scale ratio between the numerical and the experimental model dimensions is 1000.

Layer
Vpi (m
s−1)

Vsi (m
s−1)

ρi (kg
m−3) νi hi (mm) l (mm) w (mm)

1 1300 703 450 0.29 8.0 265 235
2 2048 1100 1300 0.37 203 265 235

Figure A1. (a) The baseline (left) and repeatline (right) models. (b) The piezoelectric source Acsys R©. (c) Experimental set-up and the two-layer resin model.
(d) Position of source and the receiver vector.
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Figure A2. Measured seismograms of the baseline model (a) and the repeatline model (b), normalized by the maximum amplitude at each trace. Corresponding
dispersion diagrams of the baseline model (c) and the repeatline model (d).
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Figure B1. (a) Rayleigh wave displacement vectors as a function of the normalized depth and wavelength. (b) Cumulative amplitude of the Rayleigh wave
displacement in the vertical direction (i.e. depth), normalized by the maximum value at each wavelength. (c) Cumulative amplitude derivative with respect to
wavelength. The blue line indicates the interface where depth/h1 = 1. The orange dashed line corresponds to the wavelength λ = 3.2h1.
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