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Abstract: The control of ligand-field splitting in iron (II) complexes is critical to slow down the
metal-to-ligand charge transfer (MLCT)-excited states deactivation pathways. The gap between the
metal-centered states is maximal when the coordination sphere of the complex approaches an ideal
octahedral geometry. Two new iron(II) complexes (C1 and C2), prepared from pyridylNHC and
pyridylquinoline type ligands, respectively, have a near-perfect octahedral coordination of the metal.
The photophysics of the complexes have been further investigated by means of ultrafast spectroscopy
and TD-DFT modeling. For C1, it is shown that—despite the geometrical improvement—the excited
state deactivation is faster than for the parent pseudo-octahedral C0 complex. This unexpected result
is due to the increased ligand flexibility in C1 that lowers the energetic barrier for the relaxation
of 3MLCT into the 3MC state. For C2, the effect of the increased ligand field is not strong enough
to close the prominent deactivation channel into the metal-centered quintet state, as for other
Fe-polypyridine complexes.

Keywords: iron (II) complexes; octahedral geometry; excited states dynamics; density functional
theory; time-resolved spectroscopy

1. Introduction

Ligand-field splitting is an important parameter with a deep impact on the photophysics
of transition metal-based complexes. Indeed, its fine tuning is crucial to populate long-lived
metal-to-ligand charge transfer (MLCT) states that are required for triggering light induced functions
such as photochemically induced electron transfer [1–5]. The control of the ligand-field splitting is
particularly challenging in iron (II) polyimine complexes where the MLCT states, first populated upon
photo excitation, undergo an ultrafast deactivation into the low-lying metal-centered (MC) states, thus
leading to the loss of the suitable photophysical properties [6,7].

N-heterocyclic carbenes (NHC) ligands, ideally combining a strong σ-donating and a
weak-to-moderate π-accepting character, have been reported to destabilize the MC states over the
MLCT manifold, thus impressively slowing down the deactivation pathways. In this context, tridentate
pyridyldicarbene ligands with appropriate modifications of both the NHC side and the central azine
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have been reported by us and other groups as leading to remarkable 3MLCT lifetimes in the 9–32
ps range for the corresponding iron (II) complexes [4,8–14]. Other ligands giving rise to more rigid
complexes [15] or different coordination architectures [16] have achieved impressive MLCT lifetimes
beyond hundreds of picoseconds. A comprehensive review of the rapid advances in this area was
recently published [17].

The ligand-field splitting can also be enhanced by reducing the angular strain around the metal
center [18–22], i.e., when the coordination geometry is as close as possible to a perfect octahedron, as
seen for example in some heavy metal complexes. For example, the angularly strained [Ru(tpy)2]2+

complex (tpy = 2,2′:6′,2′’-terpyridine) experiences an ultrafast population of MC states [23], while the
weakly distorted bidentate homologue [Ru(bpy)3]2+ (bpy = 2,2′-bipyridine) [24] is strongly luminescent
at room temperature with excited-state lifetimes up to 1 ms since the access to deactivating MC states
is hampered [25].

In the case of Ru-based compounds, the angular strain has been minimized by switching from
tridentate to bidentate ligands. We have recently shown that the use of a bidentate pyridylNHC
ligands also improved notably the excited state lifetimes of iron complexes compared to their tridentate
analogues [11].

However, in contrast to tridentate ligands, the dissymmetrical bidentate ligands generally
form mixtures of fac and mer isomers, which can be problematic when a vectorial electron transfer is
required [26]. In addition, it has also been shown that the fac and mer isomerism may lead to unexpected
photophysical consequences [11,13,14]. Thus, the possibility of achieving tridentate iron complexes
with reduced angular strain still appears extremely attractive for the design of photoelectrochemical
active agents. While some elegant approaches to increase the ligand field using tridentate ligands have
been developed [18,27–29] there is a lack of such advances for iron (II) complexes, and the benefit of an
improved octahedral coordination on the excited state relaxation dynamics has only be explored for an
Fe(II) complex with 2,6-bis(2-carboxypyridyl)pyridine ligands [30]. Here, it was shown that the higher
ligand field splitting destabilizes the 5MC, leading to a faster deactivation of this quintet state.

Herein we report the synthesis, structural characterization and photophysics of the novel
homoleptic complexes C1 and C2 (Figure 1) based on relevant tridentate ligands selected for their
ability to create an almost perfect octahedral geometry of the coordination sphere. In particular, we
focus on the dqp (2,6-diquinolylpyridine) ligand, which has been reported to give a close to perfect
octahedral complexes having a great impact on the MLCT lifetimes that reached the microsecond scale
for the homoleptic Ru(dqp)2

2+ complex (C2) [18]. A second ligand structure achieved by introducing
methylene spacers on the 2,6-Bis(1-methylimidazolylidene) pyridine ligand has been used to make C1.
It shall be noted that the 2,6-Bis(1-methylimidazolylidene) pyridine has been previously reported to
give C0, a complex with a distorted octahedral Fe2+ coordination exhibiting MLCT lifetimes of 9 ps [8].
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By such modifications, we investigated the effects induced by the optimal coordination geometry
on the photophysical properties of these new iron complexes aiming to extend the excited-state lifetimes
analogously to the reported case of ruthenium.

2. Results

2.1. Synthesis and Characterization

2.1.1. Synthesis of Ligands and Complexes

The access to C1 required the synthesis of the pyridylimidazolium salt precursor L1. It was
obtained in 80% yield from 2,6-bis(bromomethyl)pyridine and 1-methylimidazole according to the
literature [31]. L1 was subsequently involved in the coordination process by a first reaction with FeBr2

followed by the addition of tBuOK to generate the carbene (Scheme 1). When performed at room
temperature, the reaction led to degradation of L1. However, the coordination was successfully made
by decreasing the temperature to 0 ◦C affording C1 in 19% yield. The low coordination yield obtained
is in agreement with those obtained previously with Fe(II)NHC ligands [4,9,13].
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Scheme 1. Synthesis of complex C1.

The diquinolinylpyridine (dqp) ligand required for the synthesis of C2 has been obtained in 65%
yield employing a Suzuki cross-coupling between 8-quinoline boronic acid and 2,6-dibromopyridine
according to a reported procedure [18]. The coordination of this ligand with iron was first attempted by
mixing FeBr2 and dqp, where regardless of the temperature and solvent used, no complex formation
was detected. Switching to a microwave irradiation (60 W) in refluxing DMF for 4 h gave the expected
complex C2 in 30% yield (Scheme 2). Another iron precursor has been tested by using ammonium
iron(II) sulfate hexahydrate [Fe(NH4)2(SO4)2]6 H2O. Overnight reaction at room temperature in
acetonitrile gave C2 also in 30% yield.
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2.1.2. X-Ray Structures

Single crystals of the two complexes suitable for X-ray diffraction analysis were obtained from
slow evaporation of acetonitrile solution. X-ray crystal structures of the complexes C1 and C2 are
shown in Figures 1 and 2, and selected bond lengths and bond angles are given in Tables 1 and 2.
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Figure 2. Crystallographic structures of C0 (left) [8] and C1 (right). Hydrogen bonds and PF6 molecules
are omitted for clarity. Thermal ellipsoids are set to 50% probability level.

Table 1. Bond lengths and coordination angles of C0 and C1.

Bond Length (Å) Angles (◦)

C0 C1 C0 C1

Fe1-N3 1.919(3) Fe1-N1 2.035(11) C1-Fe1-N3 79.5(1) C1-Fe1-N1 87.7(5)
Fe–N8 1.930(3) Fe1-N1′ 2.035(11) C11-Fe1-N3 79.2(1) C12-Fe1-N1 88.5(4)
Fe1-C11 1.965(3) Fe1-C12 1.981(11) C1-Fe1-C11 158.0(2) C12-Fe1-C1 176.1(5)
Fe1-C14 1.965(3) Fe1-C1′ 1.981(10) C14-Fe1-N8 79.0(1) C1′-Fe1-N1′ 87.7(5)
Fe1-C1 1.966(3) Fe1-C1 1.981(10) C22-Fe1-N8 79.0(1) C12′-Fe1-N1′ 88.5(5)
Fe-C22 1.970(3) Fe1-C12′ 1.981(11) C14-Fe1-C22 158.0(2) C1′-Fe1-C12′ 176.1(5)

Table 2. Bond lengths and coordination angles of C2.

Bond Length (Å) Angles (◦)

Fe1-N2 1.961(2) N2-Fe1-N3 90.36(9)
Fe1-N2′ 1.957(2) N3′-Fe1-N1 90.88(8)
Fe1-N1 1.997(2) N3-Fe1-N1 177.58(8)
Fe1-N1′ 1.997(2) N2′-Fe1-N1′90.15(9)
Fe1-N3 1.986(2) N2′-Fe1-N3′90.48(9)
Fe1-N3′ 1.995(2) N3′-Fe1-N1′179.21(9)

In contrast to its parent complex C0, which has a bite angle of 158◦ [8], the geometry around the
central iron atom in C1 is very close to fully octahedral as shown by the increased bite angles (176.1◦)
afforded by the flexibility provided by the methylene extension. The Fe–Pyridine bonds are longer
than those of C0 (2.035 vs. 1.930 Å), which agrees with the widening of the coordination sphere in C1.

Like its ruthenium homologue [18], the crystallographic angles confirm the optimization of the
octahedral symmetric coordination sphere of C2 (Figure 3). Indeed, ideal coordination angles close
to 90◦ on average have been obtained (Table 2), while maintaining bite angles close to 180◦. The
Fe–N (quinoline) bonds are slightly longer than the two Fe–N (pyridine) bonds due to the better
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charge delocalization in quinoline, increasing the electronic density and the amount of antibonding
interactions with the iron d orbitals.Molecules 2020, 25, x FOR PEER REVIEW 5 of 20 
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2.1.3. Electronic and Electrochemical Properties

The electronic and optical properties of both complexes were investigated by means of steady-state
UV-vis spectroscopy (Figure 4) and cyclic voltammetry (Table 3).
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Eox
(FeIII/FeII) b (V/SCE)

Ered1
(V/SCE) ∆E c (eV)

C0 393 (9000)
460 (15,900) 0.71 (rev) −2.00

(irrev) 2.75

C1 525 (4800) 0.31 (rev) −2.05
(irrev) 2.36

C2 575 (14,200) 0.96 (rev) −1.35
(rev) 2.31

a Measured in CH3CN at 25 ◦C. b First oxidation potential. Potentials are quoted vs (SCE). Under these conditions,
E1/2 (Fc+/Fc) = 0.39 V/SCE. Recorded in CH3CN using Bu4N+,PF6

− (0.1 M) as supporting electrolyte at 100 mV.s−1. c

Electrochemical band gap (∆E = Eox − Ered1).
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The UV-Vis spectra of both complexes present two types of absorption bands. Very intense bands
are in the UV range (<350 nm) and are ascribed to bright π−π* transitions localized on the ligands. For
each complex, one distinct, broader, and less intense band is found at longer wavelengths in the visible
range. The absorption spectrum of C2 presents a better spectral coverage, its absorption band at 575 nm
(14,200 M−1 cm−1) is notably red-shifted by 50 nm as compared to the maximum absorption band of C1,
which peaks at 525 nm (4800 M−1 cm−1). This bathochromic shift can be attributed to the combination
of the geometric stabilization and the electron-withdrawing effects of quinolines stabilizing the MLCT
states. One can note that for C1, the characteristic absorption band of the Fe-carbene transitions is no
longer visible or resolved as it is the case in its parent complex C0, there with a maximum at 393 nm.
This transition is most probably hidden in the broad MLCT absorption band in the 420–500 nm range.
The decrease in the absorption capacity observed in C1 could be related to the small barrier between
singlet and triplet MLCT states (see Figure 8) producing an increased triplet character.

The redox properties of both complexes were measured by cyclic voltammetry with SCE as
standard electrode and compared in Table 3.

For C2, as compared to C0, electrochemical measurements show an increase of the FeII/FeIII

oxidation potential (0.96 V vs. 0.71 V) due to the π-acceptor effect of quinolines. The reduction potential
is also increased (−1.35 V vs. −2.00 V), which could be ascribed in a first approximation to a lower
LUMO energy level due to a greater stabilization through extended π-conjugation in the bqp ligand
compared to the NHC ligand in C0. The lower electrochemical gap is in good agreement with the
bathochromic effect observed in the UV-Vis spectra.

For C1, a strong decrease of the FeII/FeIII oxidation potential is observed compared to its parent
complex C0 (0.31 V vs. 0.71 V) which is indicative of the marked increase of the σ-donating character of
the carbene moieties which are no more conjugated with the pyridine as in C0. However, C1 exhibits an
irreversible monoelectronic transfer at −2.05 V occurring at about the same potential as C0 indicating
for these two complexes higher energy levels of the π* orbitals than for C2.

2.2. Excited State Relaxation Dynamics

The effects of the ligand geometry of the coordination sphere on the excited state lifetimes was
investigated for compounds C1 and C2 by femtosecond transient absorption spectroscopy (fs-TAS)
and compared to C0, as reference [8].

2.2.1. Fs-TAS of C1

C1 dissolved in acetonitrile (ACN) was excited with ≈50 fs pump pulses at 495 nm, and the
pump-induced absorbance changes ∆A, with no more than 10% ground state depletion, were probed
by a white-light continuum generated in a 2-mm thin CaF2 plate in the range of 320–640 nm. Figure 5
displays the time-dependent ∆A, and the sign-inverted ground state absorption spectrum (GSA) for
comparison. The TAS data show at all times a negative ground state bleach (GSB) in the range of
410–540 nm at early delays, with a peak at 507 nm. Positive ∆A due to excited state absorption (ESA)
is identified in the blue part of the GSB, below 400 nm, and in the red, above 520–540 nm. Note that
both ESA bands have significant overlap with the GSB, since the latter is visible only in a limited range
of the GSA spectrum, due to the larger absorption cross section of ESA in the ranges where ∆A > 0.
Clear spectral evolution occurs on a sub-300 fs time scale in the blue ESA band, shifting the ESA-GSB
crossover around 400 nm by 20 nm, and in the red ESA during a longer time period, i.e., the first 10
ps (25 nm red-shift). This indicates that different species contribute to the ESA, populated along a
relaxation scheme we will identify in what follows.
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17 ps, with an overall 8–10 times smaller amplitude than τ2. 
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detail in the Supplementary Materials (cf. Figure S7). First, the negative amplitude of the 0.3-ps DADS 
in the blue and red ESA regions reflect the observed rise. Likewise, its positive amplitude in the 380–
450 nm range is consistent with the slightly rising GSB signal in this time and wavelength ranges 
(Figure 5C). Second, the double exponential decay character of both ESA and GSB is reliably 
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Figure 5. Femtosecond TAS data of C1 in acetonitrile (ACN) after excitation at 495 nm. (A):
Time-dependent spectra for delays in ps, as indicated in the legend. Ground state absorption
(GSA) is the sign-inverted ground state absorption spectrum. Note the different scales for the positive
and negative parts of ∆A. The 480–505 nm range is disregarded due to excessive pump light scattering.
(B): Decay transients at selected wavelengths (cf. legend) plotted on a semi-log scale with a break
in the time axis at 6 ps. GSB traces are sign inverted. Dashed lines are guides-to-the-eye with a 1.5
ps decay slope, highlighting that the initial fast decay of the signals is in that time range. When the
signal-to-noise is large enough, an additional 10–15 ps decay emerges. (C): Decay transients at selected
wavelengths (cf. legend) plotted on a linear scale with a break in the time axis at 2.0 ps. Dashed vertical
lines mark the occurrence of oscillatory maxima in the excited state absorption (ESA) with a period of
≈0.5 ps. Solid black lines are the best fits to the data, without accounting for the oscillatory part. Note
the different scales for the positive and negative parts of ∆A. Transients are averaged over ±5 nm.

Another interesting observation is related to periodic modulations in the ESA amplitude. Figure 5C
highlights these for the blue and red ESA (366, 576, 630 nm), and for the longer wavelength part of the
GSB (510 and 535 nm), but not for 450 nm. The oscillation period is difficult to determine precisely as
damping is strong, but it can be determined to be of the order of 0.5 ps. Maxima of the oscillatory
features in ESA correspond to minima at the wavelengths of negative ∆A. Keeping in mind that the
latter is a result of overlapping ESA and GSB, one can conclude, in particular for λ > 450 nm, that the
modulations are in the ESA signal only. In other words, the excited state transition dipole moment is
modulated by a strongly damped but coherent vibrational motion with a frequency of ≈60 cm−1. See
SI for a more quantitative analysis, and higher frequency ground state oscillations.

Regarding the excited state lifetimes and relaxation scenario, Figure 5B plots kinetic traces on a
semi-log scale, so as to highlight the components of exponential decay. Dashed black lines with a slope
of 1.5 ps overlay with the initial portion of most of the kinetic traces. When the signal-to-noise ratio is
high enough, an additional slower component, 10–15 ps, is observed (450, 510, 576 and 600 nm). All
kinetic traces can be well fitted by a sum of three exponentials with wavelength-dependent amplitudes
and decay constants,

∑3
i=1 Ai(λ)e−t/τi(λ), convoluted with a Gaussian instrument response function

(width 50 fs). The results of single wavelength fits are displayed as solid black lines in Figure 5C.
They reveal a rise time, in the ≈0.3 ps range, for the red ESA part (576 and 630 nm). Table S16 in the
Supplementary Materials gives the fit parameters for individual wavelengths. The fastest ESA decay
and GSB recovery time is τ2 = 0.8–1.5 ps, and the second decay is found by τ3 = 7–17 ps, with an
overall 8–10 times smaller amplitude than τ2.

Global analysis, i.e., fits of the full data set, but with wavelength-independent lifetimes,∑3
i=1 Ai(λ)e−t/τi , were carried out, using OPTIMUS [32] and the results displayed as decay-associated

difference spectra (DADS, Ai(λ)) in Figure 6A. The oscillatory components are neglected in these fits,
but they represent the qualitative trends of Figure 5. The validity of such global fitting is assessed
in detail in the Supplementary Materials (cf. Figure S7). First, the negative amplitude of the 0.3-ps
DADS in the blue and red ESA regions reflect the observed rise. Likewise, its positive amplitude in
the 380–450 nm range is consistent with the slightly rising GSB signal in this time and wavelength
ranges (Figure 5C). Second, the double exponential decay character of both ESA and GSB is reliably
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reproduced in the DADS of τ2 = 1.3 ps and τ2 = 7.3 ps. We find that the amplitude of τ2 is approx.
10 times larger than the one of τ3 in the blue ESA band and above 580 nm. However, since the ESA
amplitudes depend on the respective cross sections and overlap with the GSA, it is not straightforward
to conclude about the relative populations of these channels.
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Figure 6. Global and target analysis of the TAS data of compound C1 in ACN. Lifetimes as indicated in
the legend, see text for interpretation. (A): Decay-associated difference spectra (DADS) identifying the
three global lifetimes 0.3, 1.3 and 7.3 ps, with 10% error bar. (B): Evolution-associated difference spectra
(EADS) for a fully sequential model, Scheme 2. (C): A parallel relaxation model, Scheme 1, with a 50/50
partition between the excited state triplets T1 and T2.

What is the excited state relaxation scenario emerging from these spectroscopic data? The
sub-picosecond τ1 is usually assigned to the transition from the optically excited 1MLCT to 3MLCT and
vibrational relaxation of the latter, reflected in the ultrafast rise of ESA below 380 and above 500 nm.
The positive DADS of τ1 in the 380–450 nm range can be related to a reshaping of ESA, i.e., vibrational
relaxation of 3MLCT. On the other hand, the DADS of τ2 and τ3 are very similar to the situation
we recently reported for complexes with bidentate ligands [14], where two excited states seem to
co-exist, and is rather at odds with the single excited state scenario we reported for tridentate Fe–NHC
complexes [12]. Indeed, for the latter τ3 was dominant in intensity and τ2 with minor amplitude rather
related to structural relaxation in the single excited state. Hence, the TAS data are consistent with the
existence of two excited triplet states, T1 and T2, populated via relaxation from 1MLCT and subsequent
vibrational cooling during τ1. Their precise nature in terms of diabatic states (MLCT, MC or mixtures
of both) cannot be determined from the TAS difference spectra, and will be addressed by TD-DFT
calculations (Section 2.3). However, the experimental data suggest a parallel decay back to the ground
state S0, according to the following Equation (1):

1MLCT+ <IRF
→

{ 3MLCT1
+

3MLCT2
+

τ1
→

 T1
τ3
→ S0

T2
τ2
→ S0

(1)

Here, the “+” index denotes vibrationally excited electronic states, inevitably present in the first
hundreds of femtoseconds after laser excitation. This scenario was tested with a 50/50 population of T1
and T2 and the species-associated difference spectra (SADS) obtained using GLOTARAN [33] are given
in Figure 6C. They provide reasonable difference spectra for these triplet states, with clearly separated
bands and transition energies. In the absence of any further knowledge, e.g., from simulations about
the ESA spectra of these states, Equation (1) appears to be a viable interpretation of the data. Note that
similar excited state branching scenarios, though with different lifetimes and state assignments, were
recently published for Fe–NHC complexes with four carbene ligands [34,35].

On the other hand, an alternative purely sequential relaxation scheme can be postulated according
to Equation (2):

1MLCT+ <IRF
→

3MLCT+ τ1
→ T1

τ2
→ X

τ3
→ S0 (2)
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The corresponding evolution-associated difference spectra (EADS) are given in Figure 6B. The
excited state relaxation populates a triplet state T1 within 0.3 ps, which decays on a 1.3 ps timescale
into a state X, which has a 7.3 ps lifetime. While it cannot be excluded that X is an excited state of
unknown nature, the EADS of this species suggests its absorption spectrum to be very similar to
the GSA of C1, the only differences being a slight 20–30 nm red-shift of the main transitions (see
Supplementary Materials). It is therefore very likely that, in this sequential scenario, X represents a
vibrationally excited, “hot” form of S0. Further information comes from TD-DFT calculations, which
will be discussed in Section 2.3.

2.2.2. Fs-TAS of C2

C2 dissolved in ACN was excited with ≈50 fs pump pulses at 400 nm, and the pump-induced
absorbance changes ∆A, in the range of 350–650 nm are displayed in Figure 7A,B together with the
sign-inverted ground state absorption spectrum (GSA) in panel A. The TAS data show a negative
ground state bleach (GSB) at all delays probed and over the full wavelength range. A small positive
∆A on the 0.2 ps spectrum may be due to excited state absorption (ESA) from an early decaying state,
but since these data are not corrected for cross-phase modulation around time zero, the assignment is
unclear. As shown by the kinetic traces (Figure 7C), the bleach signal increases slightly between time
zero and ≈1.0 ps, and decays thereafter on a time scale longer than the observation window (1.1 ns).
Double exponential fits of traces at individual wavelengths, displayed in Figure 7C, yield a GSB rise
time τ1 of 0.2–0.5 ps, and a decay time τ2 = 3.2 ± 0.5 ns.
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Figure 7. Transient absorption data of C2. (A,B) time-resolved ∆A spectra at delays indicated in
the legend (in ps). The region 365–425 nm is omitted due to excessive pump laser scattering. (C):
Kinetic traces at different wavelengths in the main bleach band, together with bi-exponential fits
(see text for details). The sharp features at ≈0.1 ps are most likely due to cross phase modulation
(“coherent artefact”).

Cast in a global lifetime analysis, values of τ1 = 0.45 ± 0.1 ps, and τ2 = 3.0 ± 0.1 ns are found. The
DADS and the SADS using a sequential relaxation scheme are displayed in Figure S9. The lifetime and
∆A spectrum of the long-lived species is consistent with the one observed for the 5MC quintet state
of [Fe(tpy)2]2+ in H2O [36], in particular the very weak ESA, if any, in the red part of the spectrum
distinguishes it from an 3MLCT state (cf. C1, and other Fe–NHC complexes). Note that the negative
∆A signal level <360 nm is much smaller than the expected GSB (inverted GSA), pointing to absorption
of the MC quintet, in good agreement with reports probing 5MC of [Fe(tpy)2]2+down to 290 nm [37].
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In analogy to other polypyridyl complexes of Fe(II), the data are consistent with an ultrafast spin
crossover transition from the 1/3MLCT manifold, identified by the SADS of τ1 (Figure S3). Hence, the
relaxation scheme for C2 is:

1MLCT+ <IRF
→

3MLCT+ τ1=0.45 ps
→

5MC
τ2 = 3.0ns
→ S0 (3)

It must be noted, however, that the ultrafast relaxation into 5MC leads necessarily to a vibrationally
excited quintet. The vibrational relaxation time on a similar spin cross-over complex was found to be
in the 10 ps range, as identified by fs mid-IR spectroscopy [38]. Apparently, these cooling processes go
unnoticed or do not show up with significant spectral changes in the near UV/VIS for C2.

2.3. Excited-State Decay Mechanism Based on TD-DFT Calculations

The most relevant electronic states involved in the photoresponses of C1 and C2 are displayed
in Figure 8. We have adopted the computational methodology used in our previous works on
Fe–NHC complexes with bidentate [11,13,14] and tridentate ligands [12] in order to obtain fully
comparable results.
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Figure 8. Relative energies of the ground state (S0) and the lowest-lying singlet (S1), triplet (T1) and
quintet (Q1) excited states of complexes C1 (left) and C2 (right). T2 and T3 states are also shown in
thinner green lines. The dashed lines represent non-connected paths between the different geometries.
Red arrows in the 3D molecular representations highlight the Fe–N bonds with the greatest elongations
during the excited-state decay (Fe–N1 and Fe–N1′ for C1, Fe–N1 and Fe–N3 for C2, the values
are summarized in Table 4). All energies are relative to the ground state at the corresponding S0

min structure.
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Table 4. Fe–N distances (in Å) corresponding to the structures displayed in Figure 8.

Fe–N S0 min S1 min T1 min Q1 min

C1

Fe–N1 2.120 2.151 2.604 2.491
Fe–N1′ 2.122 2.042 2.417 2.490

C2

Fe–N1 2.013 2.003 2.281 2.190
Fe–N2 1.975 1.960 1.955 2.179
Fe–N3 2.013 2.019 2.283 2.189
Fe–N1′ 2.013 2.010 2.121 2.188
Fe–N2′ 1.976 1.973 1.937 2.179
Fe–N3′ 2.013 2.024 2.120 2.191

As in other transition metal complexes, light absorption populates bright high-lying 1MLCT states
of C1. As commented in the previous sections, ultrafast intersystem crossing leads to the population
of the triplet 3MLCT manifold in a sub-picosecond regime, followed by vibrational relaxation to the
lowest-lying 3MLCT state (T1). From a potential energy surface (PES) perspective, all these phenomena
take place in regions close to Franck-Condon and S1 min areas, in which the 1MLCT and 3MLCT
states are also close in energy (see Figure 8). The term S1 min areas refer to the PES regions where
the energy of the S1 state is minimum. On longer time scales, the triplet state must evolve to reach
non-adiabatic crossing points with the ground state that mediate non-radiative decay channels. These
mechanisms are intrinsically different between Fe–NHC complexes with bidentate [11,13,14] and
tridentate [12] ligands and have different implications for the longer ESA components τ2 and τ3. In the
former type of complexes, relaxation of the lowest-lying triplet state T1 leads to a 3MC region through
a barrierless path encompassing an extended area of spin-crossover character, i.e., an area where S0

lies above T1, in which the system can be trapped for several picoseconds [13]. On the contrary, in
complexes with tridentate ligands, the T1 relaxation leads to a well-defined 3MLCT minimum close to
the Franck-Condon region [12]. The stretching of Fe–N bonds, always involved in the stabilization
of the dissociative 3MC states, is clearly the dominant degree of freedom in driving the excited state
decay. Due to the different topology of the PESs, Fe–N bonds are spontaneously stretched in the triplet
manifold of complexes with bidentate ligands, while this molecular motion has an energy cost in
Fe–NHC systems with tridentate ligands, explaining the triplet lifetimes of tens of picoseconds in the
latter [12].

Despite the tridentate coordination, the ES decay mechanism of C1 lies in between these two
extreme cases and somehow closer to the bidentate type mechanism. The T1 min has a clear 3MC
nature (see Figure 9), with Fe–N distance stretched up to 2.60 Å (see Table 4). As a matter of fact, the
T1 min geometry is close to but does not perfectly represent a singlet-triplet crossing (STC) with S0,
since the singlet-triplet energy gap is still 0.28 eV, although this relatively low energy splitting suggests
that the STC must be in the surroundings. As a matter of fact, the T1 potential energy surface shown
in Figure S10 confirms the access to the singlet-triplet crossing region with the ground state with an
energy barrier < 0.05 eV. On the other hand, the energy difference between the T1–T3 states at the
T1 min region is smaller as compared to that of previous bidentate Fe–NHC complexes, supporting
a possible sequential decay mechanism (T1/T2/T3→S0) in which τ2 is ascribed to the population of
the ground state and τ3 belongs to vibrational relaxation of S0. A parallel mechanism like the one
proposed for pure bidentate complexes (see Scheme 1 and refs [11,13,14,39], in which the T1 and T2

states are associated to different ES paths operating in parallel, cannot be excluded, although it seems
less plausible in this particular case given the T1–T3 energy degeneracy at S1 min and T1 min regions.
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The analysis of the photodynamics of C1 is also of particular value since it reinforces important
general conclusions about the photophysics of this type of Fe(II) complexes. In particular, the flexibility
added by the presence of alkyl spacers between the pyridine and imidazole rings opens ES decay
paths that are forbidden for the more rigid tridentate complex, that is, longer Fe–N elongations leading
to accessible 3MC minima. This is reflected in the TAS signals (two long components in bidentates
vs. one component in tridentates) and in the photochemical landscape shown in Figure 8. Hence, a
subtle equilibrium between the ideality of the octahedral coordination, destabilizing the 3MC states in
the Franck-Condon region, and limited flexibility, hampering an efficient population of 3MC states at
regions far from the Franck-Condon area via Fe–N elongations, should be carefully considered when
designing photoactive iron complexes.

On the contrary, the ES decay mechanism of C2, as also highlighted by TAS results, follows a
completely different scenario. A major difference as compared to C1 is the pivotal role played by the
much more stable Q1 state, which is degenerated with T1 already at the Franck-Condon geometry
(see Figure 8). Whereas the optimization of the S1 (1MLCT) state destabilizes Q1, this state is on the
contrary greatly stabilized with the Fe–N stretching associated to the T1 relaxation. Indeed, the Q1

state becomes degenerated with the ground state at the T1 min region, which is of 3MC nature (see
Figure 9). Full optimization of the Q1 state gives the Q1 min, in which the state is at a relative energy
close to that of the ground state at its corresponding equilibrium geometry, hence fully justifying the
observed light-induced spin crossover capabilities of C2.

Therefore, as stated above, the data presented in Figure 8 indicate that the Q1 state is the main actor
of C2′s photoresponse, in coherence with the TAS analysis depicted above. This state is populated in
the Franck-Condon region or in the surroundings in ~0.3 ps and is expected to rapidly evolve towards
the Q1 min region. At this region, the S0 is not accessible (note that its relative energy is of 1.15 eV,
more than 1 eV above Q1), and therefore one can expect a significant barrier (at least 0.5 eV, according
to the solid black arrow shown Figure 8) to repopulate the ground state. This description is in good
agreement with the long 3.0 ns lifetime measured experimentally for the quintuplet state.
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3. Materials and Methods

3.1. General Information

Solvents and commercially available reagents were used as received. Thin layer chromatography
(TLC) was performed by using silica gel 60 F-254 (Merck) plates and visualized under UV light.
Chromatographic purification was performed by using silica gel 60 (0.063–0.2 mm/70–230 mesh).
1H (400 MHz) and 13C NMR (100 MHz) spectra were taken on a DRX400 Bruker spectrometer at
ambient temperature. The chemical shifts (δ) were calibrated by using either tetramethylsilane (TMS)
or signals from the residual protons of the deuterated solvents and are reported in parts per million
(ppm) from low to high field. High-resolution mass spectrometry (HRMS) data was obtained by
using Bruker micrOTOF-Q spectrometer. UV vis spectra were recorded in a 1 cm path length quartz
cell on a LAMBDA 1050 (PerkinElmer), spectrophotometer. Cyclic voltammetry was performed on
a Radiometer PST006 potentiostat using a conventional three-electrode cell. The saturated calomel
electrode (SCE) was separated from the test compartment using a bridge tube. The solutions of
studied complexes (0.2 mM) were purged with argon before each measurement. The test solution
was acetonitrile containing 0.1 M Bu4NPF6 as supporting electrolyte. The working electrode was a
vitreous carbon rod (1 cm2) wire, and the counter-electrode was a 1 cm2 Pt disc. After the measurement,
ferrocene (Fc) was added as the internal reference for calibration. All potentials were quoted versus
SCE. In these conditions the redox potential of the couple Fc+/Fc was found at 0.39 V. In all the
experiments the scan rate was 100 mV.s−1.

3.2. Xray Diffraction

Two single crystals of complexes C1 and C2 were selected and measured with a Rigaku Oxford
Diffraction SuperNova 4-circles diffractometer. This diffractometer was equipped with a microfocus
X-ray source with a Molybdenum anode (MoKα, λ = 0.71073 Å) and an Atlas CCD detector. An Oxford
Cryosystems Cryostream nitrogen blower was used to fix the sample temperature at 100 K for C1 and
110 K for C2. Using Olex2 software [40], structures were solved with XT structure solution program [41]
and structures were refined with the XL refinement package [41] by using Least Square minimization.
CCDC 1992132 (C1) and CCDC 1982173 (C2) contain the supplementary crystallographic data for this
paper. These data are provided free of charge by the Cambridge Crystallographic Data Centre.

3.3. Ultrafast Transient Absorption Spectroscopy

An amplified 5kHz Ti: sapphire laser generates 30 fs 0.5 mJ pulses to pump a commercial optical
parametric amplifier (TOPAS: Light Conversion), from which 50–60 fs pulses are derived to excite
the samples: 495 nm for C1, and 400 nm for C2. A white light continuum is generated in a 2 mm
thick CaF2 crystal, mounted on an oscillating loudspeaker to reduce photo-damage. The white light
is optimized for minimized fluctuations (rms < 0.4% at 220 Hz). The beam is split in two: the probe
that is sent through the sample, and a reference beam is used for measuring and compensating the
white-light intensity fluctuations. The polarization of the probe beam is set at magic angle (54.7◦) with
respect to the pump. A 1 mm path length cuvette in fused silica contains the complexes dissolved
in CH3CN. Time-resolved spectra I (λ) are acquired in a range ≈300 nm wide window with an
adjustable central wavelength as a function of pump-probe delay, by a combination of 25 cm focal
length spectrometer (resolution 2 nm) and a Peltier-cooled CCD with 220 Hz acquisition rate. A
second chopper blocks the pump beam at 110 Hz and a home-made software computes and displays

the differential spectra ∆A = −log10

(
Ipump−on
Ipump−o f f

)
. A solvent-only sample is measured, and the data are

processed to (i) remove a residual signal background at negative delay times, (ii) the solvent Raman
signal and the coherent interactions of the pump and probe in the cell (except for C2), (iii) to correct
for the group velocity dispersion of the probe beam, characterized in the solvent-only data set. The
temporal resolution is determined by the 50±5 fs FWHM of the solvent Raman response. Data are
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fitted at individual wavelengths according to ∆A(λ, t) = IRF(t0, σ) ⊗
(
A0 +

∑n
i=1 Ai(λ)e−t/τi(λ)

)
, (1) a

sum of n-exp functions and an un-resolved contribution (A0), convoluted with a Gaussian instrument
response function (IRF, σ = 35–50 fs, FWHM). Although data are chirp-corrected and t0, is adjustable for
each wavelength. Global and target analysis was performed with the software packages OPTIMUS [32]
and GLOTARAN [33].

3.4. Computational Details

The computational protocol has been widely validated in previous works and it will be only
summarized here [11–14,39,42]. Unless otherwise stated, all calculations have been performed using
the Gaussian 16 program [43]. The ground state geometries have been optimized using the DFT/B3LYP
method, whereas the S1 state has been optimized using TD-DFT in combination with the pure HCTH
functional [44]. The T1 and Q1 states have been optimized using the unrestricted uDFT/HCTH method.
All optimizations have been performed employing the 6-31+G(d,p) basis set. Later, single-point
calculations with the larger 6-311G(d,p) basis set have been performed on top of the converged
geometries to obtain the final energies displayed in Figure 8. The energies of S1 and T1 have been
obtained with the TD-DFT/HCTH method, while the energies of Q1 have been determined making use
of the uDFT/HCTH ansatz. Solvent effects (acetonitrile) have been included by means of the polarizable
continuum model. The Tamm-Dancoff approximation has been used in all TD-DFT calculations [45].
For C2, due to the inherent π-stacking interaction of the ligands, empirical dispersion has been included
in all calculations through Grimme’s original D3 damping function [46]. Analysis of the nature of the
excitations (Figure 9) have been performed by computing the natural transition orbitals (NTOs) [47]
with the NANCY_EX code [48,49].

3.5. Synthesis of Ligands and Complexes

3.5.1. Synthesis of Ligands

Synthesis of L1 [31]. A solution of 2,6-bis(bromomethyl)pyridine (1.337 g, 5.0 mmol) and
1-methylimidazole (0.831 g, 10.0 mmol) was stirred in dioxane (80 mL) at 100 ◦C for 12 h. After cooling,
the formed solid was collected and purified by repetitive precipitation from MeOH/Et2O mixtures and
finally by recrystallization from CH2Cl2/Et2O. The product was then collected and solubilized in a
small amount of water, then precipitated using a saturated aqueous solution of KPF6 to give L1 (2.27 g,
80%). 1H-NMR (CD3CN, 400 MHz): δ 8.47 (s, 2H), 7.90 (t, J = 7.8 Hz, 1H), 7.44 (d, J = 7.8 Hz, 2H), 7.35
(s, 4H), 5.38 (s, 4H), 3.85 (s, 12H) ppm.

Synthesis of dqp [18]. An oven-dried flask was charged with 8- quinoline boronic acid
(413 mg, 2.39 mmol), 2,6-dibromo-pyridine (265mg, 1.12mmol), Pd(dba)2 (13mg, 0.023mmol),
2-dicyclohexylphosphino-2’,6´-dimethoxybiphenyl (0.019 g, 0.046 mmol) and grinded K3PO4 (2.27 g,
10.7 mmol). The flask was evacuated and charged with N2. Dry toluene (10 mL) was added via a
syringe and the resulting suspension was stirred at 100 ◦C for 15 h. The mixture could cool to room
temperature, diluted with CH2Cl2 (30 mL) and filtered. The solvent was removed and the remaining
solid purified by column chromatography using silica gel and 2.5% MeOH/CH2Cl2 as eluent to give
dqp as an off-white solid (244mg, 65%). 1H-NMR (CDCl3, 400 MHz,): δ 9.00 (dd, J = 4.2, 1.9 Hz, 2H),
8.28 (dd, J = 7.3, 1.5 Hz, 2H), 8.24 (dd, J = 8.3, 1.9 Hz, 2H), 8.13 (d, J = 7.7 Hz, 2H), 7.96 (t, J = 7.7 Hz,
1H), 7.89 (dd, J = 8.2, 1.5 Hz, 2H), 7.67 (dd, J = 8.2, 7.3 Hz, 2H), 7.46 (dd, J = 8.3, 4.2 Hz, 2H) ppm.

3.5.2. Synthesis of Complexes

Synthesis of C1. To a solution of L1 (0.129 g, 0.231 mmol) in 2 mL of anhydrous DMF was added
FeBr2 (15 mg, 0.115 mmol) and degassed the mixture with N2 for 10 min. Then t-BuOK was added
(104 mg, 0.927 mmol) to the above mixture and stirred at 0 ◦C and temperature left slowly rising
to room temperature. A saturated solution of KPF6 was added (10 mL), and the precipitate was
collected by filtration. Then the crude was further purified on silica gel column chromatography using
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acetone/H2O/KNO3 (sat) = 10:3:3 mixture. The pink fraction was collected and after the evaporation of
acetone, the left solution was treated with a saturated solution of KPF6. C1 (20 mg, 19%) was finally
obtained after filtration. 1H-NMR (CD3CN, 400 MHz): δ 7.58 (t, 2H, J = 7.7 Hz), 7.30 (d, 4H, J = 7.7
Hz), 7.07 (d, 4H, J = 1.9 Hz), 6.67 (d, 4H, J = 1.9 Hz), 5.41 (s, 4H), 3.40 (s, 4H), 2.05 (s, 12H) ppm.
13C-NMR (CD3CN, 100 MHz): δ 191.4, 157.3, 137.3, 126.3, 124.2, 120.1, 53.5, 34.5. HR-MS (ESI) calcd for
C30H34FeN10P2F12 m/z = 295.1153 [M – 2 PF6]2+. Found: 295.1145.

Synthesis of C2. A 5 mL microwave tube was charged with dqp (65 mg, 0.195 mmol) and FeBr2

(20mg, 0.093 mmol). After addition of DMF (3 mL) the tube was sealed and heated for 4h using
microwave heating (60W). A saturated solution of KPF6 was added (10 mL), and the precipitate was
collected by filtration. Then the crude was further purified on silica gel column chromatography
using Acetone/H2O/KNO3 (sat) = 10:3:3 mixture. The dark pink fraction was collected and after the
evaporation of acetone, the left solution was treated with a saturated solution of KPF6. C2 (28 mg,
30%) was finally obtained after filtration. 1H-NMR (400 MHz, CD3CN): δ 8.17 (dd, J = 8.2, 7.8 Hz,
2H), 8.07 (m, 8H), 7.89 (m, 4H), 7.73 (dd, J = 7.5, 1.3 Hz, 4H), 7.68 (dd, J = 8.3, 1.3 Hz, 4H), 7.45 (dd,
J = 8.3, 7.5 Hz, 4H), 7.05 (dd, J = 7.9, 5.3 Hz, 4H) ppm. 13C-NMR (DMSO-d6, 100 MHz): δ 164.50,
164.25, 161.34, 149.95, 138.89, 138.68, 132.36, 130.84, 128.10, 127.88, 127.32, 126.25. HR-MS (ESI) calcd
for C46H30FeN6P2F12 m/z = 361.0935 [M – 2 PF6]2+. Found: 361.0944.

4. Discussion and Conclusions

The present study of Fe(II) homoleptic tridentate complexes C1 and C2 with octahedral
coordination symmetry aimed at providing evidence for the effect of a larger ligand field splitting
on the excited state (ES) dynamics, in particular aiming at obtaining longer-lived 3MLCT states. The
change in geometry had a positive effect on the absorption properties inducing notable red shifts of the
Fe-pyridine MLCT absorption bands compared with the non-octahedral C0, in agreement with the
decrease of the HOMO-LUMO gap also confirmed by cyclic voltammetry. However, as pointed out
above, the ligand modifications also bring about a larger conformational flexibility, the effect of which
appears to dominate the ES quantum dynamics.

When comparing C1 with the proto-typical C0 ([Fe(bmip)2]2+) two important differences are
observed. First, the ES lifetime of C1 is roughly six times shorter than that of C0. The TD-DFT
calculations indicate that, due to the higher ligand flexibility, the barrier hindering the relaxation
of 3MLCT into the metal-centered 3MC in [Fe(bmip)2]2+ is lowered in C1, leading to a faster ES
deactivation (Figure 10 center). The TD-DFT calculations indicate that, most likely, one single triplet
state minimum of 3MC character is transiently populated (Figure 8) hinting to the “sequential decay”
scenario being more plausible. Secondly, a strongly damped excited state vibrational coherence is
observed with a frequency of 55–65 cm−1, in addition to ground state vibrations in the range of ≈350
cm−1 (cf. Figure S8). The higher frequency is in the usual range of Fe–N or Fe–C stretch vibrations, and
the 60 cm−1 is similar to the low frequency breathing mode identified for C0 at 110 cm−1 [50]. It was
recently identified to be associated with vibrationally coherent population of 3MC through ultrafast
branching from the 1MLCT manifold in C0 [36]. We rather attribute it to the initially populated 3MLCT.
In any case, its existence and lower frequency point to a higher flexibility of the ligands of C1 as
compared to C0. For C2, the relaxation from 3MLCT into the metal-centered 3MC and 5MC states
(Figure 10, left) seems to be almost unaffected since the 0.45 ps lifetime is only slightly longer than the
one observed for [Fe(tpy)2]2+ [8].
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Figure 10. Excited state relaxation schemes for the three complexes C0, C1 and C2, as inferred from TAS
data and TD-DFT calculations. Lifetimes and arrows identify the relevant steps of internal conversion
and intersystem crossing. (Left): in C0, the rigid tridentate structure imposes a slight barrier on the
3MLCT–3MC relaxation and stabilizes 3MLCT for 9–10 ps [8]. (Center): the larger ligand flexibility in
C1 reduces this barrier and leads to a region of adiabatic mixing between 3MLCT and 3MC (red ellipse).
The sketch labeled “parallel decay” refers to Equation (1) (Section 2.2.1). However, our calculations
indicate that one single triplet state minimum of 3MC character is transiently populated (Figure 8)
hinting to the “sequential decay” scenario being more plausible (Equation (2), Section 2.2.1). (Right): C2
is a photo-induced spin crossover complex like [Fe(tpy)2]2+. Note that for C0, the recently revealed
parallel population of 3MLCT and 3MC [35] is not represented for simplicity.

In summary, the comparison of the photophysics of C1 and C2 evidences important aspects about
the Fe(II) coordination sphere directly impacting ES decay mechanisms and ES lifetimes of Fe–NHC
complexes. The main conclusion is that the destabilization of 3MC states at the Franck-Condon region
does not guarantee longer triplet MLCT lifetimes since these states quickly relax out of this region if
the system is flexible enough, as demonstrated by the current C1 complex. A similar conclusion was
drawn from our previous comparison of bidentate vs. tridentate coordination where the associated
rigidity dictates the participation of the triplet states and their ability to stretch Fe–N bonds [14]. Longer
ES lifetimes may be achieved by blocking the elongations of the Fe–N bonds [51] or through their
substitution by more photoresistant bonds such as Fe–C ones [15,52–54].

In the case of C2, while the increase of the rigidity of the molecular scaffold could allow the
improvement of the photophysical properties, the presence of six Fe–N bonds strongly diminishes
the ligand-field splitting and hence strongly shortens the ES lifetime due to the stabilization of the
metal centered quintet state that is actively participating in the relaxation. All in all, these contrasting
observations clearly points to the subtle equilibrium between the different electronic and geometrical
factors susceptible of altering the photophysical outcome of iron(II)-based complexes. The competition
between the different factors needs to be fully considered when proceeding to rational molecular
design strategy for improving the optical response.

Supplementary Materials: The following are available online, Figures S1–S6 : 1H and 13C-NMR spectra of L1,
L2, C1 and C2, Figure S7: transient spectroscopy, quality of global fit for C1, Figure S8: transient spectroscopy,
analysis of vibrational coherence in C1, Figure S9: transient spectroscopy, global fit results for C2, Figure S10:
Computational data, Scan of one Fe-N bond distance of C1 relaxing the T1 state, Tables S1–S15: Xray parameters
for C1 and C2, Table S16: transient spectroscopy: fit parameters for C1. CCDC No. are 199232 for C1 and 1982173
for C2.
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