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Abstract

Given a pattern on a network, i.e. a subset of nodes, can we assess, whether

they are randomly distributed on the network or have been generated in a sys-

tematic fashion following the network architecture? This question is at the core

of network-based data analyses across a range of disciplines — from incidents of

infection in social networks to sets of differentially expressed genes in biological

networks. Here we introduce generic ‘pattern generators’ based on an Eden

growth model. We assess the capacity of different pattern measures like con-

nectivity, edge density or various average distances, to infer the parameters of

the generator from the observed patterns. Some measures perform consistently

better than others in inferring the underlying pattern generator, while the best

performing measures depend on the global topology of the underlying network.

Moreover, we show that pattern generator inference remains possible in case of

limited visibility of the patterns.

Keywords: Patterns; Network clusters; Teleportation random walks; Eden

model; Parametric inference; Mutual information

Published in Physica A, 566: 125631 (2021). Special Issue: ’Interdisciplinary

applications of statistical physics in memory of Professor Dietrich Stauffer’.

Email address: annick.lesne@sorbonne-universite.fr ( Annick Lesne)

Preprint submitted to Physica A December 16, 2020



1 INTRODUCTION 2

Highlights

• We investigate various Eden model-based pattern generators on networks.

• Generator parameters can be inferred from characteristics of the observed

patterns.

• The quality of the inference depends on which pattern characteristic is

measured.

• Which measure is the most suitable depends on the underlying network

global topology.

• The inference remains possible in case of degraded observation of the pat-

terns.

1. Introduction

Patterns on networks are a natural object of investigation. Networks can

here be real objects, for instance neural networks, or the representation of a

substrate, ranging from the discretization of real space into lattices to complex

networks whose edges indicate some interaction or relationship between entities

each corresponding to a node of the network. As in percolation studies [1], some

nodes can be singled out (henceforth termed ‘colored’) based on their binary

(or binarized) state, e.g. occupied vs. empty. Often, the binary state of the

nodes results from some dynamical process on the network, e.g. infected nodes

in virus or rumor propagation, active nodes in a neural network or expressed

genes in a biological network, or more generally nodes visited by some transport

process [2] or contact process [3]. In all cases, network patterns are formed by

clusters (i.e. connected subsets) of colored nodes.

The question addressed in the present study is the possibility to infer the

level of randomness of a network pattern from some observable quantity charac-

terizing the pattern. For a diffusion process, it is well known that the features of

the clusters of visited nodes are sensitive both to the parameters of the transport
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process and the underlying network topology [4, 5]. We will thus consider var-

ious networks, ranging from lattices to complex networks such as Erdős-Rényi

random graphs (ER)[6], Watts-Strogatz small worlds (SW) [7] and Barabasi-

Albert scale-free graphs (BA) [8]. We will investigate patterns generated on

the networks by a class of processes combining an Eden growth model [9] and

teleportation events [10], in which a new seed node is chosen at random. Such

a dual model could mimic the features of biological transport [11, 12]. Its main

interest here is to include a tunable level of randomness, namely the probabil-

ity (1 − p) of a teleportation event. For p = 0, the generated pattern is fully

random, whereas the standard Eden model is recovered for p = 1.

Quantifying the amount of clustering (or other indicators of a non-random

distribution) of colored nodes in a larger graph is a key task for example in

any network-based analysis of biological data in Systems Biology and Systems

Medicine [13]. In these cases, typical graphs are protein interaction networks

[14, 15], metabolic networks [16, 17] or signaling networks [18]. Examples of

these studies include analyzing the distribution of disease-associated genes in

protein interaction networks [19] and other biological networks [20], the network-

based enhancement of biological signals derived from high-throughput data [21]

and the network-based interpretation of gene expression patterns [22, 23, 24].

Relatedly, interpreting incidence patterns of an infectious disease can also

be approached by comparing the patterns to a given underlying network ar-

chitecture [25]. Similar questions also arise in the context of Computational

Neuroscience, when activity patterns of cortical areas (often denoted as ‘func-

tional connectivity’) are compared with the underlying anatomy of cortical area

interactions (or ‘structural connectivity’); see, e.g., [26, 27]. The analysis and

interpretation of the correlations between structural connectivity and functional

connectivity also extends to a range of other disciplines [28].

Our study will be based on extensive simulation, in the spirit of the pio-

neering work of Dietrich Stauffer [4, 11, 29]. Given the above-described general

class of pattern generators (combinations of Eden growth model and random

hops), we will investigate, if it is possible to infer their parameters from an
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appropriate measure of the patterns generated on a given underlying network,

even when they are observed with incomplete information. More precisely, we

want (1) to infer the parameters of the pattern generator, (2) to determine the

dependence of the inference result on the topology of the underlying network,

and (3) to assess the performance of the various observables (pattern measures)

as an input of the inference process. In contrast to many studies of transport

processes on networks, we will not consider here the temporal evolution of the

pattern features [2]. We will focus on the relationship between the parameters

of the pattern generators, the observable features of the generated patterns, and

the underlying network topology.

2. Pattern generation

We first describe how the sets of colored nodes, that we denote as ‘patterns’,

are generated on the considered graph Γ(E, V ), where V is the set of nodes and

E the set of edges connecting them. For this purpose a modified Eden growth

model with teleportation is employed, according to the following scheme:

1. Set values of all nodes to 0.

2. Randomly select an uncolored node (having value 0) of the graph and

color it, i.e., set its value to 1.

3. (a) With probability p chose an uncolored neighbor of the current colored

cluster and color it.

(b) With probability 1− p go to point 2 and set a new cluster.

The algorithm stops when the desired number n of vertices is colored. The

parameter p controls the ‘cohesion’ or compactness of the colored nodes, and will

henceforth be called the ‘cohesion parameter’. The lower p the more fragmented

the patterns will be. For p = 0 colored nodes are distributed evenly in a random

fashion, while for p = 1 there is only one big cluster of colored nodes. Analogous

procedure, but without teleportation (i.e. p = 1) is known as Eden model [9].

To each pattern corresponds an induced subgraph Γc(Ec, Vc) ⊆ Γ(E, V ),

where Vc is the subset of colored nodes and Ec is the subset of edges connecting
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two colored nodes. Note that we are interested in the generated patterns Γc,

not in the evolution of colored clusters as a function of time [2].

In addition to the size of the set of nodes forming the pattern, which is is

kept constant (equal to 50) throughout our investigation, the pattern generators

have the following parameters:

• Cohesion parameter p, with 1− p being the teleportation probability;

• Environmental range e, which is the radius of the neighborhood of a col-

ored node. In practice, e it is the thickness of the layer surrounding the

colored clusters, in which Eden growth could occur. For e = 1, we include

nearest neighbors in the layer, for e = 2 next-to-nearest neighbors and so

on.

• Visibility q, with 1 − q being the probability of deleting a node from the

pattern (i.e. the generated set of colored nodes). Denoting n the number of

colored nodes, for q < 1 we generally observe less than n nodes. Denoting

n′ be the number of observed nodes, we have 〈n′〉 = qn.

Figure 1 illustrates on a small 2D lattice the diversity of colored node sets (i.e.

‘patterns’) created by our pattern generator, as well as the influence of its key

parameters.

3. Inference of the pattern generator

The question we ask is very simple: How far from randomness is the given

pattern? What is needed is a computational resource converting a given network

and the pattern of colored nodes into a single number. This single number

should be seen as a quantifier for the (lack of) randomness of the pattern. In

other words, it should tell, whether the given pattern is random, or not, and

quantify this deviation from randomness with the highest precision possible.

In the present context, pattern randomness is directly related to the value of

the cohesion parameter p of the generator, with p = 0 corresponding to full

randomness (see top right pattern on Fig. 1) whereas p = 1 corresponds to the
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Eden model (see top left pattern on Fig. 1). Our goal will be to infer the value

of p from the observation of the colored patterns.

3.1. Definition of pattern measures

In the following, we introduce three types of pattern quantifiers: (i) measures

based on edge density; (ii) measures based on cluster count; (iii) measures based

on the distances between colored nodes. Each measure summarizes a pattern

on the network in just a single number. The measure will then be used to infer

the parameter p of the pattern generator. The observed value of the measure

for a given pattern will be termed an ‘observable’.

3.1.1. Edge density-based measures Xe

The simplest type of measures considered here are those relying on basic

statistics of the colored subgraph Γc(Ec, Vc) (comprising n = |Vc| nodes) ex-

tracted from the original graph Γ(E, V ). After extraction the measures involve

solely the subgraph Γc with no relation to the original graph Γ.

Connectivity. It is the fraction of non-isolated nodes, i.e. of nonzero degree in

the induced subgraph Γc:

Xc
e =

1

|Vc|
∑
j∈Vc

{1|kj > 0} =
1

n

∑
j∈Vc

{1|kj > 0} . (1)

Edge density. It is the fraction of edges actually present in the induced subgraph

Γc, compared to the maximal number of edges that could be established between

the n nodes of Γc:

Xd
e =

2|Ec|
|Vc|(|Vc| − 1)

=
2|Ec|

n(n− 1)
. (2)

Average clustering coefficient. Denoting Cj the clustering coefficient in the in-

duced subgraph Γc of a node j of the subgraph, its average is:

Xcl
e =

1

|Vc|
∑
j∈Vc

Cj =
1

n

∑
j∈Vc

Cj . (3)



3 INFERENCE OF THE PATTERN GENERATOR 7

variable p

variable e

variable q

original Eden model 
p = 1.0,   e = 1,   q = 1.0 p = 0.75,   e = 1,   q = 1.0

full randomness 
p = 0.0,   e = 1,   q = 1.0

p = 1.0,   e = 2,   q = 1.0 p = 1.0,   e = 3,   q = 1.0

p = 1.0,   e = 1,   q = 0.5 p = 1.0,   e = 1,   q = 0.25

Figure 1: (color online) 2D lattice illustration of the variety of patterns (all comprising 50

nodes) obtained for different values of the generator parameters. The pattern on top left has

been obtained with our default setting (p=1, e=1, q=1), corresponding to the original Eden

model. Patterns on the first row have been obtained with higher teleportation probabilities

(1 − p), increasing along the row (i.e., decreasing values of the parameter p controlling the

cohesion of the pattern). The pattern on top right illustrates the fully random patterns

obtained for parameters (p=1, e=1, q=1). The second row presents patterns obtained at

increasing values of the environmental range e. Along the third row, the visibility q decreases.

Red + black: colored nodes (red: nodes selected within the neighborhood of the already

grown clusters, according to the Eden growth model; black: nodes selected randomly due to

a teleportation event). Green and light green: nodes not in the set of colored nodes (light

green: nodes previously colored, which have been discarded from the pattern due to a limited

visibility q). Note that the distinction between red and black, as well as the distinction

between green and light green, are only used for visualization, in order to better illustrate the

features of the pattern generator; they do not affect the analysis.
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3.1.2. Cluster count Xn

Another type of measures are those relying on counting the number of con-

nected clusters in the colored subgraph Γc. Here we used three variants: X1
n

is the number of connected clusters within the induced subgraph Γc; X
2
n is the

analogous quantity calculated for the pattern where a direct link is established

between two colored nodes if they are related by paths of length 1 or 2 on the

original network, respectively paths of length up to 3 for X3
n.

3.1.3. Distance based Xr

We have also benchmarked several distance-based measures. Their defini-

tion follows a common framework with tunable elements, which yields a large

diversity of measures (overall 60 possible combinations):

Xα,β,y
r =

1

m

m∑
j

ωjr
y
j , (4)

where ωj is a weight, rj a distance, and y ∈ {−4,−3,−2,−1,− 1
2 ,

1
2 , 1, 2, 3, 4} an

exponent. The superscripts α and β are mere labels detailed below, defining in

particular the set of m indices over which the sum runs. Distances are calculated

in two ways:

1. For each pair j of colored nodes g and h, we compute a distance rj equal

to the shortest path between g and h. The sum here runs over the m

pairs of colored nodes. The corresponding measure will be labeled by a

superscript α = A.

2. For each colored node j, we calculate the distance rj to the nearest colored

node. The sum here runs over the m = n colored nodes. The correspond-

ing measure will be labeled by a superscript α = a.

Additionally there are three choices for the weight ωj :

1. Each distance rj is endowed with an equal weight ωj = 1; the correspond-

ing measure will be labeled by a superscript β = 0.

2. for distances calculated following the way (1) above:
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• ωj ≡ kgkh, where j labels the pair of colored nodes (g, h) and k is

the degree of a node; this choice will be labeled β =↑.

• ωj ≡ 1
kgkh

, where j labels the pair of colored nodes (g, h) and k is

the degree of a node; this choice will be labeled β =↓.

3. For distances calculated following the way (2) above:

• ωj = kj , where kj is degree of the colored node j; this choice will be

labeled β =↑.

• β =↓, ωj = 1
kj

, where kj is degree of the colored node j; this choice

will be labeled β =↓.

As smaller y enhances the contribution of closer distances, there are two limit

cases where two distance-based measures recover connectivity-based measures:

lim
y→−∞

XA,0,y
r = Xd

e , (5)

lim
y→−∞

Xa,0,y
r = Xc

e . (6)

In our study, we highlighted four specific measures:

1. the connectivity: Xc
e ;

2. the average clustering coefficient: Xcl
e (denoted ”clustering” on plots);

3. the cluster count of order 1: X1
n (denoted”clusters1 n” on plots);

4. one of the distance-based measures: XA,0,−1
r (denoted ”A:rˆ-1” on plots).

3.2. Simulations

In order to evaluate the inference power of the above-defined measures, we

numerically implemented the pattern generator and quantified the generated

patterns with all the measures. The simulation setting is characterized by the

network architecture, the value of the cohesion parameter p, the choice of the

neighborhood e and the value of the visibility q. In each considered instance, we

performed 100 simulation runs to get reasonable datasets. In all the simulations

we used networks with N = 1000 nodes except for the square lattice where

N = 32 · 32 = 1024. Networks had different topologies and different average
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degree 〈k〉. For complex networks the environmental range was e ∈ {1, 2, 3}

while for lattices e ∈ {1, 2, ..., 10}. We also set 〈n′〉 = nq = const. = 50 and

used three different combinations of the parameters n and q, namely: (n = 50,

q = 1.0), (n = 100, q = 0.5) and (n = 200, q = 0.25). Finally the cohesion

parameter p spanned its whole range from 0 to 1 with 0.1 increments.

As the performance of the measures may depend on the range of the gener-

ator parameter p to be inferred, we distinguished the whole range (0 ≤ p ≤ 1)

from the ‘weak signal regime’ where the range of the cohesion parameter is re-

stricted to 0 ≤ p ≤ 0.2, which produces only diffuse patterns and low observable

values. This latter case is particularly important for applications to medical

data [30].

3.3. Evaluation of a measure

We focused on the predictive power of a given measure regarding the co-

hesion parameter p, knowing the other parameters e and q. This parameter p

controls the level of randomness of the generated pattern. We used the well-

established and widely used notion of mutual information for evaluating a given

measure. Indeed the mutual information I(X; p) of two random variables X

and p is the quantifier telling us how much we can know about one random

variable, knowing the value of the other. In other words it is an alternative

for a correlation coefficient, however more precise, especially in the nonlinear

cases. The observable X is here a random variable as it comes from a randomly

generated pattern. In an inference problem, the cohesion parameter p, which

is fixed in a simulation, also becomes a random variable. This idea drives our

analysis strategy.

The set of simulation results provides the joint distribution P(X,p)(X, p|e, q)

of the considered observable X and the cohesion parameter p, given the param-

eters e and q. For simplicity, we note in the same way the observable values and

the observable considered as a random variable, and we will skip in the notation

the explicit mention of e and q. This distribution was reconstructed at fixed

values of e and q using eleven bins for X (ranging between the extreme values
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observed for X) and eleven bins for the eleven considered values of p (from 0 to 1

by steps of 0.1), except in the weak-signal regime p ≤ 0.2 where only three bins

were used. From the joint probability distribution, we computed the marginal

distributions PX(X) and Pp(p), and the mutual information:

I(X; p) = H(X)−H(X|p) =
∑
X

∑
p

P(X,p)(X, p) log

(
P(X,p)(X, p)

PX(X)Pp(p)

)
, (7)

where H(X) is the Shannon entropy (the sum runs over the discrete values of

X)

H(X) = −
∑
X

P (X) log(P (X)) . (8)

This mutual information provides an overall quantification of the reconstructabil-

ity and predictability of the parameter p from the observation of X, that will

be used to rank the measures. The higher I(X; p) the more information about

p is given by X. The best performing measures regarding the inference of the

cohesion parameter p will be those with the highest I(X; p).

In practical applications (as, e.g., in [23, 24]), it can be helpful to trans-

form the measures X into a z-score with respect to a suitable null model (e.g.,

randomly drawn nodes), in order to make situations with very different sizes

of data sets and networks comparable. Here, replacing the measures by their

z-score is useless, as the mutual information is invariant with respect to such a

linear transform. The reason for this is straightforward, as I depends only on

the probabilities of certain values, not on the values themselves [31].

In the following we evaluate the inference of the cohesion parameter p from

the set of measures for different values of the other pattern generator parameters

(environmental range e and visibility q, which are fixed in the evaluation of

P(X,p)(X, p) and the inference of p).

An illustration of the inference of pattern generator parameters from pattern

observables is presented in Figure 2. This figure displays four observables X as

a function of the cohesion parameter p for different values of the environmental

range e. A range of observed values X, obtained from a large set of simulated

patterns, translates into a range of values of p. These plots give an intuition of
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Figure 2: (color online) Inference of the pattern generator parameter p from sets of patterns

at fixed values of e and q, illustrated for four of the measures used in our investigation:

connectivity (first row), average clustering coefficient (second), cluster count (third row) and

a distance-based measure (fourth row). The observables X are shown as a function of the

cohesion parameter p for different values of the environmental range e. In each instance, the

value of the mutual information I(X, p) (in short I) is indicated. First column: e = 1. Second

column: e = 2. Third column: e = 3. All cases correspond to an Erdős-Rényi graph (ER) [6]

with N = 1000 nodes, 〈k〉 = 5, n = 50, q = 1, and for each set of parameters 100 samples

were simulated.
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the sensitivity of an observable X with respect to the variation of the parameter

p: When the slope of the plot is steep, even a small variation in p will correspond

to a detectable variation in the range of values of X, and could thus be inferred

from the observation of X. An overall assessment of the inference quality for

each observable and each value of e is provided by the value of the mutual

information I(X, p), the higher the better, indicated in each panel of the figure.

We see, for example, that for e = 1 three measures, the connectivity (first row),

the cluster count (third row) and the distance-based measure (fourth row) can be

used to infer the parameter p with high accuracy. The quality of this inference

decreases rapidly with the environmental range e. For e = 2 and e = 3, we

observe that different values of p could give the same value of the measure, e.g.

second column fourth row; in this case, only bounds on the value of p could be

derived from the pattern measure. The clustering coefficient (second row), on

the other hand, does not allow inference of p even for e = 1, due to the low

values of the clustering coefficient in the used network.

A first set of results for Erdős-Rényi (ER) graphs is shown in Figure 3, in

the form of curves displaying the mutual information I(X, p) as a function of

the average degree 〈k〉 of the network. The full set of observables is shown

as gray curves, while the colored curves highlight the four selected measures:

connectivity, clustering, cluster count, and one distance-based measure. The

curves confirm the visual impression from Figure 2, extend it to a wide range

of networks (due to the variation of the average degree) and put the four high-

lighted observables in the context of the large set of other observables (shown

in gray). Generally, a low value of I(X, p), reflecting a poor inference of the

parameter p, is observed either in case of a low sensitivity of the measure to

variations of p (e.g. third column first row in Fig. 2) or the case when two

values of p gives the same value of the measure (e.g. second column fourth row

in Fig. 2). Furthermore, Figure 3 distinguishes between the inference across

the whole range of p (left column) and the ‘weak signal’ regime p ≤ 0.2 (right

column), corresponding to diffuse patterns and low observable values. In par-

ticular, we see that the connectivity and the cluster count perform well with an
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Figure 3: color online) Mutual information (quantifying the performance of a measure for

parameter inference) as a function of the average degree of the network for the case of ER

graphs. Left column: mutual information evaluated across the whole range of the cohesion pa-

rameter p. Right column: mutual information evaluated for small p (yielding diffuse patterns

and weak observable values). First row: e = 1. Second row: e = 2. Third row: e = 3. A rapid

deterioration of the predictive power is observed for e > 1 along with a shuffling of the best

performing measures. For e > 1 the distance-based measure XA,0,−1
r becomes significantly

better than the others. While for e = 1 edge density and cluster count perform better overall,

for weak signals (second column) connectivity has a slight advantage over them for 〈k〉 < 9.
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advantage for the connectivity in the case of weak signals and sparse graphs.

With increasing e (second and third row), the representative of a distance-based

measure (blue curve) performs best, even though the performance of measures

in general decreases substantially with the environmental range e, as expected.

3.4. Different network architectures

In Figure 4 the performances of the different measures is explored with re-

spect to the global network architecture. The highlighted measures display a

similarly satisfactory performance for lattices (first row; same as the first row

in Figure 3) and random regular graphs (second row), except for the clustering-

based measure, which performs poorly, as in the case of the ER graph discussed

before. In contrast, differences appear when considering more complex net-

work architectures, namely small-world graphs (third row) and scale-free graphs

(fourth row): There, connectivity and cluster count perform almost equally well

for scale-free graphs, while cluster count performs better for small-world graphs.

Additional details about small-world graphs are given in Figure S1.

Note that for lattices, results are presented as a function of the environmental

range e (rather than 〈k〉), for two reasons: On lattices, average distances are

greater than on complex networks hence we could consider larger values of

e, while on the other hand 〈k〉 values are fixed. For lattices distance-based

measures are the most efficient and they perform well even for large e.

3.5. Accommodating incomplete observation

With decreasing visibility q (recall that q is fixed in the inference procedure),

our highlighted measures differ in particular at weak signal strength (low cohe-

sion parameter p, diffuse patterns, weak observable values) with a tendency of

the connectivity measure to perform best (see Fig. 5).

Figure S2 offers a more detailed look at lattices, showing the performance in

inferring the parameter p of the various measures as a function of the environ-

mental range e for different space dimensions (columns) and different values of

the visibility q (rows). It is striking to see that on these network architectures,

the distance-based measure is almost not affected by decreasing visibility.
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(b) Networks

Figure 4: (color online) Same as Figure 3, but for different network architectures. First row:

lattices of dimension 1, 2 and 3, as a function of the environmental range e (horizontal axis)

Second row: random regular graphs (RR). Third row: small-world graphs (SW) [7]. Fourth

row: scale-free graphs (BA) [8]. For the latter three rows, the results are presented as a

function of the average degree 〈k〉. Left column: e = 1. Middle column: e = 2. Right column:

e = 3.
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Figure 5: (color online) Same as Figure 3 (ER graphs), but for different visibilities. First row:

q = 1. Second row: q = 1/2. Third row: q = 1/4. Note that n has been adjusted according

to q, such that the final number of visible colored nodes remains constant (see also Figure S2)
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4. Conclusion

We have analyzed the performance of various observables derived from a

given subset of nodes (the pattern of ‘colored’ nodes) to assess, whether this

subset is non-randomly distributed in the graph. On a more quantitative level

we asked, if and with which accuracy the main parameter of an underlying

stochastic process selecting the nodes of this subset (the ‘cohesion parameter’ p

of the ‘pattern generator’ coloring the nodes) can be inferred from these observ-

ables. This basic question has broad implications to any discipline that employs

forms of a network-based data interpretation.

Overall, simplicity meets effectiveness as connectivity and edge density are

among the best performing observables as regards the inference of the param-

eter p. Our results show that different types of randomization that could be

present during pattern generation lower the inference capabilities in very dif-

ferent ways. For example, observables based on connectivity are much more

affected by the environmental range e (i.e., the ‘search radius’ of the pattern

generator) than distance-based measures. The impact of incomplete data, as

captured by our visibility parameter q, is of dramatic importance in biological

and medical applications [19, 21, 32]. The unexpected robustness to failures in

the observation process of distance-based measures is thus a promising result.

Furthermore, the interplay of pattern generator parameters and inference

performance of observables also depends on global network topology. Measures

based on clustering, for example, perform better in small-world graphs than in

scale-free or Erdős-Rényi graphs, whereas for lattices distance-based measures

are more efficient, presumably because distances on lattices are much larger

than on the other types of networks.

A more comprehensive analysis is required particularly on the following four

levels: (1) The vast range of measures, which here only serve as an orientation to

put the four highlighted measures in perspective, need to be quantitatively and

systematically analyzed. (2) The distinction between weak, intermediate and

strong observable signals (corresponding to dense, mildly cohesive and diffuse
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patterns, respectively) and the impact of these ranges on inference performance

need to be evaluated in more detail. (3) A mechanistic understanding of the

impact of the large-scale organization of the graph on the inference of pattern

generators needs to be developed. (4) Ultimately, the joint inference of p and the

other parameters q and e impacting the observed pattern is to be investigated.
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Figure S1: Same as the lower panel (b) of Figure 4, but only for small-world graphs (SW) with

different values of network parameter m of the Watts-Strogatz model. Left column: e = 1.

Middle column: e = 2. Right column: e = 3. First row: m = 0. Second row: m = 0.001.

Third row: m = 0.01. Fourth row: m = 0.1.
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Figure S2: Each row presents a set of three lattices of increasing space dimension: 1D, 2D

and 3D. Different rows present different values of q and n, where n is tuned to the value of

q in order to keep 〈n′〉 = const. = 50. First row: n = 50, q = 1.0. Second row: n = 100,

q = 0.5. Third row: n = 200, q = 0.25.
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