M Olive 
  
R Desmorat 
  
EFFECTIVE RATIONALITY OF SECOND ORDER SYMMETRIC TENSOR SPACES

Keywords: Mathematics Subject Classification, 74E10 (15A72 74B05), Key words and phrases, Rational invariants, Separating sets

come    

Introduction

The invariant theory, which finds its source in works as distinct as those of Boole [START_REF] Boole | Exposition of a general theory of linear transformation[END_REF] and Gauss [START_REF] Gauss | Disquisitiones arithmeticae[END_REF], has acquired such a maturity so that its mathematical framework is both well delimited, and the application domains addressed by it is very broad: it goes from the theory of group representation [START_REF] Weyl | The classical groups[END_REF] to the one of algebraic geometry [START_REF] Hilbert | Theory of algebraic invariants[END_REF][START_REF] Popov | Invariant Theory[END_REF], via cryptography [START_REF] Lercier | Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects[END_REF] and biomarkers in neuroimaging [START_REF] Görlach | Rational invariants of even ternary forms under the orthogonal group[END_REF]. Its fields of application and investigation are not limited to mathematics, see in particular the works on Qubits [START_REF] Luque | Invariants des hypermatrices[END_REF][START_REF] King | The mixed two-qubit system and the structure of its ring of local invariants[END_REF] and also in mechanics [START_REF] Smith | Constitutive equations for anisotropic and isotropic materials[END_REF][START_REF] Zheng | Theory of representations for tensor functions -A unified invariant approach to constitutive equations[END_REF].

It was in the 1960s and 1970s [START_REF] Smith | On the minimality of integrity bases for symmetric 3× 3 matrices[END_REF][START_REF] Smith | On isotropic integrity bases[END_REF][START_REF] Smith | On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors[END_REF][START_REF] Wang | A new representation theorem for isotropic functions: An answer to Professor G.F. Smith's criticism of my papers on representations for isotropic functions, part I[END_REF][START_REF] Boehler | On irreducible representations for isotropic scalar functions[END_REF] that the continuum mechanics community seized the abstract tools developed by Weyl [START_REF] Weyl | The classical groups[END_REF] to produce notable results in effective invariant theory, producing minimal integrity bases of O(3, R) -and its closed subgroups-representations on tensor spaces of order less than 2, where O(3, R) denotes the group of orthogonal transformations in R 3 . Due to the lack of communication between the mechanical and mathematical community [START_REF] Fisher | The death of a mathematical theory. A study in the sociology of knowledge[END_REF], it took them a decade to obtain results in fact established in 1898 by Young [START_REF] Young | The Irreducible Concomitants of any Number of Binary Quartics[END_REF], but difficult to access without Cartan map [START_REF] Cartan | Leçons sur la théorie des spineurs: Les spineurs de l'espace a trois dimensions[END_REF][START_REF] Cartan | The theory of spinors[END_REF]: indeed, it should have been necessary to explicit the link between the SL(2, C) representations on binary forms and the SO(3, R) representations on tensor spaces.

Such a link has later been successfully exploited by Boehler-Kirilov-Onat [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF] to propose, in tensorial form, an explicit integrity basis for the space of fourth order harmonic tensors (i.e. traceless and totally symmetric tensors), equivariant to the space of binary octavics, for which the associated SL(2, C) invariant algebra was already known from the works of von Gall [START_REF] Gall | Ueber das vollständige System einer binären Form achter Ordnung[END_REF] and Shioda [START_REF] Shioda | On the graded ring of invariants of binary octavics[END_REF].

The effective invariant theory, where effectiveness means the ability to display existing objects a priori, continues to raise questions [START_REF] Dixmier | Série de Poincaré et systèmes de paramètres pour les invariants des formes binaires[END_REF][START_REF] Dixmier | Le nombre minimum d'invariants fondamentaux pour les formes binaires de degré 7[END_REF][START_REF] Derksen | With two appendices by Vladimir L. Popov, and an[END_REF][START_REF] Brouwer | The invariants of the binary decimic[END_REF][START_REF] Brouwer | The invariants of the binary nonic[END_REF][START_REF] Olive | About Gordan's algorithm for binary forms[END_REF][START_REF] Lercier | Covariant algebra of the binary nonic and the binary decimic[END_REF]. The main difficulty in effectivity is particularly well illustrated by Hilbert's finiteness theorem [START_REF] Hilbert | Theory of algebraic invariants[END_REF]. Indeed, after Gordan's constructive demonstration for the finiteness of the invariant algebra of binary form [START_REF] Gordan | Beweis, dass jede Covariante und Invariante einer Bineren Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist[END_REF], Hilbert obtained a theoretical and abstract result in a much more general framework (that of reductive groups). Since there was no real evidence of any construction of a finite integrity basis in Hilbert's general proof, effectiveness was finally put aside. As emphasized by Weyl himself [START_REF] Weyl | The classical groups[END_REF]: "Hilbert almost killed the subject".

Nevertheless, Hilbert's work allowed the invariant theory to fit into a very rich formal framework, and Noether's work [START_REF] Gray | Algebraic geometry between noether and noether-a forgotten chapter in the history of algebraic geometry[END_REF] did fix the algebraic objects specific to this theory, enriched over the years [START_REF] Gurevich | Foundations of the theory of algebraic invariants[END_REF][START_REF] Popov | Invariant Theory[END_REF][START_REF] Dolgachev | Lectures on invariant theory[END_REF]. Nowadays' general framework concerns some reductive group action over an algebraic variety [START_REF] Popov | Invariant Theory[END_REF], and its associated invariant algebra and field of rational invariants.

As mentioned above, the continuum mechanics community [START_REF] Rivlin | Further remarks on the stress-deformation relations for isotropic materials[END_REF][START_REF] Smith | On the minimality of integrity bases for symmetric 3× 3 matrices[END_REF][START_REF] Smith | Constitutive equations for anisotropic and isotropic materials[END_REF][START_REF] Zheng | Theory of representations for tensor functions -A unified invariant approach to constitutive equations[END_REF] did take up this theory in the case of real tensorial representations V of the group O(3, R). One goal was to be able to get parametrization of the associated orbit space, and thus find a finite set {s 1 , . . . , s p } of invariants, called a separating set, such that for any two vectors (in fact, tensors or any family of tensors

) v v v 1 , v v v 2 ∈ V ∀i, s i (v v v 1 ) = s i (v v v 2 ) iff v v v 1 , v v v 2
belong to the same orbit. In the case of first order tensors, Weyl's theorem on polarization [66, Theorem 2.9-A] was enough to obtain polynomial separating sets of nR 3 := R 3 ⊕ . . . ⊕ R 3 (n times), so the next question was to find similar results for nS 2 (R 3 ), where S 2 (R 3 ) is the space of symmetric second order tensors. Being in the case of a real representation of a compact group, it was noticed that the algebra of polynomial invariants had this separating property [START_REF] Abud | The geometry of spontaneous symmetry breaking[END_REF] (while a separating set is not necessary an integrity basis). By Hilbert's theorem, it was therefore theoretically possible to obtain a finite separating set: the possibly non minimal one coming from a finite integrity basis. A notion of separating algebra was then proposed in [START_REF] Dufresne | Separating Invariants[END_REF][START_REF] Kemper | Separating invariants[END_REF], and Draisma et al. [START_REF] Draisma | Polarization of separating invariants[END_REF] obtained an algorithm to compute a polynomial separating set of a direct sum of the same representation, using polarization procedure on separating invariants.

It was therefore important to obtain an effective construction of minimal integrity bases or minimal separating sets for nS 2 (R 3 ) := S 2 (R 3 ) ⊕ . . . ⊕ S 2 (R 3 ) endowed with the standard SO(3, R) diagonal representation. By using a complexification process, the problem reduces in fact to the one of determining an SL(2, C) integrity basis of n quartic forms (see [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF][START_REF] Olive | About Gordan's algorithm for binary forms[END_REF]), first obtained by Young in 1899 [START_REF] Young | The Irreducible Concomitants of any Number of Binary Quartics[END_REF]. Unfortunately, as recalled above, such results were unknown by the mechanical community, and they were established back over the years [START_REF] Rivlin | Further remarks on the stress-deformation relations for isotropic materials[END_REF][START_REF] Smith | The strain-energy function for anisotropic elastic materials[END_REF][START_REF] Smith | On the minimality of integrity bases for symmetric 3× 3 matrices[END_REF][START_REF] Smith | On isotropic integrity bases[END_REF].

The quite high number of elements in these minimal integrity bases and polynomial separating sets was such that these results were not very useful in practice (see Table 1). There was then the idea of returning to the notion of functionnal basis (that is to say a generating set of all invariant functions [START_REF] Wineman | Material symmetry restrictions on constitutive equations[END_REF]). It was in fact a question of taking up Weyl's own ideas [START_REF] Weyl | The classical groups[END_REF]: finding a finite set of invariants {φ 1 , . . . , φ k } such that any other invariant function f can be expressed in terms of the φ i 's. As Weyl pointed out, the term function is here to be taken in its broadest sense.

The hard work carried out in [START_REF] Wang | On representations for isotropic functions. I. Isotropic functions of symmetric tensors and vectors[END_REF][START_REF] Wang | On representations for isotropic functions. II. Isotropic functions of skew-symmetric tensors, symmetric tensors, and vectors[END_REF][START_REF] Wang | A new representation theorem for isotropic functions: An answer to Professor G.F. Smith's criticism of my papers on representations for isotropic functions, part I[END_REF][START_REF] Smith | On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors[END_REF][START_REF] Wang | Corrigendum to my recent papers on Representations for isotropic functions[END_REF][START_REF] Boehler | On irreducible representations for isotropic scalar functions[END_REF][START_REF] Boehler | Lois de comportement anisotrope des milieux continus[END_REF] made it possible to obtain minimal polynomial functional bases (in the sense that any subset is no longer a functional basis), in the case of nS 2 (R 3 ). Their cardinals are given in Table 1 (minimality was obtained in [START_REF] Pennisi | On the irreducibility of professor gf smith's representations for isotropic functions[END_REF]). 

(R 3 ), SO(3, R)).
If we further aim at reducing the cardinal of a separating set (i.e. a functional basis [START_REF] Wineman | Material symmetry restrictions on constitutive equations[END_REF]), we have to join the standard approach in invariant theory, introducing no longer polynomial invariants but rational ones, and considering at first the complexification of the group and of its representation. In that scope, the question then becomes the one of determining a generating set of the field of rational invariants C(nS 2 (C 3 )) SO (3,C) . Now, in the complex case, and only in this case (i.e. of an algebraically closed field), such generating sets are obtained using a separating property of the orbits in general position, thanks to Popov's lemma 2.2 [47, p.155]. Indeed, for any complex linear representation (V, G) of a reductive group, if one exhibits a finite set {r 1 , . . . , r s } of rational invariants and a dense open set X ⊂ V such that, for all x x x 1 , x x x 2 ∈ X, ∀i r i (x x x 1 ) = r i (x x x 2 ) =⇒ x x x 1 , x x x 2 belong to the same orbit, then we can deduce that the field C(V) G of rational invariants is generated by {r 1 , . . . , r s }. It is important here to note that such a result ceased to be true in the real case R(V) G (see Remark 2.10).

Using this approach, we can aim at obtaining an optimal bound for the cardinal of a generating set of the field C(V) G . This can be achieved when such a field is rational, meaning that it is a purely transcendental extension of C. In such a case, there exists a finite set r 1 , . . . , r d of rational invariants such that [START_REF] Dolgachev | Lectures on invariant theory[END_REF]Corolary 6.2] for instance). The question of the rationality of the field C(V) G is in general a difficult one, both from a theoretical and from an effective point of view [START_REF] Dolgachev | Rationality of fields of invariants[END_REF]. In the specific case of G = SL(2, C) representations, the rationality was theoretically obtained by Katsylo for all reducible representations [START_REF] Katsylo | Rationality of the orbit spaces of irreducible representations of the group SL2[END_REF][START_REF] Katsylo | Rationality of fields of invariants of reducible representations of SL2[END_REF]. It was then Maeda [START_REF] Maeda | On the invariant field of binary octavics[END_REF] who produced an explicit generating set of 6 rational invariants for SL(2, C) representations on the space of binary octavics.

C(V) G = C(r 1 , . . . , r d ), r i ∈ C(V) G , where d = dim(V) -dim(G) is the transcendence degree of C(V) G (see
We present here effective results about the rationality of SO(3, C) representations on the space nS 2 (C 3 ) of n second order symmetric tensors on C 3 . From such results, we also obtain effective rationality for the space nS 4 of n quartic forms, endowed with its natural SL(2, C) representation.

In fact, we propose an effective approach of the slice lemma [START_REF] Gatti | Spinors of 13-dimensional space[END_REF][START_REF] Katsylo | Rationality of the orbit spaces of irreducible representations of the group SL2[END_REF], following Maeda's strategy for binary octavics [START_REF] Maeda | On the invariant field of binary octavics[END_REF]:

(1) Compute an explicit minimal integrity basis of octahedral invariants of S 2 (C 3 ) ;

(2) Construct SO(3, C) rational invariants t 1 , . . . , t 9 of S 2 (C 3 ) ⊕ S 2 (C 3 ) from this integrity basis;

(3) Find a Zariski open space Z c in S 2 (C 3 ) ⊕ S 2 (C 3 ) so that r 1 , . . . , r 9 separate all points in Z c ; (4) Propose a generalization to vector space V = nS 2 (C 3 ) so to obtain a minimal generating set r 1 , . . . , r d of C(V) SO(3,C) , with d = 6n -3.

Thus, as a first result we will obtain (the tensor expressions for the invariants being detailed in theorem 4.2):

Theorem 1.1. There exists an explicit set of 9 rational invariants

{I 1 , J 1 , K 2 , K 3 , r 2 , r 3 , r 4 , r 5 } sep- arating SO(3, C) orbits of S 2 (C 3 ) ⊕ S 2 (C 3 ) in general position, so that C(S 2 (C 3 ) ⊕ S 2 (C 3 )) SO(3,C) = C(I 1 , J 1 , K 2 , K 3 , r 2 , r 3 , r 4 , r 5 )
where the number 9 is exactly the transcendence degree of

C(S 2 (C 3 ) ⊕ S 2 (C 3 )) SO(3,C) .
An important fact here is that all such invariants are given using integers as coefficients so that, when evaluated to real second order symmetric tensors, we obtain real numbers. We will have as a second result: R) is rational and generated by the explicit minimal set of 9 rational invariants

Theorem 1.2. The invariant field R(S 2 (R 3 ) ⊕ S 2 (R 3 )) SO(3,
I 1 , J 1 , K 2 , K 3 , r 2 , r 3 , r 4 , r 5 : R(S 2 (R 3 ) ⊕ S 2 (R 3 )) SO(3,R) = C(I 1 , J 1 , K 2 , K 3 , r 2 , r 3 , r 4 , r 5 )
These results will be generalized to the SO(3, k) representation on the space nS 2 (k 3 ) of n second order symmetric tensors on k 3 , where k = R or C, the tensor expressions for the invariants being detailed in theorem 5.1: (3,k) is rational and is generated by an explicit minimal set r 1 , . . . , r d of d = 6n -3 rational invariants:

Theorem 1.3. The invariant field k(nS 2 (k 3 )) SO
k(nS 2 (k 3 )) SO(3,k) = k(r 1 , . . . , r d ), k = R or C
where, in the case k = C, 6n -3 correspond to the transcendence degree of C(nS 2 (C 3 )) SO (3,C) .

Finally, we will exploit an explicit equivariant isomorphism φ - * between the SO(3, C) space nS 2 (C 3 ) and the SL(2, C) space nS 4 of n quartic forms on C 2 (from the so-called Cartan's map, see section 6), so to obtain: Theorem 1.4. The invariant field C(nS 4 ) SL(2,C) is rational and generated by a minimal set {r 1 , . . . , rd } of d = 5n -3 rational invariants:

C(nS 4 ) SL(2,C) = C(r 1 , . . . , rd ), ri = r i • φ - * ,
where 5n -3 correspond to the transcendence degree of C(nS 4 ) SL(2,C) .

Organisation of the paper. We first recall in section 2 some general results about rational invariants and weak separating sets, closely related in the complex case to a generating set of the field of rational invariants k(V) G , all this being set in the scope of a linear representation of a reductive group G. In section 3 we focus on the standard linear representation of the octahedral group on the space S 2 (k 3 ) of second order symmetric tensors on k 3 , where k = R or C. We then produce a minimal integrity basis for the octahedral polynomial invariants on the space S 2 (k 3 ), where such a space decomposes into two octahedral stable subspaces: the one Diag 2 of diagonal tensors and its complement Adiag 2 . Such an octahedral integrity basis will be given in tensorial form, using a fourth order covariant projector and contraction operations. Thanks to the use of the generalized cross product (definition 4.1), we then produce a weak separating set of 9 rational invariants for the SO(3, k) space S 2 (k 3 )⊕ S 2 (k 3 ) of two second order symmetric tensors, both valid in the case k = R or C. We then deduce in corollary 4.7 that this weak separating set is also a generating set of the field of rational invariants C(S 2 (C 3 ) ⊕ S 2 (C 3 )) SO (3,C) , and corollary 4.8 gives the same result in the real case k = R. We also deduce in section 5 a weak separating set of 6n -3 rational invariants for the SO(3, k) space nS 2 (k 3 ) (theorem 5.1), so that this define also a generating set of the associated field of invariant (corollary 5.3). Finally, all such results obtained for second order symmetric tensors are used to produce an explicit set of 5n -3 rational invariants of the SL(2, C) space nS 4 of n binary quartic forms, equivariant to the SO(3, C) space nH 2 (C 3 ) of n second order harmonic tensors (symmetric and traceless).

Separating sets of an orbit space

Let us consider the field k to be either R or C and (V, G, ρ) a finite dimensional k linear representation of a group G, so that

ρ : G -→ GL(V)
is a group morphism, where GL(V) stands for the group of linear invertible maps of V.

A important question in effective invariant theory is to obtain a clear description of the associated orbit space [START_REF] Vinberg | Effective invariant theory[END_REF], which can be done using k-valued invariant functions, where such function can be polynomials, rationals, etc.

Such invariants may be used to get either separating sets or weak separating sets, as defined below.

Definition 2.1 (Separating set). A finite set {s 1 , . . . , s p } of k-valued invariant functions is a separating

set if for all v v v 1 , v v v 2 in V ∃g ∈ G, ρ(g)v v v 1 = v v v 2 ⇐⇒ ∀k ∈ {1, . . . , p} s k (v v v 1 ) = s k (v v v 2 ).
Invariant functions do not need to be polynomial invariants. Note that a more general definition is the one of a separating algebra introduced by Derksen and al [START_REF] Dufresne | Separating Invariants[END_REF][START_REF] Derksen | With two appendices by Vladimir L. Popov, and an[END_REF]. Let us now recall in Theorem 2.2 a theoretical result stating when a separating set is directly given by a finite generating set of the algebra k[V] G of polynomial invariants, where In case (a) the proof follows from [19, Lemma 2.1], while the proof of case (b) is given in [1, Appendix C]. Note that in both cases, a finite generating set of k[V] G , also known as an integrity basis [START_REF] Weyl | The classical groups[END_REF], always exists from Hilbert's finiteness theorem [START_REF] Hilbert | Theory of algebraic invariants[END_REF]. In the case of the real vector space V = nS 2 (R 3 ) and the compact Lie group G = SO(3, R), explicit computations of minimal integrity bases where obtained in the 1960's by Smith [START_REF] Smith | On isotropic integrity bases[END_REF], where the cardinals of such minimal integrity bases are those of table 1.

k[V] G := {p ∈ k[V], g ⋆ p = p, ∀g ∈ G, v v v ∈ V} , (g ⋆ p)(v v v) := p(ρ(g -1 )v v v).
In the case of complex representations of a linearly reductive group, such as SL(2, C), one also defines weak separating sets:

Definition 2.3 (Weak separating set). Given some dense open set U ⊂ V, a finite set {s 1 , . . . , s p } of k-valued invariant functions is a weak separating set if, for all v v v 1 , v v v 2 in U ∃g ∈ G, ρ(g)v v v 1 = v v v 2 ⇐⇒ ∀k ∈ {1, . . . , p} s k (v v v 1 ) = s k (v v v 2 ).
Remark 2.4. In the scope of invariant theory, it is classical to consider a dense open set defined in the Zariski topology, where closed sets are defined as

Z := {v v v ∈ V, p(v v v) = 0, ∀p ∈ S} , S ⊂ k[V].
Note finally that every open Zariski set Z c is open and dense for the classical topology on V.

As a corollary of [START_REF] Popov | Invariant Theory[END_REF]Proposition 3.4] and theorem 2.5, for any complex representation V of G = SO(3, C) or G = SL(2, C), an integrity basis of the invariant algebra C[V] G is also a weak separating set. Nevertheless, its cardinal can be very big: for instance, a minimal integrity basis of the SL(2, C) space of binary decimic is given by 106 invariants [START_REF] Brouwer | The invariants of the binary decimic[END_REF].

One question is then to obtain a weak separating set of low cardinal. An interesting approach is to consider rational invariants instead of polynomial ones.

Let k(V) be the field of quotient of the coordinate ring k[V] and k(V) G the field of rational invariants

k(V) G := {r ∈ k(V), g ⋆ r = r, ∀g ∈ G, v v v ∈ V} , (g ⋆ r)(v v v) := r(ρ(g -1 )v v v).
For the groups and fields under consideration, we have in particular:

Theorem 2.5. Suppose (V, G, ρ) is a finite dimensional linear representation of G = SL(2, C), SO(3, C) or SO(3, R),
where the ground field is either k = R or C. Then the field of rational in-

variants k(V) G is the quotient field of k[V] G , meaning that for any rational invariant r ∈ k(V) G we can write r = p q , p, q ∈ k[V] G .
Proof. This proof follows the one of Popov [47, Theorem 3.3] and Brion [START_REF] Brion | Invariants et covariants des groupes algébriques réductifs[END_REF], initially stated in the scope of an action of a group on some algebraic variety, defined on an algebraically closed field.

Let us consider a given rational invariant r ∈ k(V) G and write r = p/q with p, q ∈ k[V] relatively prime. We thus have g ⋆ r = g ⋆ p g ⋆ q = p q , ∀g ∈ G so that g ⋆ q = α(g)q, where α : G → k * is a group morphism. In case G = SL(2, C), SO(3, C) or SO(3, R) and k = R or C, α defines a one dimensional representation of G, and the only one dimensional representation is given by the trivial one (see [START_REF] Bröcker | Representations of compact Lie groups[END_REF] for instance), so that α ≡ 1, which conclude the proof.

Remark 2.6. In case of a finite group, the result still holds (a proof is for instance given in [6, Proposition 1], also valid in the real case).

Finally, Katsylo was able to solve the rationality problem [START_REF] Dolgachev | Rationality of fields of invariants[END_REF] for G = SL(2, C), so that we get (theoretically) an optimal generating set for the field of rational invariants: Theorem 2.7 (Katsylo [START_REF] Katsylo | Rationality of fields of invariants of reducible representations of SL2[END_REF]). Let (V, SL(2, C)) be a finite dimensional complex linear representation of the special linear group SL(2, C). Then the field of rational invariants C(V) SL(2,C) is a purely transcendental extension of C, so there exists rational invariants r 1 , . . . , r d such that

C(V) SL(2,C) = C(r 1 , . . . , r d ), d = dim(V) -3.
Remark 2.8. The number d = dim(V) -3 is here the transcendental degree of the field C(V) SL(2,C) , which is given by (see [START_REF] Dolgachev | Lectures on invariant theory[END_REF]Corollary 6.2] for instance):

d = dim(V) -dim(G).
As SL(2, C) is the universal covering space of SO(3, C), we also deduce the same theoretical results for SO(3, C) reducible representations.

To conclude this section, we recall an important result from Popov [47, Lemma 2.2] which connects a finite generating set of the quotient field k(V) G and a weak generating set: Lemma 2.9. Let k be an algebraically closed field. If {r 1 , . . . , r p } is a finite weak generating set of rational invariants, then {r 1 , . . . , r p } generates the field k(V) G . Remark 2.10. In the real case, Lemma 2.9 is no longer true: taking G = {Id} the trivial group and V = R, the field of invariant is simply given by R(V) ≃ R(x). The polynomial invariant p(x) := x 3 separates all the orbits but is not a generator of R(V).

Octahedral integrity basis of one second order symmetric tensor

Let us consider the standard octahedral linear representation on the space S 2 (k 3 ) of second order symmetric tensors on k 3 , with k = R or C. Here, the space k 3 is endowed with the standard non degenerate quadratic form q(x x x) := x 2 + y 2 + z 2 , x x x = (x, y, z) ∈ k 3

Consider now an orthonormal basis e e e 1 , e e e 2 , e e e 3 of k 3 , with respect to the quadratic form q. The octahedral group O + is defined as:

O + := {g ∈ GL(3, k)
, ge e e i = ±e e e j , det(g) = 1} .

It is a finite group of order 24 and is generated by

  0 0 1 1 0 0 0 1 0   ,   0 -1 0 1 0 0 0 0 1   .
The space S 2 (k 3 ) is the space of second order (covariant) symmetric tensors

S 2 (k 3 ) := a ∈ (k 3 ) * ⊗ (k 3 ) * , a(x x x 1 , x x x 2 ) = a(x x x 2 , x x x 1 ), ∀x x x 1 , x x x 2 ∈ k 3 .
In fact, using quadratic form q, there is an isomorphism between (k 3 ) * and k 3 , so, from now on, we do not distinguish between covariant and contravariant tensors, and we write a = a ij e e e i ⊗ e e e j

where Einstein convention on repeated indices has been used. The standard O + representation on the space S 2 (k 3 ) is now given by (1) g ⋆ a := gag t with g t the transpose matrix of g, and matrix product are used, so that the symmetric tensor a is identified with a 3 × 3 matrix. A minimal integrity basis of the invariant algebra R[S 2 (R 3 )] O + has already been obtained in [START_REF] Smith | Integrity bases forn symmetric second order tensor the crystal classes[END_REF], but we propose here to write such an integrity basis in a tensorial intrinsic form, both in the real and in the complex case.

To do so, we next provide the Hilbert series and a homogeneous system of parameters of this algebra. From this, we deduce a degree bound for an integrity basis (see Lemma 3.3), and finally use Macaulay software [START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF] to check the minimality. Note that such a strategy to obtain en explicit integrity basis in the case of a finite group is close to the one proposed in [START_REF] Sturmfels | Algorithms in Invariant Theory[END_REF] (see also [START_REF] Brouwer | The invariants of the binary decimic[END_REF][START_REF] Brouwer | The invariants of the binary nonic[END_REF] for a similar strategy to compute integrity basis in classical invariant theory). Let us now provide the details.

For any graded algebra A = ⊕ k A k , its associated Hilbert series is the formal series

H A (z) = k≥0 dim(A k )z k .
In case of invariant algebra of a finite group, there is an a priori way to compute such Hilbert series (see [59, Theorem 2.2.1] for instance). In our specific case, Hilbert series H = H octa of k[S 2 (k 3 )] O + is obtained by direct computation:

(2)

H octa (z) = 1 + z 3 + z 4 + z 5 + z 6 + z 9 (1 -z)(1 -z 2 ) 2 (1 -z 3 ) 2 (1 -z 4 )
.

To go one step further, let us introduce the so-called homogeneous system of parameters [START_REF] Sturmfels | Algorithms in Invariant Theory[END_REF] of a graded k algebra A = ⊕ k A k : Definition 3.1. A familly θ 1 , . . . , θ s is a homogeneous system of parameters of a graded algebra A if:

(1) Each θ i belong to some homogeneous space A k i of A.

(2) The family θ 1 , . . . , θ s is algebraically free.

(3) The algebra A is a k[θ 1 , . . . , θ s ]-module of finite type.

An explicit determination of a homogeneous system of parameters is in general not straightforward [START_REF] Dixmier | Série de Poincaré et systèmes de paramètres pour les invariants des formes binaires[END_REF][START_REF] Kemper | An algorithm to calculate optimal homogeneous systems of parameters[END_REF][START_REF] Brouwer | SL2-modules of small homological dimension[END_REF], but in case of a finite group, and thus the group O, the following result holds [57, Proposition 5.3.7]: Lemma 3.2. A familly θ 1 , . . . , θ s of homogeneous invariants form a system of parameters of the invariant ring k[S 2 (k 3 )] O + (k = R or C) if and only if s = 6 and a ∈ S 2 (C 3 ), θ 1 (a) = . . . = θ s (a) = 0 = {0} Finally, recall that a graded algebra A is said to be Cohen-Macaulay if for any homogeneous system of parameters θ 1 , . . . , θ s , the algebra A is a free k[θ 1 , . . . , θ s ]-module, so that the following lemma holds [59, Proposition 2.3.6]: Lemma 3.3. Let A be some Cohen-Macaulay algebra with a homogeneous system of parameters θ 1 , . . . , θ s . Then the Hilbert series of A is given by

H(z) = z e 1 + . . . + z er (1 -z d ) . . . (1 -z ds )
where d i = deg(θ i ) and e j ∈ N. Furthermore, a degree bound for a generating family of A is max(d i , e j ).

General statements having been recalled, let us now consider the invariant algebra of k[S 2 (k 3 )] O + . Following Smith and Kiral [START_REF] Smith | Integrity bases forn symmetric second order tensor the crystal classes[END_REF], first perform the decomposition: Remark 3.4. Using the well known isomorphism between O + and the permutation group S 4 of four elements [START_REF] Fulton | Representation theory: a first course[END_REF], we can check from S 4 character table that Adiag 2 is the irreducible (standard) representation χ std corresponding to Young'stable when Diag 2 = χ triv ⊕ χ (2,2) is reducible, with χ triv the trivial representation and χ (2,2) the irreducible S 4 representation corresponding to square Young'stable Let us define the so-called out-of-diagonal octahedral fourth order projector tensor P [START_REF] Rychlewski | On hooke's law[END_REF][START_REF] Mehrabadi | Eigentensors of linear anisotropic elastic materials[END_REF][START_REF] Francois | Détermination des symétries matérielles de matériaux anisotropes[END_REF][START_REF] Marull | Non-quadratic kelvin modes based plasticity criteria for anisotropic materials[END_REF]:

S 2 (k 3 ) = Diag 2 ⊕ Adiag 2
(5) P = 1 2 i<j e ij ⊗ e ij .
The projection of S 2 (k 3 ) onto the vector space Adiag 2 parallel to Diag 2 is given by P. More specifically, for any c = c ij e e e i ⊗ e e e j ∈ S 2 (k 3 ) we have A minimal integrity basis of k[S 2 (k 3 )] O + is now given by: and we address the question of finding explicit sets of such invariants, for the complex case as well as for the real case. We already know a minimal integrity basis of k[S 2 (k 3 ) ⊕ S 2 (k 3 )] SO (3,k) , given by the 10 polynomial invariants (see [START_REF] Spencer | Finite integrity bases for five or fewer symmetric 3 × 3 matrices[END_REF] for instance): Before we produce an explicit generating set of rational invariants, we need to introduce the generalized cross product defined for totally symmetric tensors [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]. Recall here that a totally symmetric tensor of order p is a p linear form S : (x x x 1 , . . . , x x x p ) ∈ (k 3 ) p → S(x x x 1 , . . . , x x x p ) which is invariant under any permutation of (x x x 1 , . . . , x x x p ). Definition 4.1 (Generalized cross product). Let ε ε ε be the Levi-Civita symbol in k 3 and A ∈ S p (k 3 ), B ∈ S q (k 3 ) be totally symmetric tensors. Then the totally symmetric tensor A × B, of order p + q -1, is defined by

I 1 =
A × B := (B • ε ε ε • A) s where 
() s is the total symmetrization and • the contraction over one subscript.

In coordinates, this gives for two second order symmetric tensors a, b

∈ S 2 (k 3 ) (a × b) ijk = 1 6 σ∈S 3 b σ(i)p ε pσ(j)q a qσ(k) = 1 6 b ip ε pjq a qk + b ip ε pkq a qj + b jp ε piq a qk + b jp ε pkq a qi + b kp ε piq a qj + b kp ε pjq a qi .
where S 3 is the permutation group of three elements. We obtain now:

Theorem 4.2. For a pair (a, b) ∈ S 2 (k 3 ) ⊕ S 2 (k 3
), let C a be the fourth order tensor

(7) C a := (a 2 × a) • (a 2 × a)
and c, d the two second order symmetric tensors

(8) c := C a : b ∈ S 2 (k 3 ), d := C a : c 2 ∈ S 2 (k 3 ).
Then, the set of 9 rational invariants

I 1 = tr a, J 1 = tr b, K 2 = tr(ab), K 3 = tr(a 2 b), r 2 = tr(c 2 ) a 2 × a 4 , r 3 = tr(c 3 ) a 2 × a 6 , s 3 = tr(ac 2 ) a 2 × a 4 , r 4 = tr(d 2 ) a 2 × a 12 , r 5 = tr(ad 2 ) a 2 × a 12
is a weak separating set of the SO(3, k) space S 2 (k 3 ) ⊕ S 2 (k 3 ).

Remark 4.3. In fact, the second order symmetric tensors c and d defined by ( 8) and the fourth order tensor C a given by ( 7) are polynomial covariants of (a, b) ∈ S 2 (k 3 ) ⊕ S 2 (k 3 ), meaning i) that their coordinates are polynomial expression in (a, b) coordinates and ii) that

c(gag t , gbg t ) = gc(a, b)g t , C gag t = g ⋆ C a , with (g ⋆ C a )(x x x 1 , x x x 2 , x x x 3 , x x x 4 ) := C a (g -1 x x x 1 , g -1 x x x 2 , g -1 x x x 3 , g -1 x x x 4 ).
To obtain Theorem 4.2, we first explicitly define some Zariski open set connected to the announced weak separating set. For any (a, b) ∈ S 2 (k 3 ) ⊕ S 2 (k 3 ), one defines

c := 1 3 a 2 × a 2 b -C a : b, d := 1 3 a 2 × a 2 (C a : b) 2 -C a : (C a : b) 2 ,
and considers the Zariski open set ( 9)

Z c := (a, b) ∈ S 2 (k 3 ) ⊕ S 2 (k 3 ), a 2 × a = 0 and d 2 × d = 0 .
As a first step we have:

Lemma 4.4. Any symmetric second order tensor a ∈ S 2 (k 3 ) has three distinct eigenvalues if and only if

(10) a 2 × a = 0.
Proof. Consider the invariant given by the squared norm (which is indeed a norm in the real case)

a 2 × a 2 := (a 2 × a) ijk (a 2 × a) ijk .
Now, taking p a (X) to be the polynomial characteristic of a, we check directly that 6 a 2 × a 2 is the square of the discriminant of p a (X), so we can conclude.

As a second step, let us point out that covariant C a given by ( 7) is strongly linked to the octahedral projector [START_REF] Boole | Exposition of a general theory of linear transformation[END_REF]. Indeed, by direct computation we have: Lemma 4.5. Let a = i λ i e e e i ⊗ e e e i ∈ Diag 2 , b ∈ S 2 (k 3 ) and fourth order tensor P defined by [START_REF] Boole | Exposition of a general theory of linear transformation[END_REF]. We have

(11) a 2 × a 2 = Π i<j (λ i -λ j ) 2 , C a = (a 2 × a) • (a 2 × a) = 1 3 a 2 × a 2 P
and, From lemma 4.4, we can always suppose that

c = C a : b = 1 3 a 2 × a 2   0 b 12 b 13 b 12 0 b 23 b 13 b 23 0,   , c = 1 3 a 2 × a 2 (b -P : b) = 1 3 a 2 × a 2   b 11 0 0 0 b 22 0 0 0 b 33 ,   , d = 1 27 a 2 × a 6 (c 2 -P : c 2 ) = 1 27 a 2 × a 6
a =   λ 1 0 0 0 λ 2 0 0 0 λ 3 ,   ∈ Diag 2 , a =    λ 1 0 0 0 λ 2 0 0 0 λ 3 ,    Diag 2 , tr(a) = tr( a).
Thus, from lemma 4.5 we have P : a = a and P : a = a with projector (5) equal to

P = 3C a a 2 × a 2 = 3C a a 2 × a 2 .
We deduce that (S ′ ) :

(λ 1 -λ 3 )x + (λ 2 -λ 3 )y = α ′ -λ 3 t ′ (λ 2 1 -λ 2 3 )x + (λ 2 2 -λ 2 
3 )y = β ′ -λ 2 3 t ′ , x + y + z = t ′ where (S ′ ) has non-vanishing determinant (see [START_REF] Cartan | The theory of spinors[END_REF]), so that b = b, which concludes the proof.

Remark 4.6. When taking the standard representation of SO(3, k) on S 2 (k 3 ) (see ( 1)), we know that the vector space Diag 2 is in fact a linear slice [START_REF] Katsylo | Rationality of fields of invariants of reducible representations of SL2[END_REF][START_REF] Maeda | On the invariant field of binary octavics[END_REF] for generic tensors (the genericity condition being of course useless for k = R): for any a ∈ S 2 (k 3 ) with three distinct eigenvalues, there exists g ∈ SO(3, k) such that g ⋆ a ∈ Diag 2 .

From lemma 2.9 we directly have: Corollary 4.7. The invariant field C(S 2 (C 3 )⊕S 2 (C 3 )) SO (3,C) is rational and generated by the minimal set {I 1 , J 1 , K 2 , K 3 , r 2 , r 3 , r 4 , r 5 , s 3 } of 9 rational invariants given in Theorem 4.2:

C(S 2 (C 3 ) ⊕ S 2 (C 3 )) SO(3,C) = C(I 1 , J 1 , K 2 , K 3 , r 2 , r 3 , r 4 , r 5 , s 3 ).
A remarkable fact is that all the rational invariants given by Theorem 4.2 are such that

r(v v v) ∈ R(S 2 (R 3 ) ⊕ S 2 (R 3 )), ∀v v v ∈ S 2 (R 3 ) ⊕ S 2 (R 3 ).
Following the proof of [44, Lemme 6.14] we thus get: Corollary 4.8. The invariant field R(S 2 (R 3 )⊕S 2 (R 3 )) SO(3,R) is rational and generated by the minimal set {I 1 , J 1 , K 2 , K 3 , r 2 , r 3 , r 4 , r 5 , s 3 } of 9 rational invariants given in Theorem 4.2:

R(S 2 (R 3 ) ⊕ S 2 (R 3 )) SO(3,R) = R(I 1 , J 1 , K 2 , K 3 , r 2 , r 3 , r 4 , r 5 , s 3 ).

Rational invariants of n symmetric second order tensors

Using the results of previous section leads to a SO(3, k) weak separating set of nS 2 (k 3 ) (n ≥ 3), where we consider the standard diagonal representation:

Theorem 5.1. For (a, b, c 1 , . . . , c k ) ∈ nS 2 (k 3 ) (n ≥ 3), let C a be the fourth order tensor C a = (a 2 × a) • (a 2 × a)
and c, d the two second order symmetric tensors

c := C a : b ∈ S 2 (k 3 ), d := C a : c 2 ∈ S 2 (k 3 ).
Then the set of 6n -3 rational invariants Furthermore, from corollary 4.4 we can suppose that

I 1 = tr(a), J 1 = tr(b), K 2 = tr(ab), K 3 = tr(a 2 b), I 1,k = tr(c k ), I 2,k = tr(ac k ), J 2,k = tr(bc k ), I 3,k = tr(a 2 c k ) J 3,k = tr(abc k ), I 5,k = tr((ab -ba) 2 c k ), r 2 = tr(c 2 ) a 2 × a 4 , r 3 = tr(c 3 ) a 2 × a 6 , r 4 = tr(d 2 ) a 2 × a 12 , s 3 = tr(ac 2 ) a 2 × a 4 , r 5 = tr(ad 2 ) a 2 × a 12
a = a =   λ 1 0 0 0 λ 2 0 0 0 λ 3   .
Finally, as invariants I 1,k , I 2,k , J 2,k , I 3,k , J 3,k , I 5,k give linear projections of any tensor c k ∈ S 2 (k 3 ) on (q, a, b, (ab) s , [a, b] 2 ), we conclude using Lemma 5.2.

As from the previous results with the SO(3, k) space S 2 (k 3 ) ⊕ S 2 (k 3 ) (Corollary 4.7 and 4.8), we can deduce: Corollary 5.3. The invariant field k(nS 2 (k 3 )) SO (3,k) is rational and generated by the minimal set of 6n -3 rational invariants given in Theorem 5.1, for either k = R or k = C.

Rational invariants of n quartic binary forms

All results previously stated concern SO(3, k) tensor spaces with k either R or C. Concerning binary forms, Katsylo has obtained the rationality of all SL(2, C) representations [START_REF] Katsylo | Rationality of the orbit spaces of irreducible representations of the group SL2[END_REF][START_REF] Katsylo | Rationality of fields of invariants of reducible representations of SL2[END_REF]. Maeda has explicited generators for the SL(2, C)-invariant field of binary octavics [START_REF] Maeda | On the invariant field of binary octavics[END_REF].

Let us now address the question of effective rationality of SL(2, C) spaces of quartic forms. We give in corollary 6.1 a minimal set of generators for the SL(2, C)-invariant field of n binary quartics.

First define S n to be the complex vector space of nth degree binary forms f (ξ ξ ξ) = a 0 u n + a 1 u n-1 v + . . . + a n v n , ξ ξ ξ := (u, v) ∈ C 2 , a i ∈ C.

Such a space is naturally endowed with the SL(2, C) representation given by (γ ⋆ f )(ξ ξ ξ) := f (γ -1 ξ ξ ξ), γ ∈ SL(2, C).

There is a deep connection between SO(3, C) and its universal cover SL(2, C), so that the SL(2, C) representation on the space S 2n of 2nth degree binary forms is equivariant to the SO(3, C) representation on the space of nth order harmonic polynomials (see [START_REF] Desmorat | Generic separating sets for three-dimensional elasticity tensors[END_REF] for more details).

To obtain an explicit equivariant isomorphism, let us first consider the adjoint representation Ad of SL(2, C) on its Lie algebra sl(2, C) Ad γ (m) := γmγ -1 .

As it preserves the quadratic form det(m) defined on m ∈ sl(2, C), we have Ad γ ∈ SO(3, C), ∀γ ∈ SL(2, C).

Take now Cartan's map [11, p. 48],

φ : C 2 → C 3 , (u, v) → u 2 + v 2 2 , u 2 -v 2 2i , iuv
which induces an equivariant isomorphism

φ * : H 2 (C 3 ) -→ S 4 , h → h • φ
where H 2 (C 3 ) is the space of degree 2 harmonic polynomials, also isomorphic to the space H 2 (C 3 ) of second order symmetric and traceless tensors (see [START_REF] Golubitsky | Singularities and groups in bifurcation theory[END_REF] for instance):

a ∈ H 2 (C 3 ) → p(x x x) := a(x x x, x x x) ∈ H 2 (C 3 ), ∆p = 2 tr(a) = 0.

Using the inverse map φ - * of φ * , this define an equivariant isomorphism φ - * : nS 4 -→ nH 2 (C 3 ).

In the case of a single quartic form where e ij are given by ( 3) and (4). From Theorem 5.1 we finally get: where K 2 , . . . , r 5 are the rational invariants given in Theorem 5.1.

f = a 0 u 4 + a 1 u 3 v

Theorem 2 . 2 .

 22 Suppose that either (a) G is a finite group and k = R or C; (b) G is a compact Lie group and k = R. Then any finite generating set {I 1 , . . . , I p } of the algebra k[V] G of polynomial invariants is a separating set.

where ( 3 ) 4 )

 34 Diag 2 := {λ 1 e 11 + λ 2 e 22 + λ 3 e 33 } ⊂ S 2 (k 3 ), e ii := e e e i ⊗ e e e i and (Adiag 2 := {α 1 e 23 + α 2 e 13 + α 3 e 12 } ⊂ S 2 (k 3 ), e ij := e e e i ⊗ e e e j + e e e j ⊗ e e e i (i = j) are O + stable.

( 6 )

 6 P : c =   0 c 12 c 13 c 12 0 c 23 c 13 c 23 0   , and c -P : c = " stands for the double contraction (P : c) ij := P ijpq c pq .

  tr(a), J 1 = tr(b), I 2 = tr(a 2 ), J 2 = tr(b 2 ), K 2 = tr(ab) I 3 = tr(a 3 ), J 3 = tr(b 3 ), K 3 = tr(a 2 b), L 3 = tr(ab 2 ), I 4 = tr(a 2 b 2 ).

2 .

 2 Let (a, b) ∈ S 2 (k 3 ) ⊕ S 2 (k 3 ) and ( a, b) ∈ S 2 (k 3 ) ⊕ S 2 (k 3 ) in the Zariski open set Z c defined by (9) such that I 1 (a, b) = I 1 ( a, b), . . . , K 2 (a, b) = K 2 ( a, b), . . . , r 5 (a, b) = r 5 ( a, b).

a 2 × a 6 (b 2 1 -

 21 r k (a, b) = J c k (P : b) = J c k (P : b), k = 1, 2, 3, with octahedral invariants J c k defined in theorem 3.5. Thus, from theorem 2.2, we can write P : b = γ ⋆ (P : b) for some γ ∈ O. As Diag 2 is a stable O space, both γ ⋆ a and γ ⋆ a are still in Diag 2 , so we can now suppose that b 1 := P : b = P : b = i =j b ij e e e i ⊗ e e e j ∈ S 2 (k 3 ) and we can write from lemma 4.5 s 3 (a, b) = tr(a(b 1 ) 2 ) = tr( a(b 1 ) 2 ) = α, r 5 (a, b) = tr(a(h 1 ) 2 ) = tr( a(h 1 ) 2 ) = β, h 1 := P : (b 2 1 ) so that λ i , λ j are solutions of the linear system (y + z = t where (S) has non-zero determinant (b 2 13 -P : (b 2 1)) are all distincts (see Lemma 4.5). We thus deduce that a = a. : b, t ′ := tr(b) = tr( b).From K 2 (a, b) = tr(ab) = tr(a b) = α ′ and K 3 (a, b) = tr(a 2 b) = tr(a 2 b) = β ′we deduce that µ i , µ j are solutions of the linear system[START_REF] Cartan | Leçons sur la théorie des spineurs: Les spineurs de l'espace a trois dimensions[END_REF] 

Lemma 5 . 2 . 23 

 5223 is a weak separating set of the SO(3, k) space nS 2 (k 3 ), with associated Zariski open set Z c ⊕ (n -2)S 2 (k 3 ) , where Z c is defined by[START_REF] Brouwer | The invariants of the binary nonic[END_REF].Before we get to the proof, we need: Let (a, b) in the Zariski open set Z c defined by[START_REF] Brouwer | The invariants of the binary nonic[END_REF]. Then a, b do not share any common eigenvector and (q, a, b, (ab) s , [a, b] 2 ) is a basis of S 2 (k 3 ).Proof. Let us suppose that a and b have one common eigenvector, so we can write a non trivial element g in the isotropy group of (a, b) ⇒ d 2 × d = 0 so that (a, b) / ∈ Z c . We deduce that any (a, b) ∈ Z c has a trivial isotropy group (otherwise a and b have a common eigenvector), so we can conclude using [14, Lemma 4.4]. Proof of Theorem 5.1. Let us consider (a, b, c 1 , . . . , c k ) and ( a, b, c 1 , . . . , c k ) in the open Zariski set Z 2 c ⊕(n-2)S 2 (k 3 ) so that all the rational invariants from the theorem statement have equal evaluations. First of all, from Theorem 4.2 we obtain some g ∈ SO(3, k) such that (a, b) = (g ⋆ a, g ⋆ b), and we can suppose from now on that (a, b) = ( a, b).

Corollary 6 . 1 .

 61 Let us consider the representation (nS 4 , SL(2, C)) for n a non negative integer. Then the invariant field C(nS 4 ) SL(2,C) is generated by the minimal set of 5n -3 rational invariants given byK 2 • φ - * , K 3 • φ - * , I 2,k • φ - * , J 2,k • φ - * , I 3,k • φ - * J 3,k • φ - * , I 5,k • φ - * , r 2 • φ - * , r 3 • φ - * , r 4 • φ - * , s 3 • φ - * , r 5 • φ - *

Table 1 .

 1 Cardinals of minimal integrity bases and minimal polynomial separating sets for (nS2 

					Cardinal			n = 3 n = 4 n = 5 n = 6
	Mininimal integrity basis	3n + 4	n 2	+ 7	n 3	+ 20	n 4	28	84	261	684
	Mininimal separating set	3n + 4	+26 n 2	n 5 +	+ 10 n 3 =	n 6 n(n 2 + 17) 6	22	40	65	98

  + a 2 u 2 v 2 + a 3 uv 3 + a 4 v 4

	we simply have					
	φ - * (f ) =	a 2 3	+ a 0 + a 4 e 11 +	a 2 3	-a 0 -a 4 e 22 -	2a 2 3	e 33

+ i(a 0 -a 4 )e 12 -1 2 i(a 1 + a 3 )e 13 + 1 2 (a 1 -a 3 )e 23

Theorem 3.5. Let a ∈ S 2 (k 3 ) and a 1 := P : a ∈ Adiag 2 , a 2 := a -P : a ∈ Diag 2 .

The 9 polynomial invariants I c 1 := tr a, I c 2 := tr(a 2 2 ), I c 3 := tr(a 3 2 ), J c 2 := tr(a 2 1 ), J c 3 = tr(a 3 1 ), J c 4 = tr (P :

A proof of this theorem relies on two essential results: one about an explicit homogeneous system of parameters (corollary 3.6), and the other one related to a degree bound given by Lemma 3.3 deduced from the Cohen-Macauleyness of

By a direct computation we first deduce from Lemma 3.2:

Corollary 3.6. The family

Proof of Theorem 3.5. From corollary 3.6, Lemma 3.3 and Hilbert series (2), we know that there exists a generating set of the invariant algebra A = k[S 2 (k 3 )] O + with maximum degree 9. Taking now the following algebra,

where B k are homogeneous spaces. We check by direct computation (done using Macaulay2 [START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF] software) that for all k ≤ 9 we have dim(B k ) = dim(A k ), where we have from Hilbert series (2)

By induction on the degree k of the homogeneous space B k , we also check that any subfamily of {I c 1 , . . . , I c 5 } is no longer a generating set of A, so we can conclude. Note here that the invariants J c 2 , J c 3 , J c 4 form a homogeneous system of parameter of the invariant algebra k[Adiag 2 ] O + (using [57, Proposition 5.3.7] once again), with Hilbert series given by:

.

We finally directly deduce from Remark 2.6:

O is generated by J c 2 , J c 3 , J c 4 , as well as the field of invariant k(Adiag 2 ) O + , which is rational:

Rational invariant field of two symmetric second order tensors

One still considers the canonical quadratic form q(x x x) := x 2 +y 2 +z 2 on k 3 , and defines the associated orthogonal group of linear transformation preserving q:

and we consider the associated invariant algebra k[S 2 (C 3 ) ⊕ S 2 (C 3 )] SO (3,C) with its quotient field corresponding to its field of rational invariants C(S 2 (C 3 ) ⊕ S 2 (C 3 )) SO(3,C) (see Theorem 2.5). From Katsylo's result (Theorem 2.7), we know that there exist rational invariants r 1 , . . . , r 9 such that C(S 2 (C 3 ) ⊕ S 2 (C 3 )) SO(3,C) = C(r 1 , . . . , r 9 )