N
N

N

HAL

open science

Uniform controllability of a transport equation in zero
fourth order equation-dispersion limit

Karim Kassab

» To cite this version:

Karim Kassab. Uniform controllability of a transport equation in zero fourth order equation-dispersion

limit. 2020. hal-03080969

HAL Id: hal-03080969
https://hal.science/hal-03080969

Preprint submitted on 18 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03080969
https://hal.archives-ouvertes.fr

Uniform controllability of a transport equation in zero fourth order
equation-dispersion limit

K.Kassab*
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Abstract

In this paper, we study the cost of a transport equation perturbed by small diffusion and dispersion
terms. When the control time is large enough, we prove that this cost decreases exponentially to zero as
the diffusion and dispersion coefficients of the equation vanishes. When the control time is small, on the
contrary, we prove that this cost increases exponentially to infinity.

Keywords: Fourth order parabolic equation, Carleman estimates, cost of null controllability, boundary
control, uniform null controllability, diffusion-dispersion limit.

1 Introduction

In the present paper, we consider 2 =]0, L[C R. We will use the notation @ = (0,T") x . On the other
hand, we will denote by Cj a generic positive constant which depends on 2 and w but not on 7.

Let us introduce the following control system :

8ty + EYzaazr — 6yxmx + Myg; =0 in Q R

y(t,0) = vy, y(t,L)=0, te(0,7), 1)
yz(t70) = V2, yx(tvL) =0, te (OaT) >
y(oa ) = yO() in (2,

where yo € LQ(Q) is the initial condition, € > 0, 6 > 0 and M > 0 and vy, vy are the control functions.
The purpose of this paper is to study the cost of null controllability of equation (1) given by the following
formula :

||U1||i2(0,T) + ”UQHZL?(O,T)

Cy(g,0) = sup min
y( ’ ) yo€L2(Q), yo#0 (v1,v2)€L2(0,T)2, y(T,)=0 ||y0||%2(0,L)

(2)

Being more precise, we are interested to know about its behavior with respect to the diffusion and
dispersion coefficient, and in particular, to know what happens as ¢ — 07 and § — 0". The motivation
for studying the dissipation-dispersion mechanism comes from continuum mechanics. These terms may
represent viscosity and capillarity-driven surface diffusion. These are particularly important in the theory
of nonclassical shock waves (see the book of LeFloch [16]). Nonclassical shock waves are shock waves for
conservation laws with nonconvex flux, which are selected through perturbative terms such as the ones of
(1). Before we continue, let us consisder the following unperturbed transport equation :

8ty+Myz:Oin )
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where y(0,-) = yo € L*(0, L), controlled from the boundary y,—o = u(-) if M > 0 and y,—r, = u(-) if M <0
and where u € L?(0,T). It is known that this equation is null controllable if T > L/|M]|. Indeed, it suffices
to take u = 0 to deduce that y(T',-) = 0 and we have a null cost. On the other hand, if T < L/|M], it is easy
to see that this equation is not null controllable. Our objective is to prove that it is possible for T' 2 L/|M]|
to control (1) at a uniform cost as € and ¢ tend to 0. On the other hand, it is to expect that for times
T < L/|M]|, the cost of null-controllability will dramatically increase.

Let us now present some interesting results related to our work. This kind of problems was initially
considered in [6] for the case of the heat equation with vanishing viscosity coefficient. (see also Refs. [14]

and [10]). Later, improvements have been done in [9], [18] and [17]. On the other hand, authors in [1], [11]
and [12] studied many problems related to the linear Korteweg de Vries equation with vanishing dispersion
coefficient.

Concerning unperturbed fourth-order parabolic equation, many results were proved in [13],[7],[20],[15],[5]
and [8] for internal controllability and [3],[4] for boundary controllability.

Up to our knowledge, there exist two works addressing this kind of problem for a perturbed fourth-order
parabolic equation where in the first one [2], the authors treated this problem for § = 0 with different
boundary conditions and in the second work [19], the authors treated this problem for § = 2623 M3 with

different boundary conditions. Let us start with our first result :

Theorem 1.1. There exists C > 0 such that, for any yg € LZ(O,L), there exists v1, vo € L2(07T) driving
yo € L2(0, L) to zero and which can be estimated as follows :

C
[villz20,7) + lv2llz2(0,7) < exp {W}WOHB(O,L)-

The proof of this result is based on the controllability-observability duality (see also Proposition 3.3).
Nevertheless, this information does not allow us to say anything about the behavior of the cost when ¢ — 0
and § — 07. In the following result, we establish the uniform null controllability, with respect to the diffusion
coefficient, of equation (1) when the control time is large enough and the initial condition is in L*(0, L) :

Theorem 1.2. There exists a constant C' > 0 such that, for any yo € L*(0,L), M >0 and T > C L/M,
there exist two constants C > 0 and ¢ > 0 depending on T, such that for any (e,d) € (0,1] x [0,1], there
exists vy, va € L?(0,T) driving yo € L*(0, L) to zero and which can be estimated as follows :

Angl/2
lonllzeomy + leallzom < —ae exp § - o lwollz20.5)-
(0,T) (0,T) VM= max{01/2, (M1/2)1/3} (0,L)

In the following result, we give a lower bound for the norms of the controls when the control time is small
and the initial condition is in L?(0, L) :

Theorem 1.3. Let M > 0 and T > 0 such that

L
T<
M

Then there exist yo € L*(0,L), ¢ > 0 and | € N independent of ¢ € (0,1] and & € [0,1], such that for any
v1,v9 € L2(0,T) driving yo to 0 are estimated from below as follows :

l C
loullzsoary + el 2 cetexp { — oAl ®



This paper is organized as follows. In Section 2, we study the existence of solution for system (1).
In Section 3, we prove Theorem 1.2 which states the null controllability of equation (1), by using a new
Carleman estimate and a new exponential dissipation result. In Section 4, we prove Theorem 1.3 which gives
a lower bound for the norms of the controls when the control time is small and the initial condition is in
L*(0,L). Finally, in Appendix A, we prove the new Carleman estimate.

2 Cauchy problem.

In this section, we present the well-posedness results needed for the study of equation (1). To this end,
let us consider the following adjoint system :

—W¢ + EWgprr + OWape — Mw, = f in Q

w(t,0) = w(t, L) = 0, te(0,7), .
wy(t,0) = wy(t, L) =0, te(0,T), (4)
’LU(T, ) =0 in Q

where f € L?((0,T) x (0, L)). The solutions of system (1) are to be understood in the sense of transposition.
Before we continue, let us set

X :=C([0,T); H (0, L)) N L*((0,T) x (0, L)).

Definition 2.1. Given T > 0, yo € H 2(0,L) and v1, vy € L*(0,T), we call y a solution of (1), a function
y € X satisfying for all f € L*((0,T) x (0, L))

T ,L T T
/ / y fdzdt = (yo,w(0,")) g-2(0,)xm2(0,1) — 5/ V1 (£)Waze (T, 0)dt +/ (ev2(t) — 6v1(t))was(t, 0)dt,
0 Jo 0 0 )

where w is the corresponding solution of (/).

It is easy to see that any regular solution of (1) is a solution in the above sense. Indeed, it suffices to use
integration by parts.

Proposition 2.2. Let M € R, ¢ € (0,1], § € [0,1], T > 0, yo € H52(0,L) and vy, vo € L*(0,T). Then,
there exists a unique solution of transposition (5). Moreover, there exists C > 0 independent of € and & such
that

C
lllx < S5\ lvollg20,2y + lorllzzom) + llv2llzzomy ) -
Proof. To prove this proposition, first we are going to demonstrate that for f € L?(0,L), we have w €
C°([0,T); H2(0, L)) and wee(+,0), Waze(-,0) € L?(0,T) . Then, by using the Riesz representation theorem,
we deduce the existence and uniqueness of y € L?((0,T) x (0, L)) the solution of (1). At the end, we use the

equation verified by y to prove that y € C([0,T]; H~2(0, L)). Now, by multiplying (4); by w and integrating
by parts, we obtain

1d L L

L
_Eﬁ 0 |w(t,w)|2dx—|—g/0 ‘wmw(t7m)|2d$:/0 f(t,m)w(t,x)dm. (6)

Integrating the last equality between ¢ and 7', we deduce

L T (L c [Tk
/ |w(t,:r)|2da?+5// | Wy (t, )| dadt < —// |f(t,z)2dz
0 0Jo € Jo Jo

c T rL
+5 / / |wxz(t7x)|2dwdta
2 JoJo



for 0 <t <T. Then, we deduce

Ce
||w||200([0,T];L2(o,L))mLZ(o,T;Hg(o,L)) < €7||f||L2(0,T;L2(O,L))’ (8)

for C' > 0. Now, if we multiply (4)1 by wszqe and integrating by parts, we have

14 [F L L
—_ |wm(t,x)|2dx + 5/ |wmm(t,:c)|2da: < / Ft, ) Wepae (t, x)dx

L L
—1—5‘/ Wagga (b, T)Weee (t, x)dx —|—M/ Wy Wypr AT,
0 0

To treat the terms on the right-hand side of (9), let us notice that

L L L
’/ Wegzs (b, T) Wy (t, x)dx +/ f(t,x)wmm(t,x)dx—kM/ We Wege AT
0 0 0

(10)
L 4 2 L L
1) M 1
<€ / wmuw)?dww(i / wea(t, ) Pda + / f(t,x>|2dx),
2 Jo € 0 €Jo

where C' > 0. Here we used the fact

1/4 3/4

g L2(0,T;H2(0,L))||wHL2(0,T;H4(0,L))

L
| rsa(t )t 2)ds| < 5]
0

cst oo £ 12

= lwllZ2(0,r;8200,L)) 1\|w||L2(o,T;H4(o,L))

<
and that there exists A > 0 such that for any v € H*(Q) N HZ(Q), we have
/ A2 U do > A ulla . (11)
Q

Combining (10) with (9) and integrating between ¢ and T', we deduce

L T L 4 2
0+ M
/0 |U)mx(t, x)Pda? + E/O /0 |U)$$Im(t, q;)|2d,1‘ S C(sg;wHQLQ(O,T;HOQ(O,L))

[ [ 1swarar),

where C' > 0 and for 0 <t < T. From (8) and (12), we deduce

| Q

< S lIFI1Z2 072220, )): (13)

[=2]

2
lwllEoo.r1imz0,L0n20, 7588 0,2)) = 2

for C > 0. We can deduce by using the last estimate with (5)
C
19l 220,y x 0,00 < Z5 |\ ol 20,y + 0rllz2om) + llv2llzzo,m) )-
Now, from (1); combined with the previous estimate, we deduce

aty = —EYzzzx + 6y:rxz - MyI € L2(07 T; H_4(0’ L))

Then, we deduce that y € L2(0,T) x L*(0,L)) N H'(0,7; H~*(0, L)). By using an interpolation argument,
we finish the proof of Proposition 2.2. O



3 Proof of Theorem 1.2.

3.1 Carleman estimate.

Let us consider the following adjoint system :

*aﬂﬁ + €Pzzaa + 59036.@30 —Mp, =0 inQ@,

<p(t,0) = Lp(tv L) =0, te (Oa T) , (14)
©z(t,0) = @, (t,L) =0, te(0,7),
o(T,") = ¢o() inQ,

where g € L?(0,T). The objective of this section is to state a Carleman inequality for the solutions of this
system. Let us introduce the weight function :

—3x? + 8Lz + %
(T —t)r

at,z) = (15)

1
Remark 3.1. We have

where p €

a t<OT?, Cia<oa, <Cha, Cra< —ag, <Con in (0,7) x (0,L),

and
lag| + || 4 |ae| < CTM Y | oy | < CT20M 21 in (0,T) x (0, L),

where C', C1, Cy are positive constants indenpendent of T .

11
Proposition 3.2. Let y € [g, 5] Then, there ezists a positive constant C' independent of T > 0, ¢ > 0,
§ >0, M >0 such that, for any po € L*(Q), we have

e2s7 // e 25207 || dzdt 4 s°62 // e 20 |p|2dadt
Q Q

T
< c( / e~ 2500 (250(1,0) 4 €0)|Paax (L, 0)|2dt (16)
0

T
+ [ eeOE s + 623a<t,o>>|wm<t,o>|2dt),
0

1+ THM*P

Jor s 2 GoT* (T“ gt

) and where @ is the corresponding solution of (14).

Since the proof of Proposition 3.2 is very technical, we postpone it to an Appendix, at the end of the
paper. We can deduce from the Carleman estimate an observability inequality for (14), as follows :

Proposition 3.3. There exists a positive constant C' such that for any @ € L2(O,L), we have

O(1+ M)
160, < 059 { S5k b (1922001 + 9rne Oy ) (17)



Proof. Before we start, let us notice that we can add the following term :
g2/t J2/p—4 §6=2/p // e—2sa,2/pt1 |<p|2dxdt, (18)
Q

in the left-hand side of (16). Indeed, it suffices to use an interpolation argument between the two terms in
the left-hand side of (16).
Let us fix s as follows :

1+ THMH
S = CoTH (T” =+ 51—2H53N—1> . (19)
Now, from (16) and (18), we have
SQ//,LJrl 82/;1,74 5672/# // 6725040[2/,u,+1 |(p|2dl‘dt
Q
T
< C(/ e~ 2sa(t,0) (623a(t, 0) + 56) |Qwaa (t,0)|dt (20)
0

T
+ / e~ 250(t,0) <5233a3(t,0)+525a(t,0)>|<pm(t,0)|2dt>,
0

for some C' > 0 independent of §, ¢ and M. Combining the definition of « (see (15)) with Remark 3.1, we
deduce

2/n+l 2/u—4 §6-2/u o, 3T/4 /L ozs (€25 T
e T2k |g0‘2d$dt S 05 <6T2“ ( —|— 55) / |Soa:xa: (t, 0)|2dt
Ta+2p /a2 Jo T2 0

_cgs (€283 §%s r 9
+e T2 (W + 712“>‘/0 |§0x93(t,0)| dt>7

for some Cy > 0 and C3 > 0. We use the following energy estimate :

(21)

L L
[ et opar< [ ot nPar, (22)
0 0

82/M+1

for 0 <t; <ty < T, combined with (21) and the fact that Tiven

5 > 1, we deduce
o

L T T
/|<p(o,x)2da:dtgé(/ |<pm(t,0)|2dt+/ <pm(t,0)|2dt), (23)
0 0 0

where o1+ M)
- + M*H
CZGXP{W}’ (24)
with C' > 0 independent of ¢, §, and M (C depends on T)).
O

3.2 Exponential dissipation result.

Let us consider ¢ > 0, 6 > 0 and M > 0. In this subsection, we are going to prove an exponential
dissipation result to compensate the observability constant found in Theorem 1.1. Let us introduce K as
the smallest constant such that

L L
/ o(tr, 2)dx < K / (p(ta, z)2dr, (25)
0 0



where ¢ is the solution of (14) and 0 < t; < t3 < T. We will prove that, whenever the time passed ty — ¢; is
larger than L/M, the constant of the dissipation result can be dramatically improved. It behaves like :

C
P\ T (0172, 2177

where C' is positive.

Proposition 3.4. There exists C > 0 such that for any T >0, >0, >0, M >0,0<t; <ty <T such
that to — t1 > L/M we have the following decay properties for the solution of (14):

o If 3°< ﬁ{-:2(M — L/(ty — t1)), then
(M(ta —t,) — L)*/®
K< exp{ -C (s = 1))1/3 } (26)
o If 5% > 1 5252(M — L/(ty — t1)), then

(M(ty —t1) — L)3/?
K < exp{ e (6(2t2 —1151))1/2 } (27)

Proof of Proposition 3.4.

By multiplying (14); by exp{r(M (T —t)+x)}¢ where r is a positive constant which will be chosen below,
then integrating in (0, L) and integrating by parts with respect to z, we deduce

A xplr (M 1)+ ) ol 4 [ (DT )+ 0)) sl
2dt J, P v 0o P e

L
+5/0 (exp{r(M(T —t) + 2)}¢)zapzdz = 0.

Here we used that, ¢(¢,0) = o(t, L) = ¢4(£,0) = p,(¢t, L) =0 for ¢ € (0, 7). Then, we deduce
1d ("

L
3 ), exp{?“(M(T—t)+$)}|90\2dx+6r2/0 (exp{r(M(T — 1) + 2) }pprrde

L L
+€7°/ (eXP{T‘(M(T—t)+x)}(\<ﬁzl2)xdx+6/ (exp{r(M(T —t) + 2)}poo|*du
0 0

+5% /0 (exp{r(M(T —t) + 2)}(|¢|*)adz + 267«/0 (exp{r(M(T — t) + 2)}| s | 2da

. (L
—1—55/0 (exp{r(M(T —t) + )} (|pz|*)zdx = 0.

By integrating by parts with respect to z, we deduce

1d L L
53 | exp{r(M(T—t)—|—:c)}|<p|2dac—26r2/0 (exp{r(M(T — t) + 2)}|iou[2da
L L
+%r4/ (exp{r(M(Tft)+:c)}\<p|2dx+5/ (exp{r(M(T —t) + x)}|pre|*dx (28)
0 0

3L r (L
—55/0 (exp{r(M(T —t) + z)}|¢|*dx + %5/0 (exp{r(M(T — t) + x)}|p.|*dz = 0.



By using the fact that

IN

L
er? / (exp{r(M(T —t) + x)}|¢.|*dx
0

L
57"4/ (exp{r(M(T —t) + z)}|¢|*dz
0

L
+er? /0 (exp{r(M(T —t) + =) }@rrpdx

IN

2

L
§5r4 / (exp{r(M(T —t) + z)}|¢|*dz
0

c L
+§/0 (exp{r(M(T —t) + 2)}|0a0|*dz,

combined with (28), we deduce

1d [* 9 5e 4 [* 9
5% exp{r(M(T —t) + z)}|p|*dx — 57 (exp{r(M(T —t) + x) }Hp| dz
0 . 0 (29)
—%5/ (exp{r(M(T — t) + z)}|¢|*dz < 0.
0
Then, we deduce
d L
% (exp{(—5€7“4 —or°)(T ~ t)}/ exp{r(M(T —t) + m)}lw(t,w)l2dw> <0, (30)
0
for t € (0,T). Integrating between t1 and o, we have
L L
| et a)Pde < K [ fotta )P (31)
0 0
where
K = exp{be(ty — t1)r* + 6(ty — t1)r® + (L — M(ty — t1))r}. (32)
Now, we are going to minimise K. Let us denote % = be(ta — 1), 3= §(ta —t1) and v := L — M (t2 — t1).
3
i
Case 1. a2 < o

In this case, we have

From (32), we deduce

1
K <exp {ar4 + —(—7)1/3a2/3r3 + vr}.

FRRVIVE
(=n'?

By taking r* = ~—=—, we deduce

al/3
K< LR B | Gl
sexpyelg ™ 4173 a3 [

B
Case 2 90a2 =1



In this regime, let us notice that

2 ﬁ3/2
a< —— 33
RENEEE o
Using the previous estimate with the definition of K given in (32), we deduce that
1 53/2 A B 5 }
K < expy—=——75r"+=r°4+r;. 34
< e { g e (34
. -2
By taking r = e > 0, we can deduce that
1 3/2 2 _~)\3/2 _~\1/2
K = exp{ ° 12(72 +é( 1)2 +7( ?2 }
6V3 (-2 B2 3 B/ pY
(35)
< e 1 + L 1 (_7)3/2
X —+ - - .
>~ p 6\/3 3 B1/2
O

3.3 Proof of Theorem 1.2.

The proof is divided in two steps.
Step 1. Observability inequality.
Let us first deduce an observability inequality from the Carleman inequality (16). Let us consider ¢ a regular
solution of (14) and use the Proposition 3.2 for a time T = i and we denote @1 = [0,71] x (0,L) and

Q1 = [11/3,211/3] x (0, L).

By applying the same ideas as in the proof of Proposition 3.3 but this time in [0,77], where we fix s as
follows :

1+ T M+
we deduce
L B T T
| 1o(0.0)Pdode < c( | toamnlt 0Pt + [ foantt o>|2dt>, (37)
0 0 0

where o n

~ 1

C = exp {51_2” §3nu—1 }7 (38)

with C7; > 0 independent of £ and 4.

Step 2. Combination between the observability inequality and energy estimate.

Let T > Cy/M with Cy is large enough. By applying the same ideas as before, between times T'— T} and
T, we deduce

/0L|so<T1/M,:c>|2dxsé< /T (Praa (£, 0) Pt + /T |som<t,o>|2dt), (39)

T—1/M T—1/M



where C' is given in (38). Applying Proposition 3.4 for ty = T — 1/M and t; = 1/M, combined with (37),
we deduce

L Ty T
/ |so(o,x>|2dxsz(é( / (Paoa(t,0)2dt + / |¢m<t,o>|2dt), (40)
0 0 0

where C is given in (38) and where K is estimated in (26)-(27). By taking Cy large enough, the observability
constant K'C' can be estimated in the following way :

C M1/3
C’gexp{—ggl/3 when (53§M62,

03M1/2

KC <
Cgexp{ — (51/2} when 6% > Me? ,

(41)

where Cy > 0 and C3 > 0 are independent of e, §. Here, we take = 1/3 in the first regime and p = 1/2 in
the second one.

At the end, it is classical to prove that for any yo € L*(0, L), there exists a control vy, vy € L?(0,T) such
that the solution y € L?(0,T; H?(0, L)) of (1) satisfies y(T,-) = 0 in (0, L) where v is estimated as follows :

KC
||U1H%2(0,T) + H02||2L2(0,T) < ETHyOH%"’(O,L)' (42)
. . K
Then, we deduce the following estimate on =N :
Ml/S
KC % exp { — CE’T in the first regime ,
€
= S\ a Co M2 )
= exp { — 51/2} in the second regime ,
where Cy > 0 and C5 > 0. This concludes the proof of Theorem 1.2.
O
4 Proof of Theorem 1.3.
In this proof, we adapt the ideas used in [10]. Let us introduce R
L-MT
0<R<=———. (44)
Let us consider ¢g € C°*°(0, L) such that
Supp(¢o) C (R, 2R),
50 > 0,
w0 = (45)

L
/ Gl = 1.
0

Let us denote ¢ the corresponding solution of (14) for ¢(T,-) = $o. The rest of the proof is divided in three
steps.

Step 1. Estimate of ||¢(0,)|[z2(0,z)-
Let us introduce §(t, x) the solution of

(46)

B+ MpB =0 inQ,
B(T,-) = ¢o in (0,L) .

10



Let us notice that from (44) and (45), we have

Supp(ﬁ(tv )) C (07 1)a te [OaT]
By mutiplying (14); (Where w(T,) = ¢o) by B and integrating by parts, we deduce

By taking § > 0 and € > 0 small enough we deduce

L
/ B8(0,2)$(0, z)dz > Cllol|72(0,1) = C >0, (47)
0
where C' > 0 is independent of £, § and M. Then, we can easily deduce that

160, )II72(0,1) = € > 0. (48)

Step 2. Estimate of ||¢m('a0)H%2(o,T) + H@zm('vo)HQH(mT)-
By mutiplying (14); (where ¢(T,-) = ¢¢) by (R/4 — x)*$ and integrating by parts, we deduce

R R R R
1d{ [T R ., /ZR P /TR o1 12 /ZAQ
- - d = )4 G2 = 2% Pdr + 12 d
th(/ (7 —2)'l¢l w)+6 i (7 @) |Pwal*dr + ¢ i (7 — @) |#al*dz + <] oI dx

R

1T R
+125/ )9l dx—66/ Al dx—i—QM/ ~aflefds + 25 [ (] — Pl
0
(49)
Let us notice that
g R g 2 € g R 4 2
250 [ (5 —oPlenfdo < Ce [T lgPdo+ S [T (] - o)l
o 4 0 3Jo 4
and N N
R 0%R? 2 1 R
66/ oPlpalds < €07 + ) [TlePdo+ S [T - 0)ipwPd
0 0

Combining the last two estimates with (49), 1ntegrating between 0 and T" and using the fact that @g(z) =0
for z € (0, R) we deduce

0

SC’(E,M,5)/ |<p|2dx.
0

(50)

1
for some constant C'(g, M, §) whose growth in —, M, R, ¢ is at most polynomial. Let us notice that, we can
add the following term to the left-hand side of (50) :

5R4||52’||%2(07T;H2(0,R/16))7 (51)

R
By mutiplying (14); by (Z — 2)8%Ppeae and integrating by parts, we deduce

R R R
1d T R 81 |2 TR 8| 4 2 /ZR s |2
a9 1 - TT - TTTX 45 - TTIT d
2dt(/o (7~ 2@ dz>+e/0 (g = Wawaal?da 445 | (= 2 |guwa P

§C(5,M,5)</Oiz

R

R
1 R 1T R
+56/ (= — x)ﬁgﬁtgbmdm + E/ (= — m)8|¢mmz|2dm'
o 4 4/, 4

N TR .
R ALY A C (52

11



Before we continue let us notice that if we want to add the term

eR*|a(t, ')”%14(0,}2/16)’ (53)

in the left-hand side of (52), it suffices to add
“ R 615 |2 A 2 54
C(0,e, M) ; (7 = @) |Pwaal da + [Pt )lr2(0,7/16) | (54)

in the right-hand side of (52). Furthermore, to add the following term
1 (%R
815,12
= - d 55
=[G o (59)

in the left-hand side of (52), it suffices to add

R
T R . TR .
0(5,67M)(/ (Z _-T)6|(Pa:mz|2dx+/ (Z _‘r)4|§01|2dx>7
0 0

in the right-hand side of (52). Indeed, it suffices, to use =9y = —(ePruze +0Prze — Mp,) in Q. By applying
Cauchy-Schwartz’s inequality, we deduce that the terms in the right-hand side of (52) can be estimated by

T iR ) iR R R
C(e, M, 5)(/ |52 da +/ (Z — 1) @ra| *da +/ (Z = 2)°|Paaadr + || B(t, ')||§{2(0,R/16))
0 0 0 (56)

R

R
e [* R R 15 R 1 1 R R
+1/0 (Z — 2)°|Paawal dr + ZRSW(’Z ')||§-I4(O,R/16) + %/0 (Z — z)%| ¢ [*d,

even if we add the two terms (55)-(53) in the left-hand side of (52). Here, we used that :

R A € R =, R
C(e M) (1200 (L OF + 101t OF ) < SRR oo ey + Cle MO oo ey 57

- 1
for some constant C(e, M, ) whose growth in o M, R, 0 is at most polynomial. To finish this part, let us
notice that
YR o g TR g e
C(e, M, 0) ; (7 = @) |Pwaal da < Cle, M, 0) ; (7 = @) Paal"dx + [|16(E, ) 772 0,R/16)

R
e [* R . € R
+5 [T G =0 Vranelda + SRR o e

Here we used (57). Combining the last estimate with (56)-(52) by taking into consideration that we add the
terms (55)-(53), then integrating between 0 and T and using (51) with (50) we deduce

. TR
RS2 0 rurts (0.0 16y < O M, 6) / / |6[2d. (58)

- 1
for some constant C(e, M, d) whose growth in —, M, R, § is at most polynomial. From the last estimate, we
€

deduce
R

~ s
”@ﬂvr(ﬂ 0)H%2(0,T) + H@ixm('70)||%2(O,T) < 0(57 M, 5)/0 ‘¢|2d‘7"’ (59)
- 1
for some constant C'(e, M, d) whose growth in = M, § is at most polynomial.

Step 3. Last computations.

12



Let us introduce 1 € C*°(R) as follows :

in [R, +00),

b =0
P=1 in (—o0, R/2], (60)
Y <0,

We apply the same ideas used in the proof of Proposition 3.4. Let us denote

L
E(t) = exp{f(€7"4 + 5r3)(T — t)}/o exp{r(M(T —t) — z)}(x — M(T — t))\¢|2dx.

By multiplying (14); by ¢(x — M (T —t)) exp{r(M (T —t) — x)}¢ where r is a positive constant which will
be chosen below, we deduce

d R+M(T—t)
—5EM) < C(T)/ (1"l 0,0) + 1" Lo 0,y + 19" Lo 0,y + 19" | L (0,1))
14 R/2+M(T—t) (61)

exp{r(M(T —t) — z)}|¢|*dz,
where C(r) depends on 7 in a polynomial way. Then, we deduce

d

L
~ B0 < Coyen(=5} [ oPda, (62)

Before we continue, let us estimate the right-hand side of (62). By multiplying (14); by ¢ and integrating
by parts, we deduce
1d [*

L
~12 ~ 2
——— d 22| dx = 0.
53 | 1ePde+e [ 1o

Integrating the last inequality over (¢, T), we deduce

L T L L
/ \(ﬁ(t,x)|2dx+5// |<,bm|2dxdt:/ |£(0, z)|*da.
0 0Jo 0

Combing the last estimate with (62), we deduce

d

L
—SB(1) < Clr) exp{ -3} / \GolPdz. (63)

Integrating over (¢, T), for 0 <t < T, we deduce

L
/O exp{r(M(T — t) — 2)}(z — M(T — 1))|4}Pde

o (64)
< Cexp {s(T —t)rt + 5(T — t)r® — 7‘2} / |@o|da.
0
. R
By using the fact that ¢(z — M (T —t)) = 1 for (t,z) € (0,T) x (0, 1)7 we deduce
RY [%,.. .,
expq r(M(T —t) — Z) |o(t, )| *dx

’ (65)

< / exp{r(M(T — t) — z)}i(x — M(T — ))|[2dz.
0

13



Combining (64) with (65), we deduce

exp {r<M<T - f)} / oo

(66)
4 TR L
< Cexp {s(T —t)yrt +6(T — t)r® — 2} / |0l dex.
0
At the end, we deduce
& TR L
/ |@(t, x)|2dx < Cexp {ETT4 +6Tr3 — 2}/ |0 da. (67)
0 0
By choosing
RA\YZ / p\1/3
el () (2) )
we deduce
: 2 R “ ool? (68)
p(t,x)|"de < C - - po|“dx,
/0 (@)l de < eXp{ max((ROT)1/Z, (R2T)1/3) } /O [pof*da
where C' > 0. Combining the last estimate with (59), we deduce
c L
A 2 ~ 2 A 12
H<Pm('a0)||L2(o,T) + ||%0wm('»0>||L2(o,T) < C(E)GXP{ - nm(<51/2,51/3')}/() |¢o|“dz, (69)

1

for some constant C(e) whose growth in — is at most polynomial and ¢ > 0. Combining the last estimate
€

with (48), we finish the proof of Theorem 1.3.

O
5 Appendix A.
Proof of Proposition 3.2.
Let us set
Y(t,x) = e_so‘(t’x)go(t,x), V(t,x) € Q. (70)
By replacing ¢ by e*“1 in the equation —0;¢ + €Vrrae + 0Prze — M@, , we have
L1+ Loy = Ly (71)
where B
L1y = L1+ Lisy+ L1,
~ 72
Loy = Lo+ Lastp + Lo, (72)
where
Ly = 48830(§’¢$ + desoy Yppr + 6583aiamw,
L1,5¢ - 5¢xxa: + 3582043.’pr7
Ly = —¢— My,
L2,s'¢) = 554ai¢ + 68820121/er + 51/)9“11 + 12552az0¢xrwra (73)
Losy = 5530421# + 308V g0 + 30843,
I~/21/1 = —saup — Msa,yp

14



and

Lay = —35320%96 — 6e80pgWar — 3325amazw. (74)
Moreover,
HL“/}H%Z(Q) + ||L27/’||2L2(Q) +2(L1y, Lav) 12(q) = ||L31/)||%2(Q)~ (75)
(L1, LaY)2(q) = (L1,e, Lo ) r2(Q) + (L1,6%, La,s¥) 12(Q) + (L1,6%, Lo,c¥) 12(q)
+(Lasth, L1,c¥) 120y + (L1,e%, Low) 120y + (L1, Low) 12(g) (76)

+(L1,59, Lov) 120y + (La,st, L1) 12y + (Lo, L19) 12(q)-

Step 1. Computation of (L 51, L2 5¢)12(o) and first main estimate.

2 3
In this step, we will compute // Ly 59 L sdxdt under the form Z Z Ifj where Ifj is the scalar product
Q

i=1 j=1
in L?(Q) of the i-th term of L 59 with the j-th term of Lo 1.

By integration by parts we have,

R, = & / / O agtdrdt
Q

= —5%s3 / / B rpptfypdrdt — 36253 / / &2 0Pty dadt
Q Q

1 5
—55233 // @3 ([¢0z|*) pdxdt + 36%5° // 2y [ ddt + Cod?s*TH // S| Adadt
Q Q Q

9
5(5253 // QA age|the|Pdrdt — Co62s3TH // P Pdadt.
Q Q

On the other hand
1
I, = 36%° // QS apdrdt = 35240 // ai(|1/)|2)zd1:dt:f—56255 // o g |02 dacdt. (78)
- 5 o 5 0

Moreover,

Y

Y

3
If? = 36%s // aw¢wm¢wxwdxdt: *528// Oégc(|’¢$x‘2)$dl‘dt
Q 2 Q
3 3 r (79)
= —5525// am\wm|2dxdt+§52s/ (T e T %/
Q 0
Furthermore,
9
L, = 96%° // B rppptpdrdt = =623 // a3 (|1 |?) pdzdt
’ 2 ’ (80)
2
= —l5283 // @20 |th, |Pdrdt.
2 Q
Moreover,
I, = 36% / / QgaVppzzdrdt = —36%s / / Qg [V |2 dadt. (81)
Q Q
On the other hand,
L, = 95253// Qpz 02 |2, [P ddt. (82)
Q

15



Combining the previous estimates, we can easily deduce

15 9
(L1,s, Las¥) 2y > —?5255 // Ayt [P Pdadt — 5528// Q| | dvdt
Q Q

3 T (83)
75525/ (|| ?)amodt — Cod%s>TH // &P Y| dzxdt.
0 Q

Step 2. Computation of (L; .1, Ly -)12(g) and first main estimate.
3 4

In this step, we will compute // Ly ¢ Ly cdzdt under the form Z Z I7; where I7; is the scalar product
Q

i=1 j=1

in L?(Q) of the i-th term of Ly .1y with the j-th term of Lo ).

By integration by parts we have,

I5, = 4e%s7 // alppdrdt = 2e%s” // al ([Y)?) pdxdt = —14£%57 // al a2 dadt.
Q Q Q

On the other hand, we have

I5, = 4¢%8° // A tpppptpdrdt = —2025° // Py dadt — 26250 // a2 (|92 |?) nddt
Q Q Q

30e2s° // At ap|the|Pdrdt — Co?sSTH // o | Pdxdt
Q Q

v

Moreover,

I = 65287// alag, v 2dadt.
Q

Furthermore,

5, = 128%° // a2 (|1, |?)pdrdt = —602s° // oy 1| ddt.
Q Q
On the other hand, we have
I5, = 12¢%3 // @3 (|02 |*) wdwdt = —36£%s3 // O2 i [ ddt
Q Q
T
#1225 [ (@2 uaf?)
0
Moreover, we have

I, = 36¢%s° // Bty pbdrdt > —36¢%s° // Qg [V drdt — Coe? s TH // Y| dxdt.
Q Q Q

On the other hand, we have

Iis = 4e253 // aizpmmwzdxdt: —2e243 // ai(|wm|2)zdxdt— 12243 // aiamwmmwmdxdt
Q Q Q

Y

T
18253 //Q 2y [V drdt — 26283/0 (ai|¢ww|2)\x:o,Ldt_ Coe?s3T //Q Py |2 dadt.

16
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Moreover, we have

T
15, = 2525// ozm(|1/)mm|2)md:cdt: —2625// am|wmm|2dajdt+2€25/ (a£|1/)mm\2)|m=0ldt. (91)
Q Q 0
Furthermore, we have
I§3 = 65283 // aiazxwxmmzwdxdt
Q
= —12e283 // amaixwmxwdmdt—&zss // aiamwmmwmdxdt
Q Q
(92)
> 628 // 2 |V pe | drdt — Coe?s3 TS // o || Adadt
Q Q
—Coe?s®TH // o’ 1, |Pdadt.
Q
Moreover, we have
I5, = 48¢%° // Oy [t ddt. (93)
Q
Furthermore, we have
IS, = 48:%° // aiozmd)xi/)xmd:cdt
Q
(94)
> 482263 // a_?cam|wm|2d:cdt7005253T4“ // a5|1l)m|2dxdt.
Q Q
At the end, we have
I, > —005255T4“// o || Pdxdt. (95)
Q
Combining the previous computations, we deduce
(L1, Lo e®)r2(@) > —85237// alag,]* — 1827 // e |the|Pdrdt
Q Q
—60e2s3 /aiam|wm|2dxdt—2625// Qe |V |2 ddt
Q Q
T T (96)

—2523/ (az|¢mz|2)z:0dt—105233/ (ai|wm|2)m:0dt
0 0

—Coe? (ST + s3T81) / / QTP dxdt — Coe?s>TH / / o’ 1, [Pdxdt.
Q Q

Step 3. Computation of the left scalar products..

In this step, we will compute the rest of the scalar products. Let us start with // Ly ¢ Ly sdxdt, that we
Q

3 3
write under the form Z Z If]?‘s where Ifj"; is the scalar product in L*(Q) of the i-th term of L; .1 with the

i=1 j=1
j-th term of Ly 51).
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By integrating by parts, we have

I = 2e6s° // S ([Y)?)drdt = —12e6s° // A0 g [ ddt. (97)
Q Q

On the other hand, we have

LY = 4ebs / / QA ppppipdrdt = —16£6s" / / @3 Qppthppbdadt — 2e8s" / / ([t |*) dxdt
Q

= 24edst // 2o (|Y|?) pdxdt + 24eds* // 2|t |Pdrdt (98)
= —486s* // @l |2 dxdt 4 24e6s* // O3 |1 | 2 dcdt.
Q Q

Moreover, we have

5 = 65556// Q0 Qg [t| 2 didt.
i 0 (99)

Furthermore, we have

1 = eost [[ at(nludedt = —21205" [t s (100)
Q Q

On the other hand, we have

5 = 6eds? // A2 (|[Ype|?) pdzdt = —12205° // azam|¢m|2dxdt+65ds2/ (02]thaal?)|,_., dL. (101)
Q Q

Moreover, we have

18z8s* // Q3 Oy Ppptpdrdt = —27eds* // a2a? (|Y)?).dedt — 18e5s* // Q2 Oy |00, [P ddt
= b4eds’ // |2 dadt — 18£8s* // Q3 [t ddt.
Q Q

Furthermore, we have

£,0
132

(102)

Q
On the other hand, we have

I§é5 = 12e6s> // Uy VppVppahpdrdt = —6e0s> // |1/)I Vedzdt — 12e85° // Vg || ddt

= —12e6s? // axam|1/}m|2d:cdt.
Q

(104)
Here we used the fact that ag.. = 0. Moreover, we have

Y = 9e6s // 2o, (|¢|?)dedt = —1825s* // azal |[y|?dzdt. (105)
Q Q
Combining the previous computations, we deduce

18



(L1eth, Lagt)r2q) = —6e6s° // 2 e [P dadt — Coeds*TH // ol y|*dxdt
Q Q

—6eds* //Q 2y |thy |Pdrdt — 24205 //Q Uy O [ | didlt (106)

T
—66552/ (ai\wm|2)m:0dt.
0

2 4

Now, we study the term // Ly 59 Ls cdxdt, that we write under the form Z Z I(S € where I 9 is the

i=1 j=1
scalar product in L?(Q) of the i-th term of Ly 57 with the j-th term of Lo 1.

By integrating by parts, we have

1
If’f = eost // A pppptpdrdt = —55554 // ot (|9 |?)pdxdt — 425 // A3 g ppibdadt
Q Q Q
= 26es’ // @B app|the|Pdrdt + 4es // B |the|Pdrdt + 655 // a2a? (|¢)?) dzdt
Q Q Q
60es? // B app|the|Pdrdt — 1226s* // azal |p2dadt.
Q Q

On the other hand, we have

T
If’; = 3eds? // 2 (|thpe|?) pdrdt = —6205* // axam|1/)m\2da:dt+36552/ ai(|¢m|2)x=07Ldt.
Q Q 0

Moreover, we have

. 1 1 T
Ifé = 565// (|¢wmﬂc|2)wd$dt = 556/ (|wwzw‘2)z:07l/dt'
Q 0

Furthermore, we have

Iff = 12e65> // Qg O Vpar Prdadt = —6e05> // Wm ) dxdt

—12e8s2 // Qp Qe |Vpe|?drdt = —126652 // Qp Q| e | dadt.
Q Q

Here we used the fact that ag.. = 0. On the other hand, we have

IF = 35636// S ([¢)?)pdxdt = —9265° // Q0 Qe [t dadt.
Q Q

Furthermore, we have

If = 9eds’ // (|92 |?)pdxdt = —36£5s* // O3 Qg [t | ddt.
Q Q
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Moreover, we have

I = 3¢6s? / / a?cd)mm@/}xdxdt:—gedsz / / @2 (|thpn|?) pdrdt — 605> / / Oy OgpVppeedrdt
Q
= 9efs? / /Q amam|z/}m|2dxdt—ga582 / (02 |Yz]?) wmo, Ldadt + 3£65> / / (|2 |?) pdxdt
9ed 5> // ozmam|1/)m|2dxdtf 26582/ (a:26|1/)m|2)x:07Ldt.
Q 0
(113)

On the other hand, we have
Igf = 36eds? // aiam|z/1x|2dxdt,
Q

Combining the previous computations, we deduce

(114)

(L1,s%, Lo ) r2g) > 60es? / / 3 e[ty |Pdxdt — Coeds? T / / a®|ap|Pdadt
Q Q

—9e6s° //Q P e |p|Pdrdt — 92652 //Q U O [ |2 dadt (115)

1 r 2 3 2 4 2 2
268 | (Wwws|Pacodt — 22652 [ (02 [thpa]?)eodt.
2 0 2 0

Combining (115) with (106), we deduce

(L1, Lo o) 2y + (L1, Losth)2(g) > —Coeds™ T // oS |Y|2dadt — 1568 // Q5 Q|00 | dvdt
Q Q

1 T
—33eds? // azamwmﬁdxdtf 555/ (|1/1mm\2)x:odt (116)
Q 0

21 T
—2eds? / (02 |2z ]?) =odt.
2 0

3 2
Now, we study the term // L4 Ez/JLgdxdt that we write under the form Z ZIE’ where Ifj’2 is the

=1 j=1
scalar product in L?(Q) of the i-th term of L; .o with the j-th term of Lo

By integrating by parts, we have
52 = 24t // a3 (|[9)?)pdrdt = 2es? // (@) | dadt. (117)
Q Q

20




Moreover, we have
I = —2Mes! // ot (| pdxdt = 8Mes* // 3 e [P dadt. (118)
Q Q
On the other hand, we have

I;f = —des? // Qg gppbdrdt = des? // () Vppbdzdt + 2e5> // axat(wm\ )z dxdt

= —2e4” // (wtt)pa (|10]?) pdxdt — 4es? // Qpp) g |[Vg [Pdadt — 2e5> // (wey) g |V |2 dadt (119)
2es? // Qg Qe |2 dadt — 625> // (py) g |[Vg |2 dadt.
Q Q

Furthermore, we have

57 = —4Mes? / / @ apppptpdrdt = 8Mes? / / Qg ppibdrdt + 2Mes? / / 2|tz |?) pddt
Q

—4Mes? // L 0)?) pdxdt — 12Mes? // Qe V| dvdlt (120)
—12Mes? // Uz Qg |00, [P dadt.
Q

Here we used the fact that ag.. = 0. Moreover, we have
I§i2 = —6884 // aiamat|z/}|2dxdt. (121)
Q

On the other hand, we have
Ig’; = —6Mes* // aiam|1/)|2dxdt. (122)
Q

Combining the previous computations, we deduce

(L1, Lop)12(g) = // ( 6520y + 282 gy + 265t (@B ), )|¢|2dxdt

+2eMs* // Q3 vy [P dadt — 6es? // (wort) o [the [P dadt (123)
Q Q

—12Mes? // Qg Qe |the |2 dadt.
Q

Now, we study the term // Ly 51/)L2dxdt that we write under the form Z Z where Ifjfz is the
=1 5=1
scalar product in L?(Q) of the i-th term of L; 5¢) with the j-th term of Lo
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By integrating by parts, we have

1
Q Q Q

_ _1 2 _ § 2
_ 2&;//@ a2t 2&;//@ Qv |t [2dt (124)

= —§6s// Q|| dadt.
2 Q

Moreover, we have

1
If’22 = —(5MS// amwwmzpdxdt:(SMs// ozml/)mwd:cdt—i—géMs// aw(wm|2)$d:€dt
Q Q Q
5 (125)
= ——0Ms // [V |2 dadt.
2 Q
Furthermore, we have
5,2 3¢ .3 2 2 3¢ .3 2 2
Ly = —5(53 Qamat(|z/}| )zdxdt = 5(55 Q(azat)w|w| dxdt. (126)
On the other hand, we have
52 _ 3 3 31,12 _9 3 2 2
Ly = 2M5$ Qaz(|1/)| )edxdt = 2M55 Qamam|@/}| dxdt. (127)
Combining the previous computations, we deduce
7 3.3 2 2 3 2
(L1,s%, oY) 20y = 5(55 (o) |W|*dedt — §6Ms O |V |“ dacdt
Q Q
3 9 (128)
——=0s // Qo) dadt + = MSs® // 2 a2 dadt.
2 Ja 2 Q
. 2 4
Now, we study the term // Ly Ly cdzdt, that we write under the form Z Zfilj’e where Iilj‘E is the
Q i=1 j=1
scalar product in L?(Q) of the i-th term of Ly with the j-th term of L. 2.
By integrating by parts, we have
1
I = —5554// A (|Y)?)dadt = 2es* // a2 o, Y dadt. (129)
Q Q
On the other hand, we have
Illée = —6es> // @ ppprdrdt = 12¢5° // Qg Oy Vptipdadt 4+ 3es° // 2 (|the|?)edadt
Q Q Q
(130)

12e52 // Qg Qg Py thpdzdt — 652 // Ot [ |2 dadt.
Q Q
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Furthermore, we have

e /Q Vrsartidadt =~ [ /Q (al2)edadt = 0. (131)

Moreover, we have

Iy = —12552// Oy Qg Y Prdxdt. (132)
Q

Furthermore, we have

L = —%5Ms4 //Q ar(|Y)?)pdxdt = 2e M s* //Q Q3 [t dadt. (133)
On the other hand, we have

Ly = —3eMs® //Q o2 (|the|?)pdxdt = 6 Ms? -//Q Oy Qg [V, |2 dadt. (134)
Moreover, we have

1 1 r
Ly = —EM// VagwePodrdt = §5M//(|1/Jm|2)wda?dt: §5M/ ([$02]?) w=0, LdL. (135)
Q Q 0

Furthermore, we have

L = —125M52// Oy O | |2 dadt. (136)
Q

Combining the previous computations, we deduce

(ilqﬁ,Lg,Qw)Lz(Q) > 2684// a2 a9 dedt — 6es? // Qi [V [P dadt
Q Q
+2e M st // a2 gy [P dadt — 6e M s* // Qg O | |2 ddt (137)
Q Q

1 T )
—§5M (|02 |?)e—odt.
0

2 3
Now, we study the term // L1 Ly sdxdt, that we write under the form Z Zlilj"s where Iilj’é is the
Q

i=1 j=1
scalar product in L?(Q) of the i-th term of L1v with the j-th term of Lsot.
By integrating by parts, we have
Ly = —1553 o3 (|| dzdt = §583 // o2 a, Y| dadt.
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On the other hand, we have

11155 = —3(55// awwmwtdxdt:?)és// ozmwxwtda:dt—l—%&s// (V| eddt
Q Q Q

3 (139)
= 353// QP Prdrdt — =05 // Qe |V |2 dadt.
Q 2 JJa
Furthermore, we have
I = —36s / / Qg Vzthydadt. (140)
Q
In addition, we have
e _ 1 3 3 (1,12 _3 3 2 2
Ly = 2(5Ms an(|z/J| )zdxdt = 25Ms Qazam|1/}| dxdt. (141)
Additionally, we have
e = 3sms [[ a ([]?) dodt = 2505 [ [ o [ty | dadt
Moreover, we have
Ly = -36Ms / / Oz |1 | dudt. (143)
Q

Combining the previous computations, we deduce

~ 3 3
(LIQ/J,L&Q@[;)LZ(Q) = 5533 // aiatx‘w?dmdt — 5(58 // am|¢m|2dxdt
Q Q

3 3 2 2 3 2 (144)
+-0Ms 5 Qe [0 *dadt — 6 M s | Vo |“ dadt.
2 Q 2 Q

2 2

Now, we study the term //Q Lyt Lodadt, that we write under the form ZZIZEFQ where 11-1]72 is the
scalar product in L*(Q) of the i-th term of Ly1p with the j-th term of Lo o
By integrating by parts, we have
= o f[ ey = 5 [ aulufasar i)
In addition, we have
Iy = %Ms //Q o (|9 edzdt = —%Ms //Q vz |2 dxdt. (146)
Furthermore, we have
12112 = ;Ms//Q at(\w|2)wda¢dt: —;Ms//Q [V 2 dadt. (147)
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Additionally, we have

1 1

Combining the previous computations, we deduce

- 1
(Lt Loy = 50 [[ aviloPdode— s [[ avloPdadt
Q Q

) , (149)
—=5 oy || *dxdt.
2 Ja

Step 4. Last computations.
Combining (75)-(83)-(96)-(116)-(123)-(128)-(137)-(144)-(149) with Remark 3.1, we deduce

g2 / (87o¢7w|2 + 5|, | P dxdt + s*a® [y, |Pdrdt + sa|¢mx|2> dxdt
Q

442 // (35a51/12 +sa|1/1m|2>dxdt+65// (36a6¢2+32@2|¢m|2)dmdt
@ Q

T T
< C<s2s/ (a$|¢m|2)$:0dt+5253/ (2 |2z |?) wmodt
0 0

T

T T
-M%/<%wmfmﬂﬁ+w/<wmﬁ»ﬂm+d§/(ﬁwmmﬁMt
0 0 0 (150)

T
—i—aM/ (|1/Jm|2)w:odt+ss4T// A2 dadt + Tes? // 24, |2 dadt
0 Q Q

+6s3T// a3+1/”|w|2dxdt+6sT// oMYy Pdadt
Q Q

+Més? // a3\w\2dxdt+aMs4// a4|w|2dwdt+MsT// oAV B 2 dadt
Q Q Q
+5T? // o T2 P dadt + |L3¢||iz(Q)>,
Q
for s > CoT?".

To finish the proof, it suffices to treat the global terms in the right-hand side of (150). Let us notice that
we can add the following terms :

shtt/m gl/n=1 §3=1/n // oz4+1/“|1p|2dxdt+ st/ ga=1/m /=2 // a3+1/“\w\2da:dt
Q Q

and
$2H1/u A /u—1 §3-1/n // OV Rdadt + s/ g1/ g1 n2 // ok, Pdadt,
Q Q

in the left-hand side of (150) for s > CoT?". By taking

1+ THMH#
1-2p §3p—1 )7

S Z OoT# (TIL +
3
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we

absorb the global terms in the right-hand side of (150).

Finally, we come back to ¢ by using the definition of ¢ = e™**p and the properties on the weight function

« given in (15).
O
References
[1] CARRENO, N.; AND GUERRERO, S. On the non-uniform null controllability of a linear KdV equation.
Asymptot. Anal. 94, 1-2 (2015), 33-69.
[2] CARRENO, N., AND GUZMAN, P. On the cost of null controllability of a fourth-order parabolic equation.
J. Differential Equations 261, 11 (2016), 6485-6520.
[3] CARRENO, N., AND CERPA, E. Local controllability of the stabilized Kuramoto-Sivashinsky system by
a single control acting on the heat equation. J. Math. Pures Appl. (9) 106, 4 (2016), 670-694.
[4] CERPA, E., AND MERCADO, A. Local exact controllability to the trajectories of the 1-D Kuramoto-
Sivashinsky equation. J. Differential Equations 250, 4 (2011), 2024—2044.
[5] CERPA, E., MERCADO, A., AND GUZMAN, P. On the control of the linear KuramotoaSivashinsky
equation. ESAIM Control Optim . Calec. Var (2015), 1543-1568.
[6] CORON, J.-M., AND GUERRERO, S. Singular optimal control: a linear 1-D parabolic-hyperbolic exam-
ple. Asymptot. Anal. 44, 3-4 (2005), 237-257.
[7] Gao, P. Insensitizing controls for the Cahn-Hilliard type equation. Electron. J. Qual. Theory Differ.
Equ. (2014), No. 35, 22.
[8] Gao, P. A new global Carleman estimate for CahnaHilliard type equation and its applications. Journal
of Differential Equations 260 (2016), 427-444.
[9] GLass, O. A complex-analytic approach to the problem of uniform controllability of a transport
equation in the vanishing viscosity limit. J. Funct. Anal. 258, 3 (2010), 852-868.
[10] Grass, O., AND GUERRERO, S. Some exact controllability results for the linear KdV equation and
uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60, 1-2 (2008), 61-100.
[11] Grass, O., AND GUERRERO, S. Some exact controllability results for the linear KdV equation and
uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60, 1-2 (2008), 61-100.
[12] Grass, O., AND GUERRERO, S. Uniform controllability of a transport equation in zero diffusion-
dispersion limit. Math. Models Methods Appl. Sci. 19, 9 (2009), 1567-1601.
[13] GUERRERO, S., AND KassAB, K. Carleman estimate and null controllability of a fourth order parabolic
equation in dimension N > 2. Journal de Mathématiques Pures et Appliquées (2017), 10.
[14] GUERRERO, S., AND LEBEAU, G. Singular optimal control for a transport-diffusion equation. Comm.
Partial Differential Equations 32, 10-12 (2007), 1813-1836.
ASsAB, K. ull controllability of semi-linear fourth order parabolic equations. ournal de
15] K K. Null llabili f i-li fourth ord boli i J [ d
Mathématiques Pures et Appliquées 136 (2020), 279-312.
[16] LEFLOCH, P. G. Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical

Shock Waves. Lectures in Mathematics (ETH Zurich) (2002).

26



[17]

[18]

[19]

[20]

Lissy, P. A link between the cost of fast controls for the 1-D heat equation and the uniform con-
trollability of a 1-D transport-diffusion equation. C. R. Math. Acad. Sci. Paris 350, 11-12 (2012),
591-595.

Lissy, P. An application of a conjecture due to Ervedoza and Zuazua concerning the observability
of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform
controllability of a convection-diffusion equation in the vanishing viscosity limit. Systems Control Lett.
69 (2014), 98-102.

LOPEZ-GARCIA, M., AND MERCADO, A. Uniform null controllability of a fourth-order parabolic
equation with a transport term.

ZHOU, Z. Observability estimate and null controllability for one-dimensional fourth order parabolic
equation. Taiwanese J. Math. 16, 6 (2012), 1991-2017.

27



	Introduction
	Cauchy problem.
	Proof of Theorem 1.2.
	Carleman estimate.
	Exponential dissipation result.
	Proof of Theorem 1.2.

	Proof of Theorem 1.3.
	Appendix A.

