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In this paper, we study the cost of a transport equation perturbed by small diffusion and dispersion terms. When the control time is large enough, we prove that this cost decreases exponentially to zero as the diffusion and dispersion coefficients of the equation vanishes. When the control time is small, on the contrary, we prove that this cost increases exponentially to infinity.

Introduction

In the present paper, we consider Ω =]0, L[⊂ R. We will use the notation Q = (0, T ) × Ω. On the other hand, we will denote by C 0 a generic positive constant which depends on Ω and ω but not on T .

Let us introduce the following control system :

        
∂ t y + εy xxxx -δy xxx + M y x = 0 in Q , y(t, 0) = v 1 , y(t, L) = 0, t ∈ (0, T ) , y x (t, 0) = v 2 , y x (t, L) = 0, t ∈ (0, T ) , y(0, •) = y 0 (•) in Ω , [START_REF] Carreño | On the non-uniform null controllability of a linear KdV equation[END_REF] where y 0 ∈ L 2 (Ω) is the initial condition, ε > 0, δ > 0 and M > 0 and v 1 , v 2 are the control functions. The purpose of this paper is to study the cost of null controllability of equation [START_REF] Carreño | On the non-uniform null controllability of a linear KdV equation[END_REF] given by the following formula :

C y (ε, δ) = sup y0∈L 2 (Ω), y0 =0 min (v1,v2)∈L 2 (0,T ) 2 , y(T,•)=0 v 1 2 L 2 (0,T ) + v 2 2 L 2 (0,T ) y 0 2 L 2 (0,L) . ( 2 
)
Being more precise, we are interested to know about its behavior with respect to the diffusion and dispersion coefficient, and in particular, to know what happens as ε → 0 + and δ → 0 + . The motivation for studying the dissipation-dispersion mechanism comes from continuum mechanics. These terms may represent viscosity and capillarity-driven surface diffusion. These are particularly important in the theory of nonclassical shock waves (see the book of LeFloch [START_REF] Lefloch | Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves[END_REF]). Nonclassical shock waves are shock waves for conservation laws with nonconvex flux, which are selected through perturbative terms such as the ones of (1). Before we continue, let us consisder the following unperturbed transport equation :

∂ t y + M y x = 0 in , 1
where y(0, •) = y 0 ∈ L 2 (0, L), controlled from the boundary y x=0 = u(•) if M > 0 and y x=L = u(•) if M < 0 and where u ∈ L 2 (0, T ). It is known that this equation is null controllable if T > L/|M |. Indeed, it suffices to take u = 0 to deduce that y(T, •) = 0 and we have a null cost. On the other hand, if T < L/|M |, it is easy to see that this equation is not null controllable. Our objective is to prove that it is possible for T L/|M | to control (1) at a uniform cost as ε and δ tend to 0. On the other hand, it is to expect that for times T L/|M |, the cost of null-controllability will dramatically increase.

Let us now present some interesting results related to our work. This kind of problems was initially considered in [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF] for the case of the heat equation with vanishing viscosity coefficient. (see also Refs. [START_REF] Guerrero | Singular optimal control for a transport-diffusion equation[END_REF] and [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF]). Later, improvements have been done in [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF], [START_REF] Lissy | An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit[END_REF] and [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF]. On the other hand, authors in [START_REF] Carreño | On the non-uniform null controllability of a linear KdV equation[END_REF], [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF] and [START_REF] Glass | Uniform controllability of a transport equation in zero diffusiondispersion limit[END_REF] studied many problems related to the linear Korteweg de Vries equation with vanishing dispersion coefficient.

Concerning unperturbed fourth-order parabolic equation, many results were proved in [START_REF] Guerrero | Carleman estimate and null controllability of a fourth order parabolic equation in dimension N ≥ 2[END_REF], [START_REF] Gao | Insensitizing controls for the Cahn-Hilliard type equation[END_REF], [START_REF] Zhou | Observability estimate and null controllability for one-dimensional fourth order parabolic equation[END_REF], [START_REF] Kassab | Null controllability of semi-linear fourth order parabolic equations[END_REF], [START_REF] Cerpa | On the control of the linear KuramotoâSivashinsky equation[END_REF] and [START_REF] Gao | A new global Carleman estimate for CahnâHilliard type equation and its applications[END_REF] for internal controllability and [START_REF] Carreño | Local controllability of the stabilized Kuramoto-Sivashinsky system by a single control acting on the heat equation[END_REF], [START_REF] Cerpa | Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation[END_REF] for boundary controllability.

Up to our knowledge, there exist two works addressing this kind of problem for a perturbed fourth-order parabolic equation where in the first one [START_REF] Carreño | On the cost of null controllability of a fourth-order parabolic equation[END_REF], the authors treated this problem for δ = 0 with different boundary conditions and in the second work [START_REF] López-García | Uniform null controllability of a fourth-order parabolic equation with a transport term[END_REF], the authors treated this problem for δ = 2ε 2/3 M 1/3 with different boundary conditions. Let us start with our first result : Theorem 1.1. There exists C > 0 such that, for any y 0 ∈ L 2 (0, L), there exists v 1 , v 2 ∈ L 2 (0, T ) driving y 0 ∈ L 2 (0, L) to zero and which can be estimated as follows :

v 1 L 2 (0,T ) + v 2 L 2 (0,T ) ≤ exp C min{δ 1/2 , ε 1/3 } y 0 L 2 (0,L) .
The proof of this result is based on the controllability-observability duality (see also Proposition 3.3). Nevertheless, this information does not allow us to say anything about the behavior of the cost when ε → 0 + and δ → 0 + . In the following result, we establish the uniform null controllability, with respect to the diffusion coefficient, of equation (1) when the control time is large enough and the initial condition is in L 2 (0, L) : Theorem 1.2. There exists a constant C > 0 such that, for any y 0 ∈ L 2 (0, L), M > 0 and T > C L/M , there exist two constants Ĉ > 0 and ĉ > 0 depending on T , such that for any (ε, δ) ∈ (0, 1] × [0, 1], there exists v 1 , v 2 ∈ L 2 (0, T ) driving y 0 ∈ L 2 (0, L) to zero and which can be estimated as follows :

v 1 L 2 (0,T ) + v 2 L 2 (0,T ) ≤ Ĉ √ M ε exp - ĉM 1/2 max{δ 1/2 , (M 1/2 ε) 1/3 } y 0 L 2 (0,L) .
In the following result, we give a lower bound for the norms of the controls when the control time is small and the initial condition is in L 2 (0, L) :

Theorem 1.3. Let M > 0 and T > 0 such that T < L M .
Then there exist y 0 ∈ L 2 (0, L), c > 0 and l ∈ N independent of ε ∈ (0, 1] and δ ∈ [0, 1], such that for any v 1 , v 2 ∈ L 2 (0, T ) driving y 0 to 0 are estimated from below as follows :

v 1 L 2 (0,T ) + v 2 L 2 (0,T ) ≥ cε l exp c max(δ 1/2 , ε 1/3 ) y 0 L 2 (0,L) . ( 3 
)
This paper is organized as follows. In Section 2, we study the existence of solution for system (1). In Section 3, we prove Theorem 1.2 which states the null controllability of equation [START_REF] Carreño | On the non-uniform null controllability of a linear KdV equation[END_REF], by using a new Carleman estimate and a new exponential dissipation result. In Section 4, we prove Theorem 1.3 which gives a lower bound for the norms of the controls when the control time is small and the initial condition is in L 2 (0, L). Finally, in Appendix A, we prove the new Carleman estimate.

Cauchy problem.

In this section, we present the well-posedness results needed for the study of equation [START_REF] Carreño | On the non-uniform null controllability of a linear KdV equation[END_REF]. To this end, let us consider the following adjoint system :

         -w t + εw xxxx + δw xxx -M w x = f in Q , w(t, 0) = w(t, L) = 0, t ∈ (0, T ) , w x (t, 0) = w x (t, L) = 0, t ∈ (0, T ) , w(T, •) = 0 in Ω , (4) 
where f ∈ L 2 ((0, T ) × (0, L)). The solutions of system (1) are to be understood in the sense of transposition. Before we continue, let us set

X := C([0, T ]; H -2 (0, L)) ∩ L 2 ((0, T ) × (0, L)). Definition 2.1. Given T > 0, y 0 ∈ H -2 (0, L) and v 1 , v 2 ∈ L 2 (0, T ), we call y a solution of (1), a function y ∈ X satisfying for all f ∈ L 2 ((0, T ) × (0, L)) T 0 L 0 y f dxdt = (y 0 , w(0, •)) H -2 (0,L)×H 2 0 (0,L) -ε T 0 v 1 (t)w xxx (t, 0)dt + T 0 (εv 2 (t) -δv 1 (t))w xx (t, 0)dt, ( 5 
)
where w is the corresponding solution of (4).

It is easy to see that any regular solution of (1) is a solution in the above sense. Indeed, it suffices to use integration by parts.

Proposition 2.2. Let M ∈ R, ε ∈ (0, 1], δ ∈ [0, 1], T > 0, y 0 ∈ H -2 0 (0, L) and v 1 , v 2 ∈ L 2 (0, T ).
Then, there exists a unique solution of transposition [START_REF] Cerpa | On the control of the linear KuramotoâSivashinsky equation[END_REF]. Moreover, there exists C > 0 independent of ε and δ such that

y X ≤ C ε 3 y 0 H -2 0 (0,L) + v 1 L 2 (0,T ) + v 2 L 2 (0,T ) .
Proof. To prove this proposition, first we are going to demonstrate that for f ∈ L 2 (0, L), we have w ∈ C 0 ([0, T ]; H 2 0 (0, L)) and w xx (•, 0), w xxx (•, 0) ∈ L 2 (0, T ) . Then, by using the Riesz representation theorem, we deduce the existence and uniqueness of y ∈ L 2 ((0, T ) × (0, L)) the solution of (1). At the end, we use the equation verified by y to prove that y ∈ C([0, T ]; H -2 (0, L)). Now, by multiplying (4) 1 by w and integrating by parts, we obtain

- 1 2 d dt L 0 |w(t, x)| 2 dx + ε L 0 |w xx (t, x)| 2 dx = L 0 f (t, x)w(t, x)dx. (6) 
Integrating the last equality between t and T , we deduce

L 0 |w(t, x)| 2 dx + ε T 0 L 0 |w xx (t, x)| 2 dxdt ≤ C ε T 0 L 0 |f (t, x)| 2 dx + ε 2 T 0 L 0 |w xx (t, x)| 2 dxdt, (7) 
for 0 ≤ t ≤ T . Then, we deduce

w 2 C 0 ([0,T ];L 2 (0,L))∩L 2 (0,T ;H 2 0 (0,L)) ≤ C ε 2 f 2 L 2 (0,T ;L 2 (0,L)) , (8) 
for C > 0. Now, if we multiply (4) 1 by w xxxx and integrating by parts, we have

- 1 2 d dt L 0 |w xx (t, x)| 2 dx + ε L 0 |w xxxx (t, x)| 2 dx ≤ L 0 f (t, x)w xxxx (t, x)dx +δ L 0 w xxxx (t, x)w xxx (t, x)dx + M L 0 w x w xxx dx. (9) 
To treat the terms on the right-hand side of ( 9), let us notice that

L 0 w xxxx (t, x)w xxx (t, x)dx + L 0 f (t, x)w xxxx (t, x)dx + M L 0 w x w xxx dx ≤ ε 2 L 0 |w xxxx (t, x)| 2 dx + C δ 4 + M 2 ε 3 L 0 |w xx (t, x)| 2 dx + 1 ε L 0 |f (t, x)| 2 dx , (10) 
where C > 0. Here we used the fact

δ L 0 w xxxx (t, x)w xxx (t, x)dx ≤ δ w 1/4 L 2 (0,T ;H 2 (0,L)) w 3/4 L 2 (0,T ;H 4 (0,L)) ≤ Cδ 4 ε 3 w 2 L 2 (0,T ;H 2 (0,L)) + ε 4 w 2 L 2 (0,T ;H 4 (0,L))
and that there exists λ > 0 such that for any u ∈ H 4 (Ω) ∩ H 2 0 (Ω), we have

Ω |∆ 2 u| 2 dx ≥ λ u 2 H 4 (Ω) . (11) 
Combining [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF] with [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF] and integrating between t and T , we deduce

L 0 |w xx (t, x)| 2 dx + ε T 0 L 0 |w xxxx (t, x)| 2 dx ≤ C δ 4 + M 2 ε 3 w 2 L 2 (0,T ;H 2 0 (0,L)) + 1 ε T 0 L 0 |f (t, x)| 2 dx , (12) 
where C > 0 and for 0 ≤ t ≤ T . From ( 8) and ( 12), we deduce

w 2 C 0 ([0,T ];H 2 0 (0,L))∩L 2 (0,T ;H 4 0 (0,L)) ≤ C ε 6 f 2 L 2 (0,T ;L 2 (0,L)) , (13) 
for C > 0. We can deduce by using the last estimate with (5)

y L 2 ((0,T )×(0,L)) ≤ C ε 3 y 0 H -2 0 (0,L) + v 1 L 2 (0,T ) + v 2 L 2 (0,T ) .
Now, from (1) 1 combined with the previous estimate, we deduce

∂ t y = -εy xxxx + δy xxx -M y x ∈ L 2 (0, T ; H -4 (0, L)).
Then, we deduce that y ∈ L 2 (0, T ) × L 2 (0, L)) ∩ H 1 (0, T ; H -4 (0, L)). By using an interpolation argument, we finish the proof of Proposition 2.2.

3 Proof of Theorem 1.2.

Carleman estimate.

Let us consider the following adjoint system :

         -∂ t ϕ + εϕ xxxx + δϕ xxx -M ϕ x = 0 in Q , ϕ(t, 0) = ϕ(t, L) = 0, t ∈ (0, T ) , ϕ x (t, 0) = ϕ x (t, L) = 0, t ∈ (0, T ) , ϕ(T, •) = ϕ 0 (•) in Ω , (14) 
where ϕ 0 ∈ L 2 (0, T ). The objective of this section is to state a Carleman inequality for the solutions of this system. Let us introduce the weight function :

α(t, x) = -1 2 x 2 + 8Lx + L 2 t µ (T -t) µ , ( 15 
)
where µ ∈ [ 1 3 , 1 2 
].

Remark 3.1. We have

α -1 ≤ CT 2µ , C 1 α ≤ α x ≤ C 2 α , C 1 α ≤ -α xx ≤ C 2 α in (0, T ) × (0, L),
and |α t | + |α tx | + |α txx | ≤ CT α 1+1/µ , |α tt | ≤ CT 2 α 1+2/µ in (0, T ) × (0, L),
where C, C 1 , C 2 are positive constants indenpendent of T .

Proposition 3.2. Let µ ∈ [ 1 3 , 1 2 
]. Then, there exists a positive constant C independent of T > 0, ε > 0, δ ≥ 0, M > 0 such that, for any ϕ 0 ∈ L 2 (Ω), we have

ε 2 s 7 Q e -2sα α 7 |ϕ| 2 dxdt + s 5 δ 2 Q e -2sα α 5 |ϕ| 2 dxdt ≤ C T 0 e -2sα(t,0) (ε 2 sα(t, 0) + εδ)|ϕ xxx (t, 0)| 2 dt + T 0 (e -2sα(0) (ε 2 s 3 α 3 (t, 0) + δ 2 sα(t, 0))|ϕ xx (t, 0)| 2 dt , (16) 
for s ≥ C 0 T µ T µ + 1 + T µ M µ ε 1-2µ δ 3µ-1
and where ϕ is the corresponding solution of [START_REF] Guerrero | Singular optimal control for a transport-diffusion equation[END_REF].

Since the proof of Proposition 3.2 is very technical, we postpone it to an Appendix, at the end of the paper. We can deduce from the Carleman estimate an observability inequality for [START_REF] Guerrero | Singular optimal control for a transport-diffusion equation[END_REF], as follows : Proposition 3.3. There exists a positive constant C such that for any ϕ 0 ∈ L 2 (0, L), we have

ϕ(0, •) 2 L 2 (0,L) ≤ exp C(1 + M µ ) ε 1-2µ δ 3µ-1 ϕ xx (•, 0) 2 L 2 (0,T ) + ϕ xxx (•, 0) 2 L 2 (0,T ) . (17) 
Proof. Before we start, let us notice that we can add the following term :

s 2/µ+1 ε 2/µ-4 δ 6-2/µ Q e -2sα α 2/µ+1 |ϕ| 2 dxdt, (18) 
in the left-hand side of ( 16). Indeed, it suffices to use an interpolation argument between the two terms in the left-hand side of ( 16). Let us fix s as follows :

s = C 0 T µ T µ + 1 + T µ M µ ε 1-2µ δ 3µ-1 . ( 19 
)
Now, from ( 16) and ( 18), we have

s 2/µ+1 ε 2/µ-4 δ 6-2/µ Q e -2sα α 2/µ+1 |ϕ| 2 dxdt ≤ C T 0 e -2sα(t,0) ε 2 sα(t, 0) + εδ |ϕ xxx (t, 0)| 2 dt + T 0 e -2sα(t,0) ε 2 s 3 α 3 (t, 0) + δ 2 sα(t, 0) |ϕ xx (t, 0)| 2 dt , (20) 
for some C > 0 independent of δ, and M . Combining the definition of α (see ( 15)) with Remark 3.1, we deduce

s 2/µ+1 ε 2/µ-4 δ 6-2/µ T 4+2µ e -C 2 s T 2µ 3T /4 T /4 L 0 |ϕ| 2 dxdt ≤ C 3 e -C 3 s T 2µ ε 2 s T 2µ + εδ T 0 |ϕ xxx (t, 0)| 2 dt +e -C 3 s T 2µ ε 2 s 3 T 6µ + δ 2 s T 2µ T 0 |ϕ xx (t, 0)| 2 dt , (21) 
for some C 2 > 0 and C 3 > 0. We use the following energy estimate :

L 0 |ϕ(t 1 , x)| 2 dx ≤ L 0 |ϕ(t 2 , x)| 2 dx, (22) 
for 0 ≤ t 1 ≤ t 2 ≤ T , combined with (21) and the fact that

s 2/µ+1 T 4+2µ ≥ 1, we deduce L 0 |ϕ(0, x)| 2 dxdt ≤ C T 0 |ϕ xxx (t, 0)| 2 dt + T 0 |ϕ xx (t, 0)| 2 dt , (23) 
where

C = exp C(1 + M µ ) ε 1-2µ δ 3µ-1 , (24) 
with C > 0 independent of ε, δ, and M (C depends on T ).

Exponential dissipation result.

Let us consider ε > 0, δ ≥ 0 and M > 0. In this subsection, we are going to prove an exponential dissipation result to compensate the observability constant found in Theorem 1.1. Let us introduce K as the smallest constant such that

L 0 |ϕ(t 1 , x)| 2 dx ≤ K L 0 |ϕ(t 2 , x)| 2 dx, ( 25 
)
where ϕ is the solution of ( 14) and 0 ≤ t 1 ≤ t 2 ≤ T . We will prove that, whenever the time passed t 2 -t 1 is larger than L/M , the constant of the dissipation result can be dramatically improved. It behaves like :

exp - C max(δ 1/2 , ε 1/2 )
where C is positive. Proposition 3.4. There exists C > 0 such that for any T > 0, ε > 0, δ > 0, M > 0, 0 ≤ t 1 < t 2 ≤ T such that t 2 -t 1 ≥ L/M we have the following decay properties for the solution of ( 14):

• If δ 3 ≤ 4 • 5 2 9 ε 2 (M -L/(t 2 -t 1 )), then K ≤ exp -C (M (t 2 -t 1 ) -L) 4/3 (ε(t 2 -t 1 )) 1/3 . ( 26 
)
• If δ 3 ≥ 4 • 5 2 9 ε 2 (M -L/(t 2 -t 1 )), then K ≤ exp -C (M (t 2 -t 1 ) -L) 3/2 (δ(t 2 -t 1 )) 1/2 . ( 27 
)
Proof of Proposition 3.4.

By multiplying ( 14) 1 by exp{r(M (T -t)+x)}ϕ where r is a positive constant which will be chosen below, then integrating in (0, L) and integrating by parts with respect to x, we deduce

- 1 2 d dt L 0 exp{r(M (T -t) + x)}|ϕ| 2 dx + ε L 0 (exp{r(M (T -t) + x)}ϕ) xx ϕ xx dx +δ L 0 (exp{r(M (T -t) + x)}ϕ) xx ϕ x dx = 0.
Here we used that, ϕ(t, 0) = ϕ(t, L) = ϕ x (t, 0) = ϕ x (t, L) = 0 for t ∈ (0, T ). Then, we deduce

- 1 2 d dt L 0 exp{r(M (T -t) + x)}|ϕ| 2 dx + εr 2 L 0 (exp{r(M (T -t) + x)}ϕϕ xx dx +εr L 0 (exp{r(M (T -t) + x)}(|ϕ x | 2 ) x dx + ε L 0 (exp{r(M (T -t) + x)}|ϕ xx | 2 dx +δ r 2 2 L 0 (exp{r(M (T -t) + x)}(|ϕ| 2 ) x dx + 2δr L 0 (exp{r(M (T -t) + x)}|ϕ x | 2 dx +δ r 2 L 0 (exp{r(M (T -t) + x)}(|ϕ x | 2 ) x dx = 0.
By integrating by parts with respect to x, we deduce

- 1 2 d dt L 0 exp{r(M (T -t) + x)}|ϕ| 2 dx -2εr 2 L 0 (exp{r(M (T -t) + x)}|ϕ x | 2 dx + ε 2 r 4 L 0 (exp{r(M (T -t) + x)}|ϕ| 2 dx + ε L 0 (exp{r(M (T -t) + x)}|ϕ xx | 2 dx - r 3 2 δ L 0 (exp{r(M (T -t) + x)}|ϕ| 2 dx + 3r 2 δ L 0 (exp{r(M (T -t) + x)}|ϕ x | 2 dx = 0. ( 28 
)
By using the fact that

εr 2 L 0 (exp{r(M (T -t) + x)}|ϕ x | 2 dx ≤ εr 4 L 0 (exp{r(M (T -t) + x)}|ϕ| 2 dx +εr 2 L 0 (exp{r(M (T -t) + x)}ϕ xx ϕdx ≤ 3 2 εr 4 L 0 (exp{r(M (T -t) + x)}|ϕ| 2 dx + ε 2 L 0 (exp{r(M (T -t) + x)}|ϕ xx | 2 dx,
combined with (28), we deduce

- 1 2 d dt L 0 exp{r(M (T -t) + x)}|ϕ| 2 dx - 5ε 2 r 4 L 0 (exp{r(M (T -t) + x)}|ϕ| 2 dx - r 3 2 δ L 0 (exp{r(M (T -t) + x)}|ϕ| 2 dx ≤ 0. ( 29 
)
Then, we deduce

- d dt exp{(-5εr 4 -δr 3 )(T -t)} L 0 exp{r(M (T -t) + x)}|ϕ(t, x)| 2 dx ≤ 0, ( 30 
)
for t ∈ (0, T ). Integrating between t 1 and t 2 , we have

L 0 |ϕ(t 1 , x)| 2 dx ≤ K L 0 |ϕ(t 2 , x)| 2 dx, (31) 
where

K = exp{5ε(t 2 -t 1 )r 4 + δ(t 2 -t 1 )r 3 + (L -M (t 2 -t 1 ))r}. ( 32 
)
Now, we are going to minimise K. Let us denote α 4 := 5ε(t 2 -t 1 ),

β 3 := δ(t 2 -t 1 ) and γ := L -M (t 2 -t 1 ). Case 1. β 3 27α 2 ≤ -γ 4 .
In this case, we have

β ≤ 3 4 1/3 (-γ) 1/3 α 2/3 . From (32), we deduce K ≤ exp α 4 r 4 + 1 4 1/3 (-γ) 1/3 α 2/3 r 3 + γr . By taking r * = (-γ) 1/3 α 1/3 , we deduce K ≤ exp 1 4 + 1 4 1/3 -1 (-γ) 4/3 α 1/3 . Case 2. β 3 27α 2 ≥ -γ 4 .
In this regime, let us notice that

α ≤ 2 3 √ 3 β 3/2 (-γ) 1/2 . ( 33 
)
Using the previous estimate with the definition of K given in (32), we deduce that

K ≤ exp 1 6 √ 3 
β 3/2 (-γ) 1/2 r 4 + β 3 r 3 + γr . ( 34 
)
By taking r = (-γ) 1/2 β 1/2 > 0, we can deduce that

K ≤ exp 1 6 √ 3 
β 3/2 (-γ) 1/2 (γ) 2 β 2 + β 3 (-γ) 3/2 β 3/2 + γ (-γ) 1/2 β 1/2 ≤ exp 1 6 √ 3 + 1 3 -1 (-γ) 3/2 β 1/2 . ( 35 
)
3.3 Proof of Theorem 1.2.

The proof is divided in two steps.

Step 1. Observability inequality.

Let us first deduce an observability inequality from the Carleman inequality [START_REF] Lefloch | Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves[END_REF]. Let us consider ϕ a regular solution of ( 14) and use the Proposition 3.2 for a time

T 1 = 1 M and we denote Q 1 = [0, T 1 ] × (0, L) and Q1 = [T 1 /3, 2T 1 /3] × (0, L).
By applying the same ideas as in the proof of Proposition 3.3 but this time in [0, T 1 ], where we fix s as follows :

s = C 0 T µ 1 T µ 1 + 1 + T µ 1 M µ ε 1-2µ δ 3µ-1 . ( 36 
)
we deduce

L 0 |ϕ(0, x)| 2 dxdt ≤ C T1 0 |ϕ xxx (t, 0)| 2 dt + T1 0 |ϕ xx (t, 0)| 2 dt , (37) 
where

C = exp C 1 M µ ε 1-2µ δ 3µ-1 , (38) 
with C 1 > 0 independent of ε and δ.

Step 2. Combination between the observability inequality and energy estimate.

Let T ≥ C 0 /M with C 0 is large enough. By applying the same ideas as before, between times T -T 1 and T , we deduce

L 0 |ϕ(T -1/M, x)| 2 dx ≤ C T T -1/M |ϕ xxx (t, 0)| 2 dt + T T -1/M |ϕ xx (t, 0)| 2 dt , ( 39 
)
where C is given in (38). Applying Proposition 3.4 for t 2 = T -1/M and t 1 = 1/M , combined with (37), we deduce

L 0 |ϕ(0, x)| 2 dx ≤ K C T1 0 |ϕ xxx (t, 0)| 2 dt + T1 0 |ϕ xx (t, 0)| 2 dt , ( 40 
)
where C is given in (38) and where K is estimated in (26)-( 27). By taking C 0 large enough, the observability constant K C can be estimated in the following way :

K C ≤        C 2 exp - C 3 M 1/3 ε 1/3 when δ 3 ≤ M ε 2 , C 2 exp - C 3 M 1/2 δ 1/2 when δ 3 ≥ M ε 2 , ( 41 
)
where C 2 > 0 and C 3 > 0 are independent of ε, δ. Here, we take µ = 1/3 in the first regime and µ = 1/2 in the second one.

At the end, it is classical to prove that for any y 0 ∈ L 2 (0, L), there exists a control v 1 , v 2 ∈ L 2 (0, T ) such that the solution y ∈ L 2 (0, T ; H 2 (0, L)) of (1) satisfies y(T, •) = 0 in (0, L) where v is estimated as follows :

v 1 2 L 2 (0,T ) + v 2 2 L 2 (0,T ) ≤ K C ε 2 y 0 2 L 2 (0,L) . ( 42 
)
Then, we deduce the following estimate on K C

ε 2 : K C ε 2 ≤        C 4 ε exp - C 5 M 1/3 ε 1/3 in the first regime , C 4 ε exp - C 5 M 1/2 δ 1/2 in the second regime , (43) 
where C 4 > 0 and C 5 > 0. This concludes the proof of Theorem 1.2.

4 Proof of Theorem 1.3.

In this proof, we adapt the ideas used in [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF]. Let us introduce R

0 < R < L -M T 2 . ( 44 
) Let us consider φ0 ∈ C ∞ (0, L) such that                Supp( φ0 ) ⊂ (R, 2R), φ0 ≥ 0, L 0 | φ0 | 2 = 1. ( 45 
)
Let us denote φ the corresponding solution of ( 14) for ϕ(T, •) = φ0 . The rest of the proof is divided in three steps.

Step 1. Estimate of φ(0, •) L 2 (0,L) .

Let us introduce β(t, x) the solution of

∂ t β + M β x = 0 in Q , β(T, •) = φ0 in (0, L) . ( 46 
)
Let us notice that from (44) and (45), we have

Supp(β(t, •)) ⊂ (0, 1), t ∈ [0, T ].
By mutiplying ( 14) 1 (where ϕ(T, •) = φ0 ) by β and integrating by parts, we deduce

L 0 β(0, x) φ(0, x)dx -φ0 2 L 2 (0,L) + T 0 L 0 εβ xxxx -δβ xxx φdx = 0.
By taking δ > 0 and ε > 0 small enough we deduce

L 0 β(0, x) φ(0, x)dx ≥ C φ0 2 L 2 (0,L) ≥ C > 0, (47) 
where C > 0 is independent of ε, δ and M . Then, we can easily deduce that

φ(0, •) 2 L 2 (0,L) ≥ C > 0. ( 48 
)
Step 2. Estimate of φxx (•, 0) 2 L 2 (0,T ) + φxxx (•, 0) 2 L 2 (0,T ) . By mutiplying ( 14) 1 (where ϕ(T, •) = φ0 ) by (R/4 -x) 4 φ and integrating by parts, we deduce

- 1 2 
d dt R 4 0 ( R 4 -x) 4 | φ| 2 dx + ε R 4 0 ( R 4 -x) 4 | φxx | 2 dx + ε R 4 0 ( R 4 -x) 2 | φx | 2 dx + 12ε R 4 0 | φ| 2 dx +12δ R 4 0 ( R 4 -x)| φ| 2 dx = 6δ R 4 0 ( R 4 -x) 3 | φx | 2 dx + 2M R 4 0 ( R 4 -x) 3 | φ| 2 dx + 25ε R 4 0 ( R 4 -x) 2 | φx | 2 dx. (49) Let us notice that 25ε R 4 0 ( R 4 -x) 2 | φx | 2 dx ≤ Cε R 4 0 | φ| 2 dx + ε 3 R 4 0 ( R 4 -x) 4 | φxx | 2 dx and 6δ R 4 0 ( R 4 -x) 3 | φx | 2 dx ≤ C(δ R 4 + δ 2 R 2 ε ) R 4 0 | φ| 2 dx + ε 3 R 4 0 ( R 4 -x) 4 | φxx | 2 dx.
Combining the last two estimates with (49), integrating between 0 and T and using the fact that φ0 (x) = 0 for x ∈ (0, R), we deduce

R 4 0 ( R 4 -x) 4 | φ(0, x)| 2 dx + ε T 0 R 4 0 ( R 4 -x) 4 | φxx | 2 dxdt + ε T 0 R 4 0 ( R 4 -x) 2 | φx | 2 dxdt ≤ C(ε, M, δ) R 4 0 | φ| 2 dx. (50) 
for some constant C(ε, M, δ) whose growth in 1 ε , M , R, δ is at most polynomial. Let us notice that, we can add the following term to the left-hand side of (50) :

εR 4 φ 2 L 2 (0,T ;H 2 (0,R/16)) , (51) 
By mutiplying [START_REF] Guerrero | Singular optimal control for a transport-diffusion equation[END_REF] 1 by ( R 4 -x) 8 φxxxx and integrating by parts, we deduce

- 1 2 d dt R 4 0 ( R 4 -x) 8 | φxx | 2 dx + ε R 4 0 ( R 4 -x) 8 | φxxxx | 2 dx + 4δ R 4 0 ( R 4 -x) 7 | φxxx | 2 dx ≤ C(ε, M, δ) R 4 0 | φ| 2 dx + | φxxx (t, 0)| 2 + 16 R 4 0 ( R 4 -x) 7 φt φxxx dx +56 R 4 0 ( R 4 -x) 6 φt φxx dx + ε 4 R 4 0 ( R 4 -x) 8 | φxxxx | 2 dx. (52) 
Before we continue let us notice that if we want to add the term

εR 8 φ(t, •) 2 H 4 (0,R/16) , (53) 
in the left-hand side of (52), it suffices to add

C(δ, ε, M ) R 4 0 ( R 4 -x) 6 | φxxx | 2 dx + φ(t, •) 2 H 2 (0,R/16) , (54) 
in the right-hand side of (52). Furthermore, to add the following term

1 ε R 4 0 ( R 4 -x) 8 | φt | 2 dx, (55) 
in the left-hand side of (52), it suffices to add

C(δ, ε, M ) R 4 0 ( R 4 -x) 6 | φxxx | 2 dx + R 4 0 ( R 4 -x) 4 | φx | 2 dx ,
in the right-hand side of (52). Indeed, it suffices, to use -∂ t ϕ = -(εϕ xxxx +δϕ xxx -M ϕ x ) in Ω. By applying Cauchy-Schwartz's inequality, we deduce that the terms in the right-hand side of (52) can be estimated by

C(ε, M, δ) R 4 0 | φ| 2 dx + R 4 0 ( R 4 -x) 4 | φxx | 2 dx + R 4 0 ( R 4 -x) 6 | φxxx | 2 dx + φ(t, •) 2 H 2 (0,R/16) + ε 4 R 4 0 ( R 4 -x) 8 | φxxxx | 2 dx + ε 4 R 8 φ(t, •) 2 H 4 (0,R/16) + 1 2ε R 4 0 ( R 4 -x) 8 | φt | 2 dx, (56) 
even if we add the two terms (55)-( 53) in the left-hand side of (52). Here, we used that :

C(ε, M, δ) | φxxx (t, 0)| 2 + | φxx (t, 0)| 2 ≤ ε 4 R 8 φ(t, •) 2 H 4 (0,R/16) + C(ε, M, δ) φ(t, •) 2 H 2 (0,R/16) . ( 57 
)
for some constant C(ε, M, δ) whose growth in 1 ε , M , R, δ is at most polynomial. To finish this part, let us notice that

C(ε, M, δ) R 4 0 ( R 4 -x) 6 | φxxx | 2 dx ≤ C(ε, M, δ) R 4 0 ( R 4 -x) 4 | φxx | 2 dx + φ(t, •) 2 H 2 (0,R/16) + ε 8 R 4 0 ( R 4 -x) 8 | φxxxx | 2 dx + ε 4 R 8 φ(t, •) 2 H 4 (0,R/16) .
Here we used (57). Combining the last estimate with (56)-( 52) by taking into consideration that we add the terms (55)-( 53), then integrating between 0 and T and using (51) with (50) we deduce

εR 8 φ 2 L 2 (0,T ;H 4 (0,R/16)) ≤ C(ε, M, δ) T 0 R 4 0 | φ| 2 dx. ( 58 
)
for some constant C(ε, M, δ) whose growth in 1 ε , M , R, δ is at most polynomial. From the last estimate, we deduce

φxx (•, 0) 2 L 2 (0,T ) + φxxx (•, 0) 2 L 2 (0,T ) ≤ C(ε, M, δ) R 4 0 | φ| 2 dx, (59) 
for some constant C(ε, M, δ) whose growth in 1 ε , M , δ is at most polynomial.

Step 3. Last computations.

Let us introduce ψ ∈ C ∞ (R) as follows :

         ψ = 0 in [R, +∞), ψ = 1 in (-∞, R/2], ψ ≤ 0, (60) 
We apply the same ideas used in the proof of Proposition 3.4. Let us denote

E(t) = exp{-(εr 4 + δr 3 )(T -t)} L 0 exp{r(M (T -t) -x)}ψ(x -M (T -t))| φ| 2 dx.
By multiplying ( 14)

1 by ψ(x -M (T -t)) exp{r(M (T -t) -x)
} φ where r is a positive constant which will be chosen below, we deduce

- d dt E(t) ≤ C(r) R+M (T -t) R/2+M (T -t) ( ψ L ∞ (0,L) + ψ L ∞ (0,L) + ψ L ∞ (0,L) + ψ L ∞ (0,L) ) exp{r(M (T -t) -x)}| φ| 2 dx, (61) 
where C(r) depends on r in a polynomial way. Then, we deduce

- d dt E(t) ≤ C(r) exp{- rR 2 } L 0 | φ| 2 dx. (62) 
Before we continue, let us estimate the right-hand side of (62). By multiplying [START_REF] Guerrero | Singular optimal control for a transport-diffusion equation[END_REF] 1 by φ and integrating by parts, we deduce

- 1 2 d dt L 0 | φ| 2 dx + ε L 0 | φxx | 2 dx = 0.
Integrating the last inequality over (t, T ), we deduce

L 0 | φ(t, x)| 2 dx + ε T 0 L 0 | φxx | 2 dxdt = L 0 | φ(0, x)| 2 dx.
Combing the last estimate with (62), we deduce

- d dt E(t) ≤ C(r) exp{- rR 2 } L 0 | φ0 | 2 dx. (63) 
Integrating over (t, T ), for 0 ≤ t ≤ T , we deduce

L 0 exp{r(M (T -t) -x)}ψ(x -M (T -t))| φ}| 2 dx ≤ C exp ε(T -t)r 4 + δ(T -t)r 3 - rR 2 L 0 | φ0 | 2 dx. (64) 
By using the fact that ψ

(x -M (T -t)) = 1 for (t, x) ∈ (0, T ) × (0, R 4 ), we deduce exp r(M (T -t) - R 4 ) R 4 0 | φ(t, x)| 2 dx ≤ L 0 exp{r(M (T -t) -x)}ψ(x -M (T -t))| φ| 2 dx. (65) 
Combining ( 64) with (65), we deduce

exp r(M (T -t) - R 4 ) R 4 0 | φ(t, x)| 2 dx ≤ C exp ε(T -t)r 4 + δ(T -t)r 3 - rR 2 L 0 | φ0 | 2 dx. (66) 
At the end, we deduce

R 4 0 | φ(t, x)| 2 dx ≤ C exp εT r 4 + δT r 3 - rR 2 L 0 | φ0 | 2 dx. (67) 
By choosing

r = 1 3 min R δT 1/2 , R εT 1/3 , we deduce R 4 0 | φ(t, x)| 2 dx ≤ C exp - R 2 max((RδT ) 1/2 , (R 2 εT ) 1/3 ) L 0 | φ0 | 2 dx, (68) 
where C > 0. Combining the last estimate with (59), we deduce

φxx (•, 0) 2 L 2 (0,T ) + φxxx (•, 0) 2 L 2 (0,T ) ≤ C(ε) exp - c max(δ 1/2 , ε 1/3 ) L 0 | φ0 | 2 dx, (69) 
for some constant C(ε) whose growth in 1 ε is at most polynomial and c > 0. Combining the last estimate with (48), we finish the proof of Theorem 1.3.

Appendix A.

Proof of Proposition 3.2.

Let us set

ψ(t, x) = e -sα(t,x) ϕ(t, x), ∀(t, x) ∈ Q. ( 70 
)
By replacing ϕ by e sα ψ in the equation -∂ t ϕ + εϕ xxxx + δϕ xxx -M ϕ x , we have

L 1 ψ + L 2 ψ = L 3 ψ (71) 
where

L 1 ψ = L 1,ε ψ + L 1,δ ψ + L1 ψ, L 2 ψ = L 2,ε ψ + L 2,δ ψ + L2 ψ, (72) 
where

L 1,ε ψ = 4εs 3 α 3 x ψ x + 4εsα x ψ xxx + 6εs 3 α 2 x α xx ψ, L 1,δ ψ = δψ xxx + 3δs 2 α 2 x ψ x , L1 ψ = -ψ t -M ψ x , L 2,ε ψ = εs 4 α 4 x ψ + 6εs 2 α 2 x ψ xx + εψ xxxx + 12εs 2 α x α xx ψ x , L 2,δ ψ = δs 3 α 3 x ψ + 3δsα x ψ xx + 3δsα xx ψ x , L2 ψ = -sα t ψ -M sα x ψ (73) 
and

L 3 ψ = -3εs 2 α 2 xx ψ -6εsα xx ψ xx -3s 2 δα xx α x ψ. (74) Moreover, L 1 ψ 2 L 2 (Q) + L 2 ψ 2 L 2 (Q) + 2(L 1 ψ, L 2 ψ) L 2 (Q) = L 3 ψ 2 L 2 (Q) . ( 75 
) (L 1 ψ, L 2 ψ) L 2 (Q) = (L 1,ε ψ, L 2,ε ψ) L 2 (Q) + (L 1,δ ψ, L 2,δ ψ) L 2 (Q) + (L 1,δ ψ, L 2,ε ψ) L 2 (Q) +(L 2,δ ψ, L 1,ε ψ) L 2 (Q) + (L 1,ε ψ, L2 ψ) L 2 (Q) + ( L1 ψ, L2 ψ) L 2 (Q) +(L 1,δ ψ, L2 ψ) L 2 (Q) + (L 2,δ ψ, L1 ψ) L 2 (Q) + (L 2,ε ψ, L1 ψ) L 2 (Q) . ( 76 
)
Step 1. Computation of (L 1,δ ψ, L 2,δ ψ) L 2 (Q) and first main estimate.

In this step, we will compute

Q L 1,δ ψL 2,δ dxdt under the form 2 i=1 3 j=1 I δ ij where I δ ij is the scalar product in L 2 (Q) of the i-th term of L 1,δ ψ with the j-th term of L 2,δ ψ.
By integration by parts we have,

I δ 11 = δ 2 s 3 Q α 3 x ψ xxx ψdxdt = -δ 2 s 3 Q α 3 x ψ x ψ xx dxdt -3δ 2 s 3 Q α 2 x α xx ψψ xx dxdt ≥ - 1 2 δ 2 s 3 Q α 3 x (|ψ x | 2 ) x dxdt + 3δ 2 s 3 Q α 2 x α xx |ψ x | 2 dxdt + C 0 δ 2 s 3 T 4µ Q α 5 x |ψ| 2 dxdt ≥ 9 2 δ 2 s 3 Q α 2 x α xx |ψ x | 2 dxdt -C 0 δ 2 s 3 T 4µ Q α 5 |ψ| 2 dxdt. (77) 
On the other hand

I δ 21 = 3δ 2 s 5 Q α 5 x ψ x ψdxdt = 3 2 δ 2 s 5 Q α 5 x (|ψ| 2 ) x dxdt = - 15 2 δ 2 s 5 Q α 4 x α xx |ψ| 2 dxdt. ( 78 
)
Moreover,

I δ 12 = 3δ 2 s Q α x ψ xx ψ xxx dxdt = 3 2 δ 2 s Q α x (|ψ xx | 2 ) x dxdt = - 3 2 δ 2 s Q α xx |ψ xx | 2 dxdt + 3 2 δ 2 s T 0 (α x |ψ xx | 2 ) | x=0,L dxdt. (79) 
Furthermore,

I δ 22 = 9δ 2 s 3 Q α 3 x ψ xx ψ x dxdt = 9 2 δ 2 s 3 Q α 3 x (|ψ x | 2 ) x dxdt = - 27 2 δ 2 s 3 Q α 2 x α xx |ψ x | 2 dxdt. (80) 
Moreover,

I δ 13 = 3δ 2 s Q α xx ψ xxx ψ x dxdt = -3δ 2 s Q α xx |ψ xx | 2 dxdt. ( 81 
)
On the other hand,

I δ 23 = 9δ 2 s 3 Q α xx α 2 x |ψ x | 2 dxdt. ( 82 
)
Combining the previous estimates, we can easily deduce

(L 1,δ ψ, L 2,δ ψ) L 2 (Q) ≥ - 15 2 δ 2 s 5 Q α 4 x α xx |ψ| 2 dxdt - 9 2 δ 2 s Q α xx |ψ xx | 2 dxdt - 3 2 δ 2 s T 0 (α x |ψ xx | 2 ) x=0 dt -C 0 δ 2 s 3 T 4µ Q α 5 |ψ| 2 dxdt. ( 83 
)
Step 2. Computation of (L 1,ε ψ, L 2,ε ψ) L 2 (Q) and first main estimate.

In this step, we will compute

Q L 1,ε ψL 2,ε dxdt under the form 3 i=1 4 j=1 I ε ij where I ε ij is the scalar product in L 2 (Q) of the i-th term of L 1,ε ψ with the j-th term of L 2,ε ψ.
By integration by parts we have,

I ε 11 = 4ε 2 s 7 Q α 7 x ψ x ψdxdt = 2ε 2 s 7 Q α 7 x (|ψ| 2 ) x dxdt = -14ε 2 s 7 Q α 6 x α xx |ψ| 2 dxdt. ( 84 
)
On the other hand, we have

I ε 21 = 4ε 2 s 5 Q α 5 x ψ xxx ψdxdt = -20ε 2 s 5 Q α 4 x α xx ψψ xx dxdt -2ε 2 s 5 Q α 5 x (|ψ x | 2 ) x dxdt ≥ 30ε 2 s 5 Q α 4 x α xx |ψ x | 2 dxdt -C 0 ε 2 s 5 T 4µ Q α 7 |ψ| 2 dxdt . (85) 
Moreover,

I ε 31 = 6ε 2 s 7 Q α 6 x α xx |ψ| 2 dxdt. (86) 
Furthermore,

I ε 12 = 12ε 2 s 5 Q α 5 x (|ψ x | 2 ) x dxdt = -60ε 2 s 5 Q α 4 x α xx |ψ x | 2 dxdt. (87) 
On the other hand, we have

I ε 22 = 12ε 2 s 3 Q α 3 x (|ψ xx | 2 ) x dxdt = -36ε 2 s 3 Q α 2 x α xx |ψ xx | 2 dxdt +12ε 2 s 3 T 0 (α 3 x |ψ xx | 2 ) | x=0,L dt. (88) 
Moreover, we have

I ε 32 = 36ε 2 s 5 Q α 5 x ψ xx ψdxdt ≥ -36ε 2 s 5 Q α 4 x α xx |ψ x | 2 dxdt -C 0 ε 2 s 5 T 4µ Q α 7 |ψ| 2 dxdt. (89) 
On the other hand, we have

I ε 13 = 4ε 2 s 3 Q α 3 x ψ xxxx ψ x dxdt = -2ε 2 s 3 Q α 3 x (|ψ xx | 2 ) x dxdt -12ε 2 s 3 Q α 2 x α xx ψ xxx ψ x dxdt ≥ 18ε 2 s 3 Q α 2 x α xx |ψ xx | 2 dxdt -2ε 2 s 3 T 0 (α 3 x |ψ xx | 2 ) | x=0,L dt -C 0 ε 2 s 3 T 4µ Q α 5 |ψ x | 2 dxdt. (90) 
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Moreover, we have

I ε 23 = 2ε 2 s Q α x (|ψ xxx | 2 ) x dxdt = -2ε 2 s Q α xx |ψ xxx | 2 dxdt + 2ε 2 s T 0 (α x |ψ xxx | 2 ) | x=0,L dt. (91) 
Furthermore, we have

I ε 33 = 6ε 2 s 3 Q α 2 x α xx ψ xxxx ψdxdt = -12ε 2 s 3 Q α x α 2 xx ψ xxx ψdxdt -6ε 2 s 3 Q α 2 x α xx ψ xxx ψ x dxdt ≥ 6ε 2 s 3 Q α 2 x α xx |ψ xx | 2 dxdt -C 0 ε 2 s 3 T 8µ Q α 7 |ψ| 2 dxdt -C 0 ε 2 s 3 T 4µ Q α 5 |ψ x | 2 dxdt. (92) 
Moreover, we have

I ε 14 = 48ε 2 s 5 Q α 4 x α xx |ψ x | 2 dxdt. (93) 
Furthermore, we have

I ε 24 = 48ε 2 s 3 Q α 2 x α xx ψ x ψ xxx dxdt ≥ -48ε 2 s 3 Q α 2 x α xx |ψ xx | 2 dxdt -C 0 ε 2 s 3 T 4µ Q α 5 |ψ x | 2 dxdt. (94) 
At the end, we have

I ε 34 ≥ -C 0 ε 2 s 5 T 4µ Q α 7 |ψ| 2 dxdt. (95) 
Combining the previous computations, we deduce

(L 1,ε ψ, L 2,ε ψ) L 2 (Q) ≥ -8ε 2 s 7 Q α 6 x α xx |ψ| 2 -18ε 2 s 5 Q α 4 x α xx |ψ x | 2 dxdt -60ε 2 s 3 Q α 2 x α xx |ψ xx | 2 dxdt -2ε 2 s Q α xx |ψ xxx | 2 dxdt -2ε 2 s T 0 (α x |ψ xxx | 2 ) x=0 dt -10ε 2 s 3 T 0 (α 3 x |ψ xx | 2 ) x=0 dt -C 0 ε 2 (s 5 T 4µ + s 3 T 8µ ) Q α 7 |ψ| 2 dxdt -C 0 ε 2 s 3 T 4µ Q α 5 |ψ x | 2 dxdt. (96) 
Step 3. Computation of the left scalar products..

In this step, we will compute the rest of the scalar products. Let us start with Q L 1,ε ψL 2,δ dxdt, that we write under the form

3 i=1 3 j=1 I ε,δ ij where I ε,δ ij is the scalar product in L 2 (Q) of the i-th term of L 1,ε ψ with the j-th term of L 2,δ ψ.
By integrating by parts, we have

I ε,δ 11 = 2εδs 6 Q α 6 x (|ψ| 2 ) x dxdt = -12εδs 6 Q α 5 x α xx |ψ| 2 dxdt. (97) 
On the other hand, we have

I ε,δ 21 = 4εδs 4 Q α 4 x ψ xxx ψdxdt = -16εδs 4 Q α 3 x α xx ψ xx ψdxdt -2εδs 4 Q α 4 x (|ψ x | 2 ) x dxdt = 24εδs 4 Q α 2 x α 2 xx (|ψ| 2 ) x dxdt + 24εδs 4 Q α 3 x α xx |ψ x | 2 dxdt = -48εδs 4 Q α x α 3 xx |ψ| 2 dxdt + 24εδs 4 Q α 3 x α xx |ψ x | 2 dxdt. (98) 
Moreover, we have

I ε,δ 31 = 6εδs 6 Q α 5 x α xx |ψ| 2 dxdt. (99) 
Furthermore, we have

I ε,δ 12 = 6εδs 4 Q α 4 x (|ψ x | 2 ) x dxdt = -24εδs 4 Q α 3 x α xx |ψ x | 2 dxdt. (100) 
On the other hand, we have

I ε,δ 22 = 6εδs 2 Q α 2 x (|ψ xx | 2 ) x dxdt = -12εδs 2 Q α x α xx |ψ xx | 2 dxdt + 6εδs 2 T 0 (α 2 x |ψ xx | 2 ) | x=0,L dt. (101) 
Moreover, we have

I ε,δ 32 = 18εδs 4 Q α 3 x α xx ψ xx ψdxdt = -27εδs 4 Q α 2 x α 2 xx (|ψ| 2 ) x dxdt -18εδs 4 Q α 3 x α xx |ψ x | 2 dxdt = 54εδs 4 Q α x α 3 xx |ψ| 2 dxdt -18εδs 4 Q α 3 x α xx |ψ x | 2 dxdt.
(102) Furthermore, we have

I ε,δ 13 = 12εδs 4 Q α 3 x α xx |ψ x | 2 dxdt. (103) 
On the other hand, we have

I ε,δ 23 = 12εδs 2 Q α x α xx ψ xxx ψ x dxdt = -6εδs 2 Q α 2 xx (|ψ x | 2 ) x dxdt -12εδs 2 Q α x α xx |ψ xx | 2 dxdt = -12εδs 2 Q α x α xx |ψ xx | 2 dxdt.
(104) Here we used the fact that α xxx = 0. Moreover, we have

I ε,δ 33 = 9εδs 4 Q α 2 x α 2 xx (|ψ| 2 ) x dxdt = -18εδs 4 Q α x α 3 xx |ψ| 2 dxdt. (105) 
Combining the previous computations, we deduce

(L 1,ε ψ, L 2,δ ψ) L 2 (Q) ≥ -6εδs 6 Q α 5 x α xx |ψ| 2 dxdt -C 0 εδs 4 T 4µ Q α 6 |ψ| 2 dxdt -6εδs 4 Q α 3 x α xx |ψ x | 2 dxdt -24εδs 2 Q α x α xx |ψ xx | 2 dxdt -6εδs 2 T 0 (α 2 x |ψ xx | 2 ) x=0 dt. (106) 
Now, we study the term Q L 1,δ ψL 2,ε dxdt, that we write under the form By integrating by parts, we have

I δ,ε 11 = εδs 4 Q α 4 x ψ xxx ψdxdt = - 1 2 δεs 4 Q α 4 x (|ψ x | 2 ) x dxdt -4εδs 4 Q α 3 x α xx ψ xx ψdxdt = 2δεs 4 Q α 3 x α xx |ψ x | 2 dxdt + 4εδs 4 Q α 3 x α xx |ψ x | 2 dxdt + 6εδs 4 Q α 2 x α 2 xx (|ψ| 2 ) x dxdt = 6δεs 4 Q α 3 x α xx |ψ x | 2 dxdt -12εδs 4 Q α x α 3 xx |ψ| 2 dxdt. (107) 
On the other hand, we have

I δ,ε 12 = 3εδs 2 Q α 2 x (|ψ xx | 2 ) x dxdt = -6εδs 2 Q α x α xx |ψ xx | 2 dxdt + 3δεs 2 T 0 α 2 x (|ψ xx | 2 ) x=0,L dt. (108)
Moreover, we have

I δ,ε 13 = 1 2 εδ Q (|ψ xxx | 2 ) x dxdt = 1 2 εδ T 0 (|ψ xxx | 2 ) x=0,L dt. (109) 
Furthermore, we have

I δ,ε 14 = 12εδs 2 Q α x α xx ψ xxx ψ x dxdt = -6εδs 2 Q α 2 xx (|ψ x | 2 ) x dxdt -12εδs 2 Q α x α xx |ψ xx | 2 dxdt = -12εδs 2 Q α x α xx |ψ xx | 2 dxdt. (110) 
Here we used the fact that α xxx = 0. On the other hand, we have

I δ,ε 21 = 3 2 εδs 6 Q α 6 x (|ψ| 2 ) x dxdt = -9εδs 6 Q α 5 x α xx |ψ| 2 dxdt. (111) 
Furthermore, we have

I δ,ε 22 = 9εδs 4 Q α 4 x (|ψ x | 2 ) x dxdt = -36εδs 4 Q α 3 x α xx |ψ x | 2 dxdt. (112) 
Moreover, we have

I δ,ε 23 = 3εδs 2 Q α 2 x ψ xxxx ψ x dxdt = - 3 2 εδs 2 Q α 2 x (|ψ xx | 2 ) x dxdt -6εδs 2 Q α x α xx ψ xxx ψ x dxdt = 9εδs 2 Q α x α xx |ψ xx | 2 dxdt - 3 2 εδs 2 T 0 (α 2 x |ψ xx | 2 ) x=0,L dxdt + 3εδs 2 Q α 2 xx (|ψ x | 2 ) x dxdt = 9εδs 2 Q α x α xx |ψ xx | 2 dxdt - 3 2 εδs 2 T 0 (α 2 x |ψ xx | 2 ) x=0,L dt. (113) 
On the other hand, we have

I δ,ε 24 = 36εδs 4 Q α 3 x α xx |ψ x | 2 dxdt. ( 114 
)
Combining the previous computations, we deduce

(L 1,δ ψ, L 2,ε ψ) L 2 (Q) ≥ 6δεs 4 Q α 3 x α xx |ψ x | 2 dxdt -C 0 εδs 4 T 4µ Q α 6 |ψ| 2 dxdt -9εδs 6 Q α 5 x α xx |ψ| 2 dxdt -9εδs 2 Q α x α xx |ψ xx | 2 dxdt - 1 2 εδ T 0 (|ψ xxx | 2 ) x=0 dt - 3 2 εδs 2 T 0 (α 2 x |ψ xx | 2 ) x=0 dt. (115) 
Combining ( 115) with (106), we deduce

(L 1,δ ψ, L 2,ε ψ) L 2 (Q) + (L 1,ε ψ, L 2,δ ψ) L 2 (Q) ≥ -C 0 εδs 4 T 4µ Q α 6 |ψ| 2 dxdt -15εδs 6 Q α 5 x α xx |ψ| 2 dxdt -33εδs 2 Q α x α xx |ψ xx | 2 dxdt - 1 2 εδ T 0 (|ψ xxx | 2 ) x=0 dt - 21 2 εδs 2 T 0 (α 2 x |ψ xx | 2 ) x=0 dt. (116) 
Now, we study the term Q L 1,ε ψ L2 dxdt, that we write under the form

3 i=1 2 j=1
I ε,2 ij where I ε,2 ij is the scalar product in L 2 (Q) of the i-th term of L 1,ε ψ with the j-th term of L2 ψ.

By integrating by parts, we have

I ε,2 11 = -2εs 4 Q α 3 x α t (|ψ| 2 ) x dxdt = 2εs 4 Q (α 3 x α t ) x |ψ| 2 dxdt. ( 117 
)
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Moreover, we have

I ε,2 12 = -2M εs 4 Q α 4 x (|ψ| 2 ) x dxdt = 8M εs 4 Q α 3 x α xx |ψ| 2 dxdt. (118) 
On the other hand, we have

I ε,2 21 = -4εs 2 Q α x α t ψ xxx ψdxdt = 4εs 2 Q (α x α t ) x ψ xx ψdxdt + 2εs 2 Q α x α t (|ψ x | 2 ) x dxdt = -2εs 2 Q (α x α t ) xx (|ψ| 2 ) x dxdt -4εs 2 Q (α x α t ) x |ψ x | 2 dxdt -2εs 2 Q (α x α t ) x |ψ x | 2 dxdt = 2εs 2 Q α xx α txx |ψ| 2 dxdt -6εs 2 Q (α x α t ) x |ψ x | 2 dxdt. (119) 
Furthermore, we have

I ε,2 22 = -4M εs 2 Q α 2 x ψ xxx ψdxdt = 8M εs 2 Q α x α xx ψ xx ψdxdt + 2M εs 2 Q α 2 x (|ψ x | 2 ) x dxdt = -4M εs 2 Q α 2 xx (|ψ| 2 ) x dxdt -12M εs 2 Q α x α xx |ψ x | 2 dxdt = -12M εs 2 Q α x α xx |ψ x | 2 dxdt. (120) 
Here we used the fact that α xxx = 0. Moreover, we have

I ε,2 31 = -6εs 4 Q α 2 x α xx α t |ψ| 2 dxdt. (121) 
On the other hand, we have

I ε,2 32 = -6M εs 4 Q α 3 x α xx |ψ| 2 dxdt. (122) 
Combining the previous computations, we deduce

(L 1,ε ψ, L2 ψ) L 2 (Q) = ε Q -6s 4 α 2 x α xx α t + 2s 2 α xx α txx + 2εs 4 (α 3 x α t ) x |ψ| 2 dxdt +2εM s 4 Q α 3 x α xx |ψ| 2 dxdt -6εs 2 Q (α x α t ) x |ψ x | 2 dxdt -12M εs 2 Q α x α xx |ψ x | 2 dxdt. (123) 
Now, we study the term Q L 1,δ ψ L2 dxdt, that we write under the form By integrating by parts, we have

I δ,2 11 = -δs Q α t ψ xxx ψdxdt = δs Q α tx ψ xx ψdxdt + 1 2 δs Q α t (|ψ x | 2 ) x dxdt = - 1 2 δs Q α txx (|ψ| 2 ) x dxdt - 3 2 δs Q α tx |ψ x | 2 dxdt = - 3 2 δs Q α tx |ψ x | 2 dxdt. (124) 
Moreover, we have

I δ,2 12 = -δM s Q α x ψ xxx ψdxdt = δM s Q α xx ψ xx ψdxdt + 1 2 δM s Q α x (ψ x | 2 ) x dxdt = - 3 2 δM s Q α xx |ψ x | 2 dxdt. (125) 
Furthermore, we have

I δ,2 21 = - 3 2 δs 3 Q α 2 x α t (|ψ| 2 ) x dxdt = 3 2 δs 3 Q (α 2 x α t ) x |ψ| 2 dxdt. (126) 
On the other hand, we have

I δ,2 22 = - 3 2 M δs 3 Q α 3 x (|ψ| 2 ) x dxdt = 9 2 M δs 3 Q α 2 x α xx |ψ| 2 dxdt. (127) 
Combining the previous computations, we deduce

(L 1,δ ψ, L2 ψ) L 2 (Q) = 3 2 δs 3 Q (α 2 x α t ) x |ψ| 2 dxdt - 3 2 δM s Q α xx |ψ x | 2 dxdt - 3 2 δs Q α tx |ψ x | 2 dxdt + 9 2 M δs 3 Q α 2 x α xx |ψ| 2 dxdt. (128) 
Now, we study the term Q L1 ψL 2,ε dxdt, that we write under the form

2 i=1 4 j=1 I 1,ε ij where I 1,ε ij is the scalar product in L 2 (Q) of the i-th term of L1 ψ with the j-th term of L ε,2 ψ.
By integrating by parts, we have

I 1,ε 11 = - 1 2 εs 4 Q α 4 x (|ψ| 2 ) t dxdt = 2εs 4 Q α 3 x α tx |ψ| 2 dxdt. (129) 
On the other hand, we have

I 1,ε 12 = -6εs 2 Q α 2 x ψ xx ψ t dxdt = 12εs 2 Q α x α xx ψ x ψ t dxdt + 3εs 2 Q α 2 x (|ψ x | 2 ) t dxdt = 12εs 2 Q α x α xx ψ x ψ t dxdt -6εs 2 Q α x α tx |ψ x | 2 dxdt. (130) 
Furthermore, we have

I 1,ε 13 = -ε Q ψ xxxx ψ t dxdt = - 1 2 ε Q (|ψ xx | 2 ) t dxdt = 0. (131) 
Moreover, we have

I 1,ε 14 = -12εs 2 Q α x α xx ψ x ψ t dxdt. (132) 
Furthermore, we have

I 1,ε 21 = - 1 2 εM s 4 Q α 4 x (|ψ| 2 ) x dxdt = 2εM s 4 Q α 3 x α xx |ψ| 2 dxdt. (133) 
On the other hand, we have

I 1,ε 22 = -3εM s 2 Q α 2 x (|ψ x | 2 ) x dxdt = 6εM s 2 Q α x α xx |ψ x | 2 dxdt. (134) 
Moreover, we have

I 1,ε 23 = -εM Q ψ xxxx ψ x dxdt = 1 2 εM Q (|ψ xx | 2 ) x dxdt = 1 2 εM T 0 (|ψ xx | 2 ) x=0,L dt. (135) 
Furthermore, we have 

I 1,ε 24 = -12εM s 2 Q α x α xx |ψ x | 2 dxdt. (136) 
On the other hand, we have

I 1,δ 12 = -3δs Q α x ψ xx ψ t dxdt = 3δs Q α xx ψ x ψ t dxdt + 3 2 δs Q α x (ψ x | 2 ) t dxdt = 3δs Q α xx ψ x ψ t dxdt - 3 2 δs Q α tx |ψ x | 2 dxdt. (139) 
Furthermore, we have

I 1,δ 13 = -3δs Q α xx ψ x ψ t dxdt. (140) 
In addition, we have

I 1,δ 21 = - 1 2 δM s 3 Q α 3 x (|ψ| 2 ) x dxdt = 3 2 δM s 3 Q α 2 x α xx |ψ| 2 dxdt. (141) 
Additionally, we have

I 1,δ 22 = - 3 2 δM s Q α x (|ψ x | 2 ) x dxdt = 3 2 δM s Q α xx |ψ x | 2 dxdt. (142) 
Moreover, we have

I 1,δ 23 = -3δM s Q α xx |ψ x | 2 dxdt. ( 143 
)
Combining the previous computations, we deduce By integrating by parts, we have

( L1 ψ, L δ,2 ψ) L 2 (Q) = 3 2 δs 3 Q α 2 x α tx |ψ| 2 dxdt -
I 1,2 11 = 1 2 s Q α t (|ψ| 2 ) t dxdt = - 1 2 s Q α tt |ψ| 2 dxdt. (145) 
In addition, we have

I 1,2 12 = 1 2 M s Q α x (|ψ| 2 ) t dxdt = - 1 2 M s Q α tx |ψ| 2 dxdt. (146) 
Furthermore, we have

I 1,2 21 = 1 2 M s Q α t (|ψ| 2 ) x dxdt = - 1 2 M s Q α tx |ψ| 2 dxdt. (147) 
Additionally, we have

I 1,2 22 = 1 2 M 2 s Q α x (|ψ| 2 ) x dxdt = - 1 2 M 2 s Q α xx |ψ| 2 dxdt. (148) 
Combining the previous computations, we deduce

( L1 ψ, L2 ψ) L 2 (Q) = - 1 2 M 2 s Q α xx |ψ| 2 dxdt -M s Q α tx |ψ| 2 dxdt - 1 2 s Q α tt |ψ| 2 dxdt. (149) 
Step 4. Last computations.

Combining (75)-( 83)-( 96)-( 116)-( 123)-( 128)-( 137)-( 144 

+sT 2 Q α 1+2/µ |ψ| 2 dxdt + L 3 ψ 2 L 2 (Q) , (150) 
for s ≥ C 0 T 2µ .

To finish the proof, it suffices to treat the global terms in the right-hand side of (150). Let us notice that we can add the following terms :

s 4+1/µ ε 1/µ-1 δ 3-1/µ Q α 4+1/µ |ψ| 2 dxdt + s 3+1/µ δ 4-1/µ ε 1/µ-2 Q α 3+1/µ |ψ| 2 dxdt and s 2+1/µ ε 1/µ-1 δ 3-1/µ Q α 2+1/µ |ψ x | 2 dxdt + s 1+1/µ δ 4-1/µ ε 1/µ-2 Q α 1+1/µ |ψ x | 2 dxdt,
in the left-hand side of (150) for s ≥ C 0 T 2µ . By taking

s ≥ C 0 T µ T µ + 1 + T µ M µ ε 1-2µ δ 3µ-1 ,

2 i=1 4 j=1I

 24 δ,ε ij where I δ,ε ij is the scalar product in L 2 (Q) of the i-th term of L 1,δ ψ with the j-th term of L 2,ε ψ.

  scalar product in L 2 (Q) of the i-th term of L 1,δ ψ with the j-th term of L2 ψ.

4 Q α 3 x α tx |ψ| 2 dxdt -6εs 2 Q α x α tx |ψ x | 2 dxdt +2εM s 4 Q α 3 x α xx |ψ| 2 dxdt -6εM s 2 Q α x α xx |ψ x | 2 dxdt - 1 2 εM T 0 ( 2 i=1 3 j=1I 1 I 1 2 x

 4242023112 Combining the previous computations, we deduce( L1 ψ, L ε,2 ψ) L 2 (Q) ≥ 2εs |ψ xx | 2 ) x=0 dt. (137)Now, we study the term Q L1 ψL 2,δ dxdt, that we write under the form ,δ ij where I 1,δ ij is the scalar product in L 2 (Q) of the i-th term of L1 ψ with the j-th term of L δ,2 ψ.By integrating by parts, we have α tx |ψ| 2 dxdt.

α 2 j=1I 1 , 2

 212 xx |ψ x | 2 dxdt. (144) Now, we study the term Q L1 ψ L2 dxdt, that we write under the form 2 i=1 ij where I 1,2 ij is the scalar product in L 2 (Q) of the i-th term of L1 ψ with the j-th term of L2 ψ.

2 Q s 7 α 7 2 Q s 5 α 5 |ψ| 2 +≤ C ε 2 s T 0 (α x |ψ xxx | 2 ) x=0 dt + ε 2 s 3 T 0 (α 3 x |ψ xx | 2 ) x=0 dt +δ 2 s T 0 (α x |ψ xx | 2 ) 0 (|ψ xxx | 2 ) x=0 dt + εδs 2 T 0 (α 2 x 0 (|ψ xx | 2 ) 2 Qα 3 Q α 3 |ψ| 2 dxdt + εM s 4 Qα 4

 2722023020202202022344 )-(149) with Remark 3.1, we deduceε |ψ| 2 + s 5 α 5 |ψ x | 2 dxdt + s 3 α 3 |ψ xx | 2 dxdt + sα|ψ xxx | 2 dxdt +δ sα|ψ xx | 2 dxdt + εδ Q s 6 α 6 |ψ| 2 + s 2 α 2 |ψ xx | 2 dxdt |x=0 dt + εδ T |ψ xx | 2 ) x=0 dt +εM T x=0 dt + εs 4 T Q α 4+1/µ |ψ| 2 dxdt + T εs 2+1/µ |ψ x | 2 dxdt +δs 3 T Q α 3+1/µ |ψ| 2 dxdt + δsT Q α 1+1/µ |ψ x | 2 dxdt +M δs |ψ| 2 dxdt + M sT Q α 1+1/µ |ψ| 2 dxdt

we absorb the global terms in the right-hand side of (150).

Finally, we come back to ϕ by using the definition of ψ = e -sα ϕ and the properties on the weight function α given in [START_REF] Kassab | Null controllability of semi-linear fourth order parabolic equations[END_REF].