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Negative and positive controllability results for coupled systems of

second and fourth order parabolic equations

K.Kassab∗

October 23, 2020

Abstract

In this paper, we consider a fourth order parabolic equation in a bounded smooth domain Ω with
homogeneous Dirichlet boundary conditions on the solution and the laplacian of the solution. The first
main result we establish is the existence of insensitizing controls for this equation in an arbitrarily small
open set ω included in Ω. The second main result we establish is the existence of many coupled systems
of second and fourth order parabolic equations where the approximate controllability is not satisfied.

Keywords: Fourth order parabolic equation, global Carleman estimate, insensitizing controls.

1 Introduction

In the present paper, we consider Ω ⊂ RN with (N ≥ 2) a bounded connected open set whose boundary
∂Ω is regular enough. Let ω ⊂ Ω be a (small) nonempty open subset and O ⊂ Ω be a (small) nonempty
open subset. We will use the notation Q = (0, T )× Ω and Σ = (0, T )× ∂Ω and we will denote by ~n(x) the
outward unit normal vector to Ω at the point x ∈ ∂Ω. On the other hand, we will denote by C0 a generic
positive constant which depends on Ω and ω but not on T .

Let us introduce the following control system :
∂tw + ∆2w + f(w,∇w,∇2 w) = ζ + χωv in Q ,

w = ∆w = 0 on Σ ,

w(0, ·) = y0(·) + τ ỹ0 in Ω ,

(1)

where y0 ∈ L2(Ω) is the initial condition, τ ∈ R unknown and small enough, f is a C1 globally Lipschitz-

continuous function defined on R × RN × RN
2

, ỹ0 ∈ L2(Ω) is unknown, ||ỹ0||L2(Ω) = 1, v ∈ L2(Q) is the

control function and ζ ∈ L2(Q). In this paper we suppose that

ω ∩O 6= ∅. (2)

Our objective is to establish the existence of insensitizing controls for this equation. Let us introduce the
following two functionals :

φ1(w) =
1

2

∫∫
(0,T )×O

|w|2dxdt (3)

and

φ2(w) =
1

2

∫∫
(0,T )×O

|∇w|2dxdt. (4)
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Definition 1.1. Let y0 ∈ L2(Ω) and ζ ∈ L2(Q). We say that the control v insensitizes φ1, respectively φ2,
if for all ỹ0 ∈ L2(Ω) such that ||ỹ0||L2(Ω) = 1, we have∣∣∣∣∂φ1 (w(x, t, v, τ))

∂τ
|τ=0

∣∣∣∣ = 0 (5)

respectively ∣∣∣∣∂φ2 (w(x, t, v, τ))

∂τ
|τ=0

∣∣∣∣ = 0.
(6)

In fact, the original problem was introduced by Jacques Louis Lions in [19] for the heat equation. In
order to guarantee the insensitivity for all y0 ∈ L2(Ω), the authors in [3] introduced the ε-insensitivity.

Definition 1.2. Let ε > 0, y0 ∈ L2(Ω) and ζ ∈ L2(Q). We say that the control vε ε-insensitizes φ1

respectively φ2, if for all ỹ0 ∈ L2(Ω) such that ||ỹ0||L2(Ω) = 1, we have∣∣∣∣∂φ1 (w(x, t, vε, τ))

∂τ
|τ=0

∣∣∣∣ ≤ ε (7)

respectively ∣∣∣∣∂φ2 (w(x, t, vε, τ))

∂τ
|τ=0

∣∣∣∣ ≤ ε. (8)

Before presenting our results, we will cite some physical motivations which are related to the system
under view.

In [16], the authors studied the epitaxial growth of nanoscale thin films, which is modeled by the following
system : 

∂tu+ ∆2u−∇. (f(∇u)) = g in Q̃ ,
∂u

∂~n
=
∂4u
∂~n

= 0 on Σ̃ ,

u(0, ·) = u0(·) in Ω̃ ,

(9)

where Ω̃ = (0, L)2, Q̃ = (0, T )× Ω̃, Σ̃ = (0, T )× ∂Ω̃, u0 ∈ L2(Ω̃), f ∈ C1(RN ,RN ) and g ∈ L2((0, T )× Ω̃).
In this context, u is the scaled film height, the term ∆2u represents the capillarity-driven surface diffusion
and g denotes the deposition flux, while ∇ · (f(∇u)) describes the upward hopping of atoms.

Furthermore, in [14] the authors studied the following system :
∂tu+∇.

(
|∇4u|p(x)−2∇4u

)
= f(x, u) in Q ,

u = 4u = 0 on Σ ,

u(0, ·) = u0(·) in Ω ,

(10)

where p and f are specific functions and u0 is an initial data. The previous model may describe some
properties of medical magnetic resonance images in space and time. When the nonlinear source f(x, u) is
equal to η(x, t), then the functions u(x, t) and η(x, t), respectively, represent the pixel intensity value of a
digital image and a random noise. On the other hand, the author in [17] studied a fourth order parabolic
system similar to (1) that models the long range effect of insects dispersal. Moreover, the authors in [6] were
interested by a fourth order parabolic system where the solution describes the height of a viscous droplet
spreading on a plain. For more details about this subject, see for instance [18], [9], [1], [2], [20], [21].
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Before presenting our main results let us introduce the following space :

L2,γ(Q) =

{
g ∈ L2(Q);

∫∫
Q

e
γ√
t |g|2dxdt <∞

}
, (11)

for γ > 0. Let us now introduce the first main result :

Theorem 1.3. Assume that y0 = 0, f is a C1 globally Lipschitz function such that f(0, 0, 0) = 0 and (2)

holds. Then, there exists a constant C2 = C(Ω, ω,O, T, f) such that for any ζ ∈ L2,C2(Q), there exists a
control v ∈ L2((0, T )×ω) such that (5) is satisfied. Moreover, the control v satisfies the following estimate :

‖v‖L2((0,T )×ω) ≤ eC2

(∫∫
Q

e
C2√
t |ζ|2dxdt

)1/2

, (12)

where

C2 = C0(Ω, ω)

(
1 +

1√
T

+ (1 + T )(1 + ‖f‖2W 1
∞

)

)
.

(13)

Concerning φ2, we will suppose that f satisfies

f(w,∇w,∇2w) = aw +B · ∇w + E : ∇2w, (14)

where

a ∈ L∞(0, T ), B ∈ L∞(0, T )N , E ∈ L∞(0, T )N
2

. (15)

Then, the second main result is the following one :

Theorem 1.4. Assume that y0 = 0, f is given by (14) and (2) and (15) hold. Then, there exists a constant

C3 = C(Ω, ω,O, T, f) such that for any ζ ∈ L2,C3(Q), there exists a control v ∈ L2((0, T )× ω) such that (6)
is satisfied. Moreover, the control v satisfies the following estimate :

‖v‖L2((0,T )×ω) ≤ eC3

(∫∫
Q

e
C3√
t |ζ|2dxdt

)1/2

.
(16)

Concerning our third main result, we are going to present some negative results related to the heat and
fourth order parabolic equation. Before we continue, let us suppose that :

a ∈ L∞(Q) and B ∈ L∞(Q)N . (17)

• Let us start by the heat operator. Let us introduce the following coupled system :
∂ty −∆y + a(t, x)y +B(t, x) · ∇y = χωv in Q ,

y = 0 on Σ ,

y(0, ·) = y0 in Ω ,
(18)


−∂tu−∆u+ a(t, x)u−∇ · (B(t, x)u) = ∇ · (∇y 11O) in Q ,

u = 0 on Σ ,

u(T, ·) = uT in Ω ,

(19)

where y0, uT ∈ L2(Ω). Before we continue let us present the definition of the approximate controllability of
the previous coupled system :

Definition 1.5. Let y0, uT ∈ L2(Ω) and (17) holds true. We say that system (18)-(19) is approximately
controllable, if for all ε > 0, there exists vε ∈ L2(Q) such that the corresponding solution (yε, uε) of (18)-(19)
for v = vε satisfies

‖uε(0, ·)‖L2(Ω) ≤ ε. (20)
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On the other hand, the approximate controllability of (18)-(19) holds true if and only if for all ϕ0 ∈ L2(Ω),
the solution (ψ,ϕ) of the following system :

−∂tψ −∆ψ + a(t, x)ψ −∇ · (B(t, x)ψ) = ∇ · (∇ϕ 11O) in Q ,

∂tϕ−∆ϕ+ a(t, x)ϕ+B(t, x) · ∇ϕ = 0 in Q ,

ψ = 0 on Σ ,

ϕ = 0 on Σ ,

ψ(T, ·) = 0 , ϕ(0, ·) = ϕ0(·) in Ω ,

(21)

satisfies the following Unique Continuation Principle :

ψ = 0 in (0, T )× ω =⇒ ψ = ϕ = 0 in Q. (22)

When we started our study, we expected that the Unique Continuation Principle holds true for all Ω ⊂ RN ,
ω ⊂⊂ Ω, O ⊂⊂ Ω such that (2) holds, a ∈ L∞(Q) and B ∈ L∞(Q)N . We tried to prove a Carleman estimate
of the form ∫ T

0

∫
Ω

P2(t, x)(|ψ(t, x)|2 + |ϕ(t, x)|2)dtdx ≤ C
∫ T

0

∫
ω

P2(t, x)|ψ(t, x)|2dtdx,

for C > 0 and where P is a weight function. We tried several tracks but none succeeded. Then, we were
convinced that this Carleman does not hold in all cases. So, we present the following result :

Lemma 1.6. Let T > 0. Then, there exist a bounded connected set Ω ⊂ RN , an open non empty subset
O ⊂⊂ Ω, ϕ0 ∈ L2(Ω), a ∈ L∞(Q) and B ∈ L∞(Q)N such that the corresponding solution (ψ,ϕ) of (21) does
not satisfies the Unique Continuation Principle given in (22) for any ω ⊂ Ω.

From what we said above and Lemma 1.6, we deduce the following Theorem :

Theorem 1.7. There exist a bounded connected set Ω ⊂ RN , an open non empty subset O ⊂⊂ Ω, a ∈ L∞(Q)
and B ∈ L∞(Q)N , y0, uT ∈ L2(Q) such that for any open ω ⊂ Ω, the coupled system (18)-(19) is not ap-
proximately controllable.

Moreover, we can extend our result as follows :

Remark 1.8. Let us replace (20) by

‖yε(T, ·)‖L2(Ω) + ‖uε(0, ·)‖L2(Ω) ≤ ε. (23)

Then, Theorem 1.7 holds true.

• Let us now present our result concerning the fourth order parabolic equation. Let us introduce following
coupled system : 

∂ty + ∆2y + V ·∆∇y + E : ∇2y +B · ∇y + ay = χωv in Q ,

y = ∆y = 0 on Σ ,

y(0, ·) = y0 in Ω ,
(24)


−∂tu+ ∆2u−∇ ·∆(V u) +∇2 : (Eu)−∇ · (Bu) + au = ∇ · (∇y 11O) in Q ,

u = ∆u = 0 on Σ ,

u(T, ·) = uT in Ω ,

(25)

where y0, uT ∈ L2(Ω), a ∈ L∞(Q), E ∈ L∞(Q)N
2

and B, V ∈ L∞(Q)N .
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Definition 1.9. Let y0, uT ∈ L2(Ω). We say that system (24)-(25) is approximately controllable, if for all
ε > 0, there exists vε ∈ L2(Q) such that the corresponding solution (yε, uε) of (24)-(25) for v = vε satisfies

‖uε(0, ·)‖L2(Ω) ≤ ε. (26)

It is well known that the approximate controllability of (24)-(25) holds true if and only if for all ϕ0 ∈
L2(Ω), the solution (ψ,ϕ) of the following system :

−∂tψ + ∆2ψ −∇ ·∆(V ψ) +∇2 : (Eψ)−∇ · (Bψ) + aψ = ∇ · (∇ϕ 11O) in Q ,

∂tϕ+ ∆2ϕ+ V · ∇∆ϕ+ E : ∇2ϕ+B · ∇ϕ+ aϕ = 0 in Q ,

ψ = ∆ψ = 0 on Σ ,

ϕ = ∆ϕ = 0 on Σ ,

ψ(T, ·) = 0 , ϕ(0, ·) = ϕ0(·) in Ω ,

(27)

satisfies the following Unique Continuation Principle :

ψ = 0 in (0, T )× ω =⇒ ψ = ϕ = 0 in Q. (28)

So, we present the following result :

Lemma 1.10. Let N ∈ {1, 2} and T > 0. Then, there exist a bounded connected set Ω ⊂ RN , an open

non empty subset O ⊂⊂ Ω, ϕ0 ∈ L2(Ω), a ∈ L∞(Q), B, V ∈ L∞(Q)N and E ∈ L∞(Q)N
2

such that the
corresponding solution (ψ,ϕ) of (27) does not satisfy the Unique Continuation Principle given in (28) for
any open non empty subset ω ⊂⊂ Ω.

From what we said above and Lemma 1.10, we deduce the following Theorem :

Theorem 1.11. Let N ∈ {1, 2}. Then, there exist a bounded connected set Ω ⊂ RN , an open non empty

subset O ⊂⊂ Ω, a ∈ L∞(Q), B, V ∈ L∞(Q)N and E ∈ L∞(Q)N
2

such that for any open non empty subset
ω ⊂ Ω, the coupled system (24)-(25) is not approximately controllable.

Moreover, we can extend our result as follows:

Remark 1.12. Let us replace (26) by

‖yε(T, ·)‖L2(Ω) + ‖uε(0, ·)‖L2(Ω) ≤ ε. (29)

Then, Theorem 1.11 holds true.

Let us now present some results concerning the existence of insensitizing controls for parabolic equations.

• We start by the heat equation. In order to guarantee the insensitivity for all y0 ∈ L2(Ω), the authors in
[3] introduced the ε-insensitivity and studied the following system :

∂ty −∆y + f(y) = ξ + χωv in Q ,

y = g + τ1ĝ on Σ ,

y(0, ·) = y0(·) + τ0ŷ0 in Ω ,

(30)

where y0 ∈ L2(Ω), g ∈ L2(Σ) are given, τ0 ∈ R and τ1 ∈ R are unknown and small enough, f is a C1

globally Lipschitz-continuous function defined on R, ŷ0 ∈ L2(Ω) and ĝ ∈ L2(Σ) are unknown such that
‖ŷ0‖L2(Ω) = ‖ĝ|L2(Σ) = 1, v ∈ L2(Q) is the control function and ξ belongs to a specific space. On the other

hand, author in [19] studied this system where f was also a C1 globally Lipschitz-continuous function defined
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on R . Furthermore, the author in [7] studied the existence of controls that ε-insensitize the norm of the
solution of (30) for g ≡ 0, τ1 = 0 and where Ω is an open unbounded domain set of class C2. On the other
hand, author in [8] studied also the system (30) for y0 ≡ 0, g ≡ 0, τ1 = 0 and f(0) = 0 and proved the
existence of an initial data y0 ∈ L2(Ω) where Ω\ω 6= ∅ such that the insensitivity does not hold. Moreover,
the authors in [5] studied the system (30) for y0 ≡ 0, g ≡ 0, τ1 = 0 and f = f(y,∇y) where f is a C1 globally
Lipschitz-continuous function defined on R × RN and f(0, 0) = 0. Also in this article, authors studied the
insensitivity for the same system with Fourier boundary condition. Furthermore, the authors in [4] studied
the existence of insensitizing controls for system (30) where y0 ≡ 0, g ≡ 0, τ1 = 0, f ∈ C2(R) and f(0) = 0
with a super-linear nonlinearity of the form

lim
|s|→∞

|f ′(s)|
log(1 + |s|)

= 0. (31)

Concerning the functional φ2 defined in (4), the author in [12] proved the existence of controls that insensitize
the functional φ2 for the following heat equation :

∂ty −∆y + ay +B · ∇y = ξ + χωv in Q ,

y = 0 on Σ ,

y(0, ·) = y0(·) + τ0ŷ0 in Ω ,

(32)

where y0 ≡ 0, ŷ0 ∈ L2(Ω) is unknown such that ‖ŷ0‖L2(Ω) = 1, τ0 ∈ R is unknown and small enough,

a ∈ L∞(0, T ), B ∈ L∞(0, T )N , v ∈ L2(Q) is the control function and ξ belongs to a specific space.

• Concerning fourth order parabolic equations, there has been limited publication on this subject. In
fact, the only previous insensitivity result is [11], where the case of N = 1 and a non-linear term f(y) is
treated (only depending on y). On other words, the author in [11] studied the following system :

∂ty + ∂xxxxy + f(y) = ζ + χωv in (0, T )× (0, 1) ,

y(·, 0) = y(·, 1) = 0 in (0, T ) ,

∂xy(·, 0) = ∂xy(·, 1) = 0 in (0, T ) ,

y(0, ·) = y0(·) + τz0 in (0, 1) ,

where y0 ≡ 0, ζ ∈ L2((0, T )×(0, 1)) are given, τ0 ∈ R is unknown and small enough, z0 ∈ L2(0, 1) is unknown
such that ‖z0‖L2(0,1) = 1, v ∈ L2((0, T )× (0, 1)) is the control function and where f is a C1 function defined

on R such that
d2f

dx2
∈ L∞loc(R) and

lim
|s|→∞

|f ′(s)|
log(1 + |s|)

= 0. (33)

For N ∈ N, authors in [13] proved a Carleman estimate to study the null controllability of a fourth order
parabolic equation in the linear case. Later, improvements have been done in [15] for the semi-linear case.

Concerning the new tools used in this paper, first we prove a new Carleman inequality for a coupled
fourth-order parabolic system. Secondly, we study the existence of insensitizing controls for (4) where f is
linear and where the coefficients depend only on time. At the end, we prove the existence of some systems
where the functional φ2 given in (4) cannot be ε-insenstized (see (8)). This result, obliged us to treat only
the case where the coefficients depend only on time (for more details see Section 4).

The rest of this paper is organised as follows. The next section is devoted for technical and previous
results. In the third section, we prove Theorem 1.3. The fourth one concerns the proof of Theorem 1.4. At
the end, in the last section, we introduce some systems where where the functional φ2 given in (4) cannot
be ε-insenstized.
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2 Technical results

Before we start let us introduce the following linear system :
∂t z + ∆2 z + az +B · ∇z +D : ∇2z = F in Q ,

z = ∆ z = 0 on Σ ,

z(0, ·) = z0(·) in Ω .

(34)

with a ∈ L∞(Q), B ∈ L∞(Q)N and D ∈ L∞(Q)N
2

. Let us denote :

X2 = L2(Q), X1 = L2(0, T ;H−1(Ω)), X0 = L2(0, T ; (H2(Ω) ∩H1
0 (Ω))′), (35)

Y2 = H1(0, T ;L2(Ω)) ∩ L2(0, T ;H4(Ω)),

Y1 = L2(0, T ;H3(Ω)) ∩H1(0, T ;H−1(Ω)),

Y0 = H1(0, T ; (H2(Ω) ∩H1
0 (Ω))′) ∩ L2(0, T ;H2(Ω)),

(36)

and
Z2 = H2(Ω) ∩H1

0 (Ω), Z1 = H1
0 (Ω), Z0 = L2(Q). (37)

Let us now present a first result :

Lemma 2.1. Let Λ be the map which associates z, the solution of (34) to each (F, z0). Then, Λ is continuous
from Xi × Zi to Yi for i = 0, 1, 2.

Moreover, there exists C0(Ω) such that

‖z‖Yi ≤ eC0(Ω)C1

(
‖F‖Xi + ‖z0‖Zi

)
(38)

for all (F, z0) ∈ Xi × Zi (i = 0, 1, 2) and where

C1 = 1 + T (‖a‖∞ + ‖B‖4/3∞ + ‖D‖2∞) + ‖a‖2∞ + ‖B‖2∞ + ‖D‖2∞. (39)

Proof. Let us start our proof for i = 0. Let (F, z0) ∈ X0 × Z0 and let us prove the following estimate :

supt∈[0,T ]‖z(t)‖L2(Ω) ≤ exp[C0(1 + T (‖a‖∞ + ‖B‖4/3∞ + ‖D‖2∞))]

(
‖F‖X0

+ ‖z0‖Z0

)
. (40)

By multiplying (34)1 by z, integrating by parts, we obtain

1

2

d

dt

∫
Ω

|z(t)|2 dx+

∫
Ω

|∆ z(t)|2 dx− ε‖z‖2H2(Ω)

≤ C0,ε

(
‖F (t)‖2(H2(Ω)∩H1

0 (Ω))′ + (‖a‖∞ + ‖B‖4/3∞ + ‖D‖2∞)

∫
Ω

|z(t)|2 dx
)

,

(41)

for ε > 0. In fact, we have used Young’s inequality in order to deduce∣∣∣∣ ∫
Ω

B · ∇z zdx
∣∣∣∣ ≤ ‖B‖∞‖z‖H1(Ω)‖z‖L2(Ω) ≤ ‖B‖∞‖z‖

3/2
L2(Ω)‖z‖

1/2
H2(Ω) ≤ C0,ε‖B‖4/3∞ ‖z‖2L2(Ω) + ε‖z‖2H2(Ω).

Let us notice that there exists λ > 0 such that for any u ∈ H2(Ω) ∩H1
0 (Ω), we have∫

Ω

|∆u|2 dx ≥ λ ‖u‖2H2(Ω). (42)
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Combining this with (41) , we deduce

d

dt

(
exp[−tC0(‖a‖∞ + ‖B‖4/3∞ + ‖D‖2∞)]

∫
Ω

|z(t)|2 dx
)
≤ C0‖F (t)‖2(H2(Ω)∩H1

0 (Ω))′ .

Integrating in (0, t), we have

‖z(t)‖2L2(Ω) ≤ exp[C0(1 + T (‖a‖∞ + ‖B‖4/3∞ + ‖D‖2∞))]

(
‖F‖2X0

+ ‖z0‖2Z0

)
. (43)

So, we deduce (40) by taking supt∈[0,T ]. On the other hand, combining (41) with (40) and (42), we deduce

‖z‖L2(0,T ;H2(Ω)) ≤ exp[C0(1 + T (1 + ‖a‖∞ + ‖B‖4/3∞ + ‖D‖2∞))]

(
‖F‖X0

+ ‖z0‖Z0

)
. (44)

By using the last estimate with the fact that for any u ∈ C0(Ω) such that u = 0 on ∂Ω, we have ∆u ∈
(H2(Ω) ∩H1

0 (Ω))′, we can deduce that

‖z‖H1(0,T ;(H2(Ω)∩H1
0 (Ω))′) ≤ exp[C0(1 + T (1 + ‖a‖∞ + ‖B‖4/3∞ + ‖D‖2∞))]

(
‖F‖X0

+ ‖z0‖Z0

)
. (45)

Indeed, it suffices to remark that

∂t z = F − (∆2 z + az +B · ∇z +D : ∇2z) in Q

and
F − (∆2 z + az +B · ∇z +D : ∇2z) ∈ L2(0, T ; (H2(Ω) ∩H1

0 (Ω))′).

This finishes the proof for i = 0.

Concerning i = 2, let (F, z0) ∈ X2 × Z2. By applying the case i = 0, we have

‖z‖L2(0,T ;H2(Ω)) ≤ exp[C0(1 + T (1 + ‖a‖∞ + ‖B‖4/3∞ + ‖D‖2∞))]

(
‖F‖X0 + ‖z0‖Z0

)
. (46)

To simplify our computations, let us denote F̃ = F − (az +B · ∇z +D : ∇2z). By multiplying (34)1 by ∂tz
and integrating by parts, we have

(1− ε)
∫

Ω

|∂tz(t)|2 dx+
1

2

d

dt

∫
Ω

|∆z(t)|2 dx ≤ C0,ε‖F̃ (t)‖2L2(Ω). (47)

Integrating in (0, T ), we deduce that

‖z‖2H1(0,T ;L2(Ω)) ≤ C0,ε

(
‖F̃‖2X2

+ ‖z0‖2Z2

)
. (48)

Let us notice that

‖F̃‖2X2
≤
(
‖F‖2X2

+ (‖a‖2∞ + ‖B‖2∞ + ‖D‖2∞)‖z‖2L2(0,T ;H2(Ω))

)
. (49)

Combining the last estimate with (48) and (46), we deduce

‖z‖2H1(0,T ;L2(Ω)) ≤ e
C0C1

(
‖F̃‖2X2

+ ‖z0‖2Z2

)
. (50)

8



To finish the proof, from (34)1, we have

∆2 z = F − (∂t z + az +B · ∇z +D : ∇2z) in Q.

Combining this with (50) and (46), we deduce that

‖z‖Y2
≤ eC0C1

(
‖F‖X2

+ ‖z0‖Z2

)
.

Finally, to prove the case i = 1, it suffices to use an interpolation argument between the X0, X2 spaces, Z0,
Z2 spaces and Y0, Y2 spaces.

Remark 2.2. Let us notice that Lemma 2.1 holds true for forward systems. Indeed, it suffices to apply
Lemma 2.1 to z̃(t, ·) = z(T − t, ·) for all t ∈ [0, T ] where z is the solution of (34).

Now, we will introduce some weight function:

α(x, t) =
e4λ||η||∞ − eλ(2||η||∞+η(x))

t1/2(T − t)1/2
, ξ(x, t) =

eλ(2||η||∞+η(x))

t1/2(T − t)1/2
,

where η satisfies:
η ∈ C4(Ω̄), η|∂Ω

= 0, |∇η| ≥ C0 > 0 in Ω \ ω0, (51)

with ω0 ⊂⊂ ω ∩ O an open set. For the existence of η, see [10]. Let us notice some essential properties on
the weight functions :

Remark 2.3. We have

∇ξ = λξ∇η in Q, ξ−1 ≤ T

2
in Q, ∇η =

∂η

∂~n
~n on Σ.

The second result was proved in [13] :

Lemma 2.4. Let ω̃ such that ω0 ⊂⊂ ω̃. There exists a positive constant C0 = C0(Ω, ω̃) such that

∫∫
Q

e−2sα

(
s6λ8ξ6|ϕ|2 + s4λ6ξ4|∇ϕ|2 + s3λ4ξ3|∆ϕ|2

+s2λ4ξ2|∇2ϕ|2 + sλ2ξ|∇∆ϕ|2 + s−1ξ−1(|∂tϕ|2 + |∆2ϕ|2)

)
dxdt

≤ C0

(
s7λ8

∫∫
ω̃×(0,T )

e−2sαξ7|ϕ|2dxdt+

∫∫
Q

e−2sα|f̃ |2dxdt
)

(52)

for any λ ≥ C0 and any s ≥ C0(T 1/2 + T ) and where ϕ solution of
−∂tϕ+ ∆2ϕ = f̃ in Q ,

ϕ = ∆ϕ = 0 on Σ ,

ϕ(T, ·) = ϕ0(·) in Ω ,

(53)

where ϕ0 ∈ L2(Ω) and f̃ ∈ L2(Q).

On the other hand, from [15], by doing some modifications on boundary conditions, we have the following
Lemma :
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Lemma 2.5. Let ω̃ such that ω0 ⊂⊂ ω̃. There exists a positive constant C0 = C0(Ω, ω̃) such that

s6λ8

∫∫
Q

e−2sαξ6|q|2dxdt ≤ C0

(
s7λ8

∫∫
ω̃×(0,T )

e−2sαξ7|q|2dxdt+

∫∫
Q

e−2sα|F0|2dxdt

+s2λ2

∫∫
Q

e−2sαξ2|F1|2dxdt+ s4λ4

∫∫
Q

e−2sαξ4
N∑

i,j=1

|F̂ij |2dxdt

+s3λ3

∫∫
Σ

e−2sαξ3|f1|2dσdt+ s7λ7

∫∫
Σ

e−2αξ7|f0|2dσdt
)

,

(54)

for any λ ≥ C0 and any s ≥ C0(T 1/2 + T ) and where q fulfills
∂tq −∆2q = F0 +∇ · F1 +

N∑
i,j=1

∂ijF̂ij in Q ,

q = f0 , ∆q = f1 on Σ ,

q(T, ·) = q0(·) in Ω .

(55)

Before we finish this section, we give the following remark :

Remark 2.6. Let us notice that, Lemmas 2.4 and 2.5 hold true for forward system. Indeed, it suffices to
apply Lemma 2.4 (resp. Lemma 2.5) to ϕ̃(t, ·) = ϕ(T − t, ·) (resp. q̃(t, ·) = q(T − t, ·)) for all t ∈ [0, T ].

3 Insensitizing controls for φ1.

We know that the existence of a control v such that (5) holds true is equivalent to the null controllability
of a coupled system. This result is given in the following lemma :

Lemma 3.1. There exists a control v such that (5) holds true if and only if the following system :
∂ty + ∆2y + f(y,∇ y,∇2 y) = ζ + χωv in Q ,

y = ∆y = 0 on Σ ,

y(0, ·) = y0(·) in Ω ,
(56)


−∂tu+ ∆2u+ ∂s f(y,∇ y,∇2 y)u−∇ · (∂p f(y,∇ y,∇2 y)u) in Q ,

+∇2 : (∂q f(y,∇ y,∇2 y)u) = χOy

u = ∆u = 0 on Σ ,

u(T, ·) = 0 in Ω ,

(57)

verifies
u(0, ·) = 0 in Ω . (58)

Proof. Let us notice that
∂φ (w(x, t, h, τ))

∂τ
|τ=0 =

∫∫
(0,T )×O

yτy dxdt, (59)

where yτ verifies
∂tyτ + ∆2yτ + ∂s f(y,∇ y,∇2 y)yτ + ∂p f(y,∇ y,∇2 y) · ∇ yτ + ∂q f(y,∇ y,∇2 y) : ∇2 yτ = 0 in Q,

yτ = ∆yτ = 0 on Σ ,

yτ (0, ·) = ỹ0 in Ω .

(60)
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By multiplying (57)1 by yτ and integrating by parts, we deduce

∂φ (w(x, t, h, τ))

∂τ
|τ=0 =

∫∫
(0,T )×O

yτy dxdt = 〈ỹ0, u(0, ·)〉L2(Ω).

The next subsection is devoted to the study of the linear system.

3.1 The linear case.

In this section we are going to treat the linear case. So let us consider the following linear system :
∂ty + ∆2y + ay +B · ∇y +D : ∇2y = ζ + χωv in Q ,

y = ∆y = 0 on Σ ,

y(0, ·) = y0 in Ω ,
(61)


−∂tu+ ∆2u+ ãu−∇ · (B̃u) +

N∑
i,j=1

∂ij(D̃iju) = χOy in Q ,

u = ∆u = 0 on Σ ,

u(T, ·) = 0 in Ω ,

(62)

where
a ∈ L∞(Q), B ∈ L∞(Q)N , D ∈ L∞(Q)N

2

ã ∈ L∞(Q), B̃ ∈ L∞(Q)N , D̃ ∈ L∞(Q)N
2 (63)

and y0 ∈ L2(Ω). Before we start, let us denote C0(Ω, ω) a constant which only depends on Ω and ω and

C1 , max(C2, C3), (64)

where

C2 = C0(Ω, ω)

(
1 + C4 +

1√
T

+ T (1 + ‖a‖∞ + ‖B‖2∞ + ‖D‖2∞ + ‖ã‖∞ + ‖B̃‖2∞ + ‖D̃‖2∞)

)
, (65)

C3 = C0(Ω, ω)

(
1 +
√
TC4

)
(66)

and
C4 = 1 + ‖a‖1/3∞ + ‖B‖1/2∞ + ‖D‖∞ + ‖ã‖1/3∞ + ‖B̃‖1/2∞ + ‖D̃‖∞. (67)

The goal of this subsection is to prove the following approximate controllability result :

Proposition 3.2. Assume that ∫∫
Q

e
C1√
t |ζ|2dxdt <∞,

where C1 is given in (64). Then, for every T > 0 and ε > 0, there exists a control vε ∈ L2((0, T )× ω) such
that (yε, uε) the corresponding solution of (61)-(62) for v = vε satisfies

‖uε(0, ·)‖L2(Ω) ≤ ε. (68)

In addition, we have the following estimate :

‖vε‖L2((0,T )×ω) ≤ eC1

(∫∫
Q

e
C2√
t |ζ|2dxdt

)1/2

,

where C1 is given in (64).
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Remark 3.3. Let us notice that we can also prove that for every T > 0, there exists a control ṽ ∈
L2((0, T ) × ω) such that (y, u) the corresponding solution of (61)-(62) for v = ṽ satisfies u(0, ·) ≡ 0 in
Ω, but this result will not be useful for the rest of this section.

So, let us consider the following adjoint system :
−∂tz + ∆2z + az −∇ · (Bz) +

N∑
i,j=1

∂ij(Dijz) = χOp in Q ,

z = ∆z = 0 on Σ ,

z(T, ·) = 0 in Ω ,

(69)


∂tp+ ∆2p+ ãy + B̃ · ∇p+ D̃ : ∇2p = 0 in Q ,

p = ∆p = 0 on Σ ,

p(0, ·) = p0 in Ω ,

(70)

where p0 ∈ L2(Ω). In order to prove Proposition 3.2, we are going to prove a Carleman estimate for the
solutions of (69)-(70) :

Proposition 3.4. Let (2) holds true. Then, there exists a positive constant C0 > 0 such that for every
solution (z, p) of (69)-(70) with initial data p0 ∈ L2(Ω) the following inequality holds true:

s6λ8

∫∫
Q

e−2sαξ6(|z|2 + |p|2)dxdt ≤ C0s
16λ16

∫∫
(0,T )×ω

e−2sαξ16|z|2dxdt, (71)

for λ ≥ C0 and s ≥ C0(TC4 + T 1/2) and where C4 is given in (67).

From the previous Proposition, we can deduce a new estimate for the solutions of (69)-(70):

Proposition 3.5. Let (2) holds true. Then, there exists a constant C0(Ω, ω) > 0 such that every solution
(z, p) of (69)-(70) with initial data p0 ∈ L2(Ω) satisfies∫∫

Q

e
−C1√

t |z|2dxdt ≤ eC1

∫∫
(0,T )×ω

|z|2dxdt,

where C1 is given in (64).

Proof. Let us denote

I ,
∫∫

Q

e
−C1√

t |z|2dxdt

=

∫∫
(0,T/2)×Ω

e
−C1√

t |z|2dxdt+

∫∫
(T/2,T )×Ω

e
−C1√

t |z|2dxdt

= I1 + I2.

(72)

We will start by proving the following estimate :

I1 ≤ eC1

∫∫
(0,T )×ω

|z|2dxdt. (73)
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At first let us notice that

e−2sαξ6 ≥ C0T
−6 exp[− C0s√

Tt
], ∀t ∈ (0,

T

2
),

e−2sαξ16 ≤ C0T
−16 exp[C1], ∀(t, x) ∈ Q,

e−2sαξ6 ≥ C0T
−6 exp[−2C1], ∀(t, x) ∈ (

T

4
,

3T

4
)× Ω.

(74)

Combining the last estimates with Proposition 3.4, we deduce

I1 ≤ C0T
6

∫∫
(0,T )×Ω

e−2sαξ6|z|2dxdt ≤ eC1

∫∫
(0,T )×ω

|z|2dxdt. (75)

Now we are going to treat I2. We will prove at first the following estimate on p the solution of (70) :∫
Ω

|p(t+ T/4)|2dx ≤ eC1

∫
Ω

|p(t)|2dx, ∀t ∈ (
T

4
,

3T

4
). (76)

By multiplying (70)1 by p and integrating by parts, we have

1

2

d

dt

∫
Ω

|p(t, x)|2dx+

∫
Ω

|∆ p(t, x)|2dx− ε‖p(t)‖2H2(Ω) ≤ C(ε)(1 + ‖ã‖∞ + ‖B̃‖2∞ + ‖D̃‖2∞)

∫
Ω

|p(t, x)|2dx,

for ε > 0. By using the fact that there exists λ > 0 such that for any p ∈ H2(Ω) ∩H1
0 (Ω), we have∫

Ω

|∆ p|2 dx ≥ λ ‖p‖2H2(Ω), (77)

we deduce
d

dt

(
exp(−C0(1 + ‖ã‖∞ + ‖B̃‖2∞ + ‖D̃‖2∞)t)

∫
Ω

|p(t, x)|2dx
)
≤ 0.

Then by integrating in (t, t+
T

4
) for t ∈ (

T

4
,

3T

4
), we deduce (76). Now, we are going to prove the following

estimate on z the solution of (69) :∫
Ω

|z(t, x)|2dx ≤ C0

∫ T

t

∫
Ω

|p(s, x)|2dtdx, ∀t ∈ (0, T ). (78)

By multiplying (69)1 by z and integrating by parts, we have

−1

2

d

dt

∫
Ω

|z(t, x)|2dx+

∫
Ω

|∆ z(t, x)|2dx− ε‖z(t)‖2H2(Ω)

≤ C(ε)(1 + ‖a‖∞ + ‖B‖2∞ + ‖D‖2∞)

∫
Ω

|z(t, x)|2dx+ C0

∫
O

|p(t)|2dx,

for ε > 0. By using (77) for z, we deduce

− d

dt

(
exp(C0(1 + ‖ã‖∞ + ‖B̃‖2∞ + ‖D̃‖2∞)t)

∫
Ω

|z(t, x)|2dx
)
≤ C0

∫
O

|p(t)|2dx.

Then by integrating in (t, T ) for t ∈ (0, T ), we deduce (78). Now, from the definition of I2, we have

I2 ≤
∫ T

T/2

∫
Ω

|z|2dxdt.

13



Using the last estimate with (76), we have

I2 ≤ eC1

∫ 3T/4

T/4

∫
Ω

|p|2dxdt.

Combining the last estimate with (74)3, we deduce

I2 ≤ eC1

∫ 3T/4

T/4

∫
Ω

e−2sαξ6|p|2dxdt ≤ eC1

∫ T

0

∫
Ω

e−2sαξ6|p|2dxdt.

From the last estimate combined with Proposition 3.4 and (74)2, we deduce,

I2 ≤ eC1

∫∫
(0,T )×ω

|z|2dxdt. (79)

From (73) combined with (79), we deduce our aim result.

Now, we give the proof of Proposition 3.4.

Proof of Proposition 3.4. Let us consider ω0 ⊂⊂ ω′ ⊂⊂ ω ∩O. By applying Lemma 2.5 to z the solution
of (69) for ω̃ = ω, F0 = az, F1 = −B z, F̂i,j = Di,jz and f0 = f1 = q0 = 0, we have

s6λ8

∫∫
Q

e−2sαξ6|z|2dxdt ≤ C0

(
s7λ8

∫∫
(0,T )×ω

e−2sαξ7|z|2dxdt+

∫∫
Q

e−2sα|a z|2dxdt

+s2λ2

∫∫
Q

e−2sαξ2|B z|2dxdt+ s4λ4

∫∫
Q

e−2sαξ4|D z|2dxdt

+

∫∫
(0,T )×O

e−2sα|p|2dxdt
)

,

(80)

for any λ ≥ C0 and any s ≥ C0(T 1/2 + T ). It is clear that∫∫
Q

e−2sα

(
|a z|2 + s2ξ2|B z|2 + s4ξ4|D z|2

)
dxdt ≤ s6

∫∫
Q

e−2sαξ6|z|2dxdt

for λ ≥ C0 and s ≥ C0

(
T (‖a‖1/3∞ + ‖B‖1/2∞ + ‖D‖∞) + T 1/2

)
. Then, we deduce

s6λ8

∫∫
Q

e−2sαξ6|z|2dxdt ≤ C0

(
s7λ8

∫∫
(0,T )×ω

e−2sαξ7|z|2dxdt+

∫∫
(0,T )×O

e−2sα|p|2dxdt
)

, (81)

for λ ≥ C0 and s ≥ C0

(
T (‖a‖1/3∞ + ‖B‖1/2∞ + ‖D‖∞)T 1/2

)
. In order to estimate the last term in the

right-hand side of (81), we apply Lemma 2.4 (see Remark 2.6) to p the solution of (70) for ω̃ = ω′, we have

∫∫
Q

e−2sα

(
s6λ8ξ6|p|2 + s4λ6ξ4|∇p|2 + s3λ4ξ3|∆p|2

+s2λ4ξ2|∇2p|2 + sλ2ξ|∇∆p|2 + s−1ξ−1(|∂tp|2 + |∆2p|2)

)
dxdt

≤ C0

(
s7λ8

∫∫
(0,T )×ω′

e−2sαξ7|p|2dxdt+

∫∫
Q

e−2sα

(
|ã p|2 + |B̃ · ∇p|2 + |D̃ : ∇2p|2

))
dxdt,

(82)
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for λ ≥ C0 and s ≥ C0(T + T 1/2). It is clear that∫∫
Q

e−2sα

(
|ã p|2 + |B̃ · ∇p|2 + |D̃ : ∇2p|2

)
dxdt ≤ s2

∫∫
Q

e−2sαξ2

(
s4ξ4|p|2 + s2ξ2|∇p|2 + |∇2p|2

)
dxdt,

for s ≥ C0

(
T (‖ã‖1/3∞ + ‖B̃‖1/2∞ + ‖D̃‖∞) + T 1/2

)
. Combining the last estimate with (82), we deduce

∫∫
Q

e−2sα

(
s6λ8ξ6|p|2 + s4λ6ξ4|∇p|2 + s3λ4ξ3|∆p|2

+s2λ4ξ2|∇2p|2 + sλ2ξ|∇∆p|2 + s−1ξ−1(|∂tp|2 + |∆2p|2)

)
dxdt

≤ C0s
7λ8

∫∫
(0,T )×ω′

e−2sαξ7|p|2dxdt,

(83)

for s ≥ C0(TC4 + T 1/2) (C4 is given in (67)).
To treat the local term in the right-hand side of (83), let us introduce θ ∈ C∞0 (Ω) such that

0 ≤ θ ≤ 1, θ(x) = 1 if x ∈ ω′, θ(x) = 0 if x ∈ Ω\ω ∩O.

By multiplying (69)1 by s7λ8ξ7e−2sαθ8 p and integrating par parts, we have

I , s7λ8

∫∫
(0,T )×ω

θ8e−2sαξ7|p|2dxdt

= s7λ8

∫∫
(0,T )×ω

z

(
∂t(e

−2sαξ7θ8p) + ∆2(e−2sαξ7θ8p)dxdt

+e−2sαξ7θ8a p+B · ∇(e−2sαξ7θ8p) +D : ∇2(e−2sαξ7θ8p)

)
dxdt.

By using the fact that

∆2(e−2sαξ7θ8p) = 42(e−2sαξ7θ8)p+ e−2sαξ7θ8∆2p+ 4∇∆(e−2sαξ7θ8) · ∇p+ 4∇∆p · ∇(e−2sαξ7θ8)

+2∆(e−2sαξ7θ8)∆p+ 4∇2(e−2sαξ7θ8) : ∇2p

≤ C0e
−2sαξ7θ

(
|∆2p|+ s4λ4ξ4|p|+ s3λ3ξ3|∇p|+ s2λ2ξ2|∇2p|+ sλξ|∇∆p|

)
,

combined with (83) and by applying Young’s inequality, we have

I ≤ C0s
16λ16

∫∫
(0,T )×ω

e−2αξ16|z|2dxdt,

for λ ≥ C0 and s ≥ C0(TC4 + T 1/2) and where C4 is given in (67). Combining the last estimate with (83),
we deduce ∫∫

Q

e−2sα

(
s6λ8ξ6|p|2 + s4λ6ξ4|∇p|2 + s3λ4ξ3|∆p|2

+s2λ4ξ2|∇2p|2 + sλ2ξ|∇∆p|2 + s−1ξ−1(|∂tp|2 + |∆2p|2)

)
dxdt

≤ C0s
16λ16

∫∫
(0,T )×ω

e−2sαξ16|z|2dxdt,

(84)
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for λ ≥ C0 and s ≥ C0(TC4 + T 1/2) and where C4 is given in (67). Combining the last estimate with (81),
we deduce our aim result. �

Now we give the proof of Proposition 3.2.

Proof of Proposition 3.2.
We give a sketch of the proof.

For ε > 0, we consider the following functional defined on L2(Ω) :

Jε(p0) =
1

2

∫∫
(0,T )×ω

|z|2dxdt+ ε‖p0‖L2(Ω) +

∫∫
Q

ζzdxdt, (85)

where (z, p) is the solution of (69)-(70) with initial data p0 ∈ L2(Ω). It is easy to see that Jε is a continuous
and strictly convex functional. Moreover, from the fact that

lim inf
‖p0‖L2(Ω)→+∞

Jε(p0)

‖p0‖L2(Ω)
≥ ε,

we deduce that Jε is coercive. So, we deduce the existence of a unique minimum pε0 ∈ L2(Ω). By taking
vε = zεχω where (zε, pε) is the corresponding solution of (69)-(70) with initial data p0 = pε0, we deduce
easily (68).�

3.2 A null controllability result for the semi-linear system.

This section is devoted to the proof of Theorem 1.3.

At first, from the fact that f is C1 globally Lipschitz function and f(0, 0, 0) = 0, we have the following
decomposition :

f(s, p, q) = g(s, p, q)s+G(s, p, q) · p+ E(s, p, q) : q, ∀(s, p, q) ∈ R× RN × RN
2

,

where g : R× RN × RN
2

→ R, G : R× RN × RN
2

→ RN and E : R× RN × RN
2

→ RN
2

. Furthermore,

g(s, p, q) =

∫ 1

0

∂sf(λs, λp, λq)dλ, G(s, p, q) =

∫ 1

0

∂pf(λs, λp, λq)dλ, E(s, p, q) =

∫ 1

0

∂qf(λs, λp, λq)dλ. (86)

Let us set Z = L2(0, T ;H2 ∩H1
0 (Ω)). For each z ∈ Z, we consider the following system :

∂tyz + ∆2yz + g(z,∇z,∇2z)yz +G(z,∇z,∇2z) · ∇yz + E(z,∇z,∇2z) : ∇2yz = ζ + χωvz in Q ,

yz = ∆yz = 0 on Σ ,

yz(0, ·) = 0 in Ω ,

(87)


−∂tuz + ∆2uz + ∂s f(z,∇z,∇2z)uz −∇ · (∂p f(z,∇z,∇2z)uz) in Q ,

+∇2(∂q f(z,∇z,∇2z)uz) = χOyz

uz = ∆uz = 0 on Σ ,

uz(T, ·) = 0 in Ω .

(88)
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Let us set for each z ∈ Z 

az = g(z,∇z,∇2z) ∈ L∞(Q),

Bz = G(z,∇z,∇2z) ∈ L∞(Q)N ,

Dz = E(z,∇z,∇2z) ∈ L∞(Q)N
2

,

ãz = ∂s f(z,∇z,∇2z) ∈ L∞(Q),

B̃z = ∂p f(z,∇z,∇2z) ∈ L∞(Q)N ,

D̃z = ∂q f(z,∇z,∇2z) ∈ L∞(Q)N
2

.

(89)

From the definition of f , we have

‖az‖∞ + ‖Bz‖∞ + ‖Dz‖∞ + ‖ãz‖∞ + ‖B̃z‖∞ + ‖D̃z‖∞ ≤M , ∀z ∈ Z, (90)

where M = ‖f‖W 1
∞

. Then, by applying Proposition 3.2, we deduce that there exists a control vε = vεz ∈
L2((0, T )× ω) such that the corresponding solution (yεz , u

ε
z) of (87)-(88) satisfies

‖uεz(0, ·)‖L2(Ω) ≤ ε

and where

‖vεz‖L2((0,T )×ω) ≤ eC2

(∫∫
Q

e
C2√
t |ζ|2dxdt

)1/2

, (91)

where C2 is given in (13). Here, we used (90).

Now, the idea is to prove the existence of at least one fixed point yε of the following mapping :

z 7→ Λ(z) = yεz ,

where yεz is the corresponding solution of (87) for vz = vεz . Thus, let us recall the Schauder fixed point
theorem :

Theorem 3.6. Let Z be a Banach space and K ⊂ Z is a compact set. If Λ : K → K is continuous, then Λ
has a fixed point.

Let us check that Schauder fixed point theorem can be applied to Λ. First, it is clear that Z is a Banach
space. On the other hand, by applying Lemma 2.1 to yεz the solution of (87), for a = az, B = Bz, D = Dz

and F = ζ + χωv
ε
z we have

‖yεz‖Y ≤ eC0(Ω)C1‖ζ + χωv
ε
z‖L2(Q), (92)

where C1 is given in (39) and Y = H1(0, T ;L2(Ω))∩L2(0, T ;H4(Ω))∩C0([0, T ];H2(Ω)). So let us introduce
the subset K :

K =

{
y ∈ Y ; ‖y‖Y ≤ eC2

(∫∫
Q

e
C2√
t |ζ|2dxdt

)1/2}
,

where C2 is given in (13). Then, we deduce that Λ(Z) is embedded in K.

Now, let us prove that Λ is continuous. Let (zn)n∈N be such that zn → z in Z. We have

azn ⇀ az, ãzn ⇀ ãz weakly ∗ inL∞(Q),

Bzn ⇀ Bz, B̃zn ⇀ B̃z weakly ∗ inL∞(Q)N ,

Dzn ⇀ Dz, D̃zn ⇀ D̃z weakly ∗ inL∞(Q)N
2

.

(93)
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Let us denote p̂ε0 respectively p̂ε0,n for n ∈ N the unique minimizer of the functional J defined in (85) where

a = az, B = Bz, D = Dz, ã = ãz, B̃ = B̃z and D̃ = D̃z respectively a = azn , B = Bzn , D = Dzn ã = ãzn ,

B̃ = B̃zn and D̃ = D̃zn . Using the fact that Jε is uniformly coercive (by using (90)), we deduce that (p̂ε0,n)n∈N
is uniformly bounded. By extracting subsequences, we have

p̂ε0,n ⇀ p̂ε0 weakly in L2(Ω). (94)

Let us now denote (ẑε, p̂ε) respectively (ẑεn, p̂
ε
n) for n ∈ N the solution of (69)-(70) for a = az, B = Bz,

D = Dz, ã = ãz, B̃ = B̃z, D̃ = D̃z and p0 = p̃ε0 respectively a = azn , B = Bzn , D = Dzn ã = ãzn , B̃ = B̃zn ,

D̃ = D̃zn and p0 = p̂ε0,n. From (93) and (94), we deduce that

p̂εn → p̂ε in L2(Q) (95)

and
ẑεn → ẑε in L2(Q). (96)

By denoting v̂ε = ẑεχω and v̂εn = ẑεnχω, we deduce from the last two convergence

v̂εn → v̂ε in L2(Q). (97)

From the last convergence and (93), we deduce that Λ(zn) → Λ(z) in Z. This finishes the proof of the
continuity of Λ. So, we deduce that Λ has at least one fixed point. In other words, we proved that, for any
ε > 0, there exists vε ∈ L2(Q) such that the solution (yε, uε) of

∂ty
ε + ∆2yε + f(yε,∇yε,∇2yε) = ζ + χωv

ε in Q ,

yε = ∆yε = 0 on Σ ,

yε(0, ·) = 0 in Ω ,

(98)

and 
−∂tuε + ∆2uε + ∂s f(yε,∇yε,∇2yε)uε −∇ · (∂p f(yε,∇yε,∇2yε)uε) in Q ,

+∇2 : (∂q f(yε,∇yε,∇2yε)uε) = χOy
ε

uε = ∆uε = 0 on Σ ,

uε(T, ·) = 0 in Ω ,

(99)

satisfies
‖uε(0, ·)‖L2(Ω) ≤ ε. (100)

To finish the proof, it suffices to pass to the limit in (98), (99) and (100). First, let us notice that vε

satisfies

‖vε‖L2((0,T )×ω) ≤ eC0C2

(∫∫
Q

e
C0C2√

t |ζ|2dxdt
)1/2

, (101)

where C2 is given in (13). Combining this with (90), we deduce that the sequence (yε, uε)ε>0 is bounded in

Y ×
(
L2(0, T ;H2(Ω)) ∩H1(0, T ;H−2(Ω)

)
. By extracting a subsequence, we deduce that

vε ⇀ v weakly in L2(Q), (102)

yε → y in L2(0, T ;H2(Ω)), (103)

uε → u in L2(Q), (104)

and
uε(0, ·)→ u(0, ·) in L2(Ω). (105)

By passing to the limit in (98), (99) and (100), we deduce that there exists v ∈ L2(Q) such that the
corresponding solution of (56)-(57), satisfies (58). Moreover, we deduce that the control v satisfies (12).
This finish the proof of Theorem 1.3.
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4 Insensitizing controls for φ2.

In this section, we are going to prove Theorem 1.4. We only prove a new Carleman estimate which leads
us to prove this Theorem by using the same ideas as in Section 3. Let us introduce the following control
system : 

∂tw + ∆2w + aw +B · ∇w + E : ∇2 w = χωv in Q ,

w = ∆w = 0 on Σ ,

w(0, ·) = y0(·) + τ ỹ0 in Ω ,
(106)

where a ∈ L∞(0, T ), B ∈ L∞(0, T )N and E ∈ L∞(0, T )N
2

. As we said in the previous section, the existence
of a control v such that (1) holds is equivalent to the null controllability of a coupled system. So, we introduce
the following coupled system :

∂ty + ∆2y + ay +B · ∇ y + E : ∇2 y = χωv in Q ,

y = ∆y = 0 on Σ ,

y(0, ·) = y0(·) in Ω ,
(107)


−∂tu+ ∆2u+ au−B · ∇u+ E : ∇2 u = ∇ · (∇ y 11O) in Q ,

u = ∆u = 0 on Σ ,

u(T, ·) = 0 in Ω .

(108)

Let us consider the following adjoint parabolic system :

−∂tψ + ∆2ψ + aψ −B · ∇ψ + E : ∇2ψ = ∇ · (∇ϕ 11O) in Q ,

∂tϕ+ ∆2ϕ+ aϕ+B · ∇ϕ+ E : ∇2ϕ = 0 in Q ,

ψ = ∆ψ = 0 on Σ ,

ϕ = ∆ϕ = 0 on Σ ,

ψ(T, ·) = 0 , ϕ(0, ·) = ϕ0(·) in Ω ,

(109)

where ϕ0 ∈ L2(Ω). Before we start our study, we introduce the following weight functions:

α̃(t) = min
x∈Ω

α, ξ̃(t) = max
x∈Ω

ξ,

α∗ = α|∂Ω
= max

x∈Ω
α, ξ∗ = (ξ)|∂Ω

= min
x∈Ω

ξ,
(110)

η is given in (51) and where ω0 ⊂⊂ O′ ∩ ω. In order to shorten the formulas , we define

J(ψ) , s6λ8

∫∫
Q

e−
5
2 sαξ6|ψ|2dxdt+ λ8

∫ T

0

e−
5
2 sα
∗
(

(sξ∗)4‖ψ‖2H1(Ω) + (sξ∗)2‖ψ‖2H2(Ω)

+‖ψ‖2H3(Ω)

)
dt

(111)

and

I(ϕ) , λ8

∫ T

0

e−2sα∗
(

(sξ∗)3‖ϕ‖2H3(Ω) + ‖ϕ‖2H4(Ω) + ‖∂tϕ‖2L2(Ω)

)
dt

+s6λ8

∫∫
Q

e−2sαξ6|∆ϕ|2 dxdt.
(112)

In this section, let us denote C a positive constant depending on Ω, ω, ‖a‖∞, ‖B‖∞ and ‖E‖∞.

We are going to prove the following Proposition :
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Proposition 4.1. There exists C = C(Ω, ω, ‖a‖∞, ‖B‖∞, ‖E‖∞) such that

J(ψ) + I(ϕ) ≤ C
∫∫

ω×(0,T )

e−
1
4 sα|ψ|2 dxdt, (113)

for any λ ≥ C and any s ≥ C(T 1/2 + T ), where (ψ,ϕ) is the solution of (109).

We divide the proof in several subsections, the first one concerns the proof of a new Carleman estimate
for ϕ. In the second subsection we apply a Carleman estimate for ψ and we conclude.

4.0.1 New Carleman estimate for ϕ.

Let us recall the system satisfied by ϕ :


∂tϕ+ ∆2ϕ+ aϕ+B · ∇ϕ+ E : ∇2ϕ = 0 in Q ,

ϕ = ∆ϕ = 0 on Σ ,

ϕ(0, ·) = ϕ0(·) in Ω ,
(114)

where ϕ0 ∈ L2(Ω). For this system we can prove the following Carleman estimate :

Lemma 4.2. There exists C > 0 such that for all ϕ0 ∈ L2(Ω), we have

I(ϕ) ≤ Cs7λ8

∫∫
ω′×(0,T )

e−2sαξ7|∆ϕ|2 dxdt, (115)

for any λ ≥ C, any s ≥ C(T 1/2 + T ) and where ω0 ⊂⊂ ω′ ⊂⊂ ω ∩O′.

Proof. We divide it in several steps. Before we start let us introduce the following remark :

Remark 4.3. In all this section, we prove Lemma 4.2 by using a density argument. Indeed, it suffices to
consider an, Bn, En and ϕ0,n are regular enough and prove the following estimate :

I(ϕn) ≤ Cns7λ8

∫∫
ω′×(0,T )

e−2sαξ7|∆ϕn|2 dxdt, (116)

where Cn = C(Ω, ω, ‖an‖∞, ‖Bn‖∞, ‖Dn‖∞) and ϕn is the corresponding solution of (114) for a = an,
B = Bn, E = En and ϕ0 = ϕ0,n. Then, by passing to the limit in (116), we deduce our aim result.

Let us now start with the first step of the proof.

Step 1. Estimate for ∆ϕ .

Let us notice that ∆ϕ verifies
∂t∆ϕ+ ∆2∆ϕ+ ∆(aϕ+B · ∇ϕ+ E : ∇2ϕ) = 0 in Q ,

∆ϕ = 0 on Σ ,

∆ϕ(0, ·) = ∆ϕ0(·) in Ω .

(117)
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Then by applying Lemma 2.5 to ∆ϕ with ω̃ = ω′, F0 = −a∆ϕ, F1 = −B · ∆ϕ and F̂ij = −Ei,j∆ϕ and
taking into consideration Remark 2.6, we deduce

s6λ8

∫∫
Q

e−2sαξ6|∆ϕ|2 dxdt ≤ C

(
s7λ8

∫∫
ω′×(0,T )

e−2sαξ7|∆ϕ|2 dxdt

+s3λ3

∫∫
Σ

e−2sαξ3|∆2ϕ|2 dxdt

+

∫∫
Q

e−2sα

(
|a∆ϕ|2 + s2λ2ξ2|B|2|∆ϕ|2

+s4λ4ξ2|E|2|∆ϕ|2dxdt
)

,

(118)

for any λ ≥ C and any s ≥ C(T 1/2 + T ). By taking λ ≥ C and C(T 1/2 + T ), we deduce

s6λ8

∫∫
Q

e−2sαξ6|∆ϕ|2 dxdt ≤ C

(
s7λ8

∫∫
ω′×(0,T )

e−2sαξ7|∆ϕ|2 dxdt

+s3λ3

∫∫
Σ

e−2sαξ3|∆2ϕ|2 dxdt
)

.

(119)

Step 2. Treating the boundary term and adding other terms.
To treat the boundary term in the right-hand side of (119), let us prove the following Lemma :

Lemma 4.4. Let ϕ fulfil (114). Then, there exists C > 0 such that

I(ϕ) ≤ Cs6λ8

∫∫
Q

e−2sαξ6|∆ϕ|2 dxdt, (120)

for any λ ≥ C, any s ≥ C(T 1/2 + T ), where I(ϕ) was defined in (112).

Proof. Before we start, let us remark that

|∂tα∗|+ |∂tξ∗| ≤ CT (ξ∗)3. (121)

Let us set ϑ = e−sα
∗
ϕ. It is easy to verify that ϑ fulfills

∂tϑ+ ∆2ϑ+ aϑ+B · ∇ϑ+ E : ∇2ϑ = ∂t e
−sα∗ϕ in Q ,

ϑ = ∆ϑ = 0 on Σ ,

ϑ(0, ·) = 0 in Ω .

(122)

By using the fact that ∂t(e
−sα∗)ϕ ∈ L2(Q), Lemma 2.1 for F = ∂t(e

−sα∗)ϕ and D = E and estimate (121),
we can easily deduce

λ8

∫ T

0

e−2sα∗(‖ϕ‖2H4(Ω) + ‖∂tϕ‖2L2(Ω))dt ≤ Cs6λ8

∫∫
Q

e−2sαξ6|∆ϕ|2 dxdt , (123)

for any λ ≥ C, any s ≥ C(T 1/2 + T ). Finally, by using interpolation inequalities, we can add the term

s3λ8

∫ T

0

e−2sα∗(ξ∗)3‖ϕ‖2H3(Ω) dt,

to the left-hand side of (123).
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Coming back to (119), we deduce

I(ϕ) ≤ C

(
s7λ8

∫∫
ω′×(0,T )

e−2sαξ7|∆ϕ|2 dxdt

+s3λ3

∫∫
Σ

e−2sαξ3|∆2ϕ|2 dxdt
)

,

(124)

for λ ≥ C and s ≥ C(T 1/2 + T ). To absorb the boundary term in the right-hand side of (124), it suffices to
see that from (114) :

∆2ϕ = −∂tϕ− aϕ−B · ∇ϕ− E : ∇2ϕ in Q.

Then, we deduce that
∆2ϕ = −B · ∇ϕ− E : ∇2ϕ on Σ.

So, we have the following estimate :

s3λ3

∫∫
Σ

e−2sα∗(ξ∗)3|∆2ϕ|2 dxdt = s3λ3

∫∫
Σ

e−2sα∗(ξ∗)3| −B · ∇ϕ− E : ∇2ϕ|2 dxdt

≤ Cs3λ3

∫ T

0

e−2sα∗(ξ∗)3‖ϕ‖2H5/2+ε(Ω)dt,
(125)

for λ ≥ C and ε > 0. So we can deduce that the boundary term in the right-hand side of (124) is absorbed
by a H3(Ω) term that appears in the definition of I(ϕ) for λ ≥ C and ε > 0 small enough. This finishes the
proof of Lemma 4.2.

4.0.2 New Carleman estimate for ψ.

Let us recall the system verified by ψ for a function ϕ given
−∂tψ + ∆2ψ + aψ −B · ∇ψ + E : ∇2ψ = ∇ · (∇ϕ 11O) in Q = (0, T )× Ω ,

ψ = ∆ψ = 0 on Σ ,

ψ(T, ·) = 0 in Ω .
(126)

By applying Lemma 2.5 to ψ for ω̃ = ω, F0 = aψ , F1 = ∇ϕ − Bψ and F̃ = E ψ with the small weight
e−

5
2 sα, we have

s6λ8

∫∫
Q

e−
5
2 sαξ6|ψ|2 dxdt ≤ C

(
s7λ8

∫∫
ω×(0,T )

e−
5
2 sαξ7|ψ|2dxdt

+

∫∫
Q

e−
5
2 sα(|aψ|2 + s2λ2ξ2|Bψ|2 + s4λ4ξ4|E ψ|2)dxdt

+s2λ2

∫∫
Q

e−
5
2 sαξ2|∇ϕ|2dxdt

)
,

(127)

for λ ≥ C and s ≥ C(T 1/2 + T ). To treat the last term in the right-hand side of (127), let us notice that

s2λ2

∫∫
Q

e−
5
2 sαξ2|∇ϕ|2dxdt ≤ s2λ2

∫∫
Q

e−
5
2 sα̃ξ̃2|∇ϕ|2dxdt

≤ Cs2λ2

∫ T

0

e−
5
2 sα̃ξ̃2‖∆ϕ‖2L2(Ω)dt

≤ Cs2λ2

∫∫
Q

e−2sαξ2|∆ϕ|2dt,

(128)
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for λ ≥ C and s ≥ C(T 1/2 + T ). We recall that α̃(t) = min
x∈Ω

α and ξ̃(t) = max
x∈Ω

α (see (110)). Here we used

that ϕ = 0 on ∂Ω.

Let us now prove some estimates on the first, second and third order derivatives of ψ. Let us set ψ̃ =
λ4e−

5
4 sα
∗
ψ. It is easy to verify that ψ̃ fulfills

−∂tψ̃ + ∆2ψ̃ + aψ̃ −B · ∇ψ̃ + E : ∇2ψ̃ = f̃ in Q ,

ψ̃ = ∆ψ̃ = 0 on Σ ,

ψ̃(0, ·) = 0 in Ω ,

(129)

where f̃ = λ4∇·(e− 5
4 sα
∗
∇ϕ11O)−λ4∂t (e−

5
4α
∗
)ψ. Let us notice that f̃ ∈ L2(0, T ;H−1(Ω)). Indeed, it suffices

to remark that

‖f̃‖2L2(0,T ;H−1(Ω)) ≤ λ8

∫ T

0

e−
5
2 sα
∗
‖∇ϕ‖2L2(Ω)dt+ s6λ8

∫∫
Q

e−
5
2 sα
∗
(ξ∗)6|ψ|2dxdt

≤ Cλ8

∫ T

0

e−
5
2 sα
∗
‖∆ϕ‖2L2(Ω)dt+ s6λ8

∫∫
Q

e−
5
2 sαξ6|ψ|2dxdt

≤ CI(ϕ) + s6λ8

∫∫
Q

e−
5
2 sαξ6λ8|ψ|2dxdt

(130)

for λ ≥ C and s ≥ C(T 1/2 +T ). By applying Lemma 2.1, by taking in consideration Remark 2.2, we deduce

‖ψ̃‖2L2(0,T ;H3(Ω)) ≤ C‖f̃‖2L2(0,T ;H−1(Ω))

≤ C

(
I(ϕ) + s6λ8

∫∫
Q

e−
5
2 sαξ6|ψ|2dxdt

)
,

(131)

for λ ≥ C and s ≥ C(T 1/2 + T ).

Here we proved an estimate for the third derivatives of ψ. To add the first and second order derivatives
of ψ, it suffices to use interpolation argument between H3(Ω) and L2(Ω) spaces.

Combining the last inequality with (115), (127) and (128), we deduce

J(ψ) + I(ϕ) ≤ C
(
s7λ8

∫∫
ω×(0,T )

e−
5
2 sαξ7|ψ|2dxdt+ s7λ8

∫∫
ω′×(0,T )

e−2sαξ7|∆ϕ|2 dxdt
)

, (132)

for any λ ≥ C and any s ≥ C(T 1/2 + T ).

4.0.3 Last arrangements and conclusion.

In this subsection, we treat the last term on the right-hand side of (132). Let us introduce a function θ
such that

0 ≤ θ ≤ 1, θ(x) = 1 if x ∈ ω′, θ(x) = 0 if x ∈ Ω\ω.

Let us notice that from (109), we have

−∂tψ + ∆2ψ + aψ −B · ∇ψ + E : ∇2ψ = ∆ϕ in ω′.

Recall that ω′ was defined in Lemma 115. Then we deduce that

|∆ϕ|2 = ∆ϕ(−∂tψ + ∆2ψ + aψ −B · ∇ψ + E : ∇2ψ) in ω′.
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So, we have

s7λ8

∫∫
ω′×(0,T )

e−2sαξ7|∆ϕ|2 dxdt ≤ s7λ8

∫∫
ω×(0,T )

e−2sαξ7θ4∆ϕ(−∂tψ + ∆2ψ

+aψ −B · ∇ψ + E : ∇2ψ) dxdt.

(133)

By integrating by parts and using the fact that e−2sα ≤ e−2sα̃ and ξ ≤ ξ̃, we deduce

s7λ8

∫∫
ω×(0,T )

e−2sα̃(ξ̃)7θ4|∆ϕ|2 dxdt = s7λ8

∫∫
ω×(0,T )

θ4∂t(e
−2sα̃(ξ̃)7∆ϕ)ψdxdt

+s7λ8

∫∫
ω×(0,T )

e−2sα̃(ξ̃)7∆(θ4∆ϕ)∆ψ dxdt

+s7λ8

∫∫
ω×(0,T )

e−2sα̃(ξ̃)7θ4∆ϕaψ dxdt

−s7λ8

∫∫
ω×(0,T )

e−2sα̃(ξ̃)7θ4∆ϕB · ∇ψ dxdt

+s7λ8

∫∫
ω×(0,T )

e−2sα̃(ξ̃)7θ4∆ϕE : ∇2ψ dxdt

= I1 + I2 + I3 + I4 + I5.

(134)

To shorten the formulas below, let us denote

Jω(ψ) = s14λ8

∫∫
ω×(0,T )

e−4sα̃+2sα∗(ξ̃)14(|ψ|2 + θ|∇ψ|2 + θ2|∇2ψ|2)dxdt.

We use the fact that

∂t(e
−2sα̃(ξ̃)7) ≤ Cs3e−2sα̃(ξ̃)10

for s ≥ C(T 1/2 + T ), we integrate by parts and we deduce

I1 = s7λ8

∫∫
ω×(0,T )

θ4∂t(e
−2sα̃(ξ̃)7)∆ϕψdxdt+ s7λ8

∫∫
ω×(0,T )

∣∣∣∣e−2sα̃∂tϕ(ξ̃)7∆(θ4ψ)

∣∣∣∣dxdt
≤ εI(ϕ) + C(ε)Jω(ψ),

for ε > 0, λ ≥ C and s ≥ C(T 1/2 + T ). On the other hand, we have

I2 = s7λ8

∫∫
ω×(0,T )

e−2sα̃(ξ̃)7(∆(θ4)∆ϕ+ 2∇(θ4) · ∇∆ϕ+ θ4∆2ϕ)∆ψ dxdt

≤ εI(ϕ) + C(ε)Jω(ψ),
(135)

for ε > 0, λ ≥ C and s ≥ C(T 1/2 + T ). Moreover, it is easy to see that

I3 + I4 + I5 ≤ εI(ϕ) + C(ε)Jω(ψ),

for ε > 0, λ ≥ C and s ≥ C(T 1/2 + T ). Combining the last computations with (132), we deduce

J(ψ) + I(ϕ) ≤ CJω(ψ), (136)
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for λ ≥ C and s ≥ C(T 1/2 + T ). To finish the proof, it suffices to treat the term on the right-hand side
of (136). We will treat only the last term of Jω(ψ) because it is more complicated than the others. Let us
denote

J3,ω(ψ) , s14λ8

∫∫
ω×(0,T )

e−4sα̃+2sα∗(ξ̃)14θ2|∇2ψ|2)dxdt.

By integrating by parts, we have

J3,ω(ψ) ≤ C

(
s14λ8

∫∫
ω×(0,T )

e−4sα̃+2sα∗(ξ̃)14θ2|∇∆ψ||∇ψ|dxdt

+s14λ8

∫∫
ω×(0,T )

e−4sα̃+2sα∗(ξ̃)14θ |∇2ψ||∇ψ|dxdt
)

≤ εJ(ψ) + Cεs
28λ8

∫∫
ω×(0,T )

e−8sα̃+ 13
2 sα

∗
(ξ̃)28θ|∇ψ|2dxdt

(137)

for ε > 0, λ ≥ C and s ≥ C(T 1/2 +T ). To treat the last term on the right-hand side of (137), by integrating
by parts for the last time, we deduce

J3,ω(ψ) ≤ εJ(ψ) + Cεs
54λ8

∫∫
ω×(0,T )

e−16sα̃+ 31
2 sα

∗
(ξ̃)54|ψ|2dxdt, (138)

for ε > 0, λ ≥ C and s ≥ C(T 1/2 + T ). Combining this with (136), We deduce

J(ψ) + I(ϕ) ≤ Cs54λ8

∫∫
ω×(0,T )

e−16sα̃+ 31
2 sα

∗
(ξ̃)54|ψ|2dxdt, (139)

for λ ≥ C and s ≥ C(T 1/2 + T ). Using the fact that for λ ≥ C and s ≥ C(T 1/2 + T ),

s54λ8e−16sα̃+ 31
2 sα

∗
(ξ̃)54 ≤ e− 1

4 sα,

we deduce

J(ψ) + I(ϕ) ≤ C
∫∫

ω×(0,T )

e−
1
4 sα|ψ|2dxdt, (140)

for λ ≥ C and s ≥ C(T 1/2 + T ). This finish the proof of Proposition 4.1

5 Negative controllability results for coupled systems of second
and fourth order parabolic equations in dimension N .

This section is devoted for the proof of Lemma 1.6 and Lemma 1.10. We divide the proofs of these two
Lemmas into several parts depending on the dimension N ∈ N.

Proof of Lemma 1.6.

• Dimension N = 1.
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Let us denote Ω =]0, 2π[, O =]
π

2
,

3π

2
[ and let us consider the following system :

Lϕ = −d
2ϕ

dx2
+ a(x)ϕ+B(x)

dϕ

dx
= 0 in Ω ,

ϕ(0) = ϕ(2π) = 0 ,
(141)

where a ∈ L∞(0, 2π) and B ∈ L∞(0, 2π). To find a counter example, the main idea is to take some functions
a and B vanishing in O. So let us define the function a as follows :

a(x) =


−1 if x ∈ [0,

π

2
] ∪ [

3π

2
, 2π] ,

0 if x ∈]
π

2
,

3π

2
[

and B ≡ 0. It is not hard to see that a solution for this system is the following one :

ϕ̃(x) =



sin(x) if x ∈ [0,
π

2
] ∪ [

3π

2
, 2π]

1 if x ∈]
π

2
,

3π

2
[ ,

− sin(x) if x ∈ [
3π

2
, 2π]

and ϕ̃ ∈ H2(Ω). By taking ϕ0 = ϕ̃ in (21), we deduce that the corresponding solution (ψ,ϕ) of (21) does not
satisfies Unique Continuation Principle given in (22). Indeed, let us remark that the corresponding solution
of (21) verifies ψ ≡ 0, ϕ(t, x) = ϕ̃(x) for (t, x) ∈ Q and we have

ψ = 0 in (0, T )× ω but ϕ 6= 0 in Q, (142)

for any ω ⊂ Ω.

• Dimension N = 2 .

Let us denote O = {(x, y) ∈ R2;x2 + y2 < e−π}, Ω = {(x, y) ∈ R2;x2 + y2 < 1} and let us consider the
following system : 

Lϕ = −∆ϕ+ a(x, y)ϕ+B(x, y) · ∇ϕ = 0 in Ω ,

ϕ = 0 on ∂Ω
(143)

where

a(x, y) =


− 1

x2 + y2
if (x, y) ∈ Ω \O ,

0 if (x, y) ∈ O,

and B ≡ 0. So, we deduce a solution :

ϕ̃(x, y) =


sin(log(

√
x2 + y2)) if (x, y) ∈ {(x, y) ∈ R2; e−π ≤ x2 + y2 ≤ 1} ,

−1 if (x, y) ∈ O
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and ϕ̃ ∈ H2(Ω). By taking ϕ0 = ϕ̃ in (21), we deduce that the corresponding solution (ψ,ϕ) of (21) verifies
ψ ≡ 0, ϕ(t, x) = ϕ̃(x) for (t, x) ∈ Q and we have

ψ = 0 in (0, T )× ω but ϕ 6= 0 in Q, (144)

for any ω ⊂ Ω.

• Dimension N > 2 .

Let us denote O =

{
x = (x1, x2, ..., xN ) ∈ RN ; ‖x‖22 =

N∑
i=1

x2
i < e−π

}
, Ω =

{
x = (x1, x2, ..., xN ) ∈

RN ; ‖x‖22 < 1

}
and let us consider the following system :

Lϕ = −∆ϕ+ a(x)ϕ+B · ∇ϕ = 0 in Ω ,

ϕ = 0 on ∂Ω
(145)

where a ∈ L∞(Ω) and B ∈ L∞(Ω)N . Let us denote

a(x) =


− 1

‖x‖22
if x ∈ Ω \ ω ,

0 if x ∈ O

and

B(x) =


N − 2

‖x‖22
if x ∈ Ω \ ω ,

0 if x ∈ O.

Then, we deduce the following solution :

ϕ̃(x) =


sin(log(‖x‖2)) if x ∈ Ω \ ω ,

−1 if x ∈ O

and ϕ̃ ∈ H2(Ω). As we did above it is not hard to see that the corresponding solution (ψ,ϕ) = (0, ϕ̃) of (21)
for ϕ0 = ϕ̃ does not satisfies Unique Continuation Principle given in (22) for any ω ⊂ Ω. �

Let us now give the proof of Lemma 1.10.

Proof of Lemma 1.10.

• Dimension N = 1.

Let us denote Ω =]0, 6π[, O =]
3π

2
,

9π

2
[ and let us consider the following system

Lϕ =
d4ϕ

dx4
+ a(x)ϕ+ b(x)

d2

dx2
ϕ = 0 in Ω ,

ϕ(0) = ϕ(6π) = 0 ,

d2ϕ

dx2
(0) =

d2ϕ

dx2
(6π) = 0 ,

(146)
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where a, b ∈ L∞(0, 6π). As we did above, the same idea will be applied here. We consider some functions a
and b vanishing in O. So let us define two function a and b

a(x) =


1

9
if x ∈ [0,

3π

2
] ∪ [

9π

2
, 6π] ,

0 if x ∈]
3π

2
,

9π

2
[

and

b(x) =


10

9
if x ∈ [0,

3π

2
] ∪ [

9π

2
, 6π] ,

0 if x ∈]
3π

2
,

9π

2
[.

It is not hard to see that a solution for this system is the following one :

ϕ̃(x) =



1

8
sin(x) +

9

8
sin(

x

3
) if x ∈ [0,

3π

2
] ,

1 if x ∈]
3π

2
,

9π

2
[ ,

−1

8
sin(x)− 9

8
sin(

x

3
) if x ∈ [

9π

2
, 6π]

and ϕ̃ ∈ H4(Ω). Let us notice that the corresponding solution (ψ,ϕ) = (0, ϕ̃) of (27) for ϕ0 = ϕ̃ does not
satisfies Unique Continuation Principle given in (28) for any ω ⊂ Ω.

• Dimension N = 2.

In dimension N = 2, let us denote O = {(x, y) ∈ R2;x2 + y2 < e−3π}, Ω = {(x, y) ∈ R2;x2 + y2 < 1} and
let us consider the following system :

Lϕ = ∆2ϕ+ 4V · ∇∆ϕ+B∆ϕ+ a(x, y)ϕ = 0 in Ω ,

ϕ = ∆ϕ = 0 on ∂Ω ,
(147)

where

a(x, y) =


1

9(x2 + y2)2
if (x, y) ∈ Ω \O ,

0 if (x, y) ∈ O,

B(x, y) =


− 46

9(x2 + y2)
if (x, y) ∈ Ω \O ,

0 if (x, y) ∈ O

and

V (x, y) =


(

x

x2 + y2
,

y

x2 + y2
) if (x, y) ∈ Ω \O ,

(0, 0) if (x, y) ∈ O.
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We can deduce a solution of the previous system :

ϕ̃(x, y) =


1

9
sin(log(

√
x2 + y2)) + sin(

1

3
log(

√
x2 + y2)) if (x, y) ∈ Ω \O ,

−8

9
if (x, y) ∈ O

and ϕ̃ ∈ H4(Ω). At the end, we can deduce that for ϕ0 = ϕ̃, the corresponding solution (ψ,ϕ) = (0, ϕ̃) of
(27) does not satisfies Unique Continuation Principle given in (28) for any ω ⊂ Ω. �
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