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In this paper, we consider a fourth order parabolic equation in a bounded smooth domain Ω with homogeneous Dirichlet boundary conditions on the solution and the laplacian of the solution. The first main result we establish is the existence of insensitizing controls for this equation in an arbitrarily small open set ω included in Ω. The second main result we establish is the existence of many coupled systems of second and fourth order parabolic equations where the approximate controllability is not satisfied.

Introduction

In the present paper, we consider Ω ⊂ R N with (N ≥ 2) a bounded connected open set whose boundary ∂Ω is regular enough. Let ω ⊂ Ω be a (small) nonempty open subset and O ⊂ Ω be a (small) nonempty open subset. We will use the notation Q = (0, T ) × Ω and Σ = (0, T ) × ∂Ω and we will denote by n(x) the outward unit normal vector to Ω at the point x ∈ ∂Ω. On the other hand, we will denote by C 0 a generic positive constant which depends on Ω and ω but not on T .

Let us introduce the following control system :

     ∂ t w + ∆ 2 w + f (w, ∇ w, ∇ 2 w) = ζ + χ ω v in Q , w = ∆w = 0 on Σ , w(0, •) = y 0 (•) + τ ỹ0 in Ω , (1) 
where y 0 ∈ L 2 (Ω) is the initial condition, τ ∈ R unknown and small enough, f is a C 1 globally Lipschitzcontinuous function defined on

R × R N × R N 2 , ỹ0 ∈ L 2 (Ω) is unknown, ||ỹ 0 || L 2 (Ω) = 1, v ∈ L 2 (Q) is the control function and ζ ∈ L 2 (Q).
In this paper we suppose that

ω ∩ O = ∅. ( 2 
)
Our objective is to establish the existence of insensitizing controls for this equation. Let us introduce the following two functionals :

φ 1 (w) = 1 2 (0,T )×O |w| 2 dxdt (3) 
and φ 2 (w) = 1 2

(0,T )×O |∇ w| 2 dxdt.

1 Definition 1.1. Let y 0 ∈ L 2 (Ω) and ζ ∈ L 2 (Q). We say that the control v insensitizes φ 1 , respectively φ 2 , if for all ỹ0 ∈ L 2 (Ω) such that ||ỹ 0 || L 2 (Ω) = 1, we have ∂φ 1 (w(x, t, v, τ )) ∂τ | τ =0 = 0 (5)

respectively ∂φ 2 (w(x, t, v, τ )) ∂τ | τ =0 = 0. (6) 
In fact, the original problem was introduced by Jacques Louis Lions in [START_REF] Lions | Quelques notions dans l'analyse et le contrôle de systèmes à données incomplètes[END_REF] for the heat equation. In order to guarantee the insensitivity for all y 0 ∈ L 2 (Ω), the authors in [START_REF] Bodart | Controls insensitizing the norm of the solution of a semilinear heat equation[END_REF] introduced the -insensitivity. Definition 1.2. Let > 0, y 0 ∈ L 2 (Ω) and ζ ∈ L 2 (Q). We say that the control v ε ε-insensitizes φ 1 respectively φ 2 , if for all ỹ0 ∈ L 2 (Ω) such that ||ỹ 0 || L 2 (Ω) = 1, we have

∂φ 1 (w(x, t, v ε , τ )) ∂τ | τ =0 ≤ ε (7) 
respectively ∂φ 2 (w(x, t, v ε , τ )) ∂τ | τ =0 ≤ ε. (8) 
Before presenting our results, we will cite some physical motivations which are related to the system under view.

In [START_REF] King | A fourth-order parabolic equation modeling epitaxial thin film growth[END_REF], the authors studied the epitaxial growth of nanoscale thin films, which is modeled by the following system :

       ∂ t u + ∆ 2 u -∇. (f (∇u)) = g in Q , ∂u ∂ n = ∂ u ∂ n = 0 on Σ , u(0, •) = u 0 (•) in Ω , (9) 
where Ω = (0, L) 2 , Q = (0, T ) × Ω, Σ = (0, T ) × ∂ Ω, u 0 ∈ L 2 ( Ω), f ∈ C 1 (R N , R N ) and g ∈ L 2 ((0, T ) × Ω). In this context, u is the scaled film height, the term ∆ 2 u represents the capillarity-driven surface diffusion and g denotes the deposition flux, while ∇ • (f (∇u)) describes the upward hopping of atoms.

Furthermore, in [START_REF] Guo | Study of weak solutions for a fourth-order parabolic equation with variable exponent of nonlinearity[END_REF] the authors studied the following system :

       ∂ t u + ∇. |∇ u| p(x)-2 ∇ u = f (x, u) in Q , u = u = 0 on Σ , u(0, •) = u 0 (•)
in Ω , [START_REF] Fursikov | Controllability of evolution equations[END_REF] where p and f are specific functions and u 0 is an initial data. The previous model may describe some properties of medical magnetic resonance images in space and time. When the nonlinear source f (x, u) is equal to η(x, t), then the functions u(x, t) and η(x, t), respectively, represent the pixel intensity value of a digital image and a random noise. On the other hand, the author in [START_REF] Kwembe | Existence and uniqueness of global solutions for the parabolic equation of the bi-harmonic type[END_REF] studied a fourth order parabolic system similar to (1) that models the long range effect of insects dispersal. Moreover, the authors in [START_REF] Dal Passo | On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions[END_REF] were interested by a fourth order parabolic system where the solution describes the height of a viscous droplet spreading on a plain. For more details about this subject, see for instance [START_REF] Li | Thin film epitaxy with or without slope selection[END_REF], [START_REF] Elliott | On the Cahn-Hilliard equation with degenerate mobility[END_REF], [START_REF] Beretta | Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation[END_REF], [START_REF] Bertozzi | The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions[END_REF], [START_REF] Xu | Existence and uniqueness of weak solutions for a fourth-order nonlinear parabolic equation[END_REF], [START_REF] Zhang | A general fourth-order parabolic equation[END_REF].

Before presenting our main results let us introduce the following space :

L 2,γ (Q) = g ∈ L 2 (Q); Q e γ √ t |g| 2 dxdt < ∞ , (11) 
for γ > 0. Let us now introduce the first main result :

Theorem 1.3. Assume that y 0 = 0, f is a C 1 globally Lipschitz function such that f (0, 0, 0) = 0 and (2) holds. Then, there exists a constant C 2 = C(Ω, ω, O, T, f ) such that for any ζ ∈ L 2,C2 (Q), there exists a control v ∈ L 2 ((0, T ) × ω) such that (5) is satisfied. Moreover, the control v satisfies the following estimate :

v L 2 ((0,T )×ω) ≤ e C2 Q e C 2 √ t |ζ| 2 dxdt 1/2 , ( 12 
)
where

C 2 = C 0 (Ω, ω) 1 + 1 √ T + (1 + T )(1 + f 2 W 1 ∞ ) . ( 13 
)
Concerning φ 2 , we will suppose that f satisfies

f (w, ∇w, ∇ 2 w) = aw + B • ∇w + E : ∇ 2 w, (14) 
where

a ∈ L ∞ (0, T ), B ∈ L ∞ (0, T ) N , E ∈ L ∞ (0, T ) N 2 . ( 15 
)
Then, the second main result is the following one :

Theorem 1.4. Assume that y 0 = 0, f is given by ( 14) and ( 2) and ( 15) hold. Then, there exists a constant

C 3 = C(Ω, ω, O, T, f ) such that for any ζ ∈ L 2,C3 (Q), there exists a control v ∈ L 2 ((0, T ) × ω) such that (6)
is satisfied. Moreover, the control v satisfies the following estimate :

v L 2 ((0,T )×ω) ≤ e C3 Q e C 3 √ t |ζ| 2 dxdt 1/2 . ( 16 
)
Concerning our third main result, we are going to present some negative results related to the heat and fourth order parabolic equation. Before we continue, let us suppose that :

a ∈ L ∞ (Q) and B ∈ L ∞ (Q) N . ( 17 
)
• Let us start by the heat operator. Let us introduce the following coupled system :

       ∂ t y -∆y + a(t, x)y + B(t, x) • ∇y = χ ω v in Q , y = 0 on Σ , y(0, •) = y 0 in Ω , (18) 
     -∂ t u -∆u + a(t, x)u -∇ • (B(t, x)u) = ∇ • (∇y 1 1 O ) in Q , u = 0 on Σ , u(T, •) = u T in Ω , ( 19 
)
where y 0 , u T ∈ L 2 (Ω). Before we continue let us present the definition of the approximate controllability of the previous coupled system : Definition 1.5. Let y 0 , u T ∈ L 2 (Ω) and ( 17) holds true. We say that system (18)-( 19) is approximately controllable, if for all ε > 0, there exists v ε ∈ L 2 (Q) such that the corresponding solution (y ε , u ε ) of ( 18)-( 19)

for v = v ε satisfies u ε (0, •) L 2 (Ω) ≤ ε. (20) 
On the other hand, the approximate controllability of ( 18)-( 19) holds true if and only if for all ϕ 0 ∈ L 2 (Ω), the solution (ψ, ϕ) of the following system :

                 -∂ t ψ -∆ψ + a(t, x)ψ -∇ • (B(t, x)ψ) = ∇ • (∇ϕ 1 1 O ) in Q , ∂ t ϕ -∆ϕ + a(t, x)ϕ + B(t, x) • ∇ϕ = 0 in Q , ψ = 0 on Σ , ϕ = 0 on Σ , ψ(T, •) = 0 , ϕ(0, •) = ϕ 0 (•) in Ω , (21) 
satisfies the following Unique Continuation Principle :

ψ = 0 in (0, T ) × ω =⇒ ψ = ϕ = 0 in Q. ( 22 
)
When we started our study, we expected that the Unique Continuation Principle holds true for all

Ω ⊂ R N , ω ⊂⊂ Ω, O ⊂⊂ Ω such that (2) holds, a ∈ L ∞ (Q) and B ∈ L ∞ (Q) N .
We tried to prove a Carleman estimate of the form

T 0 Ω P 2 (t, x)(|ψ(t, x)| 2 + |ϕ(t, x)| 2 )dtdx ≤ C T 0 ω P 2 (t, x)|ψ(t, x)| 2 dtdx,
for C > 0 and where P is a weight function. We tried several tracks but none succeeded. Then, we were convinced that this Carleman does not hold in all cases. So, we present the following result :

Lemma 1.6. Let T > 0. Then, there exist a bounded connected set From what we said above and Lemma 1.6, we deduce the following Theorem :

Ω ⊂ R N , an open non empty subset O ⊂⊂ Ω, ϕ 0 ∈ L 2 (Ω), a ∈ L ∞ (Q) and B ∈ L ∞ (Q) N such
Theorem 1.7. There exist a bounded connected set

Ω ⊂ R N , an open non empty subset O ⊂⊂ Ω, a ∈ L ∞ (Q) and B ∈ L ∞ (Q) N , y 0 , u T ∈ L 2 (Q) such that
for any open ω ⊂ Ω, the coupled system (18)-( 19) is not approximately controllable.

Moreover, we can extend our result as follows :

Remark 1.8. Let us replace [START_REF] Xu | Existence and uniqueness of weak solutions for a fourth-order nonlinear parabolic equation[END_REF] by

y ε (T, •) L 2 (Ω) + u ε (0, •) L 2 (Ω) ≤ ε. (23) 
Then, Theorem 1.7 holds true.

• Let us now present our result concerning the fourth order parabolic equation. Let us introduce following coupled system :

       ∂ t y + ∆ 2 y + V • ∆∇y + E : ∇ 2 y + B • ∇y + ay = χ ω v in Q , y = ∆y = 0 on Σ , y(0, •) = y 0 in Ω , (24) 
     -∂ t u + ∆ 2 u -∇ • ∆(V u) + ∇ 2 : (Eu) -∇ • (Bu) + au = ∇ • (∇y 1 1 O ) in Q , u = ∆u = 0 on Σ , u(T, •) = u T in Ω , (25) 
where

y 0 , u T ∈ L 2 (Ω), a ∈ L ∞ (Q), E ∈ L ∞ (Q) N 2 and B, V ∈ L ∞ (Q) N .
Definition 1.9. Let y 0 , u T ∈ L 2 (Ω). We say that system (24)-( 25) is approximately controllable, if for all ε > 0, there exists v ε ∈ L 2 (Q) such that the corresponding solution (y ε , u ε ) of ( 24)-(25

) for v = v ε satisfies u ε (0, •) L 2 (Ω) ≤ ε. (26) 
It is well known that the approximate controllability of (24)-(25) holds true if and only if for all ϕ 0 ∈ L 2 (Ω), the solution (ψ, ϕ) of the following system :

                 -∂ t ψ + ∆ 2 ψ -∇ • ∆(V ψ) + ∇ 2 : (Eψ) -∇ • (Bψ) + aψ = ∇ • (∇ϕ 1 1 O ) in Q , ∂ t ϕ + ∆ 2 ϕ + V • ∇∆ϕ + E : ∇ 2 ϕ + B • ∇ϕ + aϕ = 0 in Q , ψ = ∆ψ = 0 on Σ , ϕ = ∆ϕ = 0 on Σ , ψ(T, •) = 0 , ϕ(0, •) = ϕ 0 (•) in Ω , (27) 
satisfies the following Unique Continuation Principle :

ψ = 0 in (0, T ) × ω =⇒ ψ = ϕ = 0 in Q. ( 28 
)
So, we present the following result :

Lemma 1.10. Let N ∈ {1, 2} and T > 0. Then, there exist a bounded connected set

Ω ⊂ R N , an open non empty subset O ⊂⊂ Ω, ϕ 0 ∈ L 2 (Ω), a ∈ L ∞ (Q), B, V ∈ L ∞ (Q) N and E ∈ L ∞ (Q) N 2
such that the corresponding solution (ψ, ϕ) of ( 27 From what we said above and Lemma 1.10, we deduce the following Theorem :

Theorem 1.11. Let N ∈ {1, 2}. Then, there exist a bounded connected set Ω ⊂ R N , an open non empty subset O ⊂⊂ Ω, a ∈ L ∞ (Q), B, V ∈ L ∞ (Q) N and E ∈ L ∞ (Q) N 2
such that for any open non empty subset ω ⊂ Ω, the coupled system (24)-(25) is not approximately controllable.

Moreover, we can extend our result as follows:

Remark 1.12. Let us replace (26) by

y ε (T, •) L 2 (Ω) + u ε (0, •) L 2 (Ω) ≤ ε. (29) 
Then, Theorem 1.11 holds true.

Let us now present some results concerning the existence of insensitizing controls for parabolic equations.

• We start by the heat equation. In order to guarantee the insensitivity for all y 0 ∈ L 2 (Ω), the authors in [START_REF] Bodart | Controls insensitizing the norm of the solution of a semilinear heat equation[END_REF] introduced the ε-insensitivity and studied the following system :

     ∂ t y -∆y + f (y) = ξ + χ ω v in Q , y = g + τ 1 ĝ on Σ , y(0, •) = y 0 (•) + τ 0 ŷ0 in Ω , (30) 
where y 0 ∈ L 2 (Ω), g ∈ L 2 (Σ) are given, τ 0 ∈ R and τ 1 ∈ R are unknown and small enough, f is a C 1 globally Lipschitz-continuous function defined on R, ŷ0 ∈ L 2 (Ω) and ĝ ∈ L 2 (Σ) are unknown such that ŷ0

L 2 (Ω) = ĝ| L 2 (Σ) = 1, v ∈ L 2 (Q)
is the control function and ξ belongs to a specific space. On the other hand, author in [START_REF] Lions | Quelques notions dans l'analyse et le contrôle de systèmes à données incomplètes[END_REF] studied this system where f was also a C 1 globally Lipschitz-continuous function defined on R . Furthermore, the author in [START_REF] De Teresa | Controls insensitizing the norm of the solution of a semilinear heat equation in unbounded domains[END_REF] studied the existence of controls that ε-insensitize the norm of the solution of (30) for g ≡ 0, τ 1 = 0 and where Ω is an open unbounded domain set of class C 2 . On the other hand, author in [START_REF] De Teresa | Insensitizing controls for a semilinear heat equation[END_REF] studied also the system (30) for y 0 ≡ 0, g ≡ 0, τ 1 = 0 and f (0) = 0 and proved the existence of an initial data y 0 ∈ L 2 (Ω) where Ω\ω = ∅ such that the insensitivity does not hold. Moreover, the authors in [START_REF] Bodart | Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient[END_REF] studied the system (30) for y 0 ≡ 0, g ≡ 0, τ 1 = 0 and f = f (y, ∇y) where f is a C 1 globally Lipschitz-continuous function defined on R × R N and f (0, 0) = 0. Also in this article, authors studied the insensitivity for the same system with Fourier boundary condition. Furthermore, the authors in [START_REF] Bodart | Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity[END_REF] studied the existence of insensitizing controls for system (30) where y 0 ≡ 0, g ≡ 0, τ 1 = 0, f ∈ C 2 (R) and f (0) = 0 with a super-linear nonlinearity of the form

lim |s|→∞ |f (s)| log(1 + |s|) = 0. ( 31 
)
Concerning the functional φ 2 defined in (4), the author in [START_REF] Guerrero | Null controllability of some systems of two parabolic equations with one control force[END_REF] proved the existence of controls that insensitize the functional φ 2 for the following heat equation :

     ∂ t y -∆y + ay + B • ∇y = ξ + χ ω v in Q , y = 0 on Σ , y(0, •) = y 0 (•) + τ 0 ŷ0 in Ω , (32) 
where

y 0 ≡ 0, ŷ0 ∈ L 2 (Ω) is unknown such that ŷ0 L 2 (Ω) = 1, τ 0 ∈ R is unknown and small enough, a ∈ L ∞ (0, T ), B ∈ L ∞ (0, T ) N , v ∈ L 2 (Q)
is the control function and ξ belongs to a specific space.

• Concerning fourth order parabolic equations, there has been limited publication on this subject. In fact, the only previous insensitivity result is [START_REF] Gao | Insensitizing controls for the Cahn-Hilliard type equation[END_REF], where the case of N = 1 and a non-linear term f (y) is treated (only depending on y). On other words, the author in [START_REF] Gao | Insensitizing controls for the Cahn-Hilliard type equation[END_REF] studied the following system :

         ∂ t y + ∂ xxxx y + f (y) = ζ + χ ω v in (0, T ) × (0, 1) , y(•, 0) = y(•, 1) = 0 in (0, T ) , ∂ x y(•, 0) = ∂ x y(•, 1) = 0 in (0, T ) , y(0, •) = y 0 (•) + τ z 0 in (0, 1) ,
where y 0 ≡ 0, ζ ∈ L 2 ((0, T )×(0, 1)) are given, τ 0 ∈ R is unknown and small enough,

z 0 ∈ L 2 (0, 1) is unknown such that z 0 L 2 (0,1) = 1, v ∈ L 2 ((0, T ) × (0, 1)
) is the control function and where f is a

C 1 function defined on R such that d 2 f dx 2 ∈ L ∞ loc (R) and lim |s|→∞ |f (s)| log(1 + |s|) = 0. ( 33 
)
For N ∈ N, authors in [START_REF] Guerrero | Carleman estimate and null controllability of a fourth order parabolic equation in dimension N ≥ 2[END_REF] proved a Carleman estimate to study the null controllability of a fourth order parabolic equation in the linear case. Later, improvements have been done in [START_REF] Kassab | Null controllability of semi-linear fourth order parabolic equations[END_REF] for the semi-linear case.

Concerning the new tools used in this paper, first we prove a new Carleman inequality for a coupled fourth-order parabolic system. Secondly, we study the existence of insensitizing controls for (4) where f is linear and where the coefficients depend only on time. At the end, we prove the existence of some systems where the functional φ 2 given in (4) cannot be ε-insenstized (see [START_REF] De Teresa | Insensitizing controls for a semilinear heat equation[END_REF]). This result, obliged us to treat only the case where the coefficients depend only on time (for more details see Section 4).

The rest of this paper is organised as follows. The next section is devoted for technical and previous results. In the third section, we prove Theorem 1.3. The fourth one concerns the proof of Theorem 1.4. At the end, in the last section, we introduce some systems where where the functional φ 2 given in ( 4) cannot be ε-insenstized.

Technical results

Before we start let us introduce the following linear system :

     ∂ t z + ∆ 2 z + az + B • ∇z + D : ∇ 2 z = F in Q , z = ∆ z = 0 on Σ , z(0, •) = z 0 (•) in Ω . (34) with a ∈ L ∞ (Q), B ∈ L ∞ (Q) N and D ∈ L ∞ (Q) N 2
. Let us denote :

X 2 = L 2 (Q), X 1 = L 2 (0, T ; H -1 (Ω)), X 0 = L 2 (0, T ; (H 2 (Ω) ∩ H 1 0 (Ω)) ), (35) 
Y 2 = H 1 (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 4 (Ω)), Y 1 = L 2 (0, T ; H 3 (Ω)) ∩ H 1 (0, T ; H -1 (Ω)), Y 0 = H 1 (0, T ; (H 2 (Ω) ∩ H 1 0 (Ω)) ) ∩ L 2 (0, T ; H 2 (Ω)), (36) 
and

Z 2 = H 2 (Ω) ∩ H 1 0 (Ω), Z 1 = H 1 0 (Ω), Z 0 = L 2 (Q). ( 37 
)
Let us now present a first result :

Lemma 2.1. Let Λ be the map which associates z, the solution of (34) to each (F, z 0 ). Then, Λ is continuous from

X i × Z i to Y i for i = 0, 1, 2.
Moreover, there exists C 0 (Ω) such that

z Yi ≤ e C0(Ω)C1 F Xi + z 0 Zi (38) 
for all (F, z 0 ) ∈ X i × Z i (i = 0, 1, 2) and where

C 1 = 1 + T ( a ∞ + B 4/3 ∞ + D 2 ∞ ) + a 2 ∞ + B 2 ∞ + D 2 ∞ . (39) 
Proof. Let us start our proof for i = 0. Let (F, z 0 ) ∈ X 0 × Z 0 and let us prove the following estimate :

sup t∈[0,T ] z(t) L 2 (Ω) ≤ exp[C 0 (1 + T ( a ∞ + B 4/3 ∞ + D 2 ∞ ))] F X0 + z 0 Z0 . ( 40 
)
By multiplying (34) 1 by z, integrating by parts, we obtain 1 2

d dt Ω |z(t)| 2 dx + Ω |∆ z(t)| 2 dx -ε z 2 H 2 (Ω) ≤ C 0,ε F (t) 2 (H 2 (Ω)∩H 1 0 (Ω)) + ( a ∞ + B 4/3 ∞ + D 2 ∞ ) Ω |z(t)| 2 dx , (41) 
for ε > 0. In fact, we have used Young's inequality in order to deduce

Ω B • ∇z zdx ≤ B ∞ z H 1 (Ω) z L 2 (Ω) ≤ B ∞ z 3/2 L 2 (Ω) z 1/2 H 2 (Ω) ≤ C 0,ε B 4/3 ∞ z 2 L 2 (Ω) + ε z 2 H 2 (Ω) .
Let us notice that there exists λ > 0 such that for any u ∈ H 2 (Ω) ∩ H 1 0 (Ω), we have

Ω |∆ u| 2 dx ≥ λ u 2 H 2 (Ω) . ( 42 
)
Combining this with (41) , we deduce

d dt exp[-tC 0 ( a ∞ + B 4/3 ∞ + D 2 ∞ )] Ω |z(t)| 2 dx ≤ C 0 F (t) 2 (H 2 (Ω)∩H 1 0 (Ω)) .
Integrating in (0, t), we have

z(t) 2 L 2 (Ω) ≤ exp[C 0 (1 + T ( a ∞ + B 4/3 ∞ + D 2 ∞ ))] F 2 X0 + z 0 2 Z0 . ( 43 
)
So, we deduce (40) by taking sup t∈[0,T ] . On the other hand, combining (41) with ( 40) and (42), we deduce

z L 2 (0,T ;H 2 (Ω)) ≤ exp[C 0 (1 + T (1 + a ∞ + B 4/3 ∞ + D 2 ∞ ))] F X0 + z 0 Z0 . ( 44 
)
By using the last estimate with the fact that for any u ∈ C 0 (Ω) such that u = 0 on ∂Ω, we have ∆u ∈ (H 2 (Ω) ∩ H 1 0 (Ω)) , we can deduce that

z H 1 (0,T ;(H 2 (Ω)∩H 1 0 (Ω)) ) ≤ exp[C 0 (1 + T (1 + a ∞ + B 4/3 ∞ + D 2 ∞ ))] F X0 + z 0 Z0 . ( 45 
)
Indeed, it suffices to remark that

∂ t z = F -(∆ 2 z + az + B • ∇z + D : ∇ 2 z) in Q and F -(∆ 2 z + az + B • ∇z + D : ∇ 2 z) ∈ L 2 (0, T ; (H 2 (Ω) ∩ H 1 0 (Ω))
). This finishes the proof for i = 0.

Concerning i = 2, let (F, z 0 ) ∈ X 2 × Z 2 .
By applying the case i = 0, we have

z L 2 (0,T ;H 2 (Ω)) ≤ exp[C 0 (1 + T (1 + a ∞ + B 4/3 ∞ + D 2 ∞ ))] F X0 + z 0 Z0 . ( 46 
)
To simplify our computations, let us denote F = F -(az + B • ∇z + D : ∇ 2 z). By multiplying (34) 1 by ∂ t z and integrating by parts, we have

(1 -ε) Ω |∂ t z(t)| 2 dx + 1 2 d dt Ω |∆z(t)| 2 dx ≤ C 0,ε F (t) 2 L 2 (Ω) . (47) 
Integrating in (0, T ), we deduce that

z 2 H 1 (0,T ;L 2 (Ω)) ≤ C 0,ε F 2 X2 + z 0 2 Z2 . ( 48 
)
Let us notice that

F 2 X2 ≤ F 2 X2 + ( a 2 ∞ + B 2 ∞ + D 2 ∞ ) z 2 L 2 (0,T ;H 2 (Ω)) . ( 49 
)
Combining the last estimate with (48) and (46), we deduce

z 2 H 1 (0,T ;L 2 (Ω)) ≤ e C0C1 F 2 X2 + z 0 2 Z2 . ( 50 
)
To finish the proof, from (34) 1 , we have

∆ 2 z = F -(∂ t z + az + B • ∇z + D : ∇ 2 z) in Q.
Combining this with (50) and ( 46), we deduce that

z Y2 ≤ e C0C1 F X2 + z 0 Z2 .
Finally, to prove the case i = 1, it suffices to use an interpolation argument between the X 0 , X 2 spaces, Z 0 , Z 2 spaces and Y 0 , Y 2 spaces.

Remark 2.2. Let us notice that Lemma 2.1 holds true for forward systems. Indeed, it suffices to apply Lemma 2.1 to z(t,

•) = z(T -t, •) for all t ∈ [0, T ]
where z is the solution of (34).

Now, we will introduce some weight function:

α(x, t) = e 4λ||η||∞ -e λ(2||η||∞+η(x)) t 1/2 (T -t) 1/2 , ξ(x, t) = e λ(2||η||∞+η(x)) t 1/2 (T -t) 1/2 ,
where η satisfies:

η ∈ C 4 ( Ω), η | ∂Ω = 0, |∇η| ≥ C 0 > 0 in Ω \ ω 0 , (51) 
with ω 0 ⊂⊂ ω ∩ O an open set. For the existence of η, see [START_REF] Fursikov | Controllability of evolution equations[END_REF]. Let us notice some essential properties on the weight functions :

Remark 2.3. We have ∇ξ = λξ∇η in Q, ξ -1 ≤ T 2 in Q, ∇η = ∂η ∂ n n on Σ.
The second result was proved in [START_REF] Guerrero | Carleman estimate and null controllability of a fourth order parabolic equation in dimension N ≥ 2[END_REF] :

Lemma 2.4. Let ω such that ω 0 ⊂⊂ ω. There exists a positive constant

C 0 = C 0 (Ω, ω) such that Q e -2sα s 6 λ 8 ξ 6 |ϕ| 2 + s 4 λ 6 ξ 4 |∇ϕ| 2 + s 3 λ 4 ξ 3 |∆ϕ| 2 +s 2 λ 4 ξ 2 |∇ 2 ϕ| 2 + sλ 2 ξ|∇∆ϕ| 2 + s -1 ξ -1 (|∂ t ϕ| 2 + |∆ 2 ϕ| 2 ) dxdt ≤ C 0 s 7 λ 8 ω×(0,T ) e -2sα ξ 7 |ϕ| 2 dxdt + Q e -2sα | f | 2 dxdt (52)
for any λ ≥ C 0 and any s ≥ C 0 (T 1/2 + T ) and where ϕ solution of

     -∂ t ϕ + ∆ 2 ϕ = f in Q , ϕ = ∆ϕ = 0 on Σ , ϕ(T, •) = ϕ 0 (•) in Ω , (53) 
where

ϕ 0 ∈ L 2 (Ω) and f ∈ L 2 (Q).
On the other hand, from [START_REF] Kassab | Null controllability of semi-linear fourth order parabolic equations[END_REF], by doing some modifications on boundary conditions, we have the following Lemma : Lemma 2.5. Let ω such that ω 0 ⊂⊂ ω. There exists a positive constant C 0 = C 0 (Ω, ω) such that

s 6 λ 8 Q e -2sα ξ 6 |q| 2 dxdt ≤ C 0 s 7 λ 8 ω×(0,T ) e -2sα ξ 7 |q| 2 dxdt + Q e -2sα |F 0 | 2 dxdt +s 2 λ 2 Q e -2sα ξ 2 |F 1 | 2 dxdt + s 4 λ 4 Q e -2sα ξ 4 N i,j=1 | Fij | 2 dxdt +s 3 λ 3 Σ e -2sα ξ 3 |f 1 | 2 dσdt + s 7 λ 7 Σ e -2α ξ 7 |f 0 | 2 dσdt , (54) 
for any λ ≥ C 0 and any s ≥ C 0 (T 1/2 + T ) and where q fulfills

             ∂ t q -∆ 2 q = F 0 + ∇ • F 1 + N i,j=1 ∂ ij Fij in Q , q = f 0 , ∆q = f 1 on Σ , q(T, •) = q 0 (•) in Ω . ( 55 
)
Before we finish this section, we give the following remark :

Remark 2.6. Let us notice that, Lemmas 2.4 and 2.5 hold true for forward system. Indeed, it suffices to apply Lemma 2.4 (resp. Lemma 2.5) to φ(t,

•) = ϕ(T -t, •) (resp. q(t, •) = q(T -t, •)) for all t ∈ [0, T ].
3 Insensitizing controls for φ 1 .

We know that the existence of a control v such that (5) holds true is equivalent to the null controllability of a coupled system. This result is given in the following lemma : Lemma 3.1. There exists a control v such that (5) holds true if and only if the following system :

       ∂ t y + ∆ 2 y + f (y, ∇ y, ∇ 2 y) = ζ + χ ω v in Q , y = ∆y = 0 on Σ , y(0, •) = y 0 (•) in Ω , (56) 
         -∂ t u + ∆ 2 u + ∂ s f (y, ∇ y, ∇ 2 y)u -∇ • (∂ p f (y, ∇ y, ∇ 2 y)u) in Q , +∇ 2 : (∂ q f (y, ∇ y, ∇ 2 y)u) = χ O y u = ∆u = 0 on Σ , u(T, •) = 0 in Ω , (57) 
verifies u(0, •) = 0 in Ω . ( 58 
)
Proof. Let us notice that ∂φ (w(x, t, h, τ ))

∂τ | τ =0 = (0,T )×O y τ y dxdt, (59) 
where y τ verifies

     ∂ t y τ + ∆ 2 y τ + ∂ s f (y, ∇ y, ∇ 2 y)y τ + ∂ p f (y, ∇ y, ∇ 2 y) • ∇ y τ + ∂ q f (y, ∇ y, ∇ 2 y) : ∇ 2 y τ = 0 in Q, y τ = ∆y τ = 0 on Σ , y τ (0, •) = ỹ0 in Ω . ( 60 
)
By multiplying (57) 1 by y τ and integrating by parts, we deduce

∂φ (w(x, t, h, τ )) ∂τ | τ =0 = (0,T )×O y τ y dxdt = ỹ0 , u(0, •) L 2 (Ω) .
The next subsection is devoted to the study of the linear system.

3.1 The linear case.

In this section we are going to treat the linear case. So let us consider the following linear system :

       ∂ t y + ∆ 2 y + ay + B • ∇y + D : ∇ 2 y = ζ + χ ω v in Q , y = ∆y = 0 on Σ , y(0, •) = y 0 in Ω , (61) 
             -∂ t u + ∆ 2 u + ãu -∇ • ( Bu) + N i,j=1 ∂ ij ( Dij u) = χ O y in Q , u = ∆u = 0 on Σ , u(T, •) = 0 in Ω , (62) 
where

a ∈ L ∞ (Q), B ∈ L ∞ (Q) N , D ∈ L ∞ (Q) N 2 ã ∈ L ∞ (Q), B ∈ L ∞ (Q) N , D ∈ L ∞ (Q) N 2 (63) 
and y 0 ∈ L 2 (Ω). Before we start, let us denote C 0 (Ω, ω) a constant which only depends on Ω and ω and

C 1 max(C 2 , C 3 ), (64) 
where

C 2 = C 0 (Ω, ω) 1 + C 4 + 1 √ T + T (1 + a ∞ + B 2 ∞ + D 2 ∞ + ã ∞ + B 2 ∞ + D 2 ∞ ) , (65) 
C 3 = C 0 (Ω, ω) 1 + √ T C 4 (66) 
and

C 4 = 1 + a 1/3 ∞ + B 1/2 ∞ + D ∞ + ã 1/3 ∞ + B 1/2 ∞ + D ∞ . ( 67 
)
The goal of this subsection is to prove the following approximate controllability result :

Proposition 3.2. Assume that Q e C 1 √ t |ζ| 2 dxdt < ∞,
where C 1 is given in (64). Then, for every T > 0 and ε > 0, there exists a control v ε ∈ L 2 ((0, T ) × ω) such that (y ε , u ε ) the corresponding solution of (61)-(62

) for v = v ε satisfies u ε (0, •) L 2 (Ω) ≤ ε. ( 68 
)
In addition, we have the following estimate :

v ε L 2 ((0,T )×ω) ≤ e C1 Q e C 2 √ t |ζ| 2 dxdt 1/2
, where C 1 is given in (64).

Remark 3.3. Let us notice that we can also prove that for every T > 0, there exists a control ṽ ∈ L 2 ((0, T ) × ω) such that (y, u) the corresponding solution of (61)-(62) for v = ṽ satisfies u(0, •) ≡ 0 in Ω, but this result will not be useful for the rest of this section.

So, let us consider the following adjoint system :

             -∂ t z + ∆ 2 z + az -∇ • (Bz) + N i,j=1 ∂ ij (D ij z) = χ O p in Q , z = ∆z = 0 on Σ , z(T, •) = 0 in Ω , (69) 
     ∂ t p + ∆ 2 p + ãy + B • ∇p + D : ∇ 2 p = 0 in Q , p = ∆p = 0 on Σ , p(0, •) = p 0 in Ω , (70) 
where p 0 ∈ L 2 (Ω). In order to prove Proposition 3.2, we are going to prove a Carleman estimate for the solutions of ( 69)-(70) :

Proposition 3.4. Let (2) holds true. Then, there exists a positive constant C 0 > 0 such that for every solution (z, p) of ( 69)-( 70) with initial data p 0 ∈ L 2 (Ω) the following inequality holds true:

s 6 λ 8 Q e -2sα ξ 6 (|z| 2 + |p| 2 )dxdt ≤ C 0 s 16 λ 16 (0,T )×ω e -2sα ξ 16 |z| 2 dxdt, (71) 
for λ ≥ C 0 and s ≥ C 0 (T C 4 + T 1/2 ) and where C 4 is given in (67).

From the previous Proposition, we can deduce a new estimate for the solutions of (69)-(70):

Proposition 3.5. Let (2) holds true. Then, there exists a constant C 0 (Ω, ω) > 0 such that every solution (z, p) of ( 69)-(70) with initial data

p 0 ∈ L 2 (Ω) satisfies Q e - C 1 √ t |z| 2 dxdt ≤ e C1 (0,T )×ω |z| 2 dxdt,
where C 1 is given in (64).

Proof. Let us denote

I Q e - C 1 √ t |z| 2 dxdt = (0,T /2)×Ω e - C 1 √ t |z| 2 dxdt + (T /2,T )×Ω e - C 1 √ t |z| 2 dxdt = I 1 + I 2 . ( 72 
)
We will start by proving the following estimate :

I 1 ≤ e C1 (0,T )×ω |z| 2 dxdt. (73) 
At first let us notice that

               e -2sα ξ 6 ≥ C 0 T -6 exp[- C 0 s √ T t ], ∀t ∈ (0, T 2 ), e -2sα ξ 16 ≤ C 0 T -16 exp[C 1 ], ∀(t, x) ∈ Q, e -2sα ξ 6 ≥ C 0 T -6 exp[-2C 1 ], ∀(t, x) ∈ ( T 4 , 3T 4 
) × Ω.

(74)

Combining the last estimates with Proposition 3.4, we deduce

I 1 ≤ C 0 T 6 (0,T )×Ω e -2sα ξ 6 |z| 2 dxdt ≤ e C1 (0,T )×ω |z| 2 dxdt. (75) 
Now we are going to treat I 2 . We will prove at first the following estimate on p the solution of (70) :

Ω |p(t + T /4)| 2 dx ≤ e C1 Ω |p(t)| 2 dx, ∀t ∈ ( T 4 , 3T 4 
).

(76)

By multiplying (70) 1 by p and integrating by parts, we have 1 2

d dt Ω |p(t, x)| 2 dx + Ω |∆ p(t, x)| 2 dx -ε p(t) 2 H 2 (Ω) ≤ C(ε)(1 + ã ∞ + B 2 ∞ + D 2 ∞ ) Ω |p(t, x)| 2 dx,
for ε > 0. By using the fact that there exists λ > 0 such that for any p ∈ H 2 (Ω) ∩ H 1 0 (Ω), we have

Ω |∆ p| 2 dx ≥ λ p 2 H 2 (Ω) , (77) 
we deduce

d dt exp(-C 0 (1 + ã ∞ + B 2 ∞ + D 2 ∞ )t) Ω |p(t, x)| 2 dx ≤ 0.
Then by integrating in (t,

t + T 4 ) for t ∈ ( T 4 , 3T 4 
), we deduce (76). Now, we are going to prove the following estimate on z the solution of (69) :

Ω |z(t, x)| 2 dx ≤ C 0 T t Ω |p(s, x)| 2 dtdx, ∀t ∈ (0, T ). ( 78 
)
By multiplying (69) 1 by z and integrating by parts, we have

- 1 2 d dt Ω |z(t, x)| 2 dx + Ω |∆ z(t, x)| 2 dx -ε z(t) 2 H 2 (Ω) ≤ C(ε)(1 + a ∞ + B 2 ∞ + D 2 ∞ ) Ω |z(t, x)| 2 dx + C 0 O |p(t)| 2 dx,
for ε > 0. By using (77) for z, we deduce

- d dt exp(C 0 (1 + ã ∞ + B 2 ∞ + D 2 ∞ )t) Ω |z(t, x)| 2 dx ≤ C 0 O |p(t)| 2 dx.
Then by integrating in (t, T ) for t ∈ (0, T ), we deduce (78). Now, from the definition of I 2 , we have

I 2 ≤ T T /2 Ω |z| 2 dxdt.
Using the last estimate with (76), we have

I 2 ≤ e C1 3T /4 T /4 Ω |p| 2 dxdt.
Combining the last estimate with (74) 3 , we deduce

I 2 ≤ e C1 3T /4 T /4 Ω e -2sα ξ 6 |p| 2 dxdt ≤ e C1 T 0 Ω e -2sα ξ 6 |p| 2 dxdt.
From the last estimate combined with Proposition 3.4 and (74) 2 , we deduce,

I 2 ≤ e C1 (0,T )×ω |z| 2 dxdt. (79) 
From (73) combined with (79), we deduce our aim result. Now, we give the proof of Proposition 3.4.

Proof of Proposition 3.4. Let us consider ω 0 ⊂⊂ ω ⊂⊂ ω ∩ O. By applying Lemma 2.5 to z the solution of (69) for ω = ω, F 0 = az, F 1 = -B z, Fi,j = D i,j z and f 0 = f 1 = q 0 = 0, we have

s 6 λ 8 Q e -2sα ξ 6 |z| 2 dxdt ≤ C 0 s 7 λ 8 (0,T )×ω e -2sα ξ 7 |z| 2 dxdt + Q e -2sα |a z| 2 dxdt +s 2 λ 2 Q e -2sα ξ 2 |B z| 2 dxdt + s 4 λ 4 Q e -2sα ξ 4 |D z| 2 dxdt + (0,T )×O e -2sα |p| 2 dxdt , (80) 
for any λ ≥ C 0 and any s ≥ C 0 (T 1/2 + T ). It is clear that

Q e -2sα |a z| 2 + s 2 ξ 2 |B z| 2 + s 4 ξ 4 |D z| 2 dxdt ≤ s 6 Q e -2sα ξ 6 |z| 2 dxdt for λ ≥ C 0 and s ≥ C 0 T ( a 1/3 ∞ + B 1/2 ∞ + D ∞ ) + T 1/2
. Then, we deduce

s 6 λ 8 Q e -2sα ξ 6 |z| 2 dxdt ≤ C 0 s 7 λ 8 (0,T )×ω e -2sα ξ 7 |z| 2 dxdt + (0,T )×O e -2sα |p| 2 dxdt , ( 81 
) for λ ≥ C 0 and s ≥ C 0 T ( a 1/3 ∞ + B 1/2 ∞ + D ∞ )T 1/2
. In order to estimate the last term in the right-hand side of (81), we apply Lemma 2.4 (see Remark 2.6) to p the solution of (70) for ω = ω , we have

Q e -2sα s 6 λ 8 ξ 6 |p| 2 + s 4 λ 6 ξ 4 |∇p| 2 + s 3 λ 4 ξ 3 |∆p| 2 +s 2 λ 4 ξ 2 |∇ 2 p| 2 + sλ 2 ξ|∇∆p| 2 + s -1 ξ -1 (|∂ t p| 2 + |∆ 2 p| 2 ) dxdt ≤ C 0 s 7 λ 8 (0,T )×ω e -2sα ξ 7 |p| 2 dxdt + Q e -2sα |ã p| 2 + | B • ∇p| 2 + | D : ∇ 2 p| 2 dxdt, (82) 
for λ ≥ C 0 and s ≥ C 0 (T + T 1/2 ). It is clear that

Q e -2sα |ã p| 2 + | B • ∇p| 2 + | D : ∇ 2 p| 2 dxdt ≤ s 2 Q e -2sα ξ 2 s 4 ξ 4 |p| 2 + s 2 ξ 2 |∇p| 2 + |∇ 2 p| 2 dxdt, for s ≥ C 0 T ( ã 1/3 ∞ + B 1/2 ∞ + D ∞ ) + T 1/2 .
Combining the last estimate with (82), we deduce

Q e -2sα s 6 λ 8 ξ 6 |p| 2 + s 4 λ 6 ξ 4 |∇p| 2 + s 3 λ 4 ξ 3 |∆p| 2 +s 2 λ 4 ξ 2 |∇ 2 p| 2 + sλ 2 ξ|∇∆p| 2 + s -1 ξ -1 (|∂ t p| 2 + |∆ 2 p| 2 ) dxdt ≤ C 0 s 7 λ 8 (0,T )×ω e -2sα ξ 7 |p| 2 dxdt, (83) 
for s ≥ C 0 (T C 4 + T 1/2 ) (C 4 is given in ( 67)).

To treat the local term in the right-hand side of (83

), let us introduce θ ∈ C ∞ 0 (Ω) such that 0 ≤ θ ≤ 1, θ(x) = 1 if x ∈ ω , θ(x) = 0 if x ∈ Ω\ω ∩ O.
By multiplying (69) 1 by s 7 λ 8 ξ 7 e -2sα θ 8 p and integrating par parts, we have

I s 7 λ 8 (0,T )×ω θ 8 e -2sα ξ 7 |p| 2 dxdt = s 7 λ 8 (0,T )×ω z ∂ t (e -2sα ξ 7 θ 8 p) + ∆ 2 (e -2sα ξ 7 θ 8 p)dxdt
+e -2sα ξ 7 θ 8 a p + B • ∇(e -2sα ξ 7 θ 8 p) + D : ∇ 2 (e -2sα ξ 7 θ 8 p) dxdt.

By using the fact that ∆ 2 (e -2sα ξ 7 θ 8 p) = 2 (e -2sα ξ 7 θ 8 )p + e -2sα ξ 7 θ 8 ∆ 2 p + 4∇∆(e -2sα ξ 7 θ 8 ) • ∇p + 4∇∆p • ∇(e -2sα ξ 7 θ 8 )

+2∆(e -2sα ξ 7 θ 8 )∆p + 4∇ We give a sketch of the proof.

For ε > 0, we consider the following functional defined on L 2 (Ω) :

J ε (p 0 ) = 1 2 (0,T )×ω |z| 2 dxdt + ε p 0 L 2 (Ω) + Q ζzdxdt, (85) 
where (z, p) is the solution of ( 69)-( 70) with initial data p 0 ∈ L 2 (Ω). It is easy to see that J ε is a continuous and strictly convex functional. Moreover, from the fact that lim inf

p0 L 2 (Ω) →+∞ J ε (p 0 ) p 0 L 2 (Ω) ≥ ε,
we deduce that J ε is coercive. So, we deduce the existence of a unique minimum p ε 0 ∈ L 2 (Ω). By taking v ε = z ε χ ω where (z ε , p ε ) is the corresponding solution of ( 69)-( 70) with initial data p 0 = p ε 0 , we deduce easily (68).

A null controllability result for the semi-linear system.

This section is devoted to the proof of Theorem 1.3.

At first, from the fact that f is C 1 globally Lipschitz function and f (0, 0, 0) = 0, we have the following decomposition : f (s, p, q) = g(s, p, q)s + G(s, p, q) • p + E(s, p, q) : q, ∀(s, p, q

) ∈ R × R N × R N 2 ,
where

g : R × R N × R N 2 → R, G : R × R N × R N 2 → R N and E : R × R N × R N 2 → R N 2 . Furthermore, g(s, p, q) = 1 0 ∂ s f (λs, λp, λq)dλ, G(s, p, q) = 1 0 ∂ p f (λs, λp, λq)dλ, E(s, p, q) = 1 0 ∂ q f (λs, λp, λq)dλ. ( 86 
)
Let us set Z = L 2 (0, T ; H 2 ∩ H 1 0 (Ω)). For each z ∈ Z, we consider the following system :

     ∂ t y z + ∆ 2 y z + g(z, ∇z, ∇ 2 z)y z + G(z, ∇z, ∇ 2 z) • ∇y z + E(z, ∇z, ∇ 2 z) : ∇ 2 y z = ζ + χ ω v z in Q , y z = ∆y z = 0 on Σ , y z (0, •) = 0 in Ω , ( 87 
)          -∂ t u z + ∆ 2 u z + ∂ s f (z, ∇z, ∇ 2 z)u z -∇ • (∂ p f (z, ∇z, ∇ 2 z)u z ) in Q , +∇ 2 (∂ q f (z, ∇z, ∇ 2 z)u z ) = χ O y z u z = ∆u z = 0 on Σ , u z (T, •) = 0 in Ω . ( 88 
)
Let us set for each z ∈ Z

                               a z = g(z, ∇z, ∇ 2 z) ∈ L ∞ (Q), B z = G(z, ∇z, ∇ 2 z) ∈ L ∞ (Q) N , D z = E(z, ∇z, ∇ 2 z) ∈ L ∞ (Q) N 2 , ãz = ∂ s f (z, ∇z, ∇ 2 z) ∈ L ∞ (Q), Bz = ∂ p f (z, ∇z, ∇ 2 z) ∈ L ∞ (Q) N , Dz = ∂ q f (z, ∇z, ∇ 2 z) ∈ L ∞ (Q) N 2 . ( 89 
)
From the definition of f , we have

a z ∞ + B z ∞ + D z ∞ + ãz ∞ + Bz ∞ + Dz ∞ ≤ M , ∀z ∈ Z, (90) 
where

M = f W 1 ∞ .
Then, by applying Proposition 3.2, we deduce that there exists a control v ε = v ε z ∈ L 2 ((0, T ) × ω) such that the corresponding solution (y ε z , u ε z ) of ( 87)-( 88) satisfies

u ε z (0, •) L 2 (Ω) ≤ ε
and where

v ε z L 2 ((0,T )×ω) ≤ e C2 Q e C 2 √ t |ζ| 2 dxdt 1/2 , ( 91 
)
where C 2 is given in [START_REF] Guerrero | Carleman estimate and null controllability of a fourth order parabolic equation in dimension N ≥ 2[END_REF]. Here, we used (90).

Now, the idea is to prove the existence of at least one fixed point y ε of the following mapping :

z → Λ(z) = y ε z ,
where y ε z is the corresponding solution of (87) for v z = v ε z . Thus, let us recall the Schauder fixed point theorem : Theorem 3.6. Let Z be a Banach space and K ⊂ Z is a compact set. If Λ : K → K is continuous, then Λ has a fixed point.

Let us check that Schauder fixed point theorem can be applied to Λ. First, it is clear that Z is a Banach space. On the other hand, by applying Lemma 2.1 to y ε z the solution of (87), for a = a z ,

B = B z , D = D z and F = ζ + χ ω v ε z we have y ε z Y ≤ e C0(Ω)C1 ζ + χ ω v ε z L 2 (Q) , (92) 
where

C 1 is given in (39) and Y = H 1 (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 4 (Ω)) ∩ C 0 ([0, T ]; H 2 (Ω))
. So let us introduce the subset K :

K = y ∈ Y ; y Y ≤ e C2 Q e C 2 √ t |ζ| 2 dxdt 1/2
, where C 2 is given in [START_REF] Guerrero | Carleman estimate and null controllability of a fourth order parabolic equation in dimension N ≥ 2[END_REF]. Then, we deduce that Λ(Z) is embedded in K.

Now, let us prove that Λ is continuous. Let (z n ) n∈N be such that z n → z in Z. We have

             a zn a z , ãzn ãz weakly * in L ∞ (Q), B zn B z , Bzn Bz weakly * in L ∞ (Q) N , D zn D z , Dzn Dz weakly * in L ∞ (Q) N 2 . ( 93 
)
4 Insensitizing controls for φ 2 .

In this section, we are going to prove Theorem 1.4. We only prove a new Carleman estimate which leads us to prove this Theorem by using the same ideas as in Section 3. Let us introduce the following control system :

       ∂ t w + ∆ 2 w + aw + B • ∇ w + E : ∇ 2 w = χ ω v in Q , w = ∆w = 0 on Σ , w(0, •) = y 0 (•) + τ ỹ0 in Ω , (106) 
where

a ∈ L ∞ (0, T ), B ∈ L ∞ (0, T ) N and E ∈ L ∞ (0, T ) N 2
. As we said in the previous section, the existence of a control v such that (1) holds is equivalent to the null controllability of a coupled system. So, we introduce the following coupled system :

       ∂ t y + ∆ 2 y + ay + B • ∇ y + E : ∇ 2 y = χ ω v in Q , y = ∆y = 0 on Σ , y(0, •) = y 0 (•) in Ω , (107) 
     -∂ t u + ∆ 2 u + au -B • ∇ u + E : ∇ 2 u = ∇ • (∇ y 1 1 O ) in Q , u = ∆u = 0 on Σ , u(T, •) = 0 in Ω . ( 108 
)
Let us consider the following adjoint parabolic system :

                 -∂ t ψ + ∆ 2 ψ + aψ -B • ∇ψ + E : ∇ 2 ψ = ∇ • (∇ϕ 1 1 O ) in Q , ∂ t ϕ + ∆ 2 ϕ + aϕ + B • ∇ϕ + E : ∇ 2 ϕ = 0 in Q , ψ = ∆ψ = 0 on Σ , ϕ = ∆ϕ = 0 on Σ , ψ(T, •) = 0 , ϕ(0, •) = ϕ 0 (•) in Ω , (109) 
where ϕ 0 ∈ L 2 (Ω). Before we start our study, we introduce the following weight functions:

α(t) = min x∈Ω α, ξ(t) = max x∈Ω ξ, α * = α | ∂Ω = max x∈Ω α, ξ * = (ξ) | ∂Ω = min x∈Ω ξ, (110) 
η is given in (51) and where ω 0 ⊂⊂ O ∩ ω. In order to shorten the formulas , we define

J(ψ) s 6 λ 8 Q e -5 2 sα ξ 6 |ψ| 2 dxdt + λ 8 T 0 e -5 2 sα * (sξ * ) 4 ψ 2 H 1 (Ω) + (sξ * ) 2 ψ 2 H 2 (Ω) + ψ 2 H 3 (Ω) dt (111) 
and

I(ϕ) λ 8 T 0 e -2sα * (sξ * ) 3 ϕ 2 H 3 (Ω) + ϕ 2 H 4 (Ω) + ∂ t ϕ 2 L 2 (Ω) dt +s 6 λ 8 Q e -2sα ξ 6 |∆ϕ| 2 dxdt. (112) 
In this section, let us denote C a positive constant depending on Ω, ω, a ∞ , B ∞ and E ∞ .

We are going to prove the following Proposition :

Proposition 4.1. There exists C = C(Ω, ω, a ∞ , B ∞ , E ∞ ) such that J(ψ) + I(ϕ) ≤ C ω×(0,T ) e -1 4 sα |ψ| 2 dxdt, (113) 
for any λ ≥ C and any s ≥ C(T 1/2 + T ), where (ψ, ϕ) is the solution of (109).

We divide the proof in several subsections, the first one concerns the proof of a new Carleman estimate for ϕ. In the second subsection we apply a Carleman estimate for ψ and we conclude. Let us recall the system satisfied by ϕ :

       ∂ t ϕ + ∆ 2 ϕ + aϕ + B • ∇ϕ + E : ∇ 2 ϕ = 0 in Q , ϕ = ∆ϕ = 0 on Σ , ϕ(0, •) = ϕ 0 (•) in Ω , (114) 
where ϕ 0 ∈ L 2 (Ω). For this system we can prove the following Carleman estimate : Lemma 4.2. There exists C > 0 such that for all ϕ 0 ∈ L 2 (Ω), we have

I(ϕ) ≤ Cs 7 λ 8 ω ×(0,T ) e -2sα ξ 7 |∆ϕ| 2 dxdt, (115) 
for any λ ≥ C, any s ≥ C(T 1/2 + T ) and where ω 0 ⊂⊂ ω ⊂⊂ ω ∩ O .

Proof. We divide it in several steps. Before we start let us introduce the following remark :

Remark 4.3. In all this section, we prove Lemma 4.2 by using a density argument. Indeed, it suffices to consider a n , B n , E n and ϕ 0,n are regular enough and prove the following estimate :

I(ϕ n ) ≤ C n s 7 λ 8 ω ×(0,T ) e -2sα ξ 7 |∆ϕ n | 2 dxdt, (116) 
where

C n = C(Ω, ω, a n ∞ , B n ∞ , D n ∞
) and ϕ n is the corresponding solution of (114) for a = a n , B = B n , E = E n and ϕ 0 = ϕ 0,n . Then, by passing to the limit in (116), we deduce our aim result.

Let us now start with the first step of the proof.

Step 1. Estimate for ∆ϕ .

Let us notice that ∆ϕ verifies

     ∂ t ∆ϕ + ∆ 2 ∆ϕ + ∆(aϕ + B • ∇ϕ + E : ∇ 2 ϕ) = 0 in Q , ∆ϕ = 0 on Σ , ∆ϕ(0, •) = ∆ϕ 0 (•) in Ω . ( 117 
)
Then by applying Lemma 2.5 to ∆ϕ with ω = ω , F 0 = -a∆ϕ, F 1 = -B • ∆ϕ and Fij = -E i,j ∆ϕ and taking into consideration Remark 2.6, we deduce

s 6 λ 8 Q e -2sα ξ 6 |∆ϕ| 2 dxdt ≤ C s 7 λ 8 ω ×(0,T ) e -2sα ξ 7 |∆ϕ| 2 dxdt +s 3 λ 3 Σ e -2sα ξ 3 |∆ 2 ϕ| 2 dxdt + Q e -2sα |a∆ϕ| 2 + s 2 λ 2 ξ 2 |B| 2 |∆ϕ| 2 +s 4 λ 4 ξ 2 |E| 2 |∆ϕ| 2 dxdt , (118) 
for any λ ≥ C and any s ≥ C(T 1/2 + T ). By taking λ ≥ C and C(T 1/2 + T ), we deduce

s 6 λ 8 Q e -2sα ξ 6 |∆ϕ| 2 dxdt ≤ C s 7 λ 8 ω ×(0,T )
e -2sα ξ 7 |∆ϕ| 2 dxdt

+s 3 λ 3 Σ e -2sα ξ 3 |∆ 2 ϕ| 2 dxdt . ( 119 
)
Step 2. Treating the boundary term and adding other terms.

To treat the boundary term in the right-hand side of (119), let us prove the following Lemma :

Lemma 4.4. Let ϕ fulfil (114). Then, there exists C > 0 such that

I(ϕ) ≤ Cs 6 λ 8 Q e -2sα ξ 6 |∆ϕ| 2 dxdt, (120) 
for any λ ≥ C, any s ≥ C(T 1/2 + T ), where I(ϕ) was defined in (112).

Proof. Before we start, let us remark that

|∂ t α * | + |∂ t ξ * | ≤ CT (ξ * ) 3 . ( 121 
)
Let us set ϑ = e -sα * ϕ. It is easy to verify that ϑ fulfills

     ∂ t ϑ + ∆ 2 ϑ + aϑ + B • ∇ϑ + E : ∇ 2 ϑ = ∂ t e -sα * ϕ in Q , ϑ = ∆ϑ = 0 on Σ , ϑ(0, •) = 0 in Ω . (122) 
By using the fact that ∂ t (e -sα * )ϕ ∈ L 2 (Q), Lemma 2.1 for F = ∂ t (e -sα * )ϕ and D = E and estimate (121), we can easily deduce

λ 8 T 0 e -2sα * ( ϕ 2 H 4 (Ω) + ∂ t ϕ 2 L 2 (Ω) )dt ≤ Cs 6 λ 8 Q e -2sα ξ 6 |∆ϕ| 2 dxdt , (123) 
for any λ ≥ C, any s ≥ C(T 1/2 + T ). Finally, by using interpolation inequalities, we can add the term

s 3 λ 8 T 0 e -2sα * (ξ * ) 3 ϕ 2 H 3 (Ω) dt,
to the left-hand side of (123).

Coming back to (119), we deduce

I(ϕ) ≤ C s 7 λ 8 ω ×(0,T ) e -2sα ξ 7 |∆ϕ| 2 dxdt +s 3 λ 3 Σ e -2sα ξ 3 |∆ 2 ϕ| 2 dxdt , (124) 
for λ ≥ C and s ≥ C(T 1/2 + T ). To absorb the boundary term in the right-hand side of (124), it suffices to see that from (114) :

∆ 2 ϕ = -∂ t ϕ -aϕ -B • ∇ϕ -E : ∇ 2 ϕ in Q.
Then, we deduce that

∆ 2 ϕ = -B • ∇ϕ -E : ∇ 2 ϕ on Σ.
So, we have the following estimate :

s 3 λ 3 Σ e -2sα * (ξ * ) 3 |∆ 2 ϕ| 2 dxdt = s 3 λ 3 Σ e -2sα * (ξ * ) 3 | -B • ∇ϕ -E : ∇ 2 ϕ| 2 dxdt ≤ Cs 3 λ 3 T 0 e -2sα * (ξ * ) 3 ϕ 2 H 5/2+ε (Ω) dt, (125) 
for λ ≥ C and ε > 0. So we can deduce that the boundary term in the right-hand side of ( 124) is absorbed by a H 3 (Ω) term that appears in the definition of I(ϕ) for λ ≥ C and ε > 0 small enough. This finishes the proof of Lemma 4.2.

4.0.2 New Carleman estimate for ψ.

Let us recall the system verified by ψ for a function ϕ given

       -∂ t ψ + ∆ 2 ψ + aψ -B • ∇ψ + E : ∇ 2 ψ = ∇ • (∇ϕ 1 1 O ) in Q = (0, T ) × Ω , ψ = ∆ψ = 0 on Σ , ψ(T, •) = 0 in Ω . ( 126 
)
By applying Lemma 2.5 to ψ for ω = ω, F 0 = aψ , F 1 = ∇ϕ -Bψ and F = E ψ with the small weight e -5 2 sα , we have

s 6 λ 8 Q e -5 2 sα ξ 6 |ψ| 2 dxdt ≤ C s 7 λ 8 ω×(0,T ) e -5 2 sα ξ 7 |ψ| 2 dxdt + Q e -5 2 sα (|aψ| 2 + s 2 λ 2 ξ 2 |Bψ| 2 + s 4 λ 4 ξ 4 |E ψ| 2 )dxdt +s 2 λ 2 Q e -5 2 sα ξ 2 |∇ϕ| 2 dxdt , (127) 
for λ ≥ C and s ≥ C(T 1/2 + T ). To treat the last term in the right-hand side of (127), let us notice that

s 2 λ 2 Q e -5 2 sα ξ 2 |∇ϕ| 2 dxdt ≤ s 2 λ 2 Q e -5 2 s α ξ2 |∇ϕ| 2 dxdt ≤ Cs 2 λ 2 T 0 e -5 2 s α ξ2 ∆ϕ 2 L 2 (Ω) dt ≤ Cs 2 λ 2 Q e -2sα ξ 2 |∆ϕ| 2 dt, (128) 
for λ ≥ C and s ≥ C(T 1/2 + T ). We recall that α(t) = min Let us now prove some estimates on the first, second and third order derivatives of ψ. Let us set ψ = λ 4 e -5 4 sα * ψ. It is easy to verify that ψ fulfills

     -∂ t ψ + ∆ 2 ψ + a ψ -B • ∇ ψ + E : ∇ 2 ψ = f in Q , ψ = ∆ ψ = 0 on Σ , ψ(0, •) = 0 in Ω , (129) 
where 

f = λ 4 ∇•(e -5 4 sα * ∇ϕ1 1 O )-λ 4 ∂ t (e -5 4 α * )ψ. Let us notice that f ∈ L 2 (0, T ; H -1 (Ω)). Indeed, it suffices to remark that f 2 L 2 (0,T ;H -1 (Ω)) ≤ λ 8 T 0 e -5 2 sα * ∇ϕ 2 L 2 (Ω) dt + s 6 λ 8 Q e -5 2 sα * (ξ * ) 6 |ψ| 2 dxdt ≤ Cλ 8 T 0 e -5 2 sα * ∆ϕ 2 L 2 (Ω) dt + s 6 λ 8 Q e -
ψ 2 L 2 (0,T ;H 3 (Ω)) ≤ C f 2 L 2 (0,T ;H -1 (Ω)) ≤ C I(ϕ) + s 6 λ 8 Q e -5 2 sα ξ 6 |ψ| 2 dxdt , (131) 
for λ ≥ C and s ≥ C(T 1/2 + T ).

Here we proved an estimate for the third derivatives of ψ. To add the first and second order derivatives of ψ, it suffices to use interpolation argument between H 3 (Ω) and L 2 (Ω) spaces.

Combining the last inequality with (115), (127) and (128), we deduce

J(ψ) + I(ϕ) ≤ C s 7 λ 8 ω×(0,T ) e -5 2 sα ξ 7 |ψ| 2 dxdt + s 7 λ 8 ω ×(0,T ) e -2sα ξ 7 |∆ϕ| 2 dxdt , (132) 
for any λ ≥ C and any s ≥ C(T 1/2 + T ).

Last arrangements and conclusion.

In this subsection, we treat the last term on the right-hand side of (132). Let us introduce a function θ such that 0

≤ θ ≤ 1, θ(x) = 1 if x ∈ ω , θ(x) = 0 if x ∈ Ω\ω.
Let us notice that from (109), we have

-∂ t ψ + ∆ 2 ψ + aψ -B • ∇ψ + E : ∇ 2 ψ = ∆ϕ in ω .
Recall that ω was defined in Lemma 115. Then we deduce that

|∆ϕ| 2 = ∆ϕ(-∂ t ψ + ∆ 2 ψ + aψ -B • ∇ψ + E : ∇ 2 ψ) in ω .
So, we have

s 7 λ 8 ω ×(0,T ) e -2sα ξ 7 |∆ϕ| 2 dxdt ≤ s 7 λ 8 ω×(0,T ) e -2sα ξ 7 θ 4 ∆ϕ(-∂ t ψ + ∆ 2 ψ +aψ -B • ∇ψ + E : ∇ 2 ψ) dxdt. (133) 
By integrating by parts and using the fact that e -2sα ≤ e -2s α and ξ ≤ ξ, we deduce (134)

To shorten the formulas below, let us denote

J ω (ψ) = s 14 λ 8 ω×(0,T ) e -4s α+2sα * ( ξ) 14 (|ψ| 2 + θ|∇ψ| 2 + θ 2 |∇ 2 ψ| 2 )dxdt.
We use the fact that ∂ t (e -2s α( ξ) 7 ) ≤ Cs 3 e -2s α( ξ) 10 for s ≥ C(T 1/2 + T ), we integrate by parts and we deduce

I 1 = s 7 λ 8 ω×(0,T ) θ 4 ∂ t (e -2s α( ξ) 7 )∆ϕψdxdt + s 7 λ 8 ω×(0,T ) e -2s α∂ t ϕ( ξ) 7 ∆(θ 4 ψ) dxdt ≤ εI(ϕ) + C(ε)J ω (ψ),
for ε > 0, λ ≥ C and s ≥ C(T 1/2 + T ). On the other hand, we have

I 2 = s 7 λ 8 ω×(0,T ) e -2s α( ξ) 7 (∆(θ 4 )∆ϕ + 2∇(θ 4 ) • ∇∆ϕ + θ 4 ∆ 2 ϕ)∆ψ dxdt ≤ εI(ϕ) + C(ε)J ω (ψ), (135) 
for ε > 0, λ ≥ C and s ≥ C(T 1/2 + T ). Moreover, it is easy to see that

I 3 + I 4 + I 5 ≤ εI(ϕ) + C(ε)J ω (ψ),
for ε > 0, λ ≥ C and s ≥ C(T 1/2 + T ). Combining the last computations with (132), we deduce

J(ψ) + I(ϕ) ≤ CJ ω (ψ), (136) 
for λ ≥ C and s ≥ C(T 1/2 + T ). To finish the proof, it suffices to treat the term on the right-hand side of (136). We will treat only the last term of J ω (ψ) because it is more complicated than the others. Let us denote J 3,ω (ψ) s 14 λ 8 ω×(0,T ) e -4s α+2sα * ( ξ) 14 θ 2 |∇ 2 ψ| 2 )dxdt.

By integrating by parts, we have 

for λ ≥ C and s ≥ C(T 1/2 + T ). This finish the proof of Proposition 4.1

5 Negative controllability results for coupled systems of second and fourth order parabolic equations in dimension N .

This section is devoted for the proof of Lemma 1.6 and Lemma 1.10. We divide the proofs of these two Lemmas into several parts depending on the dimension N ∈ N.

Proof of Lemma 1.6. where a ∈ L ∞ (0, 2π) and B ∈ L ∞ (0, 2π). To find a counter example, the main idea is to take some functions a and B vanishing in O. So let us define the function a as follows :

• Dimension

a(x) =        -1 if x ∈ [0, π 2 ] ∪ [ 3π 2 , 2π] , 0 if x ∈] π 2 , 3π 2 [ 
and B ≡ 0. It is not hard to see that a solution for this system is the following one :

φ(x) =                  sin(x) if x ∈ [0, π 2 ] ∪ [ 3π 2 , 2π] 1 if x ∈] π 2 , 3π 2 [ , -sin(x) if x ∈ [ 3π 2 , 2π]
and φ ∈ H 2 (Ω). By taking ϕ 0 = φ in [START_REF] Zhang | A general fourth-order parabolic equation[END_REF], we deduce that the corresponding solution (ψ, ϕ) of ( 21) does not satisfies Unique Continuation Principle given in (22). Indeed, let us remark that the corresponding solution of ( 21) verifies ψ ≡ 0, ϕ(t, x) = φ(x) for (t, x) ∈ Q and we have ψ = 0 in (0, T ) × ω but ϕ = 0 in Q,

for any ω ⊂ Ω.

• Dimension N = 2 .

Let us denote O = {(x, y) ∈ R 2 ; x 2 + y 2 < e -π }, Ω = {(x, y) ∈ R 2 ; x 2 + y 2 < 1} and let us consider the following system : and φ ∈ H 2 (Ω). By taking ϕ 0 = φ in [START_REF] Zhang | A general fourth-order parabolic equation[END_REF], we deduce that the corresponding solution (ψ, ϕ) of ( 21) verifies ψ ≡ 0, ϕ(t, x) = φ(x) for (t, x) ∈ Q and we have ψ = 0 in (0, T ) × ω but ϕ = 0 in Q,

for any ω ⊂ Ω.

• Dimension N > 2 .

Let us denote O = x = (x 1 , x 2 , ..., x N ) ∈ R N ; x 

a(x) =        - 1 x 2 2 if x ∈ Ω \ ω , 0 if x ∈ O and B(x) =        N -2 x 2 2 if x ∈ Ω \ ω , 0 if x ∈ O.
Then, we deduce the following solution :

φ(x) =      sin(log( x 2 )) if x ∈ Ω \ ω , -1 if x ∈ O
and φ ∈ H 2 (Ω). As we did above it is not hard to see that the corresponding solution (ψ, ϕ) = (0, φ) of ( 21) for ϕ 0 = φ does not satisfies Unique Continuation Principle given in (22) for any ω ⊂ Ω.

Let us now give the proof of Lemma 1.10.

Proof of Lemma 1.10. 

• Dimension

  that the corresponding solution (ψ, ϕ) of (21) does not satisfies the Unique Continuation Principle given in (22) for any ω ⊂ Ω.

  ) does not satisfy the Unique Continuation Principle given in (28) for any open non empty subset ω ⊂⊂ Ω.

4.0. 1

 1 New Carleman estimate for ϕ.

x∈Ωα

  and ξ(t) = max x∈Ω α (see (110)). Here we used that ϕ = 0 on ∂Ω.

s 7 λ 8

 8 ω×(0,T ) e -2s α( ξ) 7 θ 4 |∆ϕ| 2 dxdt = s 7 λ 8 ω×(0,T ) θ 4 ∂ t (e -2s α( ξ) 7 ∆ϕ)ψdxdt +s 7 λ 8 ω×(0,T ) e -2s α( ξ) 7 ∆(θ 4 ∆ϕ)∆ψ dxdt +s 7 λ 8 ω×(0,T ) e -2s α( ξ) 7 θ 4 ∆ϕ a ψ dxdt -s 7 λ 8 ω×(0,T ) e -2s α( ξ) 7 θ 4 ∆ϕ B • ∇ψ dxdt +s 7 λ 8 ω×(0,T ) e -2s α( ξ) 7 θ 4 ∆ϕ E : ∇ 2 ψ dxdt = I 1 + I 2 + I 3 + I 4 + I 5 .

J 3 ,

 3 ω (ψ) ≤ C s 14 λ 8 ω×(0,T ) e -4s α+2sα * ( ξ) 14 θ 2 |∇∆ψ||∇ψ|dxdt +s 14 λ 8 ω×(0,T ) e -4s α+2sα * ( ξ) 14 θ |∇ 2 ψ||∇ψ|dxdt ≤ εJ(ψ) + C ε s 28 λ 8 ω×(0,T ) e -8s α+ 13 2 sα * ( ξ) 28 θ|∇ψ| 2 dxdt (137)for ε > 0, λ ≥ C and s ≥ C(T 1/2 + T ).To treat the last term on the right-hand side of (137), by integrating by parts for the last time, we deduceJ 3,ω (ψ) ≤ εJ(ψ) + C ε s 54 λ 8 ω×(0,T ) e -16s α+ 31 2 sα * ( ξ) 54 |ψ| 2 dxdt,(138)for ε > 0, λ ≥ C and s ≥ C(T 1/2 + T ). Combining this with (136), We deduceJ(ψ) + I(ϕ) ≤ Cs 54 λ 8 ω×(0,T ) e -16s α+ 31 2 sα * ( ξ) 54 |ψ| 2 dxdt,(139)for λ ≥ C and s ≥ C(T 1/2 + T ). Using the fact that for λ ≥ C and s ≥ C(T 1/2 + T ), s 54 λ 8 e -16s α+ 31 2 sα * ( ξ) 54 ≤ e -1 4 sα , we deduce J(ψ) + I(ϕ) ≤ C ω×(0,T ) e -1 4 sα |ψ| 2 dxdt,

N = 1 .

 1 Let us denoteΩ =]0, 2π[, O =]

2

 2 Lϕ = -∆ϕ + a(x, y)ϕ + B(x, y) • ∇ϕ = 0 in Ω , + y 2 if (x, y) ∈ Ω \ O , 0 if (x, y) ∈ O,and B ≡ 0. So, we deduce a solution :φ(x, y) = ( x 2 + y 2 )) if (x, y) ∈ {(x, y) ∈ R 2 ; e -π ≤ x 2 + y 2 ≤ 1} , -1 if (x, y) ∈ O

2 i

 2 < e -π , Ω = x = (x 1 , x 2 , ..., x N ) ∈ R N ; x 22 < 1 and let us consider the following system :Lϕ = -∆ϕ + a(x)ϕ + B • ∇ϕ = 0 in Ω , ϕ = 0 on ∂Ω(145)where a ∈ L ∞ (Ω) and B ∈ L ∞ (Ω) N . Let us denote

N = 1 .d 4 ϕ dx 4 +

 14 Let us denoteΩ =]0, 6π[, a(x)ϕ + b(x) d 2 dx 2 ϕ = 0 in Ω , ϕ(0) = ϕ(6π) = 0 , d 2 ϕ dx 2 (0) = d 2 ϕ dx 2 (6π) = 0 ,(146)

  2 (e -2sα ξ 7 θ 8 ) :∇ 2 p ≤ C 0 e -2sα ξ 7 θ |∆ 2 p| + s 4 λ 4 ξ 4 |p| + s 3 λ 3 ξ 3 |∇p| + s 2 λ 2 ξ 2 |∇ 2 p| + sλξ|∇∆p| , -2α ξ 16 |z| 2 dxdt, for λ ≥ C 0 and s ≥ C 0 (T C 4 + T 1/2) and where C 4 is given in (67). Combining the last estimate with (83), we deduce-2sα s 6 λ 8 ξ 6 |p| 2 + s 4 λ 6 ξ 4 |∇p| 2 + s 3 λ 4 ξ 3 |∆p| 2 +s 2 λ 4 ξ 2 |∇ 2 p| 2 + sλ 2 ξ|∇∆p| 2 + s -1 ξ -1 (|∂ t p| 2 + |∆ 2 p| 2 ) dxdt C 0 and s ≥ C 0 (T C 4 + T 1/2) and where C 4 is given in (67). Combining the last estimate with (81), we deduce our aim result. Now we give the proof of Proposition 3.2.

	for λ ≥ Proof of Proposition 3.2.
	combined with (83) and by applying Young's inequality, we have
	I ≤ C 0 s 16 λ 16
	(0,T )×ω
	(84)

e Q e ≤ C 0 s 16 λ 16 (0,T )×ω e -2sα ξ 16 |z| 2 dxdt,

  5 2 sα ξ 6 |ψ| 2 dxdt

		(130)
	≤ CI(ϕ) + s 6 λ 8	e -5 2 sα ξ 6 λ 8 |ψ| 2 dxdt
	Q	

for λ ≥ C and s ≥ C(T 1/2 + T ). By applying Lemma 2.1, by taking in consideration Remark 2.2, we deduce

Let us denote pε 0 respectively pε 0,n for n ∈ N the unique minimizer of the functional J defined in (85) where a = a z , B = B z , D = D z , ã = ãz , B = Bz and D = Dz respectively a = a zn , B = B zn , D = D zn ã = ãzn , B = Bzn and D = Dzn . Using the fact that J ε is uniformly coercive (by using (90)), we deduce that (p ε 0,n ) n∈N is uniformly bounded. By extracting subsequences, we have pε

Let us now denote (ẑ ε , pε ) respectively (ẑ ε n , pε n ) for n ∈ N the solution of ( 69 93) and (94), we deduce that

By denoting vε = ẑε χ ω and vε n = ẑε n χ ω , we deduce from the last two convergence

From the last convergence and (93), we deduce that Λ(z n ) → Λ(z) in Z. This finishes the proof of the continuity of Λ. So, we deduce that Λ has at least one fixed point. In other words, we proved that, for any ε > 0, there exists

To finish the proof, it suffices to pass to the limit in (98), (99) and (100). First, let us notice that v ε satisfies

where C 2 is given in [START_REF] Guerrero | Carleman estimate and null controllability of a fourth order parabolic equation in dimension N ≥ 2[END_REF]. Combining this with (90), we deduce that the sequence (y ε , u ε ) ε>0 is bounded in

. By extracting a subsequence, we deduce that

and

By passing to the limit in (98), ( 99) and (100), we deduce that there exists v ∈ L 2 (Q) such that the corresponding solution of ( 56)-(57), satisfies (58). Moreover, we deduce that the control v satisfies [START_REF] Guerrero | Null controllability of some systems of two parabolic equations with one control force[END_REF]. This finish the proof of Theorem 1.3.

where a, b ∈ L ∞ (0, 6π). As we did above, the same idea will be applied here. We consider some functions a and b vanishing in O. So let us define two function a and b

It is not hard to see that a solution for this system is the following one :

and φ ∈ H 4 (Ω). Let us notice that the corresponding solution (ψ, ϕ) = (0, φ) of ( 27) for ϕ 0 = φ does not satisfies Unique Continuation Principle given in (28) for any ω ⊂ Ω.

• Dimension N = 2.

In dimension N = 2, let us denote O = {(x, y) ∈ R 2 ; x 2 + y 2 < e -3π }, Ω = {(x, y) ∈ R 2 ; x 2 + y 2 < 1} and let us consider the following system :

where

We can deduce a solution of the previous system : and φ ∈ H 4 (Ω). At the end, we can deduce that for ϕ 0 = φ, the corresponding solution (ψ, ϕ) = (0, φ) of (27) does not satisfies Unique Continuation Principle given in (28) for any ω ⊂ Ω.