
HAL Id: hal-03080918
https://hal.science/hal-03080918v1

Submitted on 8 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PBCS: Efficient Exploration and Exploitation Using a
Synergy Between Reinforcement Learning and Motion

Planning
Guillaume Matheron, Nicolas Perrin, Olivier Sigaud

To cite this version:
Guillaume Matheron, Nicolas Perrin, Olivier Sigaud. PBCS: Efficient Exploration and Exploitation
Using a Synergy Between Reinforcement Learning and Motion Planning. Artificial Neural Networks
and Machine Learning – ICANN 2020, Sep 2020, Bratislava, Slovakia. pp.295-307, �10.1007/978-3-
030-61616-8_24�. �hal-03080918�

https://hal.science/hal-03080918v1
https://hal.archives-ouvertes.fr

PBCS: Efficient Exploration and Exploitation Using a
Synergy between Reinforcement Learning and Motion

Planning

Guillaume Matheron1[0000−0001−6530−8784], Nicolas Perrin1[0000−0003−2358−2915],
and Olivier Sigaud1[0000−0002−8544−0229]

Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR,
F-75005 Paris, France

Abstract. The exploration-exploitation trade-off is at the heart of reinforcement
learning (RL). However, most continuous control benchmarks used in recent RL
research only require local exploration. This led to the development of algorithms
that have basic exploration capabilities, and behave poorly in benchmarks that
require more versatile exploration. For instance, as demonstrated in our empiri-
cal study, state-of-the-art RL algorithms such as DDPG and TD3 are unable to
steer a point mass in even small 2D mazes. In this paper, we propose a new
algorithm called ”Plan, Backplay, Chain Skills” (PBCS) that combines motion
planning and reinforcement learning to solve hard exploration environments. In
a first phase, a motion planning algorithm is used to find a single good trajectory,
then an RL algorithm is trained using a curriculum derived from the trajectory, by
combining a variant of the Backplay algorithm and skill chaining. We show that
this method outperforms state-of-the-art RL algorithms in 2D maze environments
of various sizes, and is able to improve on the trajectory obtained by the motion
planning phase.

Introduction

Reinforcement Learning (RL) algorithms have been used successfully to optimize poli-
cies for both discrete and continuous control problems with high dimensionality [25,23],
but fall short when trying to solve difficult exploration problems [17,1,38]. On the other
hand, motion planning (MP) algorithms such as RRT [22] are able to efficiently explore
in large cluttered environments but, instead of trained policies, they output trajectories
that cannot be used directly for closed loop control.

In this paper, we consider environments that present a hard exploration problem
with a sparse reward. In this context, a good trajectory is one that reaches a state with
a positive reward, and we say that an environment is solved when a controller is able to
reliably reach a rewarded state. We illustrate our approach with 2D continuous action
mazes as they facilitate the visual examination of the results, but we believe that this
approach can be beneficial to many robotics problems.

If one wants to obtain closed loop controllers for hard exploration problems, a sim-
ple approach is to first use an MP algorithm to find a single good trajectory τ , then
optimize and robustify it using RL. However, using τ as a stepping stone for an RL

ar
X

iv
:2

00
4.

11
66

7v
1

 [
cs

.R
O

]
 2

4
A

pr
 2

02
0

algorithm is not straightforward. In this article, we propose PBCS, an approach that fits
the framework of Go-Explore [8], and is based on the Backplay algorithm [35] and skill
chaining [20,21]. We show that this approach greatly outperforms both DDPG [23] and
TD3 [14] on continuous control problems in 2D mazes, as well as approaches that use
Backplay but no skill chaining.

PBCS has two successive phases. First, the environment is explored until a single
good trajectory is found. Then this trajectory is used to create a curriculum for training
DDPG. More precisely, PBCS progressively increases the difficulty through a backplay
process which gradually moves the starting point of the environment backwards along
the trajectory resulting from exploration. Unfortunately, this process has its own issues,
and DDPG becomes unstable in long training sessions. Calling upon a skill chaining
approach, we use the fact that even if Backplay eventually fails, it is still able to solve
some subset of the problem. Therefore, a partial policy is saved, and the reminder of
the problem is solved recursively until the full environment can be solved reliably.

In this article, we contribute an extension of the Go-Explore framework to contin-
uous control environments, a new way to combine a variant of the Backplay algorithm
with skill chaining, and a new state-space exploration algorithm.

1 Related Work

Many works have tried to incorporate better exploration mechanisms in RL, with vari-
ous approaches.

Encouraging exploration of novel states The authors of [43] use a count-based method
to penalize states that have already been visited, while the method proposed by [2]
reuses actions that have provided diverse results in the past. Some methods try to choose
policies that are both efficient and novel [33,7,34,9], while some use novelty as the only
target, entirely removing the need for rewards [10,19]. The authors of [41,3,31] train a
forward model and use the unexpectedness of the environment step as a proxy for nov-
elty, which is encouraged through reward shaping. Some approaches try to either esti-
mate the uncertainty of value estimates [29], or learn bounds on the value function [5].
All these solutions try to integrate an exploration component within RL algorithms,
while our approach separates exploration and exploitation into two successive phases,
as in [6].

Using additional information about the environment Usually in RL, the agent can only
learn about the environment through interactions. However, when additional informa-
tion about the task at hand is provided, other methods are available. This information
can take the form of expert demonstrations [37,18,35,21,13,27,30], or having access to
a single rewarded state [12]. When a full representation of the environment is known,
RL can still be valuable to handle the dynamics of the problem: PRM-RL [11] and
RL-RRT [4] use RL as reachability estimators during a motion planning process.

Building on the Go-Explore framework To our knowledge, the closest approach to ours
is the Go-Explore [8] framework, but in contrast to PBCS, Go-Explore is applied to

discrete problems such as Atari benchmarks. In a first phase, a single valid trajectory is
computed using an ad-hoc exploration algorithm. In a second phase, a learning from
demonstration (LfD) algorithm is used to imitate and improve upon this trajectory.
Go-Explore uses Backplay [35,37] as the LfD algorithm, with Proximal Policy Opti-
mization (PPO) [40] as policy optimization method. Similar to Backplay, the authors
of [16] have proposed Recall Traces, a process in which a backtracking model is used
to generate a collection of trajectories reaching the goal.

The authors of [26] present an approach that is similar to ours, and also fits the
framework of Go-Explore. In phase 1, they use a guided variant of RRT, and in phase
2 they use a learning from demonstration algorithm based on TRPO. Similarly, PBCS
follows the same two phases as Go-Explore, with major changes to both phases. In the
first phase, our exploration process is adapted to continuous control environments by
using a different binning method, and different criteria for choosing the state to reset
to. In the second phase, a variant of Backplay is integrated with DDPG instead of PPO,
and seamlessly integrated with a skill chaining strategy and reward shaping.

The Backplay algorithm in PBCS is a deterministic variant of the one proposed
in [35]. In the original Backplay algorithm, the starting point of each policy is chosen
randomly from a subset of the trajectory, but in our variant the starting point is determin-
istic: the last state of the trajectory is used until the performance of DDPG converges
(more details are presented in Sect. 8), then the previous state is chosen, and so on until
the full trajectory has been exploited.

Skill chaining The process of skill chaining was explored in different contexts by sev-
eral research papers. The authors of [20] present an algorithm that incrementally learns
a set of skills using classifiers to identify changepoints, while the method proposed
in [21] builds a skill tree from demonstration trajectories, and automatically detects
changepoints using statistics on the value function. To our knowledge, our approach is
the first to use Backplay to build a skill chain. We believe that it is more reliable and
minimizes the number of changepoints because the position of changepoints is decided
using data from the RL algorithm that trains the policies involved in each skill.

2 Background

Our work is an extension of the Go-Explore algorithm. In this section, we summarize
the main concepts of our approach.

Reset-anywhere. Our work makes heavy use of the ability to reset an environment to
any state. The use of this primitive is relatively uncommon in RL, because it is not
always readily available, especially in real-world robotics problems. However, it can be
invaluable to speed up exploration of large state spaces. It was used in the context of
Atari games by [18], proposed in [39] as VINE, and gained popularity with [37].

Sparse rewards. Most traditional RL benchmarks only require very local exploration,
and have smooth rewards guiding them towards the right behavior. Thus sparse rewards
problems are especially hard for RL algorithms: the agent has to discover without any

external signal a long sequence of actions leading to the reward. Most methods that have
been used to help with this issue require prior environment-specific knowledge [36].

Maze environments. Lower-dimension environments such as cliff walk [42] are often
used to demonstrate fundamental properties of RL algorithms, and testing in these envi-
ronments occasionally reveals fundamental flaws [24]. We deliberately chose to test our
approach on 2D maze environments because they are hard exploration problems, and
because reward shaping behaves very poorly in such environments, creating many local
optima. Our results in Section 4 show that state-of-the-art algorithms such as DDPG
and TD3 fail to solve even very simple mazes.

DDPG. Deep Deterministic Policy Gradient (DDPG) is a continuous action actor-critic
algorithm using a deterministic actor that performs well on many control tasks [23].
However, DDPG suffers from several sources of instability. Our maze environments fit
the analysis made by the authors of [32], according to whom the critic approximator
may ”leak” Q-value across walls of discontinuous environments. With a slightly differ-
ent approach, [15] suggests that extrapolation error may cause DDPG to over-estimate
the value of states that have never been visited or are unreachable, causing instability.
More generally, the authors of [42] formalize the concept of ”deadly triad”, according
to which algorithms that combine function approximation, bootstrapping updates and
off-policy are prone to diverge. Even if the deadly triad is generally studied in the con-
text of the DQN algorithm [25], these studies could also apply to DDPG. Finally, the
authors of [24] show that DDPG can fail even in trivial environments, when the reward
is not found quickly enough by the built-in exploration of DDPG.

3 Methods

Figure 1 describes PBCS. The algorithm is split in two successive phases, mirroring
the Go-Explore framework. In a first phase, the environment is incrementally explored
until a single rewarded state is found. In a second phase, a single trajectory provides
a list of starting points, that are used to train DDPG on increasingly difficult portions
of the full environment. Each time the problem becomes too difficult and DDPG starts
to fail, training stops, and the trained agent is recorded as a local skill. Training then
resumes for the next skill, with a new target state. This loop generates a set of skills that
can then be chained together to create a controller that reaches the target reliably.

Notations

State neighborhood. For any state τi ∈ S, and ε > 0, we define Bε(τi) as the closed
ball of radius ε centered around τi. Formally, this is the set {s ∈ S | d(s, τi) ≤ ε}where
d is the L2 distance.

Skill chaining. Skill chaining consists in splitting a complex task into simpler sub-
tasks that are each governed by a different policy. Complex tasks can then be solved by
executing each policy sequentially.

Select state
from archive

Go to state

Step
environment

Update
archive

Path recon-
struction

T := N

Backplay:
train π

with DDPG

Add skill
[K;T ;π]
to chain

T := K

SuccessFail

Phase 1: explore until solved Phase 2: robustify

No reward

Blocked at K

K > 0

Reward

τ1 . . . τN

K = 0

Fig. 1: Overview of PBCS. The red path is only used when testing the algorithm without
skill chaining, otherwise the blue path is used.

Formally, each task Ti has an activation condition Ai ⊂ S, and a policy πi : S →
A. A task chain is a list of tasks T0 . . . Tn, which can be executed sequentially: the actor
uses π0 until the state of the system reaches a state s ∈ A1, then it uses π1, and so on
until the end of the episode (which can be triggered by reaching either a terminal state
or a predetermined maximum number of steps).

3.1 Phase 1: Explore until Solved

In phase 1, PBCS explores to find a single path that obtains a non-zero reward in the
environment. This exploration phase is summarized in this section, and implementation
details are available in Appendix S1. An archive keeps track of all the visited states.
In this archive, states s are grouped in square state-space bins. A state-counter cs is
attached to each state, and a bin-counter cb is attached to each bin. All counters are
initialized to 0.

The algorithm proceeds in 5 steps, as depicted in Fig. 1:

1. Select state from archive. To select a state, the non-empty bin with the lowest
counter is first selected, then from all the states in this bin, the state with the lowest
counter is selected. Both the bin and state counters are then incremented.

2. Go to state. The environment is reset to the selected state. This assumes the ex-
istence of a ”reset-anywhere” primitive, which can be made available in simulated
environments.

3. Step environment. A single environment step is performed, with a random action.
4. Update archive. The newly-reached state is added to the archive if not already

present.

5. Termination of phase 1. As soon as the reward is reached, the archive is used
to reconstruct the sequence of states that led the agent from its initial state to the
reward. This sequence τ0 . . . τN is passed on to phase 2.

This process can be seen as a random walk with a constraint on the maximum dis-
tance between two states: in the beginning, a single trajectory is explored until it reaches
a state that is too close to an already-visited state. When this happens, a random visited
state is selected as the starting point of a new random walk. Another interpretation of
this process is the construction of a set of states with uniform spatial density. Under this
view, the number of states in each cell is used as a proxy for the spatial density of the
distribution.

3.2 Phase 2: Robustify

Phase 2 of PBCS learns a controller from the trajectory obtained in phase 1.

Algorithm 1: Phase 2 of PBCS
Input : τ0 . . . τN the output of phase 1
Output: π0 . . . πn a chain of policies with activation sets A0 . . . An

1 T = N
2 n = 0
3 while T > 0 do
4 πn, T = Backplay(τ0 . . . τT)
5 An = Bε(τT)
6 n = n+ 1

7 end
8 Reverse lists π0 . . . πn and A0 . . . An

Skill Chaining. Algorithm 1 presents the skill chaining process. It uses the Backplay
function, that takes as input a trajectory τ0 . . . τT , and returns a policy π and an index
K < T such that running policy π repeatedly on a state from Bε(τK) always leads to
a state in Bε(τT). The main loop builds a chain of skills that roughly follows trajectory
τ , but is able to improve upon it. Specifically, activation sets An are centered around
points of τ but policies πn are constructed using a generic RL algorithm that optimizes
the path between two activation sets. The list of skills is then reversed, because it was
constructed backwards.

Backplay. The Backplay algorithm was originally proposed in [35]. More details on the
differences between this original algorithm and our variant are available in sections 1
and S6.

The Backplay function (Algorithm 2) takes as input a section τ0 . . . τT of the
trajectory obtained in phase 1, and returns a (K,π) pair where K is an index on tra-
jectory τ , and π is a policy trained to reliably attain Bε(τT) from Bε(τK). The policy

π is trained using DDPG to reach Bε(τT) from starting point Bε(τK) 1 , where K is
initialized to T − 1, and gradually decremented in the main loop.

At each iteration, the algorithm evaluates the feasibility of a skill with targetBε(τT),
policy π and activation set Bε(τK). If the measured performance is 100% without any
training (line 5), the current skill is saved and the starting point is decremented. Other-
wise, a training loop is executed until performance stabilizes (line 8). This is performed
by running Algorithm 3 repeatedly until no improvement over the maximum perfor-
mance is observed α times in a row. We ran our experiments with α = 10 , and a more
in-depth discussion of hyperparameters is available in Appendix S2 .

Then the performance of the skill is measured again (line 9), and three cases are
handled:

– The skill is always successful (line 10). The current skill is saved and the index of
the starting point is decremented.

– The skill is never successful (line 13). The last successful skill is returned.
– The skill is sometimes successful. The current skill is not saved, and the index

of the starting point is decremented. In our maze environment, this happens when
Bε(τK) overlaps a wall: in this case some states of Bε(τK) cannot reach the target
no matter the policy.

Reward Shaping. With reward shaping, we bypass the reward function of the en-
vironment, and train DDPG to reach any state τT . We chose to use the method pro-
posed by [28]: we define a potential function in Equation (1a), where d(s,Ai) is the L2
distance between s and the center of Ai. We then define our shaped reward in Equa-
tion (1b).

Φ(s) =
1

d(s,Ai)
(1a)

Rshaped(s, a, s
′) =

{
10 if s ∈ Ai
Φ(s′)− Φ(s) otherwise.

(1b)

Algorithm 3 shows how this reward function is used in place of the environment
reward. This training function runs β episodes of up to max steps steps each, and
returns the fraction of episodes that were able to reach the reward. β is a hyperpa-
rameter that we set to 50 for our test, and more details on this choice are available in
Appendix S2 .

Importantly, reaching a performance of 100% is not always possible, even with long
training sessions, because the starting point is selected in Bε(τK), and some of these
states may be inside obstacles for instance.

Algorithm 2: The Backplay algorithm
Input : (τ0 . . . τT) a state-space trajectory
Output: πs a trained policy

Ks the index of the starting point of the policy
1 K = T − 1
2 Initialize a DDPG architecture with policy π
3 while K > 0 do
4 Test performance of π between Bε(τK) and Bε(τT) over β episodes
5 if performance = 100% then
6 πs = π, Ks = K

7 else
8 Run Train (Algorithm 3) repeatedly until performance stabilizes.
9 Test performance of π between Bε(τK) and Bε(τT) over β episodes

10 if performance = 100% then
11 πs = π, Ks = K

12 end
13 if performance = 0% and Ks exists then
14 return (Ks, πs)

15 end
16 end
17 K = K − 1

18 end
19 return (Ks, πs)

Algorithm 3: Training process with reward shaping
Input : τK the source state

τT the target state
Output: The average performance p

1 n = 0
2 for i = 1 . . . β do
3 s ∼ Bε(τK)
4 for j = 1 . . .max steps do
5 a = π(s) + random noise
6 s′ = step(s, a)

7 r =

{
10 d(s′, τT) ≤ ε

1
d(s′,τT)

− 1
d(s,τT)

otherwise
8 DDPG.train(s, a, s′, r)
9 s = s′

10 if d(s′, τT) ≤ ε then
11 n = n + 1
12 break
13 end
14 end
15 end
16 p = n

β

Table 1: Results of various algorithms on maze environments. For each test, the number
of environment steps performed is displayed with a red background when the policy
was not able to reach the target, and a green one when training was successful.
In ”Vanilla” experiments, the red paths represent the whole area explored by the RL
algorithm. In ”Backplay” experiments, the trajectory computed in phase 1 is displayed
in red, and the ”robustified” policy or policy chain is displayed in green. Activation sets
Ai are displayed as purple circles. Enlarged images are presented in Fig. S2.

Vanilla PBCS w/o skill chaining PBCS
DDPG TD3 DDPG DDPG

1M 1M 146k 321k

1M 1M 372k 5M

1M 1M 268k 6M

1M 1M 694k 8M

1M 1M 175k 22M

4 Experimental Results

We perform experiments in continuous maze environments of various sizes. For a maze
of size N , the state-space is the position of a point mass in [0, N]2 and the action
describes the speed of the point mass, in [−0.1, 0.1]2. Therefore, the step function is
simply s′ = s + a, unless the [s, s′] segment intersects a wall. The only reward is −1
when hitting a wall and 1 when the target area is reached. A more formal definition of
the environment is available in Appendix S4.

Our results are presented in Table 1. We first tested standard RL algorithms (DDPG
and TD3), then PBCS, but without skill chaining (this was done by replacing the blue
branch with the red branch in Fig. 1). When the full algorithm would add a new skill
to the skill chain and continue training, this variant stops and fails. These results are
presented in column ”PBCS without skill chaining”. Finally, the full version of PBCS
with skill chaining is able to solve complex mazes up to 15 × 15 cells, by chaining
several intermediate skills.

5 Discussion of Results

As expected, standard RL algorithms (DDPG and TD3) were unable to solve all but the
simplest mazes. These algorithms have no mechanism for state-space exploration other
than uniform noise added to their policies during rollouts. Therefore, in the best-case
scenario they perform a random walk and, in the worst-case scenario, their actors may
actively hinder exploration.

More surprisingly, PBCS without skill chaining is still unable to reliably 2 solve
mazes larger than 2 × 2. Although phase 1 always succeeds in finding a feasible tra-
jectory τ , the robustification phase fails relatively early. We attribute these failures to
well-known limitations of DDPG exposed in Section 2. We found that the success rate
of PBCS without skill chaining was very dependent on the discount rate γ, which we
discuss in Appendix S3.

The full version of PBCS with skill chaining is able to overcome these issues by
limiting the length of training sessions of DDPG, and is able to solve complex mazes
up to 7× 7, by chaining several intermediate skills.

6 Conclusion

The authors of Go-Explore identified state-space exploration as a fundamental difficulty
on two Atari benchmarks. We believe that this difficulty is also present in many contin-
uous control problems, especially in high-dimension environments. We have shown that
the PBCS algorithm can solve these hard exploration, continuous control environments

1 More details on why the starting point needs to be Bε(τK) instead of τK are available in
Appendix S6

2 We tested PBCS without skill chaining with different seeds on small mazes, these results are
presented in Appendix S3

by combining a motion planning process with reinforcement learning and skill chain-
ing. Further developments should focus on testing these hybrid approaches on higher
dimensional environments that present difficult exploration challenges together with
difficult local control, such as the Ant-Maze MuJoCo benchmark [44], and developing
methods that use heuristics suited to continuous control in the exploration process, such
as Quality-Diversity approaches [34].

7 Acknowledgements

This work was partially supported by the French National Research Agency (ANR),
Project ANR-18-CE33-0005 HUSKI.

References

1. Achiam, J., Knight, E., Abbeel, P.: Towards Characterizing Divergence in Deep Q-Learning.
arXiv:1903.08894 (2019)

2. Benureau, F.C.Y., Oudeyer, P.Y.: Behavioral Diversity Generation in Autonomous Explo-
ration through Reuse of Past Experience. Front. Robot. AI 3 (2016)

3. Burda, Y., Edwards, H., Storkey, A., Klimov, O.: Exploration by Random Network Distilla-
tion. arXiv:1810.12894 (2018)

4. Chiang, H.T.L., Hsu, J., Fiser, M., Tapia, L., Faust, A.: RL-RRT: Kinodynamic Motion Plan-
ning via Learning Reachability Estimators from RL Policies. arXiv:1907.04799 (2019)

5. Ciosek, K., Vuong, Q., Loftin, R., Hofmann, K.: Better Exploration with Optimistic Actor-
Critic. arXiv:1910.12807 (2019)

6. Colas, C., Sigaud, O., Oudeyer, P.Y.: GEP-PG: Decoupling Exploration and Exploitation in
Deep Reinforcement Learning Algorithms. arXiv:1802.05054 (2018)

7. Cully, A., Demiris, Y.: Quality and Diversity Optimization: A Unifying Modular Framework.
IEEE Transactions on Evolutionary Computation pp. 1–1 (2017)

8. Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K.O., Clune, J.: Go-Explore: a New Approach
for Hard-Exploration Problems. arXiv:1901.10995 (2019)

9. Erickson, L.H., LaValle, S.M.: Survivability: Measuring and ensuring path diversity. In: 2009
IEEE International Conference on Robotics and Automation. pp. 2068–2073 (2009)

10. Eysenbach, B., Gupta, A., Ibarz, J., Levine, S.: Diversity is All You Need: Learning Skills
without a Reward Function. arXiv:1802.06070 (2018)

11. Faust, A., Ramirez, O., Fiser, M., Oslund, K., Francis, A., Davidson, J., Tapia, L.: PRM-
RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and
Sampling-based Planning. arXiv:1710.03937 (2018)

12. Florensa, C., Held, D., Wulfmeier, M., Zhang, M., Abbeel, P.: Reverse Curriculum Genera-
tion for Reinforcement Learning. arXiv:1707.05300 (2018)

13. Fournier, P., Sigaud, O., Colas, C., Chetouani, M.: CLIC: Curriculum Learning and Imitation
for object Control in non-rewarding environments. arXiv:1901.09720 (2019)

14. Fujimoto, S., Hoof, H.v., Meger, D.: Addressing Function Approximation Error in Actor-
Critic Methods. ICML (2018)

15. Fujimoto, S., Meger, D., Precup, D.: Off-Policy Deep Reinforcement Learning without Ex-
ploration. arXiv:1812.02900 (2018)

16. Goyal, A., Brakel, P., Fedus, W., Singhal, S., Lillicrap, T., Levine, S., Larochelle, H.,
Bengio, Y.: Recall Traces: Backtracking Models for Efficient Reinforcement Learning.
arXiv:1804.00379 (2019)

17. van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat, N., Modayil, J.: Deep Reinforce-
ment Learning and the Deadly Triad. arXiv:1812.02648 (2018)

18. Hosu, I.A., Rebedea, T.: Playing Atari Games with Deep Reinforcement Learning and Hu-
man Checkpoint Replay. arXiv:1607.05077 (2016)

19. Knepper, R.A., Mason, M.T.: Path diversity is only part of the problem. In: 2009 IEEE Inter-
national Conference on Robotics and Automation. pp. 3224–3229 (2009)

20. Konidaris, G., Barto, A.G.: Skill Discovery in Continuous Reinforcement Learning Domains
using Skill Chaining. In: Bengio, Y., et. al. (eds.) Advances in Neural Information Processing
Systems 22, pp. 1015–1023 (2009)

21. Konidaris, G., Kuindersma, S., Grupen, R., Barto, A.G.: Constructing Skill Trees for Rein-
forcement Learning Agents from Demonstration Trajectories. In: Lafferty, J.D., et. al. (eds.)
Advances in Neural Information Processing Systems 23, pp. 1162–1170 (2010)

22. Lavalle, S.M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. Tech. rep.,
Iowa State University (1998)

23. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.:
Continuous control with deep reinforcement learning. arXiv:1509.02971 (2015)

24. Matheron, G., Perrin, N., Sigaud, O.: The problem with DDPG: understanding failures in
deterministic environments with sparse rewards. arXiv:1911.11679 (2019)

25. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller,
M.: Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602 (2013)

26. Morere, P., Francis, G., Blau, T., Ramos, F.: Reinforcement Learning with Probabilistically
Complete Exploration. arXiv:2001.06940 (2020)

27. Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Overcoming Exploration
in Reinforcement Learning with Demonstrations. arXiv:1709.10089 (2018)

28. Ng, A.Y., Harada, D., Russell, S.J.: Policy Invariance Under Reward Transformations: The-
ory and Application to Reward Shaping. In: Proceedings of the Sixteenth International Con-
ference on Machine Learning. pp. 278–287. ICML ’99 (1999)

29. Osband, I., Blundell, C., Pritzel, A., Van Roy, B.: Deep Exploration via Bootstrapped DQN.
arXiv:1602.04621 (2016)

30. Paine, T.L., Gulcehre, C., Shahriari, B., Denil, M., Hoffman, M., Soyer, H., Tanburn, R., Kap-
turowski, S., Rabinowitz, N., Williams, D., Barth-Maron, G., Wang, Z., de Freitas, N.: Mak-
ing Efficient Use of Demonstrations to Solve Hard Exploration Problems. arXiv:1909.01387
(2019)

31. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven Exploration by Self-
supervised Prediction. arXiv:1705.05363 (2017)

32. Penedones, H., Vincent, D., Maennel, H., Gelly, S., Mann, T., Barreto, A.: Temporal Dif-
ference Learning with Neural Networks - Study of the Leakage Propagation Problem.
arXiv:1807.03064 (2018)

33. Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the Challenge of Qual-
ity Diversity. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation. pp. 967–974. GECCO ’15, ACM, New York, NY, USA (2015)

34. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality Diversity: A New Frontier for Evolutionary
Computation. Front. Robot. AI 3 (2016)

35. Resnick, C., Raileanu, R., Kapoor, S., Peysakhovich, A., Cho, K., Bruna, J.: Backplay: ”Man
muss immer umkehren”. arXiv:1807.06919 (2018)

36. Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Van de Wiele, T., Mnih,
V., Heess, N., Springenberg, J.T.: Learning by Playing - Solving Sparse Reward Tasks from
Scratch. arXiv:1802.10567 (2018)

37. Salimans, T., Chen, R.: Learning Montezuma’s Revenge from a Single Demonstration.
arXiv:1812.03381 (2018)

38. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized Experience Replay.
arXiv:1511.05952 (2015)

39. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust Region Policy Optimiza-
tion. arXiv:1502.05477 (2015)

40. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy Optimiza-
tion Algorithms. arXiv:1707.06347 (2017)

41. Stadie, B.C., Levine, S., Abbeel, P.: Incentivizing Exploration In Reinforcement Learning
With Deep Predictive Models. arXiv:1507.00814 (2015)

42. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (2018)
43. Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J., De Turck,

F., Abbeel, P.: #Exploration: A Study of Count-Based Exploration for Deep Reinforcement
Learning. arXiv:1611.04717 (2016)

44. Tassa, Y., et. al.: DeepMind Control Suite. arXiv:1801.00690 (2018)
45. Wilson, E.B.: Probable Inference, the Law of Succession, and Statistical Inference. Journal

of the American Statistical Association 22(158), 209–212 (1927)

Supplemental Materials
S1 Phase 1: Explore Until Solved

Algorithm 4: Exploration algorithm
Input : s0 ∈ S the initial environment state

step : S ×A→ S × R × B the environment step function
iterations ∈ N the number of samples to accumulate
Bin : F → N a binning function

Output: transitions ⊆ S ×A× R × B× S the set of explored transitions

1 transitions = ∅
2 b0 = Bin(s0)
3 bin usage[b0] = 0
4 states in bin[b0] = {s0}
5 state usage[s0] = 0
6 B = B ∪ {b0}
7 while |transitions| < iterations do
8 chosen bin = argmin

b∈B
bin usage[b]

9 chosen state = argmin
s∈states in bin[chosen bin]

state usage[chosen state]

10 action = random action()
11 s’,reward,terminal = step(chosen state, action)
12 bin usage[chosen bin] ++
13 state usage[chosen state] ++
14 transitions = transitions ∪ (chosen state,action,reward,terminal,s’)
15 if Not terminal then
16 state usage[s’] = 0
17 b’ = Bin(s’)
18 if b’ ∈ B then
19 states in bin[b’] = states in bin[b’] ∪ {s’}
20 else
21 B = B ∪ {b’}
22 bin usage[b’] = 0
23 states in bin[b’] = {s’}
24 end
25 end
26 end

Our proposed phase 1 exploration algorithm maintains a pool of states, which ini-
tially contains only the start state. At each step, a selection process described below is
used to select a state s from the pool (lines 8 to 9 in Algorithm 4). A random action a
is then chosen, and the environment is used to compute a single step from state s using

action a (line 11). If the resulting state s′ is non-terminal, then it is added to the pool
(lines 16 to 23). This process is repeated as long as necessary.

State selection The pool of states stored by the algorithm is divided into square bins
of size 0.05. During the state selection process (lines 8 to 9), the least-chosen bin is
selected (on line 8), then the least-chosen state from this bin is selected (line 9). In
both cases, when several states or bins are tied in the argmin operation, one is selected
uniformly randomly from the set of all tied elements.

S2 Choice of PBCS Hyperparameters

PBCS uses three hyperparameters α, β and ε.
The parameter α represents the number of consecutive non-improvements of the

training performance required to assume training is finished. In our experiments, this
value was set to 10, and we summarize here what can be expected if this parameter is
set too high or too low.

– Setting α too high results in longer training sessions, in which the policy keeps
being trained despite being already successful. The time and sample performance
of PBCS is impacted, but the algorithm should still be able to build a policy chain.

– Setting α too low may cause training to stop early. In benign cases, the policy
is simply sub-optimal, but in some cases this may lead to the creation of many
changepoints, and prevent PBCS from improving at all upon the phase 1 trajectory.
If the activation conditions overlap too much, PBCS may output a skill chain that
is unable to navigate the environment.

The parameter β represents the number of samples used to evaluate the performance
of a skill. In our experiments, this value was set to 50.

– Setting β too high would increase the time and sample complexity of PBCS, but
would not impact the output.

– The main risk of setting β too low is that PBCS may incorrectly compute that a
skill has a performance of 100%. If this skill is then selected, the output skill chain
may be unable to navigate the environment.

The parameter ε corresponds to the radius of the targets used during skill chaining.

S3 Choice of Discount Factor γ

The discount factor γ is usually considered to be a parameter of the environment and not
the RL algorithm. It controls the decay that is applied when evaluated the contributions
of future rewards to a present choice. In our experiments, we tested two values of γ,
that are γ = 0.9 and γ = 0.99.

DDPG uses a neural network Q̂ in order to estimate the state-action value function
Qπ(s, a) of the current policy π. In the case of deterministic environments, the state-
action value function is recursively defined as Qπ(s, a) = R(s, a, s′) + γQ(s′, π(a)),
where s′ = step(s, a).

Therefore, reaching a sparse reward of value 1 after n steps with no reward carries
a discounted value of γn. This implies that rewards that are reached only after many
steps have very little impact on the shape of Q. For instance, with γ = 0.9 and n = 50,
γn ≈ 0.05. This effectively reduces the magnitude of the training signal used by the
actor update of DDPG, reducing the speed of actor updates the farther from the reward.
Evidence of this is presented in Sect. S3.1.

With this consideration, it seems that choosing γ very close to 1 solves the prob-
lem of exponential decay of the training signal. However, high γ values present their
own challenges. The state-action critic approximator Q̂ used by DDPG is trained on
(s, a, r, s′) tuples stored in an experience replay buffer, but as with any continuous ap-
proximator, it generalizes the training data to nearby (s, a) couples.

In environments with positive rewards, Q̂ can over-estimate the value of states: for
instance in maze environments, the learned value can be generalized incorrectly and
”leak” through walls.

This mechanism is usually counter-balanced by the fact that over-estimated Q(s, a)
values can then be lowered. For instance, in our maze environments, hitting a wall
generates a training tuple with s′ = s and r = 0. The update rule of DDPG applied to
this tuple yields: Q(s, a) ← Q(s, a)(1 + c(γ − 1)) where c is the critic learning rate.
Therefore, the closer γ is to 1, the slower over-estimated values will be corrected.

In smaller mazes, our experiments show that reducing gamma increases the perfor-
mance of PBCS without skill chaining (Fig. S1).

S3.1 Replacing the Actor Update of DDPG

We claim that the lower reward signal obtained with γ values close to 1 affect the actor
update of DDPG. We can test this claim by using a variation of DDPG proposed by
the authors of [24]: we replace the actor update of DDPG with a brute-force approach
that, for each sampled state s, computes maxa Q̂(s, a) using uniform sampling. The
performance of this variant is presented in Fig. S1 with green and red bars.

S4 Experimental Setup

Our experiments are conducted in maze environments of various sizes. A maze of size
N is described using the following Markov Decision Process:

S = [0, N]× [0, N]

A = [−0.1, 0.1]× [−0.1, 0.1]
R(s, a, s′) = 1‖s′−target‖<0.2 − 1[s,s′] intersects a wall

step(s, a) =

{
s if [s, s+ a] intersects a wall
s+ a otherwise.

The set of walls is constructed using a maze generation algorithm, and walls have a
thickness of 0.1.

The target position is (N − .5, N − .5) when N > 2. In mazes of size 2, the target
position is (.5, 1.5).

2× 2 3× 3 4× 4

Maze size

0

20

40

60

80

100

S
u
cc

es
s

%

γ = 0.9

γ = 0.99

γ = 0.9 (am)

γ = 0.99 (am)

Fig. S1: Success rate of PBCS without skill chaining, depending on γ. Bars marked
with (am) use the variant of DDPG presented in Sect. S3.1. Error bars are computed
using Wilson score intervals [45].

S5 Enlarged Results

A more detailed view of the results of PBCS on mazes of different sizes is presented in
Fig. 1.

S6 Need for Resetting in Unseen States

As a reminder, for the Backplay algorithm and our variant, a single trajectory τ0 . . . τT
is provided, and training is performed by changing the starting point of the environment
to various states.

In the original Backplay algorithm, the environment is always reset to a visited state
τK , where K is an index chosen randomly in a sliding window of [0, T]. The sliding
window is controlled by hyperparameters, but the main idea is that in the early stages
of training, states near T are more likely to be selected, and in later stages, states near
0 are more likely to be used.

However, we found that this caused a major issue when combined with continu-
ous control and the skill chaining process. With skill chaining, the algorithm creates a
sequence of activation sets (An), and a sequence of policies (πn) such that when the
agent reaches a state in An, it switches to policy πn. Each activation set An is a ball of
radius ε centered around a state τK for some K.

The policy needs to be trained not only on portions of the environment that are
increasingly long, it also needs to account for the uncertainty of its starting point.
When executing the skill chain, the controller switched to policy πn as soon as the
state reaches the activation set An, which is Bε(τK) for some K. Even if An is rela-
tively small, we found it caused systematic issues on maze environments, as presented
in Fig. S3.

In our variant of the Backplay algorithm, we found it was necessary to train DDPG
on starting points chosen randomly in Bε(τK), to ensure that the policy is trained cor-
rectly to solve a portion of the environment with any starting point in this volume.

This also means that we need to reset the environment to unseen states, and can
cause problems when these states are unreachable (in our maze examples this is usually
because they are inside walls, but in higher dimensions we assume this could be more
problematic).

When possible, a solution would be to run the environment backwards from τK
with random actions to generate these samples (while ensuring that they still lie within
Bε(τK)). Another solution, especially in high-dimension environments, would be to run
the environment backwards for a fixed number of steps, and use a classifier to define
the bounds of An, instead of using the L2 distance.

Fig. S2: Enlarged view of the results of PBCS on mazes of different sizes. The tra-
jectory computed in phase 1 is displayed in red, and the ”robustified” policy chain is
displayed in green. Activation sets Ai are displayed as purple circles.

B2

B1

Fig. S3: Policy π1 was trained using starting points τ30 . . . τ10 without any added noise.
Therefore, τ30 is reachable from τ10 using π1 (trajectory B2), but not necessarily form
any point in A1. In maze environments, the optimal policy is usually close to walls, and
provides little margin for perturbations. The trajectory B2 (that starts in green and ends
in blue) results from the execution of the skill chain. The controller switches from π0 to
π1 as soon as the agent reachesA1, and then hits the wall (trajectoryB2). This problem
persists even when ε is reduced.

	PBCS: Efficient Exploration and Exploitation Using a Synergy between Reinforcement Learning and Motion Planning

