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FINITE-TIME STABILIZATION IN OPTIMAL TIME
OF HOMOGENEOUS QUASILINEAR HYPERBOLIC SYSTEMS
IN ONE DIMENSIONAL SPACE*

JEAN-MICHEL CORONY* AND HOAI-MINH NGUYEN?

Abstract. We consider the finite-time stabilization of homogeneous quasilinear hyperbolic systems
with one side controls and with nonlinear boundary condition at the other side. We present time-
independent feedbacks leading to the finite-time stabilization in any time larger than the optimal time
for the null controllability of the linearized system if the initial condition is sufficiently small. One of
the key technical points is to establish the local well-posedness of quasilinear hyperbolic systems with
nonlinear, non-local boundary conditions.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Linear and nonlinear hyperbolic systems in one dimensional space are frequently used in modeling of many
systems such as traffic flow, heat exchangers, and fluids in open channels. The stability and boundary stabiliza-
tion of these hyperbolic systems have been studied intensively in the literature, see e.g. [2] and the references
therein. In this paper, we investigate the finite-time stabilization in optimal time of the following homogeneous,
quasilinear, hyperbolic system in one dimensional space

dw(t,z) = S(z,w(t,z))0,w(t, z) for (t,z) € [0,+00) x (0,1). (1.1)

Here w = (w1, ...,wy,)" : [0,+00) x (0,1) — R", £(-,+) is an (n x n) real matrix-valued function defined in
[0,1] x R™. We assume that X(-,-) has m > 1 distinct positive eigenvalues and k = n —m > 1 distinct negative
eigenvalues. We assume that, maybe after a change of variables, X(z,y) for « € [0, 1] and y € R is of the form

S(@,y) = diag( = M@, 9), - =A@ 9) M1 (@09, A (2,9) ). (1:2)

*Dedicated to Enrique Zuazua, a friend and a great scientist, on the occasion of his 60th birthday.
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2 J.-M. CORON AND H.-M. NGUYEN
where
— Az, y) <o < =Xp(z,y) <0 < Apga(z,y) < - Apgrm(z, ). (1.3)
Throughout the paper, we assume
\; is of class C? with respect to z and y for 1 <i <n =k +m. (1.4)
Denote
w_ = (wy,...,w)" and wy = (Wet1,- - Wetm) -

The following types of boundary conditions and controls are considered. The boundary condition at z = 0 is
given by

w_(t,0) = B(w4(t,0)) for t >0, (1.5)
for some
B € (C?(R™))" with B(0) =0,

and the boundary control at x =1 is

wi(t,1) = (Wisn, -, Wipm) ' (£) for ¢ >0, (1.6)

where Wi1,..., Wiym are controls. In this work, we thus consider non-linear boundary condition at z = 0.

Set
L |
= | ———dzforl<i<n, 1.7
T, /O)\i(x,o) zfor1<i<n (1.7)
and
maX{Tl +Tm+1a"'a7—k+7—m+k77-k+1} lfmzkla ( )
Topt = 1.8
> max {T}.H_l_m F Thals Tht2—m + Tht2y .-« Tk + Tk+m} if m < k.

The main result of this paper is the following result whose proof is given in the next section.

Theorem 1.1. Define
B:= {B € R¥>™. such that (1.10) holds for 1 <i < min{m — 1, k}}, (1.9)
where

the i x i matriz formed from the last i columns and the last i rows of B is invertible. (1.10)

Assume that B = VB(0) € B. For any T > Ty, there exist € > 0 and a time-independent feedback control for
(1.1), (1.5), and (1.6) such that if the compatibility conditions (at x = 0) (1.18) and (1.14) hold for w(0,-),

(Iw(0,)ler o) <€) = (w(T,-) =0). (L.11)
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Remark 1.2. 1. The feedbacks constructed also lead to the well-posedness of the Cauchy problem for the closed
loop system (see Lem. 2.3) and to the following property: for every n > 0, there exists § > 0 such that, if the
compatibility conditions (at z = 0) (1.13) and (1.14) hold for w(0, -),

(Jlw(0, )1 o,1) < 6) = (w(t, o) <n, VE € [0,T7); (1.12)

see the proof of Lemma 2.3. Hence, by (1.11) and (1.12), 0 € (C*([0, 1]))” is stable for the closed-loop sys-
tem and 0 € (C*([0,1]))" is finite-time stable in time 7. 2. The feedbacks constructed in this article use
additional 4m state-variables (dynamics extensions) to avoid imposing compatibility conditions at = = 1. In
particular, (1.11) and (1.12) are understood with these additional 4m state-variables. 3. The null feedback
law (W1, ..., Wk+m)T = 0 also leads to finite-time stability but in a time 77 which can be larger than T,
even in the linear case with B € B if m > 2. Indeed for generic B in € B, T} = 7 + Tr+1 in the linear case
B(:) = B-. Moreover, if one denotes by Tj () the smallest value of T such that (1.11) holds for the null feedback

law, for every B € R*¥*™ for generic (for the C?>-topology) nonlinear B € (02 (Rm))k such that B(0) = 0 and
VB(0) = B, Ti(e) = 7k + Tk+1 as € — 07; it then suffices to point out that 74, + 711 > Tppe with equality if
and only if m = 1.

In what follows, we denote, for z € [0,1] and y € R,

Y (z,y) = diag( =Mz, y), ..o =k, y)) and X (x,y) = diag()\k+1(a?, Y)s - Anlz, y))
The compatibility conditions considered in Theorem 1.1 are:
w_(0,0) = B(w4(0,0)) (1.13)
and
Y- (0,w(0,0))0,w—(0,0) = VB(w4(0,0)) %4 (0,w(0,0)) 9w (0,0). (1.14)

Null-controllability of hyperbolic systems with one side controls have been studied at least from the work of
David Russell [16] even for inhomogeneous systems, i.e., instead of (1.1), one considers

dw(t,z) = S(z,w(t.x))dyw(t, z) + C(z,w(t, x)),

for some C € (L*([0,1] x Rn))an with C(x,0) = 0. For linear systems, i.e., £(z, -) and C(z, -) are constant for
x € [0,1] and B is linear (B(:) = B- with B = VB(0)), the null-controllability was established in ([16], Sect. 3)
for the time 73, + 741. Using backstepping approach, feedback controls leading to finite-time stabilization in the
same time were then initiated by Jean-Michel Coron et al. in [7] for m = k = 1 and later developed in [1, 8] for
the general case. The set B was introduced in [4] and the null-controllability for the linear systems with B € B
was established for T' > T, in [4, 5] (see also [17] for the case C' diagonal) via the backstepping approach. A
tutorial introduction of backstepping approach can be found in [11]. In the quasilinear case with m > k and
with the linear boundary condition at = = 0, the null controllability for any time greater than 7y + 7,41 was
established for m > k by Tatsien Li in [12], Theorem 3.2 (sce also [13]).

This work is concerned about homogeneous quasilinear hyperbolic systems with controls on one side, and
with nonlinear boundary conditions on the other side: (1.1), (1.5), and (1.6). The null-controllability is obtained
in any time greater than 7, + 7,41 using the zero controls if the initial data are sufficiently small. When the
boundary condition is linear, the null-controllability was established by Long Hu [9] for m > k at any time
greater than max{7y41, 7% + Tm+1} if initial data are sufficiently small. In the linear case [4], for B € B, we
obtained time-independent feedbacks for the null controllability at time Ty,; and showed the optimality of T,
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if, moreover, (1.10) with ¢ = min{m, k} holds (if this last condition does not hold, see Rem. 1.3). Related exact
controllability results can be also found in [4, 9, 10]. In this work, for VB(0) € B, we present time-independent
feedbacks leading to finite-time stabilization of (1.1), (1.5), and (1.6) in any time T > T, provided that the
initial data are sufficiently small. It is easy to see that B is an open subset of the set of (real) k x m matrices,
and the Hausdorff dimension of its complement is min{k, m — 1}.

The feedbacks for (1.1), (1.5), and (1.6) are nonlinear and inspired from the ones in [4]. The construction is
more complicated due to quasilinear nature of the system. We add auxiliary dynamics to fulfill the compatibility
conditions at = = 1 since C''-solutions are considered. One of the key technical points is to establish the
local well-posedness of quasilinear hyperbolic systems with nonlinear, non-local boundary conditions, which is
interesting in itself. The Lyapunov functions associated with the feedbacks considered here are investigated in
our forthcoming work [6].

Remark 1.3. Consider the linear case: B(-) = B- with B € B, m < k and assume that (1.10) with
¢ = min{m, k} = m does not hold. Then the optimal time for the null controllability of (1.1), (1.5), and (1.6)
can be smaller than T,,;. Indeed, let

Jo = {1 < j<k—m+1; the jth row of B is not in the space spanned by the last m — 1 rows of B}.
Set 7o = Tj, + Tk+1 Where jo = m%x j if Jp is not empty, and 7o = 0 otherwise. Define
J€Jdo

Topt = max {f'o, Tht2—m + Tht2y -« Tk + Tk+m}. (1.15)

Then the null controllability is attained for Topt, which might be smaller than T5,;.
Indeed, we use the same control as in the proof of Proposition 1.6 from [4]. Consider first the case where Jy
is not empty. By the definition of jg, it follows that, for jo +1 < j <k —m + 1,
(Bwy);(t,0) is a linear combination of (Bw4)g—m+2(t,0), ..., (Bwy)k(t,0). (1.16)
One then derives from (1.16) that, for jo+1<j<k—m+1,
(Bw);(t,0) =0 for t > Tp4o

since (Bw)g(t,0) = 0 for t > Tkym, -, (BW)g—m42(t,0) = 0 for t > 74 42. By the characteristic method, this
implies, for jo+1<j<k—m+1,

wj(t,-) =0fort > Tpio + Thtm—1- (1.17)
On the other hand, from the proof of Proposition 1.6 from [4], we have
wl(t’ ) == Wy, (t’ ) = wk—m+2(t7 ) == wk-i-m(tv ) =0
for t > max {Tjo + Thals Thao—m + Tkt2, -5 Tk + Tk+m}. (1.18)
(One can also view this fact as a consequence of the proof of Proposition 1.6 from [4] applied to the system
consisting of the first jo components and the last 2m — 1 components of w). The null-controllability for T,,;
now follows from (1.17) and (1.18) in this case.

We next consider the case where Jy is empty. Similar to (1.17), we have, for 1 < j <k —m+1,

wj(ta ) =0fort > Tk4-2 + Tk—m+1; (119)
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and similar to (1.18), we obtain
wk,m+2(t, ) == wk+m(t7 ) =0 for ¢ 2 max {T;H,Q,m + Tk+2y -5 Tk + Tk+m}~ (120)

The null-controllability for T,,; in the case where Jy is empty now follows from (1.19) and (1.20).

One can also show the optimality of Topt. When Jj is not empty, this follows from the proof of Proposition
1.6 from [4] on the optimality part applied to the first jo components and the last 2m — 1 components of w after
considering the initial data w(t = 0, -) which satisfies wj,+1(t =0,-) = -+ = Wg—pm+1(t =0,-) = 0. When Jj is
empty, this follows from the proof of Proposition 1.6 from [4] on the optimality part applied to the components
k—m+2, ...,k k+2,...k+m.

Let us point out that, if m < k and Topt < Topt, Theorem 1.1 does not hold for T, replaced by Topt even if
(1.10) with ¢ = min{m, k} = m does not hold. In fact, even the local null controllability in any time T' < Ty,

does not hold for generic (for the C?-topology) nonlinear B € ((72(]1%’”))]~C such that B(0) =0 and VB(0) = B
where B is any given element of in B, whatever are m > 1 and k > 1.

The discussion on the case where B € B, m < k, and (1.10) with ¢ = min{m, k} = m is not satisfied is
motivated by exchanged messages with Guillaume Olive, who also informed us that with Long Hu he recently
characterized the optimal time for the null controllability in the linear case and for every B. We are grateful for
the discussions.

2. PROOF OF THE MAIN RESULT

This section containing two subsections is devoted to the proof of Theorem 1.1. In the first subsection,
we establish the local well-posedness of quasilinear hyperbolic systems with nonlinear, non-local boundary
conditions. This implies in particular the well-posedness for the feedback laws given in the proof of Theorem 1.1
associated with (1.1) and (1.5). The proof of Theorem 1.1 is given in the second subsection.

2.1. Preliminaries

The main result of this section is Lemma 2.3 on the well-posedness for quasi-linear hyperbolic systems related
to (1.1) and (1.5). The assumptions made are guided by our feedback controls used in Theorem 1.1. We first
consider the semilinear system, with 7" > 0,

Opu(t,z) = A(t, x)0pu(t, ) + f(t, @, u(t,x)) in [0,7] x [0,1],

u_(t,0) = g(t,us(t,0)) for ¢ € [0, 17, 01
uy(t,1) = h(t,ult,-), uo) for ¢ € [0, 17, @1)
’U,(O, ) = UO() in [O? 1]a
for
A(t,z) = diag( Mty = At 2), A1 (8, 2), o Ak (8, a:)),
where

“M(tz) < < =An(t,2) <0< Apga(t,z) < - < Apgi(t, ),

and for f:[0,T] x [0,1] x R® = R", g :[0,7T] x R™ — R* and h : [0,T] x (C’l([O7 1}))” X (C’l([O7 1}))” — R™,
We have
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Lemma 2.1. Assume that A is of class C*, f, and g are of class C2,

h(t,,uo) = hi(t,ug) + ha(t, v, ug) with hi(-,ug), he are of class C*, (2.2)
lim sup sup (|h1(t,u0)\ + |0:hq (8, uo)|) =0, (2.3)

179 uo | 1 g, 17y <m +>0
f(t,z,0) = g(t,0) = ha(t,0,-) =0, (2.4)

and the following conditions hold, for some C' >0, a € [0,1), 1 < p < 400, and g9 > 0,
|h’(ta @a Uo) - h’(t7 ®, U0)| + |8th(t7 @7 UO) - 8th(t7 ©, Uo)|

<c(l@-e.¢ - )l + 1 - 9.8 =)o), (2:5)

for all o, &, ug € (C*([0,1]))" with max {[|2l|c1 o1, Il o1 (po.17): 1woller o,y } < €0, and

d d

7h(57 {)(t7 ')7 u0)|s=t - a

dt h(sav(t7')7u0)|s=t

< C(II (0 =0)(t,), 0u(0 = v)(t,-), 0 (D = V) (t, "))l copo.a1)

HI((@ = v)(t, ), 0(0 = v)(t, ), 02(0 — V) (¢, ) Hm(o,n), (2.6)

n

for alld,v € (C*([0,T] x[0,1]))" and ug € (C*([0,1]))" with max {[|5]| 1 (0,17 [0.11): [0 (0.7 x (0.1 } < €0 and
luollcr(o,1)) < €0- There ezists € > 0 such that for ug € (C*([0, 1]))" satisfying the compatibility conditions (see
(2.7)~(2.9)) with ||uo||c1(po,1]) < &, there is a unique solution u € (C*([0,T] x [0, )" of (2.1).

We recall the following definition of compatibility conditions for (2.1): ug € (C([0,1]))" is said to satisfy
the compatibility conditions if

o, (0) = g(0,u0,+(0)), wo,+(1) = ~(0,uo(-), uo), (2.7)

(A0.00u(0) + £(0.0,u0(0))) = Dug(0,1+(0) + Iy 900,14 (0)) (A0.0)up(0) + F(0.0,u0(0)) ) . (28)

(A 1)up(1) + (0, 1.u0(1)) | = AWh(0.uo,wa) + 3,h(0,u0,u0) (A0 V(1) + F(0.1,un(1))). (2.9)

Here and in what follows, the partial derivatives are taken with respect to the notations f(t,xz,y), g(¢,y+), and
h(t7 Y, UO) .

Remark 2.2. The conditions a < 1 and p < +o0 are crucial in Lemma 2.1.
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n
Proof of Lemma 2.1. Set, for u € (C([0,T] x [0,1]))",

e —Lit—Lox,, .
lullo :== 121%}2 (t,a:)e%%’}]{X o le u;i(t, )| (2.10)

and, for u € (C*([0,T] x [0,1]))",
el = max { ullo, | 9seulo, Dulo }. (2.11)

where Ly and Lo are two large, positive constants determined later.
Set

O, = {v € (C1([0,7] x [0,1]))" with v(0, ) = uo,
Brv(0,1) = A0, Dyup(1) + £(0,1,u0(1), and vl <e}.

From now on, we assume implicitly that |lug||c1(jo,17) is sufficiently small so that O, is not empty. For v € O,
let u = F(v) be the unique C'-solution of the system

Ouu(t,x) = ( )(“)xu(t,x) ( z,v(t,z)) in[0,7] x [0,1],

= g(t,u4(t,0)) for t € [0, T, (2.12)
uy(t,1) = h(t,v ) for t € [0, T,
u(0,) = uo(-) in [0, 1].

Here and in what follows, for notational ease, we ignore the dependence of h on ug and denote h(t, v(t,-)) instead
of h(t,v(t,"),up). As in the proof of Lemma 3.2 from [4] by (2.4) and (2.5), and the fact that f and g are of
class C!, one can prove that F is contracting for || - ||;-norm provided that Lo is large and L; is much larger
than Ls. The condition 0 < a < 1 and 1 < p < 400 are essential for the existence of L; and Ls.! The existence
and uniqueness of u then follow. Moreover, there exist two constants C7,Cy > 0, independent of uy such that
for ||luo||c1 (o)) < Cie and [[v]|l1 < e, there exists a unique solution u € (C*([0,7] x [0,1]))" and moreover,

lulles o110,y < Ca (Jluollen oy +5up (1ha (1 wo)] +8eha (1, w0)]) )

It follows from (2.3) that for € > 0 small, there exists a constant 0 < Cs3(¢) < e small, independent of ug, such
that for [lug|lc1(jo,1) < C3(e) and v € O, then

[|F(v)||1 < & which implies in particular that F(v) € O,. (2.13)
We claim that, for [lug|lc1(j0,1)) < C3(¢) and e sufficiently small,

F is a contraction mapping w.r.t. || - ||1 from O, into O.. (2.14)

I'We here clarify a misleading point in the definition of F(v) in [4], (3.10) in the proof of Lemma 3.2 from [4]. Concerning this
definition, in the RHS of [4], (3.8), vj41(t,0) must be understood as (F(v)),;+x(t,0) and (F(v));j+x(t,0) is then determined by the
RHS of [4], (3.6) or (3.7) as mentioned there. Related to this point, V;(t,0) for k+1 < j < k+m in [4], (3.14) and in the inequality
just below must be replaced by (F(v) — F(0));. The rest of the proof is unchanged.
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Indeed, fix A € (0,1). As in the proof of Lemma 3.2 from [4], applying the characteristic method, and using
(2.4) and (2.5), and the fact f and g are of class C!, we obtain

[F(®) = F)llo < Ao — v, (2.15)
if Ly is large and L; is much larger than Ly. Set U(t, z) = Opu(t, z) for (t,z) € [0,T] x [0,1]. We have

O U(t,x) = A(t,2)0,U(t,x) + O, A(t,x)A(t,2) U (t, ) + f1(t,z,v) in [0,T] x [0, 1],
( ;0) = g1(t) for ¢t € [0,T7,

+(t,1) = hy(t) for t € 0,7,

0,z)uh(x) + f(0,z,uo(x)) in [0, 1],

2.16
U(O,x) A

where

filt,z,v) = =0, A(t,x) A7 (¢, ac)f(t7 x, v(t, x)) + 6tf(t, x, v(t, x)) + (9yf(t, x,v(t, m))@tv(t, x).
g1 (t) = 6tg(t> U+ (tv 0)) + ay+g(tv U4 (ta 0))U+ (t’ 0)7

hi(t) = Och(t,v(t,-)) + Oyh(t,v(t,-))0wv(t, ).

Note that, with @& = F(¢) and U = 8,4,

atg(t7 a+ (t7 0)) + ay+g(t7 a+ (t7 O))U+ (t, 0) - 8tg(t7 U (ta O)) - 8y+g(ta U (t, 0))U+ (t7 O)

geC?

< C(Jar (1,0) = uy (1,0)] + [T+ (1,0) = Uy (£,0)]),

and

02

Aalta )~ el S (o) - o)+ 10 2) - ol o)),
and by (2.5) and (2.6),
WA (1, 0(1,) + B, (1, vt DLt ) — kit 008, ) — Dyh (1, )i ()

< C(I1((0 = )t ), D10 = V)(t), 025 = 0) (2 ) leogo,a
(0= )(8,), 000 = )(8,), 00 = ), ) ooy )
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if max {||ull1, ||lvl1, @)1, 9]l1} < €o. Again, as in the proof of Lemma 3.2 from [4], applying the characteristic
method and using (2.5) and (2.6), we also have, by (2.15),

18:F (5) — 0 F (vl < Allo — v])s. (2.17)
Since
0t — u)(t, ) = A(t, )0 (@ — u)(t, ) + f(t, 2, 0(t,2)) — f(t, 2, 0(t, z)),
and
[f(t 2,0t ) — f(t.z,0(t,2))| < Clot,z) —v(t, )],
it follows from (2.15) and (2.17) that
[F(@) = F(v)|lr < CAllD =]
Claim (2.14) is proved.

The existence and uniqueness of solutions of (2.1) in (C([0,7] x [0,1]))" now follow for uo satisfying
luoller(jo,17) < C3(e). The proof is complete. O

We next establish the key result of this section. To this end, we first set, for 7 > 0,

D, = {(E 0.w0) € (€0, +00) x [0,1)" x (C1([0,1)" x (C*([0, 1)"

mac { =]l o tooyx(0.1): Ieller oy llwolles o, } < 7

and, for T > 0,
D, : = {(E,wo); (Z,0,wp) € Dr,Z(0,-) = wo(-),Z(t, ) = 0 for t > T,
and the compatibility conditions at = 0 hold for the system (2‘28)}.

The set D, also depends on T but we ignore this dependence explicitly for notational ease.
We have
Lemma 2.3. Let T > 0, f:[0,4+00) x [0,1] x R™ — R™ be of class C? such that f(t,x,0) =0 for (t,z) €
[0, +00) x [0,1]. Assume that B = VB(0) € B, ¥ is of class C%, and there exist T > 0 and
H :[0,+00) x D, = R™

such that H is continuously differentiable w.r.t. (t,Z,¢), and for some C >0, 1 <p < +oo, and a € [0,1), the
following conditions hold, for (E,p,wp), (2, $,wo) € Dy with (2,wp), (2, wo) € D,

H(t,Z, p,wo) = Hy(t,wo) + Ha(t, =, ¢, wo) with Hy(-,wq), Ha are of class C*, (2.18)
lim  sup  sup (|H1(t,u0)\ n |8tH1(t,u0)|) —0, (2.19)
170 juo | g1 (g9, 17y <m #>0
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(2.20)

10
|Ha(t, 2, ¢, wo)| < C(H(‘Pa(p/)HCO([O,a]) + ||(80a<P/)HLP(0,1))7

’ @7 wo) - atH(tv E’v @ wO) ‘

|H(t7 ‘év @7 wo) - H(tv Ea P w0)| + |atH(t7 é
< C(J12 - Elloogosoe o 8llcr o + 18 = Pllosoay + 16 = Ploso ), (2:21)
(OLH (.. o w0),dp)] < O(Ildpllonoa + Idelliron) g € (CH(0.1)", (222
d — -
G E+ ), 9 wo)ls—e| < C(H:(f + 5 )ller (o, 400y x[0,1]) + ||<P||01([o,1])) leller o), (2.23)
[H1(t',wo) — Ha(t,wo)| < pi(en, wo), (2.24)
and, for n >0 and for 0 < |t/ —t| <, for dp,d¢ € (C*([0, 1]))",
S H(s, 5o+ ), Grwn)l e — - Ha(5,Es ), 0, w0) (225)
ds 2\9y — y ')y P, Wo ) |s=t ds 2\9y — y ')y P Wo ) | s=t .
+|<8¢H2(t/a Ea 957 w0)7 d¢> - <8@H2(t’ Ev 2 ’on), d90>|
< C(pien, wo) + pa(en,p, &, dp, ) ), (2:26)
for some constant ¢ > 0 and some function p; such that
lim pl(nvwo) = 07
n—0
where
pa(n, 0,0, dio,dp) = || sup {lp(y) - ¢(@)] + |diy) — dp(@)] ooy
y
ly—z|<n
s {le) - p@)| + lde(y) - de@)l|| (2:27)
y C([0,a])
ly—z|<n
Assume also that for all (E,wg) € D, the system
w(t,x) = X(x, Z(t, x))0,w(t, x) + f(t, z,w(t,xz)) in [0,400) x [0,1],
w_(t,0) = B(wy(t,0)) for t € [0, +00), (228)
Wit 1) = H(t,E(t +-,-),@(t, ), wp) fort € ]0,400), '
has a unique C*-solution satisfying w(t,-) = 0 fort > T. There exists € > 0 such that if ||[w(0, )| c1(jo,1)) < € and
w(0,-) satisfies the compatibility conditions at x = 0, then there is a unique solution w € (C*([0,T] x [0, 1]))”
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of (1.1) and (1.5) with

w(t,1) = H(t,w(t+-,-),w(t,-),wy) fort € [0,+00). (2.29)
Moreowver,
o (o, 100y (01 < C <||w0||cl([0,1]) + supsup (|Hn(tuo)| + |0 (t,u0)|)> , (2.30)
|u0||ol([0,1])§71 t>0

for some positive constant independent of wy and €.

In Lemma 2.3 and what follows, =(¢t 4 -, -) denotes the function (s,z) — Z(t + s,2) and w(t + -, -) denotes
the function (s,z) — w(t + s, ).
The compatibility conditions at = = 0 considered in the context of Lemma 2.3 are

wo,- (0) = B(wo,+(0)),

and

(2(0.2(0,00)2,(0,0) + £(0,0,w(0,0)) = VB(w+(0,0))(2(0,2(0,0)2:w(0,0) + £(0,0,(0,0)))

The compatibility at © = 1 of (2.28) is a part of the assumption of Lemma 2.3.

Before giving the proof of Lemma 2.3, let us discuss the motivation for the assumptions made. To this end,
we present one of its applications used in the proof of Theorem 1.1. Consider the setting given in Theorem 1.1;
f =0 in Lemma 2.3 then. For Z € (C([0,+00) x [0,1]))", define the flows

&x?(t, 5,8) =) (mf(t,s,é“),E(t,x?(t,s,é“))) and x?(s,s@) =¢fforl1<j<k,

and

%xf(t,s,{) =) (x?(t, s,f),E(t,x?(t, s,ﬁ))) and xf(s,s,f) =ffork+1<j<k+m.

Here and in what follows, we only consider the flows with 25(t,s,£) € [0,1] so that Z is well-defined. Assume
that m > k. Since VB(0) € B, by the implicit theorem and the Gaussian elimination method, there exist
M, Uy, =R, ..., M;: U — R of class C? for some neighborhoods Uy, of 0 € R™~L, ..., U; of 0 € R™* such
that, for y. = (Yxa1,---,Yrtm)' € R™ with sufficiently small norm, the following facts hold

(B(y+))k =0 if Yrym = Me(Yrt1, -5 Yotm—1)s

(Bw))

L (B(er))kq =0 if Yotm = Mi(WYrt1s s Yhtm—1)s Yhtm—-1 = Mip—1(Ykt1, - - - s Yktm—2),

B(y+) = 0if Yrgm = Me(Yrt1s -5 Yhtm—1)s > Ymt1 = Mi(Yrs1s -+ Ym)-
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For T' > Ty, set 6 =T — Ty Consider ¢; and n; of class C! for k+1<j < k+m and for t > 0 satisfying
Gi(0) =wo;(1), ¢(t)=0fort>4d/2, n;(00=1, n;(t)=0fort>4/2, (2.31)
and
¢5(0) = X (L, wo(1)wp ; (1), nj(0) = 0. (2.32)

For (E, ¢, wo) € D, with small 7, set
(H(t7 57 P wO))m = Ck-‘rm (t)

+(1 - nk+m(t)>Mk ((karl ($E+1(t7 t+ trEnJrIw 0))’ <oy Phtm—1 (x%erfl(t’ t+ tsfwrlw O)))? (233)

(H(tv =, 0, w0)>m71 = Ck—O—m—l(t)

+(1 - 77k+mfl(t))Mk71 (‘karl (xirl(tv t+ tranJrkflv 0))7 s Pltm—2 (forme(tv t+ tshtkflv 0))) ) (2'34)

(HEE o) = Gunl®)

m+1—k
(0= T ()M (Pt (151 (8 + 541,0)), o (2561 + 1541,0)) ), (2:35)
and

(H(t,E,go,wo))j = (uq;(t) for 1 < j <m—k, (2.36)

where t? = t?(t) are defined by

ot ot 1) =0, 2T (Tt 1) =0 for k+ 1< j <k+m.

We now show that H satisfies the assumptions given in Lemma 2.3 if ||wo|lc1(j0,1)) < € and ¢ is sufficiently
small (7 is sufficiently small as well). We first note that the solutions of the system (2.28) are 0 for ¢t > T
if [|Z]|¢1([0,4-00)x[0,17) 1 sufficiently small. The proof of this fact follows from the choice of M; (see the proof
of (2.68)—(2.69) in the proof of Thm. 1.1). One can easily check that (2.18), (2.20), (2.22), (2.23), and (2.24)
hold. Assertion (2.19) will be a consequence of our construction Lemma 3.2 n; and (; given later. We are next
concerned about (2.21). It suffices to prove that

|H(t7 E? ®, ’U}O) - H(t7 é’ @, wO)l + |atH(t’ Ea @, U)Q) - atH(t’ éa @, U}Q)|
< ClZ = Elleo((0,400) x[0,1) @1l e (j0,1]) - (2.37)

We claim that, for 1 < j < k + m.

|25 (t, 5,€) — 25 (¢, 5,€)| < ClIZ — Ell 0o ((0,400)x[0,1]) (2.38)
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for (¢,s,£) so that both flows are well-defined. We only consider the case k + 1 < j < k + m, the other cases
can be proved similarly. We have

N _ . max{t,s} _
|25 (t,5,8) — x5 (t,5,6)| < CIE = Ellco(jo,400)x[0,1]) + 0/ . |25 (s, 5,8) — a7 (s, 5,6)|ds’
min{t,s

and (2.38) follows.
Since, for k+1 <5< k+m,

<

Aj (SL‘JE(S, t,1), E(t, ij(& t, 1))) ds,

t4t5 R R N ot
/ Aj (m?(s,t, 1),E(t,aﬁj(s,t, 1))) ds=1= /
t t

it follows from (1.3) and (2.38) that

53
<

_ t+min{t5 65} _ R
-7 < C/t (|$7(5,t, ) —z7(s,t, )|+ |12~ E||CO([0,+oo)x[o,1])) ds
< C|IE = Ellcogio,+00)x[0,1))- (2.39)
Combining (2.38) and (2.39) yields (2.37). One can also verify (2.25) by direct/similar computations and by
using the fact

|25t 8", &) — a5 (t,5,6)] < Ot —t| + 5" — s| + ¢ —¢€]).

We now give the

Proof of Lemma 2.3. In what follows, for notational ease, we ignore the dependence of H on wy and
denote H(t,Z,p(t,-)) instead of H(t,Z,¢(t,-),wp). Fix an appropriate w® such that (w®,wg) € D, and
w1 0,100y x[0,17) < Cllwollc1((o,1]); we thus assumed implicitly here that |[wo||c1(jo,1) is sufficiently small.

For | > 0, let w1 be the unique C'-solution of

O (t,z) = B(z, wl (t, 2)) 0wV (8, ) + f(t, 2w (¢, 2)) i [0, +00) x [0,1],

w' ™ (t,0) = B(w*(1,0)) for ¢ € [0, +00), (2.40)
w(l“’l) t,1)=H t,w(l) t+-,- ’w(l""l) t,- for t € [0, +00),
+
in [0, 1],

’U)(l+1)(0, ) = wO()
and set
WO (t,z) = d,wB(t, z) for (t,z) € [0, +00) x [0, 1].

The existence and uniqueness of w1 follows from Lemma 2.1. Indeed, the compatibility conditions at = 0
follow from the fact w(®(0,-) = wy(-) and the compatibility conditions at 2 = 1 follow from the assumption on
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H for the existence of Cl-solutions of the system (2.28). We have

W HD (t, 1) = B(z, wD (¢, )0, WD (¢, )
+f1(t, 2)WEHD(t x) + fo(t, x) for (t,z) € [0, +00) x [0,1],
W (1,0) = VB (w0 (£,0)) W (£,0) for ¢ € [0, +00),
Wfrl“)(t, 1) = 8tH(t,w(l)(t + ), wiHD (e, ,)) + (65H(t,w(”(t + ), w D (¢, -)),W(”(t +-,4)
H(O,H (t, wW (¢ + -, ), w2, ), WD (t,.)) for t € [0, +00),
WUHD(0, ) = B(:, wo())wp(-) + f(0, 2, wo(x)) in [0, 1],

(2.41)
where

filt,z) = 3,2 (x, w® (t, ) )W (t, 2)S 7, wD (¢, 2)) + 8, f (¢, z,w TV (¢, 2)),
and
falt,z) = O f(t, 2, w TV (¢t x)) — 9,5 (z, wV (£, 2)) WO (t, )27 (2, wV (¢, 2)) f (£, 2, wFV (L, z)).
We have, since Hy (t,w)(t +-),0) = 0 by (2.20),

(2.18),(2.21)
<

|0, H (¢, wB(t + -, ), 0w, 3l C(\aﬂﬁ ®) + [w® Il co (10,400 x[0,1]) Jw (e, Nllerqo

@D, )| coo.apy + [(w I, ')||Lp([o,1}))a (2.42)

}(aEH(uw(“(t + ), w D)), WO (4 -)>‘

(2.23)

< C(”w(l)||C1([O,+oo)><[0,1]) + [l (2, ')||01([o,1])) o™ (E, )l o,1))s (2.43)
and
‘(@,H(t, w (t+ -, ), wl D (), W, -)>‘
(2.22)
< C(IWEIE Y eogo.y + WD oo )-
By introducing || - [|o and || - ||; as in (2.10) and (2.11), and using the above three inequalities, one can prove
that

w0 |01 ((0,400) x[0,1]) < C(j‘;]g ([H1(t)] + |0, Hy(t)]) + ||w0||Cl([O,1J>)’ (2.44)

if ||w® |1 (j0,400)x[0,1]) < € and ¢ is sufficiently small. The smallness of ¢ is also used to absorb the second term
of the RHS of (2.42) and the RHS of (2.43). It follows from (2.19) that there exists a constant 0 < C5(¢) < ¢,
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independent of wq such that

15

w1 (f0,400)x0,17) < Ce, (2.45)

if
lwollcrjo,1) < Cs(e) and ¢ is sufficiently small.

This fact will be assumed from now on.
Set, for [ > 1,

VO = w® — =D in [0, +00) x [0,1].
We have
OV D () = S, w ()0, VI (1, )
(S0 (t2)) - S, w00 (42))) 9,00 (1)
+f(t, 2, wD(t, x)) — f(t,z,wD (¢ 2)) in [0,400) x [0,1],
v D (4 0) = B(wﬁf“)(t,O)) _ B(wﬂf)(tﬂ)) for t € [0, +00),
VD@ 1) = H(t,w® (4 -, -), w D (8,-)) = H(t,wl=D (4 -,-), wD(t, ) for t € [0,+00),
VD (0,.) =0 in [0,1].

Note that, by (2.45),

sect
‘(Z(x,w(l)(t, x)) — X(x, w(l_l)(t,x)))aww(l_l)(t, z)| < C’5|V(l)(t,x)|,
(1+1) 0 fect (1+1)
Lf(t, 2,0 (tx)) = f(t,z,w(t2))] < CIVETI(t ),
BeC!
B(w!™(#,0)) =B (t,0)] < cvit,0),

’H(tv w(l)(t + ')a w(l+1)(tv )) - H(ta w(lil)(t + ')a w(l)(ta ))‘

(2.21)
< C(EHV(”@ + oo ooy oy + IVED Moo, + IV, ')lle([o,l]))'

Set

|e—L18—L2mv(l)(

Y(t) = max max 8, ).

1<i<n (s,2)€[0,t] x[0,1]

It follows that, provided that Lo is large and L; is much larger than Lo,

Vi (t) < /0 (a¥ia(s) + BYi(s)) ds + CeVi(D),



16 J.-M. CORON AND H.-M. NGUYEN

for some a, 8 > 0. By multiplying the above inequality with e~X* for some large positive constant L, one can
derive that, for e sufficiently small,

1
Vipa(t)e ™ < - Yi(t)e "
i e S g g e

This implies

w converges in C°([0, 400) x [0,1]). (2.46)
Set
p(n.w®) =supe Bl s (O o) - w(t,2), 0, (O (¢, 2!) — w2, 2) )|
t,x t !
[(t,2)—(,2")|<n
and
p(n,wo) = sup  |wp(z') — wp(x)]-
lz—='|<n

Define the flows

d
&xg-l)(t,s,f) =\ (xg-l)(t,s,f),w(l)(t, z§l)(t’8’£))) and osg-l)(s,S,g) =¢for1<j<k,

and

d
&Iy)(t, 5,6) = -\ (:cg”(t, 5,€),w (£, 20 (¢, 3,5))) and 2 (s,5,6) = for k+1<j <k+m.

By (1.3) and the fact [|w"|[c1((0,+00)x[0,1]) < Ct, one has, for ¢,¢' < 2T,
l !
o5t ', &) = (6,5, < Or (It = t] +|s — | +1¢ — €]). (2.47)

Recall, in the definition of ps, that a € [0,1) and 1 < p < +oc0. Use (2.24), (2.25) and (2.47), and consider (2.41).
As in the proof of Lemma 3.2 from [4] (also the proof of Lem. 2.1), one can prove that

p(n,w") < Cp(Cn,wo) + Cn+ Cpi(C) (2.48)
(see also the arguments in [9], Appendix B and [14] on pp. 58-59, 62-64, 88-90).

Combining (2.46) and (2.48), and applying the Ascoli theorem, one derives that
w converges in (C([0, +00) x [0,1]))".
It is clear that the limit is a C''-solution of (1.1), (1.5), and (2.29).
We next establish the uniqueness. Assume that w and @ are two C'-solutions of (1.1), (1.5), and (2.29). Set
u=1w—w in [0,4+00) x [0,1]. Then

Ou(t, z) = A(t, z)0zu(t, ) + f(t, z,u(t, T)),



STABILIZATION IN OPTIMAL TIME OF HOMOGENEOUS QUASILINEAR HYPERBOLIC SYSTEMS

where
A(t,z) = S(a, w(t, z)),
F(toz,ult,z)) = (z(g;,w(t,x) +ult,z)) — E(x,w(t,x)))@mw(t,x)
+f(t z, wt,z) + ut,z)) — f(t, =, w(t,z)).
Moreover,
u—(t,0) = g(t, u(t,0)) := B(w(t,0) + u4(,0)) — B(w(t,0)),
uy (t,0) = h(t,u(t +-,-)) := H(t,w + u,w + u) — H(t,w,w),
and
u(t=0,-) =0

Note that

|F(t 2, u(t, )] < Clu(t,z)],

l9(t, ut(t,0))] < Clui(t,0)],
and

(2.21)
Ittt + )| < C(elullono,rooxio.n + lult Moo + el eso )

Let U € (C([0, +00) x [0,1]))", with U(t,-) = 0 for ¢ > T, be a solution of the system

OU(t,z) — A(t,2)0,U(t,z) = f(t,z, u(t,z)) in [0, +o00) x [0,1],
U_(t,0) = g(t,U4(t,0)) for ¢ € [0, +00),
Ui (t,0) = h(t, ut+-,-)) for t € [0, 400),
Ut=0,)=0 in [0,1],
and set
Y (t) = max max le~ s L2y (s, 1)
1<i<n (s,2)€[0,x[0,1]
and

Z(t) = max max e~ trs =2ty (s, 1)
1<i<n (s,2)€[0,t]x[0,1]

17
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As in the proof of Lemma 3.2 from [4], one can prove that, if Ly is large and L; is much larger than Lo,
t
Y(t) < C/ (Y(s)+ Z(s))ds + CeZ(T).
0
By multiplying the above inequality with e ¢, for some large positive constant L, one has

1
max Y (t)e It < = max Z(t)e Lt
t€[0,T] 2 te[0,1]

if ¢ is sufficiently small. As a consequence, by taking U = u, one has, for ¢ sufficiently small,
u=0
and the uniqueness follows. The proof is complete. O

Remark 2.4. The proof of Lemma 2.3 is inspired from [4] using the approach for quasilinear hyperbolic
equations in [14], Chapter 1 and [3], Chapter 3.

2.2. Proof of Theorem 1.1

We consider two cases m > k and m < k separately.
Case 1: m > k. Consider the last equation of (1.5). Impose the condition wy(¢,0) = 0. Using (1.10) with ¢ =1
and the implicit function theorem, one can then write the last equation of (1.5) under the form

Wi (,0) = M, (wkﬂ(t, 0), .., W1 (¢, 0)), (2.49)

for some C? nonlinear map M, from Uy, into R for some neighborhood Uy, of 0 € R™~! with M}, (0) = 0 provided
that |w.y (¢,0)| is sufficiently small.

Consider the last two equations of (1.5) and impose the condition wy(¢,0) = wg_1(¢,0) = 0. Using (1.10) with
i = 2 and the Gaussian elimination approach, one can then write these two equations under the form (2.49) and

Wink1(,0) = M, (wk+1(t, 0), ... wmsn_a(t, 0)), (2.50)

for some C? nonlinear map My,_; from Uy_; into R for some neighborhood Uy_; of 0 € R™~2 with Mj_1(0) =0
provided that |w, (¢,0)| is sufficiently small, etc. Finally, consider the k equations of (1.5) and impose the

condition wg(¢,0) = --- = w1 (¢,0) = 0. Using (1.10) with ¢ = k and the Gaussian elimination approach, one can
then write these k equations under the form (2.49), (2.50), ..., and
Wi (£,0) = M, (wk+1(t,0), .. ,wm(t,o)), (2.51)

for some C? nonlinear map M; from U; into R for some neighborhood U; of 0 € R™* with M, 0)=0
provided that |w, (¢,0)] is sufficiently small. These nonlinear maps M, ..., My will be used in the construction
of feedbacks.

We next introduce the flows along the characteristic curves. Set

%xj(t, $,8) = \j (xj(t,s,§),w(t,xj(t,s7§))) and  z,(s,s,&) =& for 1 <j<k,
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and

d
&xj(t,s,f) = - (xj(t,s, ),w(t,:q(t,s,ﬁ))) and z,(s,s,&§) =¢fork+1<j<k+m.

We do not precise at this stage the domain of the definition of x;. Later, we only consider the flows in the
regions where the solution w is well-defined.

To arrange the compatibility of our controls, we introduce auxiliary variables satisfying autonomous dynamics,
which will be defined later. Set § =T — T, > 0. For t > 0, define, for k+1 < j <k +m,

G0) = wo (1), CH(0) = Ay (0, wo(1)wp, (1), &(8) = 0 for ¢ > 6/2, (2.52)
and
n;(0) =1, 75(0)=0, n;(t)=0fort>4§/2. (2.53)
We will construct the dynamics for ; and n; at the end of the proof of Theorem 1.1.
We are ready to construct a feedback law leading to finite-time stabilization in the time T'. Let t,, 1k be such
that

Q?m+k(t + tm+k7 t, 1) =0.

Tt is clear that ., depends only on the current state w(t,-). Let Dy = Dimyr(t) C R? be the open set whose
boundary is {t} x [0,1], [t,t + tm+x] x {0}, and {(5,xm+k(s,t, 1)); s € [t7t+tm+k]}. Then D,,, 4+ depends only
on the current state as well. This implies

Trp1(Et + tmtk, 0)y o ooy Thopm—1(t, t + tmtk, 0) are well-defined by the current state w(t, -).
As a consequence, the feedback
Witk (8 1) = Cupr(t)

+(1 = ongr(t)) My (wk+1 (¢, 2ps1 (ot + bk, 0)), s Wpm—1 (6 Thgm—1 (6, + timtks 0))) (2.54)

is well-defined by the current state w(t, ).
We then consider the system (1.1), (1.5), and the feedback (2.54). Let ¢, 4,1 be such that

xm—i—k—l(t + tm+k—1ata 1) = 0.
It is clear that t,,4x—1 depends only on the current state w(t,-) and the feedback law (2.54). Let

Dyik—1 = Dpyr_1(t) C R? be the open set whose boundary is {t} x [0,1], [t,t + tmir_1] x {0}, and
{(3,xm+k_1(s,t, 1); selt,t+ t"l+k_1]}. Then D41 depends only on the current state. This implies

Tpr1(t t+ tmak—1,0), ..o, Thtm—2(t, t + tmtk—1,0) are well-defined by the current state w(t, -).
As a consequence, the feedback

wm-‘rk—l(ta 1) = <m+k—1(t)
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+(1 = Nntr—1(t)) Mg —1 (wk+1 (t, Tegr (bt + tmgr—1,0)), o Whm—2(t Thgm—2(t,t + tmyr1, 0)))
(2.55)

is well-defined by the current state w(t, -).
We continue this process and finally reach the system (1.1), (1.5), (2.54), ...

Wint2(t, 1) = Cm2(t)
+(1 = Nnaa(t)) My (wkﬂ (t, Tpg1(tt + tmt2,0)), o Wit (8 Zonge1 (8, 4 Epgeas 0))). (2.56)
Let t,,+1 be such that
Tmi1(t+ tmir,t, 1) = 0.

Tt is clear that t,,+1 depends only on the current state w(t,-) and the feedback law (2.54)—(2.56). Let Dy,11 =
D,ni1(t) C R? be the open set whose boundary is {t} x [0,1], [t,t + tms1] X {0}, and {(s,xm+1(s,t, 1)); s €

[t,t+ tm+1]}. Then D,,,+1 depends only on the current state. This implies

g1t t+ tmt1,0), .., T (B, T + g1, 0) are well-defined by the current state w(t, -).
As a consequence, the feedback

wm+1(ta 1) = Cm-i-l(t)

(1 = Dyt (1) M (wk+1(t, Trsr (bt +tmi1,0)), s Wi (£ T (b + 1, 0))) (2.57)

is well-defined by the current state w(t,-).
To complete the feedback for the system, we consider, for k +1 < j < m,

wj (ta 1) = Cj (t)v (258)

We will establish that the feedback constructed gives the finite-time stabilization in the time T if ¢ is
sufficiently small. To this end, we first claim that

the system (1.1), (1.5), (2.54)—(2.57) is well-posed if ¢ is sufficiently small. (2.59)
Indeed, it is clear to see that the feedback is given by
H(t,w(t+-),w(t,-),w),

where H is given by (2.33)—(2.36). The well-posedness for the feedback law is now a consequence of Lemma 2.3
through the example mentioned and examined right after it.
From (2.31) and (2.32), we have, for t > §/2,

Gt)y=0fork+1<j<k+m.
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It follows that, for t > 6/2, the feedback law (2.54)—(2.57) has the form

wm+]€(ta 1) = Mk (wk}+l (ta mk+1<t7 t + tm+k7 0))3 L) 7wk+m71 (t7 xk+m71(t, t + tm+k7 O)))7 (260)

W1 (8, 1) = My (wk_H (k1 (B + i 1,0)), oy Whpm 2 (b Thgm 2t E+ sk 1, 0))), (2.61)

Wit (£, 1) = M, (wk+1 (ks (bt + 1, 0))s ey Won (£ T (£ + 1, 0))). (2.62)
Set
t=max{tpi1,. . thtm}
where fj, for k+1 < j < k+m,is defined by
z;(t; +8/2,5/2,1) = 0.
It follows from the characteristic method that
w;(t,") =0fort >t+6/2for k+1<j<m,
then for j =m+ 1, then for j =m+2,..., then for j =m + k.
Using the characteristic method again, we have, by the choice of My,
wy(t,0) =0 for t > 6/2 + ty ik, (2.63)
by the choice of M} and Mj_1,
wy,_1(t,0) =0 for t > §/2 + L1, (2.64)

..., and, by the choice of My, My_1, ..., My,

wy(t,0) =0 for t > 6/2 4 tyy1. (2.65)

Let iy, ..., t1 be such that
Ttk +6/2 4 tmik, 0/2 + tmag, 0) = 1, (2.66)
21(by +6/2 4+ tni1,6/2 4 tni1,0) = 1. (2.67)

Using the characteristic method, we derive that

w(t,-) =0 for t > 6/2 + tyin + trs (2.68)
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wl(t, ) =0 for t > 5/2 + £m+1 + Ltl. (269)
The conclusion follows by noting that
|fj — 7| < /4 for 1 <j<k+m,

if e is sufficiently small thanks to (2.19) and (2.30).
Case 2: m < k. We consider the following feedback law

Witk (t, 1) = Gnrr(t)

(1 = Prnyr () My (warl (t, Trg1 (4 L, 0)) 5 -+ oy Whgem—1 (6 Tom—1 (6t + s 0))),

We2(t, 1) = Cey2(t) + (1 — Mg (t)) M2 (wk+1 (t, Trpa (t,t + o, 0))),

and

W41 (t,1) = ey ().
The conclusion now follows by the same arguments. The details are omitted.

It remains to construct a dynamics for ¢; and n;. To this end, inspired by [7, 15], we write (; = ¢; + ¥;
where ¢; and ; satisfy the dynamics

! j , ﬁ .

with Y = (¢;(0)2 + v;(0)2)/3,
©j(0) +1;(0) =a, —ap;(0)— BY;(0) =0bY, (2.71)

where a = wo,;(0) and b = \;(0,wo(1))w ;(1). Here v and j3 are two distinct real numbers. We now show that

under appropriate choice of a and 8, ¢;(0) and 1;(0) can be chosen as continuous functions of a and b for
|(a,b)| sufficiently small. Indeed, consider the equation P, ;(Y’) = 0, where

Pup(Y) = (a — B)2Y3 — (2b2y2 +2ab(a + B)Y + a?(a? + 52)). (2.72)
One has, for Y > 0 and P, ;,(Y) =0,
YP,,(Y) =2b°Y? + dab(a + B)Y + 3(a” + 5°)a’.
In particular,
" o(Y) > 0if o® + 8% — 4aB > 0 and if ab # 0,

and the equation P, ;(Y) = 0 has a unique positive solution in this case. In the case ab = 0 and a? + b > 0,
there is a unique positive solution of P, ;(Y) = 0 and in the case a = b = 0, there is a unique solution ¥ = 0.
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Fix a and § such that o + 32 — 4a # 0 and « # 3. Denote Y (a,b) the unique positive solution in the case
a?+b? > 0 and 0 for (a,b) = (0,0). It suffices to prove that Y (a, b) is continuous with respect to (a,b) for small
|(a,b)|. Since P, (1) > 0 if |(a,b)| is sufficiently small and P, ;(0) < 0 if a # 0, it follows that Y is bounded in
a neighborhood O of (0,0). Since P, ,(Y) = 0 has a unique non-negative solution for a # 0, it follows that Y is
continuous in O \ {(a,b);a = 0}. Since o + 3% — 4a3 > 0, one has

ngYQ + 2ab(a + B)Y + a?(a? + %) > 0.
It follows that
1
Pop(Y) < (a— B)?Y3 — 5b2Y2.

This implies the continuity of ¥ on O N {(a,b);a = 0 and b # 0}. The continuity of Y at (0, 0) is a consequence
of the fact Py o(Y) = 0 implies Y = 0.

Similarly, one can build the dynamics for ;. We now have a = 1 and b = 0. we write n; = ¢; + Jj where ¢;
and Jj satisfy the dynamics

NoBag; ~
o) = ———— = d ¢it)=—
@;(t) G+ and  95(t)

A3,
(2 +43)1/3

where X is a large, positive constant defined later. One can check that @;(t) = A¢(At) and Jj (t) = Mp(At) where
¢, and 9, are solutions of (2.70) and

0;i(0) +3(0) =X""a,  —ap;(0) — B;(0) =0, (2.73)
instead of (2.71). One then can obtain the dynamics for n; by choosing A large enough. O
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