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FINITE-TIME STABILIZATION IN OPTIMAL TIME

OF HOMOGENEOUS QUASILINEAR HYPERBOLIC SYSTEMS

IN ONE DIMENSIONAL SPACE∗

Jean-Michel Coron1,∗∗ and Hoai-Minh Nguyen2

Abstract. We consider the finite-time stabilization of homogeneous quasilinear hyperbolic systems
with one side controls and with nonlinear boundary condition at the other side. We present time-
independent feedbacks leading to the finite-time stabilization in any time larger than the optimal time
for the null controllability of the linearized system if the initial condition is sufficiently small. One of
the key technical points is to establish the local well-posedness of quasilinear hyperbolic systems with
nonlinear, non-local boundary conditions.
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1. Introduction and statement of the main result

Linear and nonlinear hyperbolic systems in one dimensional space are frequently used in modeling of many
systems such as traffic flow, heat exchangers, and fluids in open channels. The stability and boundary stabiliza-
tion of these hyperbolic systems have been studied intensively in the literature, see e.g. [2] and the references
therein. In this paper, we investigate the finite-time stabilization in optimal time of the following homogeneous,
quasilinear, hyperbolic system in one dimensional space

∂tw(t, x) = Σ
(
x,w(t, x)

)
∂xw(t, x) for (t, x) ∈ [0,+∞)× (0, 1). (1.1)

Here w = (w1, . . . , wn)T : [0,+∞) × (0, 1) → Rn, Σ(·, ·) is an (n × n) real matrix-valued function defined in
[0, 1]×Rn. We assume that Σ(·, ·) has m ≥ 1 distinct positive eigenvalues and k = n−m ≥ 1 distinct negative
eigenvalues. We assume that, maybe after a change of variables, Σ(x, y) for x ∈ [0, 1] and y ∈ Rn is of the form

Σ(x, y) = diag
(
− λ1(x, y), . . . ,−λk(x, y), λk+1(x, y), . . . , λk+m(x, y)

)
, (1.2)
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where

− λ1(x, y) < · · · < −λk(x, y) < 0 < λk+1(x, y) < · · ·λk+m(x, y). (1.3)

Throughout the paper, we assume

λi is of class C2 with respect to x and y for 1 ≤ i ≤ n = k +m. (1.4)

Denote

w− = (w1, . . . , wk)T and w+ = (wk+1, . . . , wk+m)T.

The following types of boundary conditions and controls are considered. The boundary condition at x = 0 is
given by

w−(t, 0) = B
(
w+(t, 0)

)
for t ≥ 0, (1.5)

for some

B ∈
(
C2(Rm)

)k
with B(0) = 0,

and the boundary control at x = 1 is

w+(t, 1) = (Wk+1, . . . ,Wk+m)T(t) for t ≥ 0, (1.6)

where Wk+1, . . . ,Wk+m are controls. In this work, we thus consider non-linear boundary condition at x = 0.
Set

τi =

∫ 1

0

1

λi(x, 0)
dx for 1 ≤ i ≤ n, (1.7)

and

Topt :=

{
max

{
τ1 + τm+1, . . . , τk + τm+k, τk+1

}
if m ≥ k,

max
{
τk+1−m + τk+1, τk+2−m + τk+2, . . . , τk + τk+m

}
if m < k.

(1.8)

The main result of this paper is the following result whose proof is given in the next section.

Theorem 1.1. Define

B :=
{
B ∈ Rk×m; such that (1.10) holds for 1 ≤ i ≤ min{m− 1, k}

}
, (1.9)

where

the i× i matrix formed from the last i columns and the last i rows of B is invertible. (1.10)

Assume that B = ∇B(0) ∈ B. For any T > Topt, there exist ε > 0 and a time-independent feedback control for
(1.1), (1.5), and (1.6) such that if the compatibility conditions (at x = 0) (1.13) and (1.14) hold for w(0, ·),(

‖w(0, ·)‖C1([0,1]) < ε
)
⇒ (w(T, ·) = 0) . (1.11)
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Remark 1.2. 1. The feedbacks constructed also lead to the well-posedness of the Cauchy problem for the closed
loop system (see Lem. 2.3) and to the following property: for every η > 0, there exists δ > 0 such that, if the
compatibility conditions (at x = 0) (1.13) and (1.14) hold for w(0, ·),(

‖w(0, ·)‖C1([0,1]) < δ
)
⇒
(
‖w(t, ·)‖C1([0,1]) < η, ∀t ∈ [0, T ]

)
; (1.12)

see the proof of Lemma 2.3. Hence, by (1.11) and (1.12), 0 ∈
(
C1([0, 1])

)n
is stable for the closed-loop sys-

tem and 0 ∈
(
C1([0, 1])

)n
is finite-time stable in time T . 2. The feedbacks constructed in this article use

additional 4m state-variables (dynamics extensions) to avoid imposing compatibility conditions at x = 1. In
particular, (1.11) and (1.12) are understood with these additional 4m state-variables. 3. The null feedback
law (Wk+1, . . . ,Wk+m)T = 0 also leads to finite-time stability but in a time T1 which can be larger than Topt
even in the linear case with B ∈ B if m ≥ 2. Indeed for generic B in ∈ B, T1 = τk + τk+1 in the linear case
B(·) = B·. Moreover, if one denotes by T1(ε) the smallest value of T such that (1.11) holds for the null feedback

law, for every B ∈ Rk×m, for generic (for the C2-topology) nonlinear B ∈
(
C2(Rm)

)k
such that B(0) = 0 and

∇B(0) = B, T1(ε) → τk + τk+1 as ε → 0+; it then suffices to point out that τk + τk+1 ≥ Topt with equality if
and only if m = 1.

In what follows, we denote, for x ∈ [0, 1] and y ∈ Rn,

Σ−(x, y) = diag
(
− λ1(x, y), . . . ,−λk(x, y)

)
and Σ+(x, y) = diag

(
λk+1(x, y), . . . , λn(x, y)

)
.

The compatibility conditions considered in Theorem 1.1 are:

w−(0, 0) = B
(
w+(0, 0)

)
(1.13)

and

Σ−
(
0, w(0, 0)

)
∂xw−(0, 0) = ∇B

(
w+(0, 0)

)
Σ+

(
0, w(0, 0)

)
∂xw+(0, 0). (1.14)

Null-controllability of hyperbolic systems with one side controls have been studied at least from the work of
David Russell [16] even for inhomogeneous systems, i.e., instead of (1.1), one considers

∂tw(t, x) = Σ
(
x,w(t.x)

)
∂xw(t, x) + C

(
x,w(t, x)

)
,

for some C ∈
(
L∞([0, 1]×Rn)

)n×n
with C(x, 0) = 0. For linear systems, i.e., Σ(x, ·) and C(x, ·) are constant for

x ∈ [0, 1] and B is linear (B(·) = B· with B = ∇B(0)), the null-controllability was established in ([16], Sect. 3)
for the time τk + τk+1. Using backstepping approach, feedback controls leading to finite-time stabilization in the
same time were then initiated by Jean-Michel Coron et al. in [7] for m = k = 1 and later developed in [1, 8] for
the general case. The set B was introduced in [4] and the null-controllability for the linear systems with B ∈ B
was established for T > Topt in [4, 5] (see also [17] for the case C diagonal) via the backstepping approach. A
tutorial introduction of backstepping approach can be found in [11]. In the quasilinear case with m ≥ k and
with the linear boundary condition at x = 0, the null controllability for any time greater than τk + τk+1 was
established for m ≥ k by Tatsien Li in [12], Theorem 3.2 (see also [13]).

This work is concerned about homogeneous quasilinear hyperbolic systems with controls on one side, and
with nonlinear boundary conditions on the other side: (1.1), (1.5), and (1.6). The null-controllability is obtained
in any time greater than τk + τk+1 using the zero controls if the initial data are sufficiently small. When the
boundary condition is linear, the null-controllability was established by Long Hu [9] for m ≥ k at any time
greater than max{τk+1, τk + τm+1} if initial data are sufficiently small. In the linear case [4], for B ∈ B, we
obtained time-independent feedbacks for the null controllability at time Topt and showed the optimality of Topt
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if, moreover, (1.10) with i = min{m, k} holds (if this last condition does not hold, see Rem. 1.3). Related exact
controllability results can be also found in [4, 9, 10]. In this work, for ∇B(0) ∈ B, we present time-independent
feedbacks leading to finite-time stabilization of (1.1), (1.5), and (1.6) in any time T > Topt provided that the
initial data are sufficiently small. It is easy to see that B is an open subset of the set of (real) k ×m matrices,
and the Hausdorff dimension of its complement is min{k,m− 1}.

The feedbacks for (1.1), (1.5), and (1.6) are nonlinear and inspired from the ones in [4]. The construction is
more complicated due to quasilinear nature of the system. We add auxiliary dynamics to fulfill the compatibility
conditions at x = 1 since C1-solutions are considered. One of the key technical points is to establish the
local well-posedness of quasilinear hyperbolic systems with nonlinear, non-local boundary conditions, which is
interesting in itself. The Lyapunov functions associated with the feedbacks considered here are investigated in
our forthcoming work [6].

Remark 1.3. Consider the linear case: B(·) = B· with B ∈ B, m ≤ k and assume that (1.10) with
i = min{m, k} = m does not hold. Then the optimal time for the null controllability of (1.1), (1.5), and (1.6)
can be smaller than Topt. Indeed, let

J0 =
{

1 ≤ j ≤ k −m+ 1; the jth row of B is not in the space spanned by the last m− 1 rows of B
}
.

Set τ̂0 = τj0 + τk+1 where j0 = max
j∈J0

j if J0 is not empty, and τ̂0 = 0 otherwise. Define

T̂opt = max
{
τ̂0, τk+2−m + τk+2, . . . , τk + τk+m

}
. (1.15)

Then the null controllability is attained for T̂opt, which might be smaller than Topt.
Indeed, we use the same control as in the proof of Proposition 1.6 from [4]. Consider first the case where J0

is not empty. By the definition of j0, it follows that, for j0 + 1 ≤ j ≤ k −m+ 1,

(Bw+)j(t, 0) is a linear combination of (Bw+)k−m+2(t, 0), . . . , (Bw+)k(t, 0). (1.16)

One then derives from (1.16) that, for j0 + 1 ≤ j ≤ k −m+ 1,

(Bw)j(t, 0) = 0 for t ≥ τk+2

since (Bw)k(t, 0) = 0 for t ≥ τk+m, . . . , (Bw)k−m+2(t, 0) = 0 for t ≥ τk+2. By the characteristic method, this
implies, for j0 + 1 ≤ j ≤ k −m+ 1,

wj(t, ·) = 0 for t ≥ τk+2 + τk+m−1. (1.17)

On the other hand, from the proof of Proposition 1.6 from [4], we have

w1(t, ·) = · · · = wj0(t, ·) = wk−m+2(t, ·) = · · · = wk+m(t, ·) = 0

for t ≥ max
{
τj0 + τk+1, τk+2−m + τk+2, . . . , τk + τk+m

}
. (1.18)

(One can also view this fact as a consequence of the proof of Proposition 1.6 from [4] applied to the system
consisting of the first j0 components and the last 2m − 1 components of w). The null-controllability for T̂opt
now follows from (1.17) and (1.18) in this case.

We next consider the case where J0 is empty. Similar to (1.17), we have, for 1 ≤ j ≤ k −m+ 1,

wj(t, ·) = 0 for t ≥ τk+2 + τk−m+1, (1.19)
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and similar to (1.18), we obtain

wk−m+2(t, ·) = · · · = wk+m(t, ·) = 0 for t ≥ max
{
τk+2−m + τk+2, . . . , τk + τk+m

}
. (1.20)

The null-controllability for T̂opt in the case where J0 is empty now follows from (1.19) and (1.20).

One can also show the optimality of T̂opt. When J0 is not empty, this follows from the proof of Proposition
1.6 from [4] on the optimality part applied to the first j0 components and the last 2m− 1 components of w after
considering the initial data w(t = 0, ·) which satisfies wj0+1(t = 0, ·) = · · · = wk−m+1(t = 0, ·) = 0. When J0 is
empty, this follows from the proof of Proposition 1.6 from [4] on the optimality part applied to the components
k −m+ 2, . . . , k, k + 2, . . . k +m.

Let us point out that, if m ≤ k and T̂opt < Topt, Theorem 1.1 does not hold for Topt replaced by T̂opt even if
(1.10) with i = min{m, k} = m does not hold. In fact, even the local null controllability in any time T < Topt

does not hold for generic (for the C2-topology) nonlinear B ∈
(
C2(Rm)

)k
such that B(0) = 0 and ∇B(0) = B

where B is any given element of in B, whatever are m ≥ 1 and k ≥ 1.
The discussion on the case where B ∈ B, m ≤ k, and (1.10) with i = min{m, k} = m is not satisfied is

motivated by exchanged messages with Guillaume Olive, who also informed us that with Long Hu he recently
characterized the optimal time for the null controllability in the linear case and for every B. We are grateful for
the discussions.

2. Proof of the main result

This section containing two subsections is devoted to the proof of Theorem 1.1. In the first subsection,
we establish the local well-posedness of quasilinear hyperbolic systems with nonlinear, non-local boundary
conditions. This implies in particular the well-posedness for the feedback laws given in the proof of Theorem 1.1
associated with (1.1) and (1.5). The proof of Theorem 1.1 is given in the second subsection.

2.1. Preliminaries

The main result of this section is Lemma 2.3 on the well-posedness for quasi-linear hyperbolic systems related
to (1.1) and (1.5). The assumptions made are guided by our feedback controls used in Theorem 1.1. We first
consider the semilinear system, with T > 0,

∂tu(t, x) = A(t, x)∂xu(t, x) + f
(
t, x, u(t, x)

)
in [0, T ]× [0, 1],

u−(t, 0) = g
(
t, u+(t, 0)

)
for t ∈ [0, T ],

u+(t, 1) = h
(
t, u(t, ·), u0

)
for t ∈ [0, T ],

u(0, ·) = u0(·) in [0, 1],

(2.1)

for

A(t, x) = diag
(
− λ1(t, x), . . . ,−λm(t, x), λm+1(t, x), . . . , λm+k(t, x)

)
,

where

−λ1(t, x) < · · · < −λm(t, x) < 0 < λm+1(t, x) < · · · < λm+k(t, x),

and for f : [0, T ]× [0, 1]× Rn → Rn, g : [0, T ]× Rm → Rk, and h : [0, T ]×
(
C1([0, 1])

)n × (C1([0, 1])
)n → Rm.

We have
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Lemma 2.1. Assume that A is of class C1, f , and g are of class C2,

h(t, ϕ, u0) = h1(t, u0) + h2(t, ϕ, u0) with h1(·, u0), h2 are of class C1, (2.2)

lim
η→0

sup
‖u0‖C1([0,1])≤η

sup
t>0

(
|h1(t, u0)|+ |∂th1(t, u0)|

)
= 0, (2.3)

f(t, x, 0) = g(t, 0) = h2(t, 0, ·) = 0, (2.4)

and the following conditions hold, for some C > 0, a ∈ [0, 1), 1 ≤ p < +∞, and ε0 > 0,

|h(t, ϕ̂, u0)− h(t, ϕ, u0)|+ |∂th(t, ϕ̂, u0)− ∂th(t, ϕ, u0)|

≤ C
(
‖
(
ϕ̂− ϕ, ϕ̂′ − ϕ′

)
‖C0([0,a]) + ‖

(
ϕ̂− ϕ, ϕ̂′ − ϕ′

)
‖Lp(0,1)

)
, (2.5)

for all ϕ, ϕ̂, u0 ∈
(
C1([0, 1])

)n
with max

{
‖ϕ̂‖C1([0,1]), ‖ϕ‖C1([0,1]), ‖u0‖C1([0,1])

}
< ε0, and∣∣∣∣ d

dt
h(s, v̂(t, ·), u0)|s=t −

d

dt
h(s, v(t, ·), u0)|s=t

∣∣∣∣
≤ C

(
‖
(
(v̂ − v)(t, ·), ∂t(v̂ − v)(t, ·), ∂x(v̂ − v)(t, ·)

)
‖C0([0,a])

+‖
(
(v̂ − v)(t, ·), ∂t(v̂ − v)(t, ·), ∂x(v̂ − v)(t, ·)

)
‖Lp(0,1)

)
, (2.6)

for all v̂, v ∈
(
C1([0, T ]× [0, 1])

)n
and u0 ∈

(
C1([0, 1])

)n
with max

{
‖v̂‖C1([0,T ]×[0,1]), ‖v‖C1([0,T ]×[0,1])

}
< ε0 and

‖u0‖C1([0,1]) < ε0. There exists ε > 0 such that for u0 ∈
(
C1([0, 1])

)n
satisfying the compatibility conditions (see

(2.7)–(2.9)) with ‖u0‖C1([0,1]) < ε, there is a unique solution u ∈
(
C1([0, T ]× [0, 1])

)n
of (2.1).

We recall the following definition of compatibility conditions for (2.1): u0 ∈
(
C1([0, 1])

)n
is said to satisfy

the compatibility conditions if

u0,−(0) = g
(
0, u0,+(0)

)
, u0,+(1) = h

(
0, u0(·), u0

)
, (2.7)

(
A(0, 0)u′0(0) + f

(
0, 0, u0(0)

))
−

= ∂tg(0, u+(0)) + ∂y+
g(0, u+(0))

(
A(0, 0)u′0(0) + f

(
0, 0, u0(0)

))
+
, (2.8)

(
A(0, 1)u′0(1) + f

(
0, 1, u0(1)

))
+

= ∂th(0, u0, u0) + ∂yh(0, u0, u0)
(
A(0, 1)u′0(1) + f

(
0, 1, u0(1)

))
. (2.9)

Here and in what follows, the partial derivatives are taken with respect to the notations f(t, x, y), g(t, y+), and
h(t, y, u0).

Remark 2.2. The conditions a < 1 and p < +∞ are crucial in Lemma 2.1.
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Proof of Lemma 2.1. Set, for u ∈
(
C([0, T ]× [0, 1])

)n
,

‖u‖0 := max
1≤i≤n

max
(t,x)∈[0,T ]×[0,1]

|e−L1t−L2xui(t, x)| (2.10)

and, for u ∈
(
C1([0, T ]× [0, 1])

)n
,

‖u‖1 := max
{
‖u‖0, ‖∂tu‖0, ‖∂xu‖0

}
, (2.11)

where L1 and L2 are two large, positive constants determined later.
Set

Oε :=
{
v ∈

(
C1([0, T ]× [0, 1])

)n
with v(0, ·) = u0,

∂tv(0, 1) = A(0, 1)u′0(1) + f
(
0, 1, u0(1)

)
, and ‖v‖1 ≤ ε

}
.

From now on, we assume implicitly that ‖u0‖C1([0,1]) is sufficiently small so that Oε is not empty. For v ∈ Oε,
let u = F(v) be the unique C1-solution of the system

∂tu(t, x) = A(t, x)∂xu(t, x) + f
(
t, x, v(t, x)

)
in [0, T ]× [0, 1],

u−(t, 0) = g
(
t, u+(t, 0)

)
for t ∈ [0, T ],

u+(t, 1) = h
(
t, v(t, ·)

)
for t ∈ [0, T ],

u(0, ·) = u0(·) in [0, 1].

(2.12)

Here and in what follows, for notational ease, we ignore the dependence of h on u0 and denote h(t, v(t, ·)) instead
of h(t, v(t, ·), u0). As in the proof of Lemma 3.2 from [4] by (2.4) and (2.5), and the fact that f and g are of
class C1, one can prove that F is contracting for ‖ · ‖1-norm provided that L2 is large and L1 is much larger
than L2. The condition 0 ≤ a < 1 and 1 ≤ p < +∞ are essential for the existence of L1 and L2.1 The existence
and uniqueness of u then follow. Moreover, there exist two constants C1, C2 > 0, independent of u0 such that
for ‖u0‖C1([0,1]) ≤ C1ε and ‖v‖1 < ε, there exists a unique solution u ∈

(
C1([0, T ]× [0, 1])

)n
and moreover,

‖u‖C1([0,T ]×[0,1]) ≤ C2

(
‖u0‖C1([0,1]) + sup

t>0

(
|h1(t, u0)|+ |∂th1(t, u0)|

))
.

It follows from (2.3) that for ε > 0 small, there exists a constant 0 < C3(ε) < ε small, independent of u0, such
that for ‖u0‖C1([0,1]) ≤ C3(ε) and v ∈ Oε, then

‖F(v)‖1 ≤ ε which implies in particular that F(v) ∈ Oε. (2.13)

We claim that, for ‖u0‖C1([0,1]) ≤ C3(ε) and ε sufficiently small,

F is a contraction mapping w.r.t. ‖ · ‖1 from Oε into Oε. (2.14)

1We here clarify a misleading point in the definition of F(v) in [4], (3.10) in the proof of Lemma 3.2 from [4]. Concerning this
definition, in the RHS of [4], (3.8), vj+k(t, 0) must be understood as (F(v))j+k(t, 0) and (F(v))j+k(t, 0) is then determined by the
RHS of [4], (3.6) or (3.7) as mentioned there. Related to this point, Vj(t, 0) for k + 1 ≤ j ≤ k +m in [4], (3.14) and in the inequality
just below must be replaced by (F(v)−F(v̂))j . The rest of the proof is unchanged.



8 J.-M. CORON AND H.-M. NGUYEN

Indeed, fix λ ∈ (0, 1). As in the proof of Lemma 3.2 from [4], applying the characteristic method, and using
(2.4) and (2.5), and the fact f and g are of class C1, we obtain

‖F(v̂)−F(v)‖0 ≤ λ‖v̂ − v‖1, (2.15)

if L2 is large and L1 is much larger than L2. Set U(t, x) = ∂tu(t, x) for (t, x) ∈ [0, T ]× [0, 1]. We have



∂tU(t, x) = A(t, x)∂xU(t, x) + ∂tA(t, x)A(t, x)−1U(t, x) + f1(t, x, v) in [0, T ]× [0, 1],

U−(t, 0) = g1(t) for t ∈ [0, T ],

U+(t, 1) = h1(t) for t ∈ [0, T ],

U(0, x) = A(0, x)u′0(x) + f
(
0, x, u0(x)

)
in [0, 1],

(2.16)

where

f1(t, x, v) = −∂tA(t, x)A−1(t, x)f
(
t, x, v(t, x)

)
+ ∂tf

(
t, x, v(t, x)

)
+ ∂yf

(
t, x, v(t, x)

)
∂tv(t, x).

g1(t) = ∂tg(t, u+(t, 0)) + ∂y+
g(t, u+(t, 0))U+(t, 0),

h1(t) = ∂th(t, v(t, ·)) + ∂yh(t, v(t, ·))∂tv(t, ·).

Note that, with û = F(v̂) and Û = ∂tû,

∣∣∣∂tg(t, û+(t, 0)) + ∂y+g(t, û+(t, 0))Û+(t, 0)− ∂tg(t, u+(t, 0))− ∂y+g(t, u+(t, 0))U+(t, 0)
∣∣∣

g∈C2

≤ C
(
|û+(t, 0)− u+(t, 0)|+ |Û+(t, 0)− U+(t, 0)|

)
,

and

|f1(t, x, v̂)− f1(t, x, v)|
f∈C2

≤ C
(
|v̂(t, x)− v(t, x)|+ |∂tv̂(t, x)− ∂tv(t, x)|

)
,

and by (2.5) and (2.6),

∣∣∣∂th(t, v(t, ·)) + ∂yh(t, v(t, ·))∂tv(t, ·)− ∂th(t, v̂(t, ·))− ∂yh(t, v̂(t, ·))∂tv̂(t, ·)
∣∣∣

≤ C
(
‖
(
(v̂ − v)(t, ·), ∂t(v̂ − v)(t, ·), ∂x(v̂ − v)(t, ·)

)
‖C0([0,a])

+‖
(
(v̂ − v)(t, ·), ∂t(v̂ − v)(t, ·), ∂x(v̂ − v)(t, ·)

)
‖Lp(0,1)

)
,
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if max
{
‖u‖1, ‖v‖1, ‖û‖1, ‖v̂‖1

}
< ε0. Again, as in the proof of Lemma 3.2 from [4], applying the characteristic

method and using (2.5) and (2.6), we also have, by (2.15),

‖∂tF(v̂)− ∂tF(v)‖0 ≤ λ‖v̂ − v‖1. (2.17)

Since

∂t(û− u)(t, x) = A(t, x)∂x(û− u)(t, x) + f(t, x, v̂(t, x))− f(t, x, v(t, x)),

and

|f
(
t, x, v̂(t, x)

)
− f

(
t, x, v(t, x)

)
| ≤ C|v̂(t, x)− v(t, x)|,

it follows from (2.15) and (2.17) that

‖F(v̂)−F(v)‖1 ≤ Cλ‖v̂ − v‖1.

Claim (2.14) is proved.
The existence and uniqueness of solutions of (2.1) in

(
C1([0, T ] × [0, 1])

)n
now follow for u0 satisfying

‖u0‖C1([0,1]) ≤ C3(ε). The proof is complete.

We next establish the key result of this section. To this end, we first set, for τ > 0,

D̂τ : =
{

(Ξ, ϕ, w0) ∈
(
C1([0,+∞)× [0, 1])

)n × (C1([0, 1])
)n × (C1([0, 1])

)n
;

max
{
‖Ξ‖C1([0,+∞)×[0,1]), ‖ϕ‖C1([0,1]), ‖w0‖C1([0,1])

}
< τ

}
and, for T > 0,

Dτ : =
{

(Ξ, w0); (Ξ, 0, w0) ∈ D̂τ ,Ξ(0, ·) = w0(·),Ξ(t, ·) = 0 for t > T,

and the compatibility conditions at x = 0 hold for the system (2.28)
}
.

The set Dτ also depends on T but we ignore this dependence explicitly for notational ease.
We have

Lemma 2.3. Let T > 0, f : [0,+∞) × [0, 1] × Rn → Rn be of class C2 such that f(t, x, 0) = 0 for (t, x) ∈
[0,+∞)× [0, 1]. Assume that B = ∇B(0) ∈ B, Σ is of class C2, and there exist τ > 0 and

H : [0,+∞)× D̂τ → Rm

such that H is continuously differentiable w.r.t. (t,Ξ, ϕ), and for some C > 0, 1 ≤ p < +∞, and a ∈ [0, 1), the
following conditions hold, for (Ξ, ϕ, w0), (Ξ̂, ϕ̂, w0) ∈ D̂τ with (Ξ, w0), (Ξ̂, w0) ∈ Dτ ,

H(t,Ξ, ϕ, w0) = H1(t, w0) +H2(t,Ξ, ϕ, w0) with H1(·, w0), H2 are of class C1, (2.18)

lim
η→0

sup
‖u0‖C1([0,1])≤η

sup
t>0

(
|H1(t, u0)|+ |∂tH1(t, u0)|

)
= 0, (2.19)
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|H2

(
t,Ξ, ϕ, w0

)
| ≤ C

(
‖(ϕ,ϕ′)‖C0([0,a]) + ‖(ϕ,ϕ′)‖Lp(0,1)

)
, (2.20)

|H
(
t, Ξ̂, ϕ̂, w0

)
−H

(
t,Ξ, ϕ, w0

)
|+ |∂tH

(
t, Ξ̂, ϕ̂, w0

)
− ∂tH

(
t,Ξ, ϕ, w0

)
|

≤ C
(
‖Ξ̂− Ξ‖C0([0,+∞)×[0,1])‖ϕ̂‖C1([0,1]) + ‖ϕ̂− ϕ‖C0([0,a]) + ‖ϕ̂− ϕ‖Lp([0,1])

)
, (2.21)

|〈∂ϕH(t,Ξ, ϕ, w0), dϕ〉| ≤ C
(
‖dϕ‖C0([0,a]) + ‖dϕ‖Lp(0,1)

)
∀ dϕ ∈

(
C1([0, 1])

)n
, (2.22)

∣∣∣∣ d

dt
H(s,Ξ(t+ ·, ·), ϕ, w0)|s=t

∣∣∣∣ ≤ C(‖Ξ(t+ ·, ·)‖C1([0,+∞)×[0,1]) + ‖ϕ‖C1([0,1])

)
‖ϕ‖C1([0,1]), (2.23)

|H1(t′, w0)−H1(t, w0)| ≤ ρ1(cη, w0), (2.24)

and, for η > 0 and for 0 ≤ |t′ − t| ≤ η, for dϕ, dϕ̂ ∈
(
C1([0, 1])

)n
,∣∣∣∣ d

ds
H2(s,Ξ(s+ ·, ·), ϕ̂, w0)|s=t′ −

d

ds
H2(s,Ξ(s+ ·, ·), ϕ, w0)|s=t

∣∣∣∣ (2.25)

+|〈∂ϕH2(t′,Ξ, ϕ̂, w0), dϕ̂〉 − 〈∂ϕH2(t,Ξ, ϕ, w0), dϕ〉|

≤ C
(
ρ1(cη, w0) + ρ2(cη, ϕ, ϕ̂, dϕ, dϕ̂)

)
, (2.26)

for some constant c > 0 and some function ρ1 such that

lim
η→0

ρ1(η, w0) = 0,

where

ρ2(η, ϕ, ϕ̂, dϕ, dϕ̂) =
∥∥∥ sup

y

|y−x|≤η

{
|ϕ(y)− ϕ̂(x)|+ |dϕ(y)− dϕ̂(x)|

}
‖Lp(0,1)

+‖ sup
y

|y−x|≤η

{
|ϕ(y)− ϕ(x)|+ |dϕ(y)− dϕ(x)|

}∥∥∥
C([0,a])

. (2.27)

Assume also that for all (Ξ, w0) ∈ Dτ , the system

∂tw̃(t, x) = Σ(x,Ξ(t, x))∂xw̃(t, x) + f(t, x, w̃(t, x)) in [0,+∞)× [0, 1],

w̃−(t, 0) = B
(
w̃+(t, 0)

)
for t ∈ [0,+∞),

w̃+(t, 1) = H
(
t,Ξ(t+ ·, ·), w̃(t, ·), w0

)
for t ∈ [0,+∞),

w̃(0, ·) = w0(·) in [0, 1]

(2.28)

has a unique C1-solution satisfying w̃(t, ·) = 0 for t > T . There exists ε > 0 such that if ‖w(0, ·)‖C1([0,1]) < ε and

w(0, ·) satisfies the compatibility conditions at x = 0, then there is a unique solution w ∈
(
C1([0, T ]× [0, 1])

)n
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of (1.1) and (1.5) with

w(t, 1) = H
(
t, w(t+ ·, ·), w(t, ·), w0

)
for t ∈ [0,+∞). (2.29)

Moreover,

‖w‖C1([0,+∞)×[0,1]) ≤ C

(
‖w0‖C1([0,1]) + sup

‖u0‖C1([0,1])≤η
sup
t>0

(
|H1(t, u0)|+ |∂tH1(t, u0)|

))
, (2.30)

for some positive constant independent of w0 and ε.

In Lemma 2.3 and what follows, Ξ(t + ·, ·) denotes the function (s, x) 7→ Ξ(t + s, x) and w(t + ·, ·) denotes
the function (s, x) 7→ w(t+ s, x).

The compatibility conditions at x = 0 considered in the context of Lemma 2.3 are

w0,−(0) = B
(
w0,+(0)

)
,

and(
Σ(0,Ξ(0, 0))∂xw(0, 0) + f(0, 0, w(0, 0))

)
−

= ∇B(w+(0, 0))
(

Σ(0,Ξ(0, 0))∂xw(0, 0) + f(0, 0, w(0, 0))
)

+
.

The compatibility at x = 1 of (2.28) is a part of the assumption of Lemma 2.3.
Before giving the proof of Lemma 2.3, let us discuss the motivation for the assumptions made. To this end,

we present one of its applications used in the proof of Theorem 1.1. Consider the setting given in Theorem 1.1;
f = 0 in Lemma 2.3 then. For Ξ ∈

(
C1([0,+∞)× [0, 1])

)n
, define the flows

d

dt
xΞ
j (t, s, ξ) = λj

(
xΞ
j (t, s, ξ),Ξ

(
t, xΞ

j (t, s, ξ)
))

and xΞ
j (s, s, ξ) = ξ for 1 ≤ j ≤ k,

and

d

dt
xΞ
j (t, s, ξ) = −λj

(
xΞ
j (t, s, ξ),Ξ

(
t, xΞ

j (t, s, ξ)
))

and xΞ
j (s, s, ξ) = ξ for k + 1 ≤ j ≤ k +m.

Here and in what follows, we only consider the flows with xΞ
j (t, s, ξ) ∈ [0, 1] so that Ξ is well-defined. Assume

that m > k. Since ∇B(0) ∈ B, by the implicit theorem and the Gaussian elimination method, there exist
Mk : Uk → R, . . . , M1 : U1 → R of class C2 for some neighborhoods Uk of 0 ∈ Rm−1, . . . , U1 of 0 ∈ Rm−k such
that, for y+ = (yk+1, . . . , yk+m)T ∈ Rm with sufficiently small norm, the following facts hold(

B(y+)
)
k

= 0 if yk+m = Mk(yk+1, . . . , yk+m−1),

(
B(y+)

)
k

=
(

B(y+)
)
k−1

= 0 if yk+m = Mk(yk+1, . . . , yk+m−1), yk+m−1 = Mk−1(yk+1, . . . , yk+m−2),

. . . ,

B(y+) = 0 if yk+m = Mk(yk+1, . . . , yk+m−1), . . . , ym+1 = M1(yk+1, . . . , ym).
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For T > Topt, set δ = T − Topt. Consider ζj and ηj of class C1 for k + 1 ≤ j ≤ k +m and for t ≥ 0 satisfying

ζj(0) = w0,j(1), ζj(t) = 0 for t ≥ δ/2, ηj(0) = 1, ηj(t) = 0 for t ≥ δ/2, (2.31)

and

ζ ′j(0) = λj
(
1, w0(1)

)
w′0,j(1), η′j(0) = 0. (2.32)

For (Ξ, ϕ, w0) ∈ Dτ with small τ , set(
H(t,Ξ, ϕ, w0)

)
m

= ζk+m(t)

+(1− ηk+m(t))Mk

(
ϕk+1

(
xΞ
k+1(t, t+ tΞm+k, 0)

)
, . . . , ϕk+m−1

(
xΞ
k+m−1(t, t+ tΞm+k, 0)

))
, (2.33)

(
H(t,Ξ, ϕ, w0)

)
m−1

= ζk+m−1(t)

+(1− ηk+m−1(t))Mk−1

(
ϕk+1

(
xΞ
k+1(t, t+ tΞm+k−1, 0)

)
, . . . , ϕk+m−2

(
xΞ
k+m−2(t, t+ tΞm+k−1, 0)

))
,(2.34)

. . . (
H(t,Ξ, ϕ, w0)

)
m+1−k

= ζm+1(t)

+(1− ηm+1(t))M1

(
ϕk+1

(
xΞ
k+1(t, t+ tΞm+1, 0)

)
, . . . , ϕm

(
xΞ
m(t, t+ tΞm+1, 0)

))
, (2.35)

and (
H(t,Ξ, ϕ, w0)

)
j

= ζk+j(t) for 1 ≤ j ≤ m− k, (2.36)

where tΞj = tΞj (t) are defined by

xΞ
m+k(t+ tΞm+k, t, 1) = 0, . . . , xΞ

1+k(t+ tΞ1+k, t, 1) = 0 for k + 1 ≤ j ≤ k +m.

We now show that H satisfies the assumptions given in Lemma 2.3 if ‖w0‖C1([0,1]) ≤ ε and ε is sufficiently
small (τ is sufficiently small as well). We first note that the solutions of the system (2.28) are 0 for t > T
if ‖Ξ‖C1([0,+∞)×[0,1]) is sufficiently small. The proof of this fact follows from the choice of Mj (see the proof
of (2.68)–(2.69) in the proof of Thm. 1.1). One can easily check that (2.18), (2.20), (2.22), (2.23), and (2.24)
hold. Assertion (2.19) will be a consequence of our construction Lemma 3.2 ηj and ζj given later. We are next
concerned about (2.21). It suffices to prove that

|H(t,Ξ, ϕ, w0)−H(t, Ξ̂, ϕ, w0)|+ |∂tH(t,Ξ, ϕ, w0)− ∂tH(t, Ξ̂, ϕ, w0)|

≤ C‖Ξ̂− Ξ‖C0([0,+∞)×[0,1])‖ϕ‖C1([0,1]). (2.37)

We claim that, for 1 ≤ j ≤ k +m.

|xΞ̂
j (t, s, ξ)− xΞ

j (t, s, ξ)| ≤ C‖Ξ̂− Ξ‖C0([0,+∞)×[0,1]) (2.38)
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for (t, s, ξ) so that both flows are well-defined. We only consider the case k + 1 ≤ j ≤ k + m, the other cases
can be proved similarly. We have

|xΞ̂
j (t, s, ξ)− xΞ

j (t, s, ξ)| ≤ C‖Ξ̂− Ξ‖C0([0,+∞)×[0,1]) + C

∫ max{t,s}

min{t,s}
|xΞ̂
j (s′, s, ξ)− xΞ

j (s′, s, ξ)|ds′

and (2.38) follows.
Since, for k + 1 ≤ j ≤ k +m,

∫ t+tΞ̂j

t

λj

(
xΞ̂
j (s, t, 1), Ξ̂

(
t, xΞ̂

j (s, t, 1)
))

ds = 1 =

∫ t+tΞj

t

λj

(
xΞ
j (s, t, 1),Ξ

(
t, xΞ

j (s, t, 1)
))

ds,

it follows from (1.3) and (2.38) that

|tΞ̂j − tΞj | ≤ C
∫ t+min{tΞ̂j ,t

Ξ
j }

t

(
|xΞ̂
j (s, t, 1)− xΞ

j (s, t, 1)|+ ‖Ξ̂− Ξ‖C0([0,+∞)×[0,1])

)
ds

≤ C‖Ξ̂− Ξ‖C0([0,+∞)×[0,1]). (2.39)

Combining (2.38) and (2.39) yields (2.37). One can also verify (2.25) by direct/similar computations and by
using the fact

|xΞ
j (t′, s′, ξ′)− xΞ

j (t, s, ξ)| ≤ C
(
|t′ − t|+ |s′ − s|+ |ξ′ − ξ|

)
.

We now give the

Proof of Lemma 2.3. In what follows, for notational ease, we ignore the dependence of H on w0 and
denote H(t,Ξ, ϕ(t, ·)) instead of H(t,Ξ, ϕ(t, ·), w0). Fix an appropriate w(0) such that (w(0), w0) ∈ Dτ and
‖w(0)‖C1([0,+∞)×[0,1]) ≤ C‖w0‖C1([0,1]); we thus assumed implicitly here that ‖w0‖C1([0,1]) is sufficiently small.

For l ≥ 0, let w(l+1) be the unique C1-solution of



∂tw
(l+1)(t, x) = Σ(x,w(l)(t, x))∂xw

(l+1)(t, x) + f(t, x, w(l+1)(t, x)) in [0,+∞)× [0, 1],

w
(l+1)
− (t, 0) = B

(
w

(l+1)
+ (t, 0)

)
for t ∈ [0,+∞),

w
(l+1)
+ (t, 1) = H

(
t, w(l)(t+ ·, ·), w(l+1)(t, ·)

)
for t ∈ [0,+∞),

w(l+1)(0, ·) = w0(·) in [0, 1],

(2.40)

and set

W (l)(t, x) = ∂tw
(l)(t, x) for (t, x) ∈ [0,+∞)× [0, 1].

The existence and uniqueness of w(l+1) follows from Lemma 2.1. Indeed, the compatibility conditions at x = 0
follow from the fact w(l)(0, ·) = w0(·) and the compatibility conditions at x = 1 follow from the assumption on
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H for the existence of C1-solutions of the system (2.28). We have

∂tW
(l+1)(t, x) = Σ(x,w(l)(t, x))∂xW

(l+1)(t, x)

+f1(t, x)W (l+1)(t, x) + f2(t, x) for (t, x) ∈ [0,+∞)× [0, 1],

W
(l+1)
− (t, 0) = ∇B

(
w(l+1)(t, 0)

)
W

(l+1)
+ (t, 0) for t ∈ [0,+∞),

W
(l+1)
+ (t, 1) = ∂tH

(
t, w(l)(t+ ·, ·), w(l+1)(t, ·)

)
+ 〈∂ΞH

(
t, w(l)(t+ ·, ·), w(l+1)(t, ·)

)
,W (l)(t+ ·, ·)〉

+〈∂ϕH
(
t, w(l)(t+ ·, ·), w(l+1)(t, ·)

)
,W (l+1)(t, ·)〉 for t ∈ [0,+∞),

W (l+1)(0, ·) = Σ(·, w0(x))w′0(·) + f(0, x, w0(x)) in [0, 1],
(2.41)

where

f1(t, x) = ∂yΣ(x,w(l)(t, x))W (l)(t, x)Σ−1(x,w(l)(t, x)) + ∂yf(t, x, w(l+1)(t, x)),

and

f2(t, x) = ∂tf(t, x, w(l+1)(t, x))− ∂yΣ(x,w(l)(t, x))W (l)(t, x)Σ−1(x,w(l)(t, x))f(t, x, w(l+1)(t, x)).

We have, since H2

(
t, w(l)(t+ ·), 0

)
= 0 by (2.20),

|∂tH
(
t, w(l)(t+ ·, ·), w(l+1)(t, ·)

)
|
(2.18),(2.21)

≤ C
(
|∂tH1(t)|+ ‖w(l)‖C0([0,+∞)×[0,1])‖w(l+1)(t, ·))‖C1([0,1])

+‖(w(l+1)(t, ·)‖C0([0,a]) + ‖(w(l+1)(t, ·)‖Lp([0,1])

)
, (2.42)

∣∣∣〈∂ΞH
(
t, w(l)(t+ ·, ·), w(l+1)(t, ·)

)
,W (l)(t+ ·, ·)〉

∣∣∣
(2.23)

≤ C
(
‖w(l)‖C1([0,+∞)×[0,1]) + ‖w(l+1)(t, ·)‖C1([0,1])

)
‖w(l+1)(t, ·)‖C1([0,1]), (2.43)

and ∣∣∣〈∂ϕH(t, w(l)(t+ ·, ·), w(l+1)(t, ·)
)
,W (l+1)(t, ·)〉

∣∣∣
(2.22)

≤ C
(
‖W (l+1)(t, ·)‖C0([0,a]) + ‖W (l+1)(t, ·)‖Lp(0,1)

)
.

By introducing ‖ · ‖0 and ‖ · ‖1 as in (2.10) and (2.11), and using the above three inequalities, one can prove
that

‖w(l+1)‖C1([0,+∞)×[0,1]) ≤ C
(

sup
t>0

(
|H1(t)|+ |∂tH1(t)|

)
+ ‖w0‖C1([0,1])

)
, (2.44)

if ‖w(l)‖C1([0,+∞)×[0,1]) ≤ ε and ε is sufficiently small. The smallness of ε is also used to absorb the second term
of the RHS of (2.42) and the RHS of (2.43). It follows from (2.19) that there exists a constant 0 < C3(ε) < ε,
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independent of w0 such that

‖w(l)‖C1([0,+∞)×[0,1]) ≤ Cε, (2.45)

if

‖w0‖C1[0,1] ≤ C3(ε) and ε is sufficiently small.

This fact will be assumed from now on.
Set, for l ≥ 1,

V (l) = w(l) − w(l−1) in [0,+∞)× [0, 1].

We have

∂tV
(l+1)(t, x) = Σ(x,w(l)(t, x))∂xV

(l+1)(t, x)

+
(

Σ(x,w(l)(t, x))− Σ(x,w(l−1)(t, x))
)
∂xw

(l)(t, x)

+f(t, x, w(l+1)(t, x))− f(t, x, w(l)(t, x)) in [0,+∞)× [0, 1],

V
(l+1)
− (t, 0) = B

(
w

(l+1)
+ (t, 0)

)
− B

(
w

(l)
+ (t, 0)

)
for t ∈ [0,+∞),

V
(l+1)
+ (t, 1) = H

(
t, w(l)(t+ ·, ·), w(l+1)(t, ·)

)
−H

(
t, w(l−1)(t+ ·, ·), w(l)(t, ·)

)
for t ∈ [0,+∞),

V (l+1)(0, ·) = 0 in [0, 1].

Note that, by (2.45),

∣∣∣(Σ(x,w(l)(t, x))− Σ(x,w(l−1)(t, x))
)
∂xw

(l−1)(t, x)
∣∣∣Σ∈C1

≤ Cε|V (l)(t, x)|,

|f(t, x, w(l+1)(t, x))− f(t, x, w(l)(t, x))|
f∈C1

≤ C|V (l+1)(t, x)|,

|B
(
w

(l+1)
+ (t, 0)

)
− B

(
w

(l)
+ (t, 0)

)
|
B∈C1

≤ C|V (l+1)
+ (t, 0)|,

∣∣∣H(t, w(l)(t+ ·, ·), w(l+1)(t, ·)
)
−H

(
t, w(l−1)(t+ ·, ·), w(l)(t, ·)

)∣∣∣
(2.21)

≤ C
(
ε‖V (l)(t+ ·, ·)‖C0([0,+∞]×[0,1]) + ‖V (l+1)(t, ·)‖C0([0,a]) + ‖V (l+1)(t, ·)‖Lp([0,1])

)
.

Set

Yl(t) = max
1≤i≤n

max
(s,x)∈[0,t]×[0,1]

|e−L1s−L2xV
(l)
i (s, x)|.

It follows that, provided that L2 is large and L1 is much larger than L2,

Yl+1(t) ≤
∫ t

0

(
αYl+1(s) + βYl(s)

)
ds+ CεYl(T ),
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for some α, β > 0. By multiplying the above inequality with e−Lt for some large positive constant L, one can
derive that, for ε sufficiently small,

max
t∈[0,T ]

Yl+1(t)e−Lt ≤ 1

2
max
t∈[0,T ]

Yl(t)e
−Lt.

This implies

w(l) converges in C0([0,+∞)× [0, 1]). (2.46)

Set

ρ(η, w(l)) = sup
t,x

e−L1t−L2x sup
t′,x′

|(t,x)−(t′,x′)|≤η

∣∣∣(∂t(w(l)(t′, x′)− w(l)(t, x)
)
, ∂x
(
w(l)(t′, x′)− w(l)(t, x)

))∣∣∣
and

ρ(η, w0) = sup
|x−x′|≤η

|w′0(x′)− w′0(x)|.

Define the flows

d

dt
x

(l)
j (t, s, ξ) = λj

(
x

(l)
j (t, s, ξ), w(l)

(
t, x

(l)
j (t, s, ξ)

))
and x

(l)
j (s, s, ξ) = ξ for 1 ≤ j ≤ k,

and

d

dt
x

(l)
j (t, s, ξ) = −λj

(
x

(l)
j (t, s, ξ), w(l)

(
t, x

(l)
j (t, s, ξ)

))
and x

(l)
j (s, s, ξ) = ξ for k + 1 ≤ j ≤ k +m.

By (1.3) and the fact ‖w(l)‖C1([0,+∞)×[0,1]) ≤ Cε, one has, for t, t′ < 2T ,

|x(l)
j (t′, s′, ξ′)− x(l)

j (t, s, ξ)| ≤ CT
(
|t′ − t|+ |s− s′|+ |ξ′ − ξ|

)
. (2.47)

Recall, in the definition of ρ2, that a ∈ [0, 1) and 1 ≤ p < +∞. Use (2.24), (2.25) and (2.47), and consider (2.41).
As in the proof of Lemma 3.2 from [4] (also the proof of Lem. 2.1), one can prove that

ρ(η, w(l)) ≤ Cρ(Cη,w0) + Cη + Cρ1(Cη) (2.48)

(see also the arguments in [9], Appendix B and [14] on pp. 58–59, 62–64, 88–90).
Combining (2.46) and (2.48), and applying the Ascoli theorem, one derives that

w(l) converges in
(
C1([0,+∞)× [0, 1])

)n
.

It is clear that the limit is a C1-solution of (1.1), (1.5), and (2.29).
We next establish the uniqueness. Assume that w and ŵ are two C1-solutions of (1.1), (1.5), and (2.29). Set

u = ŵ − w in [0,+∞)× [0, 1]. Then

∂tu(t, x) = A(t, x)∂xu(t, x) + f̃(t, x, u(t, x)),
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where

A(t, x) = Σ(x,w(t, x)),

f̃(t, x, u(t, x)) =
(

Σ
(
x,w(t, x) + u(t, x)

)
− Σ

(
x,w(t, x)

))
∂xŵ(t, x)

+f
(
t, x, w(t, x) + u(t, x)

)
− f

(
t, x, w(t, x)

)
.

Moreover,

u−(t, 0) = g(t, u+(t, 0)) := B(w+(t, 0) + u+(t, 0))− B(w+(t, 0)),

u+(t, 0) = h(t, u(t+ ·, ·)) := H(t, w + u,w + u)−H(t, w,w),

and

u(t = 0, ·) = 0.

Note that

|f̃(t, x, u(t, x))| ≤ C|u(t, x)|,

|g(t, u+(t, 0))| ≤ C|u+(t, 0)|,

and

|h(t, u(t+ ·, ·))|
(2.21)

≤ C
(
ε‖u‖C0([0,+∞)×[0,1]) + ‖u(t, ·)‖C0([0,a]) + ‖u(t, ·)‖Lp([0,1])

)
.

Let U ∈
(
C([0,+∞)× [0, 1])

)n
, with U(t, ·) = 0 for t > T , be a solution of the system



∂tU(t, x)−A(t, x)∂xU(t, x) = f̃(t, x, u(t, x)) in [0,+∞)× [0, 1],

U−(t, 0) = g
(
t, U+(t, 0)

)
for t ∈ [0,+∞),

U+(t, 0) = h
(
t, u(t+ ·, ·)

)
for t ∈ [0,+∞),

U(t = 0, ·) = 0 in [0, 1],

and set

Y (t) = max
1≤i≤n

max
(s,x)∈[0,t]×[0,1]

|e−L1s−L2xUi(s, x)|

and

Z(t) = max
1≤i≤n

max
(s,x)∈[0,t]×[0,1]

|e−L1s−L2xui(s, x)|.
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As in the proof of Lemma 3.2 from [4], one can prove that, if L2 is large and L1 is much larger than L2,

Y (t) ≤ C
∫ t

0

(Y (s) + Z(s)) ds+ CεZ(T ).

By multiplying the above inequality with e−Lt, for some large positive constant L, one has

max
t∈[0,T ]

Y (t)e−Lt ≤ 1

2
max
t∈[0,T ]

Z(t)e−Lt.

if ε is sufficiently small. As a consequence, by taking U = u, one has, for ε sufficiently small,

u = 0

and the uniqueness follows. The proof is complete.

Remark 2.4. The proof of Lemma 2.3 is inspired from [4] using the approach for quasilinear hyperbolic
equations in [14], Chapter 1 and [3], Chapter 3.

2.2. Proof of Theorem 1.1

We consider two cases m > k and m ≤ k separately.
Case 1: m > k. Consider the last equation of (1.5). Impose the condition wk(t, 0) = 0. Using (1.10) with i = 1
and the implicit function theorem, one can then write the last equation of (1.5) under the form

wm+k(t, 0) = Mk

(
wk+1(t, 0), . . . , wm+k−1(t, 0)

)
, (2.49)

for some C2 nonlinear map Mk from Uk into R for some neighborhood Uk of 0 ∈ Rm−1 with Mk(0) = 0 provided
that |w+(t, 0)| is sufficiently small.

Consider the last two equations of (1.5) and impose the condition wk(t, 0) = wk−1(t, 0) = 0. Using (1.10) with
i = 2 and the Gaussian elimination approach, one can then write these two equations under the form (2.49) and

wm+k−1(t, 0) = Mk−1

(
wk+1(t, 0), . . . , wm+k−2(t, 0)

)
, (2.50)

for some C2 nonlinear map Mk−1 from Uk−1 into R for some neighborhood Uk−1 of 0 ∈ Rm−2 with Mk−1(0) = 0
provided that |w+(t, 0)| is sufficiently small, etc. Finally, consider the k equations of (1.5) and impose the
condition wk(t, 0) = · · · = w1(t, 0) = 0. Using (1.10) with i = k and the Gaussian elimination approach, one can
then write these k equations under the form (2.49), (2.50), . . . , and

wm+1(t, 0) = M1

(
wk+1(t, 0), . . . , wm(t, 0)

)
, (2.51)

for some C2 nonlinear map M1 from U1 into R for some neighborhood U1 of 0 ∈ Rm−k with M1(0) = 0
provided that |w+(t, 0)| is sufficiently small. These nonlinear maps M1, . . . ,Mk will be used in the construction
of feedbacks.

We next introduce the flows along the characteristic curves. Set

d

dt
xj(t, s, ξ) = λj

(
xj(t, s, ξ), w

(
t, xj(t, s, ξ)

))
and xj(s, s, ξ) = ξ for 1 ≤ j ≤ k,
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and

d

dt
xj(t, s, ξ) = −λj

(
xj(t, s, ξ), w

(
t, xj(t, s, ξ)

))
and xj(s, s, ξ) = ξ for k + 1 ≤ j ≤ k +m.

We do not precise at this stage the domain of the definition of xj . Later, we only consider the flows in the
regions where the solution w is well-defined.

To arrange the compatibility of our controls, we introduce auxiliary variables satisfying autonomous dynamics,
which will be defined later. Set δ = T − Topt > 0. For t ≥ 0, define, for k + 1 ≤ j ≤ k +m,

ζj(0) = w0,j(1), ζ ′j(0) = λj
(
0, w0(1)

)
w′0,j(1), ζj(t) = 0 for t ≥ δ/2, (2.52)

and

ηj(0) = 1, η′j(0) = 0, ηj(t) = 0 for t ≥ δ/2. (2.53)

We will construct the dynamics for ζj and ηj at the end of the proof of Theorem 1.1.
We are ready to construct a feedback law leading to finite-time stabilization in the time T . Let tm+k be such

that

xm+k(t+ tm+k, t, 1) = 0.

It is clear that tm+k depends only on the current state w(t, ·). Let Dm+k = Dm+k(t) ⊂ R2 be the open set whose

boundary is {t}× [0, 1], [t, t+ tm+k]×{0}, and
{

(s, xm+k(s, t, 1)); s ∈ [t, t+ tm+k]
}

. Then Dm+k depends only

on the current state as well. This implies

xk+1(t, t+ tm+k, 0), . . . , xk+m−1(t, t+ tm+k, 0) are well-defined by the current state w(t, ·).

As a consequence, the feedback

wm+k(t, 1) = ζm+k(t)

+(1− ηm+k(t))Mk

(
wk+1

(
t, xk+1(t, t+ tm+k, 0)

)
, . . . , wk+m−1

(
t, xk+m−1(t, t+ tm+k, 0)

))
(2.54)

is well-defined by the current state w(t, ·).
We then consider the system (1.1), (1.5), and the feedback (2.54). Let tm+k−1 be such that

xm+k−1(t+ tm+k−1, t, 1) = 0.

It is clear that tm+k−1 depends only on the current state w(t, ·) and the feedback law (2.54). Let
Dm+k−1 = Dm+k−1(t) ⊂ R2 be the open set whose boundary is {t} × [0, 1], [t, t + tm+k−1] × {0}, and{

(s, xm+k−1(s, t, 1)); s ∈ [t, t+ tm+k−1]
}

. Then Dm+k−1 depends only on the current state. This implies

xk+1(t, t+ tm+k−1, 0), . . . , xk+m−2(t, t+ tm+k−1, 0) are well-defined by the current state w(t, ·).

As a consequence, the feedback

wm+k−1(t, 1) = ζm+k−1(t)
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+(1− ηm+k−1(t))Mk−1

(
wk+1

(
t, xk+1(t, t+ tm+k−1, 0)

)
, . . . , wk+m−2

(
t, xk+m−2(t, t+ tm+k−1, 0)

))
(2.55)

is well-defined by the current state w(t, ·).
We continue this process and finally reach the system (1.1), (1.5), (2.54), . . .

wm+2(t, 1) = ζm+2(t)

+(1− ηm+2(t))M2

(
wk+1

(
t, xk+1(t, t+ tm+2, 0)

)
, . . . , wm+1

(
t, xm+1(t, t+ tm+2, 0)

))
. (2.56)

Let tm+1 be such that

xm+1(t+ tm+1, t, 1) = 0.

It is clear that tm+1 depends only on the current state w(t, ·) and the feedback law (2.54)–(2.56). Let Dm+1 =

Dm+1(t) ⊂ R2 be the open set whose boundary is {t} × [0, 1], [t, t + tm+1] × {0}, and
{

(s, xm+1(s, t, 1)); s ∈

[t, t+ tm+1]
}

. Then Dm+1 depends only on the current state. This implies

xk+1(t, t+ tm+1, 0), . . . , xm(t, t+ tm+1, 0) are well-defined by the current state w(t, ·).

As a consequence, the feedback

wm+1(t, 1) = ζm+1(t)

+(1− ηm+1(t))M1

(
wk+1

(
t, xk+1(t, t+ tm+1, 0)

)
, . . . , wm

(
t, xm(t, t+ tm+1, 0)

))
(2.57)

is well-defined by the current state w(t, ·).
To complete the feedback for the system, we consider, for k + 1 ≤ j ≤ m,

wj(t, 1) = ζj(t), (2.58)

We will establish that the feedback constructed gives the finite-time stabilization in the time T if ε is
sufficiently small. To this end, we first claim that

the system (1.1), (1.5), (2.54)–(2.57) is well-posed if ε is sufficiently small. (2.59)

Indeed, it is clear to see that the feedback is given by

H(t, w(t+ ·), w(t, ·), w0),

where H is given by (2.33)–(2.36). The well-posedness for the feedback law is now a consequence of Lemma 2.3
through the example mentioned and examined right after it.

From (2.31) and (2.32), we have, for t ≥ δ/2,

ζj(t) = 0 for k + 1 ≤ j ≤ k +m.
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It follows that, for t ≥ δ/2, the feedback law (2.54)–(2.57) has the form

wm+k(t, 1) = Mk

(
wk+1

(
t, xk+1(t, t+ tm+k, 0)

)
, . . . , wk+m−1

(
t, xk+m−1(t, t+ tm+k, 0)

))
, (2.60)

wm+k−1(t, 1) = Mk−1

(
wk+1

(
t, xk+1(t, t+ tm+k−1, 0)

)
, . . . , wk+m−2

(
t, xk+m−2(t, t+ tm+k−1, 0)

))
, (2.61)

. . .

wm+1(t, 1) = M1

(
wk+1

(
t, xk+1(t, t+ tm+1, 0)

)
, . . . , wm

(
t, xm(t, t+ tm+1, 0)

))
. (2.62)

Set

t̂ = max{t̂k+1, . . . , t̂k+m},

where t̂j , for k + 1 ≤ j ≤ k +m, is defined by

xj(t̂j + δ/2, δ/2, 1) = 0.

It follows from the characteristic method that

wj(t, ·) = 0 for t ≥ t̂+ δ/2 for k + 1 ≤ j ≤ m,

then for j = m+ 1, then for j = m+ 2, . . . , then for j = m+ k.

Using the characteristic method again, we have, by the choice of Mk,

wk(t, 0) = 0 for t ≥ δ/2 + t̂m+k, (2.63)

by the choice of Mk and Mk−1,

wk−1(t, 0) = 0 for t ≥ δ/2 + t̂m+k−1, (2.64)

. . . , and, by the choice of Mk, Mk−1, . . . , M1,

w1(t, 0) = 0 for t ≥ δ/2 + t̂m+1. (2.65)

Let t̂k, . . . , t̂1 be such that

xk(t̂k + δ/2 + t̂m+k, δ/2 + t̂m+k, 0) = 1, (2.66)

. . .

x1(t̂1 + δ/2 + t̂m+1, δ/2 + t̂m+1, 0) = 1. (2.67)

Using the characteristic method, we derive that

wk(t, ·) = 0 for t ≥ δ/2 + t̂m+k + t̂k, (2.68)
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. . .

w1(t, ·) = 0 for t ≥ δ/2 + t̂m+1 + t̂1. (2.69)

The conclusion follows by noting that

|t̂j − τj | ≤ δ/4 for 1 ≤ j ≤ k +m,

if ε is sufficiently small thanks to (2.19) and (2.30).
Case 2: m ≤ k. We consider the following feedback law

wm+k(t, 1) = ζm+k(t)

+(1− ηm+k(t))Mk

(
wk+1

(
t, xk+1(t, t+ tm+k, 0)

)
, . . . , wk+m−1

(
t, xk+m−1(t, t+ tm+k, 0)

))
,

. . .

wk+2(t, 1) = ζk+2(t) + (1− ηk+2(t))M2

(
wk+1

(
t, xk+1(t, t+ tk+2, 0)

))
,

and

wk+1(t, 1) = ζk+1(t).

The conclusion now follows by the same arguments. The details are omitted.
It remains to construct a dynamics for ζj and ηj . To this end, inspired by [7, 15], we write ζj = ϕj + ψj

where ϕj and ψj satisfy the dynamics

ϕ′j(t) = − αϕj
(ϕ2
j + ψ2

j )1/3
and ψ′j(t) = − βϕj

(ϕ2
j + ψ2

j )1/3
, (2.70)

with Y = (ϕj(0)2 + ψj(0)2)1/3,

ϕj(0) + ψj(0) = a, −αϕj(0)− βψj(0) = bY, (2.71)

where a = w0,j(0) and b = λj(0, w0(1))w′0,j(1). Here α and β are two distinct real numbers. We now show that
under appropriate choice of α and β, ϕj(0) and ψj(0) can be chosen as continuous functions of a and b for
|(a, b)| sufficiently small. Indeed, consider the equation Pa,b(Y ) = 0, where

Pa,b(Y ) := (α− β)2Y 3 −
(

2b2Y 2 + 2ab(α+ β)Y + a2(α2 + β2)
)
. (2.72)

One has, for Y > 0 and Pa,b(Y ) = 0,

Y P ′a,b(Y ) = 2b2Y 2 + 4ab(α+ β)Y + 3(α2 + β2)a2.

In particular,

P ′a,b(Y ) > 0 if α2 + β2 − 4αβ > 0 and if ab 6= 0,

and the equation Pa,b(Y ) = 0 has a unique positive solution in this case. In the case ab = 0 and a2 + b2 > 0,
there is a unique positive solution of Pa,b(Y ) = 0 and in the case a = b = 0, there is a unique solution Y = 0.
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Fix α and β such that α2 + β2 − 4αβ 6= 0 and α 6= β. Denote Ȳ (a, b) the unique positive solution in the case
a2 + b2 > 0 and 0 for (a, b) = (0, 0). It suffices to prove that Ȳ (a, b) is continuous with respect to (a, b) for small
|(a, b)|. Since Pa,b(1) > 0 if |(a, b)| is sufficiently small and Pa,b(0) < 0 if a 6= 0, it follows that Ȳ is bounded in
a neighborhood O of (0, 0). Since Pa,b(Y ) = 0 has a unique non-negative solution for a 6= 0, it follows that Ȳ is
continuous in O \ {(a, b); a = 0}. Since α2 + β2 − 4αβ > 0, one has

3

2
b2Y 2 + 2ab(α+ β)Y + a2(α2 + β2) ≥ 0.

It follows that

Pa,b(Y ) ≤ (α− β)2Y 3 − 1

2
b2Y 2.

This implies the continuity of Ȳ on O ∩ {(a, b); a = 0 and b 6= 0}. The continuity of Ȳ at (0, 0) is a consequence
of the fact P0,0(Y ) = 0 implies Y = 0.

Similarly, one can build the dynamics for ηj . We now have a = 1 and b = 0. we write ηj = ϕ̃j + ψ̃j where ϕ̃j
and ψ̃j satisfy the dynamics

ϕ̃′j(t) = − λ5/3αϕ̃j

(ϕ̃2
j + ψ̃2

j )1/3
and ψ̃′j(t) = − λ5/3βϕ̃j

(ϕ̃2
j + ψ̃2

j )1/3
,

where λ is a large, positive constant defined later. One can check that ϕ̃j(t) = λϕ(λt) and ψ̃j(t) = λψ(λt) where
ϕj and ψj are solutions of (2.70) and

ϕj(0) + ψj(0) = λ−1a, −αϕj(0)− βψj(0) = 0, (2.73)

instead of (2.71). One then can obtain the dynamics for ηj by choosing λ large enough.
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