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Promising potential of high-throughput molecular phenotyping of freshwater fishes for environmental assessment

Keywords: microbiome metabarcoding, untargeted metabolomics, environmental assessment, biomarkers, sentinel species

The recent democratisation of high-throughput molecular phenotyping allows the rapid expansion of promising untargeted multi-dimensional approaches (e.g. epigenomics, transcriptomics, proteomics, metabolomics, as well as microbiome metabarcoding), that now represent innovative perspectives for environmental assessments. Indeed, when developed for ecologically relevant species, these emerging "omics" analyses may present valuable alternatives for the development of novel generations of ecological indicators, that in turn could provide early warnings of eco(toxico)logical impairments. This pilot study investigates the bio-indicative potential of different multi-metric tools based on different high-throughput molecular phenotyping approaches (i.e. metabarcoding of the intestine microbiome, and liver metabolomics by nuclear magnetic resonance (NMR) and liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) on two sentinel fish species (Perca fluviatilis and Lepomis gibbosus) from a set of eight water bodies of the peri-urban area of Paris (France). We show that the LC-MS metabolome dataset allows remarkably clear separation of individuals according to the species but also according to their respective sampling lakes. Interestingly, the similar variations of Perca and Lepomis metabolomes occur locally indicating that local environmental constraints drive the observed metabolome variations beyond their obvious genetic differences. Thus, the development of such reliable molecular phenotyping for environmental monitoring constitutes a promising and innovative bio-indicative tool for environmental assessment.

INTRODUCTION

In the past decades, the use of bio-indicator aquatic organisms has been widely adopted in order to monitor, maintain or improve the quality of water bodies worldwide.

In parallel, the difficulties and the rational limits of direct chemical monitoring for providing sufficient information to adequately assess the risks from anthropogenic chemicals in the environment have been increasingly recognized.

2

Recent years have offered intense implementation of molecular techniques in a wide variety of ecology research fields. Modern bio-monitoring and bio-assessment may greatly benefit from the specific development of high-throughput methods that potentially provide reliable, high quantity and quality standardized biomolecular data in a cost-and time-efficient way.

3-4

Fishes, in particular, present unique features that make them especially relevant for bioindication purposes. They indeed occupy in almost any aquatic habitat, as they are capable of experiencing different and variable environmental conditions.

5

Fishes are also responsive to numerous abiotic (e.g. temperature, water velocity, sediment load, hypoxia) or biotic (e.g. famine, predation, parasitism) pressures, together with anthropogenic stressors such as contaminants, that represent additional constraints that fish may experience in disturbed ecosystems.

6

Environmental stressors are known to induce biological variations, in relation to the specific physiological, developmental and reproductive capabilities of the different fish species allowing them to colonize and occupy ecosystems. Thus, fishes appear to be valuable bio-indicators and their individual or community responses to environmental pressures, therefore, might have a high ecological relevance. In Europe, for example, according to the Water Framework Directive (WFD), local ecological quality can be assessed by comparing the community structure (of fishes, but also of diatoms, sea-grasses, macro-invertebrates, etc.) in impacted sites to those observed in reference sites, using various biological quality indices. 8 However, experts face several important challenges originating from the main limitation of different diversity indexes based on fish guild: they remain especially time-consuming, requires costly sampling procedures, and can even exhibit low responsiveness to field variation.

9-10

One other important drawback of fish diversity-based bio-indicative indexes is that they also present a high sensitivity to species migration, human transplantation or fishing activities, that critically compromise their predictive power.
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On the other hand, fish bio-indication can be also considered through various measurable biological traits (e.g. population structure, genetic or functional diversity, physiological or biological parameters). Some of them have been already implemented, including morphometrical features, 12 punctual biochemical markers, 13 or genetic diversity.

7

However, these attempts have also emphasized their relative limitations in terms of operational predication ability.
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The recent democratisation of high-throughput molecular phenotyping allows the rapid 

MATERIALS AND METHODS

Fish sampling
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These sites were sampled by the Hydrosphère company (www.hydrosphere.fr) with an electric fishing device (FEG 8000, EFKO, Leutkirch, Germany) for capturing fish alive. The investigation of the fish guild indicates that only the perch (Perca fluviatilis) and pumpkinseed sunfish (Lepomis gibbosus) were present in all or almost all these pounds (supplementary table S1) and were thus selected as sentinel species for further molecular phenotyping analyses by metabarcoding and metabolomics.

Briefly, alive caught fishes (n=5-10 young-of-the-year per pounds and per species) were directly measured (12.0±4.8 cm), weighed (9.3±2.6 g), briefly euthanized by neck dislocation and then liver and intestine of each individual was shortly sampled, flash-frozen in liquid nitrogen and kept at -80°C until analyses, in accordance with European animal ethical concerns and regulations.

In every lake, sub-surface chlorophyll-a equivalent concentrations attributed to the four main phytoplankton groups (Chlorophyta, Diatoms, Cyanobacteria and Cryptophyta) were measured with an in-situ fluorometer (Fluoroprobe II, Bbe-Moldenke, Germany). Sub-surface water samples filtered on 20-µm mesh size were also collected for phytoplanktonic community analysis and further metabolomics characterisation, and then kept at -80°C until analysis. 

Intestinal microbiome sequencing and OTU analyses
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The taxonomic assignation of each cluster was performed using the BLAST tools. OTU table was rarefied, normalized by Total Sum Scaling using MicrobiomeAnalyst platform. [START_REF] Chong | Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data[END_REF] 

Liver metabolite extraction and metabolomics analyses

The liver extraction was performed on 132 individuals (comprising 78 Perca and 54 Lepomis) with methanol/chloroform/water (ratio 2/2/1.8 -22 mL.g -1 at 4°C) and the polar fraction was analyzed on a 600-MHz NMR spectrometer equipped with a 5-mm cryoprobe (Advance III HD Bruker, Germany) with a noesygppr1d pulse sequence as previously described. [START_REF] Sotton | Specificity of the metabolic signatures of fish from cyanobacteria rich lakes[END_REF] 1 H-NMR spectra were treated with the Batman R package for deconvolution, peak assignment and quantification of 222 putative metabolites.
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The liver extracted polar phase was additionally injected (2 μL) on C 18 column (Polar Advances II 2.5 pore -Thermo), then eluted at a 300 μL.min -1 flow rate with a linear gradient of acetonitrile in 0.1% formic acid (5 to 90 % in 21 min) with a ultra-high performance liquid chromatography (UHPLC) system (ELUTE, Bruker). Consecutively, the individual metabolite contents were analyzed using an electrospray ionization hybrid quadrupole time-of-flight (ESI-Qq-TOF) high-resolution mass spectrometer (Compact, Bruker) at 2 Hz speed on positive MS mode on the 50-1500 m/z range. The feature peak list was generated from recalibrated MS spectra (< 0.5 ppm for each sample, as an internal calibrant of Na formate was injected at the beginning of each sample analysis) within a 1-15 min window of the LC gradient, with a filtering of 5,000 count of minimal intensity, a minimal occurrence in at least 50% of all samples, and combining all charge states and related isotopic forms using MetaboScape 4.0 software (Bruker).

Additionally, five pools of six different individuals randomly selected for Perca and Lepomis (quality check samples) were similarly eluted then analyzed on positive autoMS/MS mode at 2-4 Hz on the 50-1500 m/z range for further metabolite annotation. Phytoplankton samples of each water pound, concentrated with a 20-µm mesh size, were also extracted with 75% methanol (2 min sonication, 5 min centrifugation at 15,000 g -4°C)

and then similarly was analyzed on LC-HRMS on autoMS/MS positive mode, as earlier described, and the metabolite list was annotated with the same pipelines.

Data matrix treatment

The resulting count table of 87 OTUs (microbiome metabarcoding), and the intensity data tables of the 222 metabolites ( Lepomis), no reliable discrimination could be observed according to the species and lakes (Fig. 1A andD). Although the 222 potential metabolites quantified by NMR on 128 fish ( 78Perca and 54 Lepomis) present no obvious distinction for neither the "species" nor "lakes" variables (Fig. 1B andE), the 1,252 analytes semi-quantified from the liver metabolomes by LC-MS clearly present more discriminant patterns between species and lakes (Fig. 1C andF).

Additional investigations on those datasets were then performed using supervised models. S2F), whereas both the heatmap with hierarchical clustering (Figure 1C) and the individual plot from the un-supervised PCA (Figure 1F) show remarkable grouping of fishes from the same species collected in the same lakes. This surprising lack of performance of the PLS-DA performed with grouped LC-MS data from the two fish species, Perca and Lepomis, is very likely due to species variation among the different lakes. Indeed, this hypothesis is further explored by investigating separately the Perca and Lepomis locality differences on their respective intestinal microbiomes and liver metabolomes.

Comparison of Perca and Lepomis molecular signature variation among lakes

Considering separately the 16S rDNA metabarcoding datasets of the two fish species, the intestine microbiome of Perca and Lepomis shows only faint specificity within the different sampling lake groups, as investigated by both un-supervised and supervised multivariate analyses and hierarchical classification (Supplementary figure S3). Indeed, the different performance scoring retrieved for PLS-DA remains distinctly low, and does not support an important structuration of the data according to the "lake" variable, whatever the species considered. However, in the present case, the limited sample number per sampling lake (n=4-5) could constitute a significant limitation to the informativeness of the intestinal microbiome for local discrimination (supplementary figure S3).

The intestinal microbiome constitutes a remarkable interface between the organism and the surrounding environment that is involved in various fish biological processes including digestion, immunity or ecotoxicology.
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The analysis of its microbial composition, in terms of genotype occurrence, density and taxonomy represent remarkable biological traits for the fish host that aim at characterizing the functionality and the ecology of this specific intestinal microbial ecosystem.

Although the intestinal microbiome is the object of numerous investigations in microbial ecology and related host disease/health studies, In contrast, the LC-MS dataset of the two fish species considered separately clearly shows reliable discrimination of the metabolomes of fishes originating from the different sampling lakes (Figure 2; supplementary figure S5; supplementary figure S6). As illustrated with the un-supervised PCA and heatmap with hierarchical classification (Figure 2), the liver metabolomes analyzed by LC-MS present distinct local signatures that support reliable discriminant analysis models for both Perca and Leptomis, with significant performance scoring of the PLS-DA (R 2 Perca = 0.46 and Q 2 Perca = 0.35; R 2 Lepomis = 0.50 and Q 2 Lepomis = 0.38) (supplementary figure S5; supplementary figure S6). Taken together, these observations indicate that the locality seems to globally influence the LC-MS metabolome composition for both species.

However, as previously observed when comparing LC-MS datasets of both fish species together, the Perca and Lepomis liver metabolomes of the Fontenay-sur-Loing lake (Fon) exhibited a quite species-specific trajectory, with regards to the relative composition of their metabolomes (Figure 2A and2D). This suggests that, although the specific "lake" signature of the metabolome appears in good agreement between the two species for most localities, in some environments, local specificities are variable from one species to the other one, as represented here for the local species-specificity of the Perca and Lepomis metabolomes in Fon lake.

Interestingly, the hierarchical classifications performed respectively on the Perca and Lepomis LC-MS metabolome datasets show very similar lake relationships, grouping together the fish from the lakes of Cer and Mau, from Cha, Fon and Rue, and from Tri, Var and Ver (for Perca) or Tri and Ver for Lepomis, as this latter fish species was not retrieved in Var (Figure 2B and2E). Then, we re-explored the fish metabolome discrimination considering together fish from the "Cer/Mau", "Cha/Fon/Rue" and "Tri/Var/Ver" (or "Tri/Ver" for Lepomis) groups, by PCA (supplementary figure S7), and PLS-DA (Figure 2C discriminant analysis predictive error (Class. error Perca = 0.04; Class. error Lepomis = 0.10) for these three groups than when considering the different lakes separately. Remarkably, the observation of the metabolite semi-quantification of the best VIP presents largely similar variations among these three groups of lakes for Perca and Lepomis (Table 1; supplementary figure S8).

In addition, the LC-MS metabolite annotation, supported by molecular networking analysis (supplementary figure S9; table 1), shows that fish collected from the Cer/Mar lake group seem to present greater energetic and anti-oxidant/detoxification reserves (e.g. adenosine and oxidized glutathione) than in other lake groups. In addition, the molecular networking annotation process highlights that most, if not all, of the known metabolites (presenting structural identity or analogy hits) are shared between the two species (e.g. saccharides, nucleic acids, carnitines, glutathiones, lipids) when most of the species-specific cluster metabolites remains uncharacterized, as corresponding molecules present no match within public chemical databases (supplementary figure S9).
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This representation remarkably illustrates the portion of the specific liver molecular metabolism that remains to be characterized for these two species. 

In
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We assume that a single LC-MS fingerprint analysis does not embed the whole metabolite picture of the biological compartment (the fish liver, in the present case), especially because of its selectivity performances.
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However, it provides a specific and precise measurement of a large number of components that can endorse high-throughput and in-depth phenotyping.

For an emerging and powerful, but still underused, approach for increasing our understanding of in situ biological, physiological, ecological or ecotoxicological processes. 50-52 Our analysis constitutes one of the first attempts to push forward the potential of highthroughput molecular phenotyping, and especially through LC-MS-based metabolomics, for environmental assessment. Indeed, this organismal molecular phenotyping supported by multi-variable chemometric investigation offers remarkably rich biological information that serves at describing specific phenotypic plasticity. Moreover, this organismal variability/responsiveness can further be confronted to local environmental factors in order to search for correlation/causality relationships (supplementary figure S12). This effort pushes a step further into the objective environmental omics-assisted assessment relying on field data modelling using artificial intelligence decision-supporting tools. 17

As described by Pompfret and co-workers, 53 environmental metabolomics exhibits very promising perspectives for operational bio-monitoring applications, because of its reliability, its reproducibility, and its high predictive potential. However, these authors also point out that the responsiveness and robustness of the bio-indicative object, that is characterized through the analytical prism of the metabolomics, remains crucial and has to be carefully evaluated and tested with an appropriate experimental design. List and numbers of collected fishes (Supplementary 
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Field sampling campaigns were

  performed during late summer 2015 (7-10 th September) in eight peri-urban pounds around the Paris' area (Île-de-France region, France), chosen for their respective eutrophication levels and the presence or the absence of recurrent cyanobacterial blooms: Cergy-Pontoise (Cer), Champs-sur-Marne (Cha), Maurepas (Mau), Rueil (Rue), Verneuil (Ver), Varennes-sur-Seine (Var), Fontenay-sur-Loing (Fon), and Triel (Tri) pounds (Supplementary figureS1).

1 H

 1 NMR) and 1252 analytes (LC-MS) were further treated for quantile normalization and Pareto's scaling, data representation by PCA and heatmap with hierarchical clustering and then analyzed to investigate the influences of "Species" (Perca or Lepomis) "Lakes" (Che, Cha, Fon, Mau, Rue, Tri, Var or Ver) parameters on the datasets by partial least square -differential analysis (PLS-DA) using the MixOmics R Package,

3. RESULTS AND DISCUSSION 3 . 1 .Figure 1

 311 Figure 1 illustrates the global relative distribution of OTUs, metabolites observed by NMR and by LC-MS for each fish (comprising both Perca and Lepomis) on a heatmap with hierarchical classifications and individual plot principal component analyses (PCA). Based on the relative distribution of the 87 identified OTUs within fish individuals (44 Perca and 34

  and 2F). For both Perca and Lepomis the metabolomes present an even better discrimination scoring (Perca:

3. 3 .

 3 Use of LC-MS metabolomics fingerprint for environmental assessment? Although the value of LC-MS metabolomics for investigating the impacts of environmental stressors or contaminants, and their respective modes of action, has been well-explored in medical sciences 41 or in ecotoxicology laboratory-based studies on aquatic models, 42-45 such methods have been used only faintly in field research so far. 46-47 Apart from a limited number of evidence on the utility of NMR-based metabolomics in environmental fish studies, 17;48-49 few other examples indicate that field-based LC-MS metabolomics constitute
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  On the other hand, freshwater fishes are already considered as good indicators of the ecological status of aquatic ecosystems, as various fish biodiversity indexes have already been proposed and are still under-evaluation at local or large scales. 8 However, for ethical concerns, fish bio-monitoring would also gain at being less invasive and deleterious for the organisms. To this end, non-lethal mucus sampling has been investigated by LC-MS and has demonstrated the remarkable informativeness of this approach for environmental studies.51In parallel, recent attempts have also been made concerning the interest of planktonic or benthic microbial communities characterized by metabarcoding for water quality bio-indication, 16 but these efforts still remain explorative.The main challenge we face remains the development of more integrative approaches connecting chemical, biological and ecological evaluations, in the context of anthropized natural environments experiencing multi-stressor pressures. A major caveat of the use of fish environmental metabolomics may now be the lack of dedicated databases 54 fulfilled by studies considering together different species, populations, development stages, seasons and environments. This pre-requisite knowledge could be used to provide baseline reference data that would support machine learning or artificial neural network tools for the training of decision-making models. ASSOCIATED CONTENT Supporting information Map of sampled lakes (Supplementary figure S1); individual plots of PLS-DA performed with intestine metabarcoding of 16S rDNA (A and D), Liver NMR (B and E) and LC-MS (C and F) metabolomics datasets for Perca and Lepomis, discriminated according to the "species" (A-C) and "sampling lakes" (D-F) parameters (Supplementary figure S2); individual plots of PCA, heatmap with hierarchical clustering and PLS-DA testing the difference among the different lakes according to the intestinal microbiomes of Perca (A-C) and Lepomis (D-F) presenting insufficient accuracy, predictability and quality performances for sampling lake discrimination (Supplementary figure S3); individual plots of PCA, heatmap with hierarchical clustering and PLS-DA testing the differences among lakes according to the liver NMN metabolomes of Perca (A-C) and Lepomis (D-F) presenting insufficient accuracy, predictability and quality performances for sampling lake discrimination (Supplementary figure S4); individual plots of PLS-DA, testing the differences among lakes according to the LC-MS metabolomes of Perca, with corresponding best VIP list and metabolite box-plots (Supplementary figure S5); individual plots of PLS-DA, testing the differences among lakes according to the LC-MS metabolomes of Lepomis, with corresponding best VIP list and metabolite box-plots (Supplementary figure S6); Individual plots of PCA for LC-MS metabolomics of Perca (A) and Lepomis (B) representing the different lake groups highlighted by hierachical classication as shown on Fig. 2 (Supplementary figure S7); box-plots of top-16 best VIP metabolites according to PLS-DA performed on the lake groups indicated by hierarchical classification, as shown on Figure 2, for Perca (A) and Lepomis (B) (Supplementary figure S8); molecular networking of Perca and Lepomis metabolomes characterized by GNPS and t-SNE algorithms (Supplementary figure S9); Integration of the NMR and LC-MS metabolomics of Perca using MixOmics illustrates the comparable PLS-DA patterns of the datasets (ab) and the global correlation of respective VIPs (correlation score = 0.79; c) (Supplementary figure S10); Integration of the NMR and LC-MS metabolomics of Lepomis using MixOmics illustrates the comparable PLS-DA patterns of the datasets (a-b) and the global correlation of respective VIPs (correlation score = 0.83; c) (Supplementary figure S11); phytoplankton composition estimated by BBE measurment of the eight lake sub-surface water (a), corresponding cyanobacteria relative composition for Fon, Tri, Var and Ver (B), and molecular networking of metabolites extracted from the filtered biomass of the respective water of the eight lakes generated with t-SNE algorithm, with cyanobacteria peptide clusters indicated in bold and microcystin cluster indicated in red (C) (Supplementary figure S12) (PDF)
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 121 Fig. 1. Visualization of the dataset structuration for intestine metabarcoding 16S rDNA (A), liver NMR (B) and LC-MS (C) metabolomics on heatmaps with hierarchical clustering according to Euclidean distance for Perca and Lepomis fishes collected during the 7-10 th of

Fig. 2 .

 2 Fig. 2. PCA (A and D), heatmap with hierarchical classification (B and E) and PLS-DA (C and F) of LC-MS metabolome of Perca (A-C) and Lepomis (D-F) liver according to the "sampling lake" parameter.
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 1 Fig. 1.

table S1

 S1 ) and from Sorbone Université (CARESE-SU J15R323). The NMR and the MS spectra were respectively acquired at the Plateau technique de Résonance Magnétique Nucleaire and the Plateau technique de spectrométrie de masse bio-organique, Muséum National d'Histoire Naturelle, Paris, France. This work benefitted from the French GDR "Aquatic Ecotoxicology" framework which aims at fostering stimulating scientific discussions and collaborations for more integrative approaches. Shin, Y. J.; Houle, J. E.; Akoglu, E.; Blanchard, J. L.; Bundy, A.; Coll, M.; ...; Salihoglu, B.The specificity of marine ecological indicators to fishing in the face of environmental change: a multi-model evaluation. Ecological Indicators 2018, 89, 317-326.

	502-511.
	(9) Birk, S.; Bonne, W.; Borja, A.; Brucet, S.; Courrat, A.; Poikane, S.; ... & Hering, D. Three
	hundred ways to assess Europe's surface waters: an almost complete overview of
	biological methods to implement the Water Framework Directive. Ecological
	Indicators 2012, 18, 31-41.
	(10) Birk, S.; Willby, N. J.; Kelly, M. G., Bonne, W., Borja, A., Poikane, S., & Van de Bund, W.
	Intercalibrating classifications of ecological status: Europe's quest for common
	management objectives for aquatic ecosystems. Science of the Total Environment
	2013, 454, 490-499.
	(11)
	); list of significant VIP discriminating
	the intestinal microbiomes (Supplementary table S2), the liver NMR metabolomes (Supplementary

table S3) and the liver LC-MS metabolomes (Supplementary table S4) of Perca and Lepomis species determined by PLS-DA; list of significant VIP (>1.5) discriminating the liver LC-MS metabolomes of Perca and Lepomis from the different lakes determined by PLS-DA (Supplementary table S5) (XLS) project
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 1 Annotated VIP (score >2) of respective Perca and Lepomis LC-MS metabolomics dataset according to PLD-DA performed on lake, and corresponding variation among the here lake groups highlighted by hierarchical classification (according to Figure2B and 2E).
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