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Multispectral imaging detects 
gastritis consistently in mouse 
model and in humans
Thomas Bazin1*, Sergio Ernesto Martinez‑Herrera2,3, Aude Jobart‑Malfait3, 
Yannick Benezeth4, Matthieu Boffety2, Catherine Julié5, Jean‑François Emile5, 
Valérie Michel6, François Goudail2, Eliette Touati6, Franck Marzani4 & Dominique Lamarque1

Gastritis constitutes the initial step of the gastric carcinogenesis process. Gastritis diagnosis is 
based on histological examination of biopsies. Non-invasive real-time methods to detect mucosal 
inflammation are needed. Tissue optical properties modify reemitted light, i.e. the proportion of 
light that is emitted by a tissue after stimulation by a light flux. Analysis of light reemitted by gastric 
tissue could predict the inflammatory state. The aim of our study was to investigate a potential 
association between reemitted light and gastric tissue inflammation. We used two models and three 
multispectral analysis methods available on the marketplace. We used a mouse model of Helicobacter 
pylori infection and included patients undergoing gastric endoscopy. In mice, the reemitted light 
was measured using a spectrometer and a multispectral camera. We also exposed patient’s gastric 
mucosa to specific wavelengths and analyzed reemitted light. In both mouse model and humans, 
modifications of reemitted light were observed around 560 nm, 600 nm and 640 nm, associated 
with the presence of gastritis lesions. These results pave the way for the development of improved 
endoscopes in order to detect real-time gastritis without the need of biopsies. This would allow a 
better prevention of gastric cancer alongside with cost efficient endoscopies.

Chronic gastritis is the consequence of Helicobacter pylori infection and represents the main risk factor of gastric 
cancer1. Nowadays, inflammatory and preneoplastic lesions are underdiagnosed during gastric endoscopy under 
white light. There are usually no macroscopically observable differences between normal mucosa and pathologi-
cal tissues at the stage of inflammatory and preneoplastic lesions, using classical white-light endoscopy and even 
using high-definition endoscopes2–5. To our knowledge, there is no technology capable of exploring large areas 
of gastric tissue during an endoscopic examination to detect gastritis. Confocal endomicroscopy and optical 
coherence tomography allow real-time analysis of tissue structure on specific lesions, but do not allow scanning 
of large mucous surfaces at the scale of an entire digestive organ. The diagnosis of gastritis is performed from the 
histological analysis of biopsies, randomly collected from gastric tissue during endoscopy. However, the collec-
tion of random biopsies increases the examination time and requires extra resources6. Therefore, identification 
of gastritis by an optical device could motivate the collection of biopsy samples by the endoscopist. Conversely, 
the collection of biopsies could be avoided in the absence of detectable inflammation.

The chemical structure and the architecture of pathological tissues induces modifications of light absorption 
and reflection7. As a result, abnormal tissues may reflect light with a different spectrum than normal mucosa. 
The reflectance corresponds to the ratio between the emitted and reflected light from the tissue. Multispectral 
imaging is capable of acquiring images on different wavelengths of the light spectrum and measuring reflectance. 
It has already been used in medical applications, mainly for the identification of skin lesions8,9. Therefore, a 
minimally invasive diagnosis based on multispectral imaging could highlight histological differences in gas-
tric tissue to facilitate the detection of patients with gastritis. This would optimize the detection of gastritis in 
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patients, particularly those exhibiting inflammatory lesions with higher severity, leading to a better prevention 
of gastric cancer.

Using the mouse model of H. pylori infection to generate inflammatory gastric lesions and, in parallel, endos-
copy examination in patients, the aim of our study was to determine the variation in reflectance of gastric tissue 
and its relationships with inflammatory lesions at different stages of gastritis.

Methods
Mouse model.  Bacterial strains and growth conditions.  The H. pylori strain SS1, able to colonize the mouse 
gastric mucosa for long periods10,  was used in this study. Bacteria were grown on blood agar base 2 (Oxoid 
Lyon, France) plates supplemented with 10% defibrinated horse blood (bioMérieux, Marcy L’Etoile, France) and 
an antibiotic-antifungal mixture. The plates were incubated at 37 °C for 24–48 h under microaerobic conditions 
(7% O2, 10% CO2; Anoxomat system).

Mouse infection.  Mouse experiments were carried out in strict accordance with European recommendations. 
The protocol has been approved by the Committee of Central Animal Facility Board, the Ethic committee on 
animal experimentation of the Institut Pasteur (Ref 2013-0051) and the French Ministry of Higher Education 
and Research (Ref 00317.02).

Five-weeks old NMRI female mice (Charles River Laboratories; France) were housed in polycarbonate cages 
and acclimatized for 1 week before starting the experiments. In total 24 mice were included in the present study: 
12 H. pylori SS1-infected mice, which were orogastrically inoculated with 150 µl of a suspension of bacteria (108 
colony forming unit (CFU)/ml) and 12 non-infected mice which received 150 µl of peptone broth. After 1, 3, 7 
and 12 months, 3 infected and 3 non-infected mice were sacrificed, their stomach isolated and fragments contain-
ing antrum and fundus parts were used for histology and reflectance spectra analysis of the gastric inflammatory 
lesions. In addition, H. pylori gastric colonization was quantified as previously described11.

Histological analysis.  Stomach samples from non-infected and infected mice were fixed in RCL2 (Alphelys, 
France) and embedded in low-melting-point paraffin wax (Poly Ethylene Glycol Distearate; Sigma, USA). Four 
µm-thick sections were stained by hematoxylin and eosin treatment (H&E) and examined blindly for neu-
trophil infiltration and mononuclear cell infiltration, which were semi-quantitatively evaluated as previously 
described12,13, based on a scoring system with four severity grades (0 = none, 1: mild, 2: moderate, 3: severe) 
according to the Updated Sydney System14.

Tissue reflectance.  The reflectance of the mucosa was measured using two different methods: (a) a spectrometer 
Konica Minolta CM-2600d, which has an integrated source of light and retrieves the reflectance of the measured 
surface (6 mm diameter disk) from 400 to 740 nm, at 10 nm increments (Fig. 3A); (b) a multispectral camera 
Flux Data FD1665, retrieving 7 monoband images from 480 to 810 nm (width from 30 to 100 nm), from which 6 
are in the visible spectrum and 1 in the near infrared. This camera has 3 independent sensors for the acquisition. 
The acquisition surface was also 6 mm disks. Acquisitions were performed using a dedicated software from the 
University of Bourgogne. The light source was a Xenon lamp. In order to reduce the specularity, an angle of 45° 
was configured between the light source and the multispectral camera. In addition, two linear polarizers were 
included, one for the light source and the other for the multispectral camera configured in cross polarization. A 
white calibration was performed before each set of acquisition.

Human.  Subjects.  We included patients referred to the endoscopic unit of Ambroise Paré hospital, Bou-
logne-Billancourt, France. Patients were eligible if they had been scheduled for gastroendoscopy under general 
anesthesia and had given their written informed consent, as approved by the Comité de Protection des Person-
nes Sud-Est III ethics committee on June 2019 (registration number: 19.06.21.76520). The study was conducted 
according to the World Medical Association Declaration of Helsinki. Patients with chronic gastritis (n = 8) were 
enrolled from the cohort GASTRIMED (ClinicalTrials.gov identifier: NCT02325323) funded by the French Gas-
troenterology Society (SNFGE), including adults which had a gastroscopy in the last 6 months with antral and 
gastric body biopsies. The aim of this cohort is to study the association between changes in the gastric mucosa in 
chronic gastritis and the onset of cancer.

Procedure.  Multispectral acquisition.  During gastroendoscopic examination, the endoscope was focused on 
the antrum. Then we used the multispectral acquisition system as described in15. A xenon lamp was used as 
the light source, since it provides constant stable illumination, which can be easily filtered in order to provide 
illumination at different wavelengths. In order to acquire multispectral images, the light was filtered by a rotat-
ing filter wheel. Thanks to the sequential rotation of filters, the tissue was illuminated with a specific wavelength 
for a short period of time. The filter wheel contained 5 filters centered at 440 nm, 520 nm, 560 nm, 600 nm and 
640 nm, with a full width at half maximum of 80 nm. The acquisition time for one full rotation of the filter wheel 
was slightly more than one second. At the same time, images were collected by the native camera from the gas-
troendoscope (Olympus Exera II) with the magnification option disabled.

This device allowed us to capture a multispectral image from the antrum after being illuminated sequentially 
with 5 different wavelengths. The time allocated for the collection of multispectral images was 30 s, which was 
enough to perform multiple acquisitions.
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Biopsy collection.  After multispectral acquisition we switched to the normal white light examination mode in 
order to perform systematic biopsy collection from the antrum and the corpus, according to standard protocol. 
These biopsies were placed in 10% formalin and embedded in paraffin. Transversal gastric tissue section samples 
were stained by H&E for routine histological analysis. In addition, polymerase chain reaction (PCR) and immu-
nochemistry using PFLEX Polyclonal Rabbit antibody (Dako) were performed to detect H. pylori infection. 
Biopsies were scored for the severity of inflammatory lesions according to the Updated Sydney System14. The 
histopathological diagnosis was performed by a senior pathologist (CJ).

Image and spectral treatment.  Each gastroendoscopic video, acquired during endoscopy procedure, was 
divided in sequences of multispectral images. Each multispectral image contained 5 images (640 × 480 pixels, 8 
bits), one for each wavelength used for illumination.

The gastric wall could perform some movements during the acquisition. In order to correct these micro-
movements of the tissue, we used multispectral images where the images at each wavelength were sharp and 
showed low movements between them. Next, the registered multispectral images were thresholded in order to 
remove specular areas. In addition, the user manually selected areas of tissue from the image which were cor-
rectly exposed in order to remove artifacts such as bubbles of gastric juice, borders of folds of gastric tissue and 
the pylorus sphincter. Then, spectra were standardized by mathematical normalization to avoid the influence of 
the distance and angle between the tissue and the gastroendoscope.

Statistical analysis.  The spectra from the multispectral images were randomly sampled from the observed 
areas of gastric tissue. The sample consists of 20 areas of the image of size 5 × 5 pixels from each multispectral 
image, which were averaged in order to retrieve a representative spectrum for each multispectral image. This 
procedure was repeated 10 times for each multispectral image.

After separation into two clinical groups (normal vs gastritis) based on histology analysis, we computed 
a reference spectrum for the normalized data of the control group, as the median response at each captured 
wavelength. Then, each patient from the gastritis group was compared to the control group in order to measure 
the percentage of variation.

In order to compare the differences between the spectra from the two groups, Wilcoxon-Mann–Whitney test 
was performed with Bonferroni correction (posthoc) on the normalized spectra; p values < 0.05 were considered 
statistically significant.

Raw data are available on request.

Ethical approval.  This study was approved by the Comité de Protection des Personnes Sud-Est III ethics 
committee in June 2019 (registration number: 19.06.21.76520). A written informed consent was obtained from 
all the patients involved in the study.

Results
Mouse.  Histological analysis.  The gastric mucosa of all infected mice was efficiently colonized by the H. py-
lori strain SS1 at each time-point. Mean of CFU per gram of gastric tissue ± SD was 2 ± 3, 0.8 ± 1.5, 0.2 ± 0.5, 0.2 ± 
20 at month (M)1, M3, M7 and M12, respectively. No H. pylori colonization was observed in the control groups. 
Histological modifications were similar to those observed in previously published work16. After 1 month of in-
fection (M1), gastric histological analysis showed low mononuclear cell infiltration without any polynuclear cell 
infiltrate [total score 0.5 ± 0.1 (mean ± SD)]. At M3 a dense polynuclear infiltrate was observed, corresponding 
to a mild inflammation (total score 4.5 ± 0.5). At M7 and M12 the infiltrate was only mononuclear, correspond-
ing to a moderate (total score 3.2 ± 0.3) and mild (total score 2.1 ± 0.3) chronic inflammation at M7 and M12, 
respectively (Figs. 1b, 2). No histological inflammation was found in the control groups (Fig. 1a). Histological 
images at M12 can be found online as Supplementary Figures S1–S6 for infected mice at M12, and Supplemen-
tary Figure S7 for non-infected mice at M12.

Spectrometer.  The acquisition spectra of the infected stomachs at each time-points, normalized to the corre-
sponding control stomachs are presented in Fig. 3B. Of note, reflectance variations were not significant in con-
trols. We identified 3 bands of wavelengths which were significantly modified between the two groups at more 
than one time-point. These bands correspond to 430–450 nm, 470–590 nm and 620–660 nm. In the infected 
groups, the reflectance band between 430 and 450 nm was significantly reduced at M1 and M3. The reflectance 
band between 470 and 590 nm was significantly reduced at M3 and M7 and increased at M12. In addition, the 
reflectance band between 620 and 660 nm was significantly increased at M1 and reduced at M3. Of note, spec-
trum intensity was significantly reduced at all wavelengths at M3.

Multispectral camera.  Results are presented in Fig. 4. Again, reflectance variations were not significant in con-
trols. The reflectance band between 420 and 460 nm was reduced at M7 and M12. The reflectance band between 
510 and 540 nm was reduced at M7. The reflectance band between 540 and 590 nm was reduced at M7. The 
reflectance band between 590 and 620 nm was increased at M1. The reflectance band between 620 and 720 nm 
was increased at M1 and reduced at M7. The reflectance band between 720 and 810 nm was reduced at M7.

Whatever the reflectance acquisition method used, no correlation was found between the level of H. pylori 
gastric colonization, the score grading of the inflammatory lesions and the intensity of the spectra observed.
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Human.  Clinical and pathological characteristics of patients.  The present study was performed over a period 
of one year between July 2019 and February 2020. A written informed consent was obtained from all the patients 
involved in the study. We collected a total of 62 gastroendoscopic videos from 62 patients included in GASTRI-
MED cohort. We only kept 25 videos which did not show any evidence of visible lesions under white light, in 
order to avoid re-emitted light modification due to macroscopic abnormalities such as gastric atrophy or ulcers. 
The patients were grouped according to one of the two clinical conditions based on histological results: control 
group or gastritis. The control group presented only rare mononuclear cells in the mucosa (Sydney score = 0) 
and no H. pylori infection. On the other hand, the pathological group were positive for H. pylori infection, as 
assessed by immunohistochemistry or by specific PCR, and inflammatory infiltrate including mononuclear and 

Figure 1.   Gastric histology at 12 months in non-infected control (n = 12, a) and H. pylori infected mice (n = 12, 
b). Mononuclear cell infiltration and aggregates (arrow) are easily visible in the infected mucosa (scale bar 
100 µm) (Photo L. Fiette, Institut Pasteur).

Figure 2.   Evolution of mouse gastric mucosa inflammation after H. pylori infection. Values are means of 
histological score ± SD.
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polynuclear cells [Sydney score = 1.1 ± 1.0 (mean ± SD)]. In Table 1 are presented the clinical features of the two 
groups. There were no significant differences in gender or age between the groups.

Multispectral analysis.  The mean number of images studied was 4.6 (± 1.1) in gastritis group and 5.3 (± 0.9) in 
control group (mean ± SEM, NS). The mean pixel number analyzed was 23,125 (± 5664) in the gastritis group 

Figure 3.   (A) Spectrometer setup and principle. The light reflected from the tissue is decomposed and 
measured all along the visual light spectrum. (B) Reflectance variations, normalized by the control group, 
measured using the spectrometer, at each time point (10 nm increment).
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and 26,470 (± 4613) in the control group (mean ± SEM, NS) (see Method section, Image and spectral treatment 
sub-section for the description of image pre-processing).

The spectra analysis in Fig. 5 showed that the intensity of wavelengths at 560 nm, 600 nm and 640 nm was 
statistically different for active gastritis patients, compared to the normal group.

The wavelength of 560 nm showed a significant decrement of the reflected light with respect to the reference 
of the control group. On the other hand, we observed a significant increment of the reflected light at the wave-
lengths of 600 nm and 640 nm in the gastritis group.

No correlation was found between reflectance variation and Sydney scores.
The multispectral images were observed by senior endoscopists (DL and TB). As it was stated in the protocol, 

we were not able to observe differences between images under white light from control or gastritis patients, as 
illustrated in Fig. 6a,b. Consequently, the differences observed were only due to illumination with specific wave-
lengths. The band at 560 nm enhanced the contrast and highlighted areas with a wavy appearance in patients with 
active inflammation compared to controls as shown in Fig. 6c,d. This showed evidence of texture modification 
which was not visible under white light. In contrast, the images from subjects in the control group showed a 
smooth uniform mucosal surface.

Discussion
To our knowledge, the present study is the first that analyzes in parallel the reflected light properties of gastric 
tissue inflammation related to H. pylori infection in the mouse model, and multispectral in vivo images of the 
stomach in humans.

In mouse, the variations in reflectance differ according to the timepoints: the values ​​generally tend to increase 
at M1 (and at M12 for the spectrometer), and to decrease at other timepoints. We do not have data to precisely 
explain these variations, but the differences in histological sub-scores could be an explanation. For example, 
neutrophil infiltration could explain the increase in reflectance at M3. Similarly, at 12 months, the large aggregates 
of inflammatory cells observed could explain the change in reflectance.

Our data from the spectrometer and multispectral camera show statistically significant changes in reflectance 
at different stages of the inflammatory lesions induced by H. pylori in the gastric mucosa of mice infected from 1 
to 12 months. Importantly, the sensitivity of reflectance analysis is such that it can measure reflectance variations 
even only 1 month after H. pylori infection, where no inflammatory lesions are identified by histological analysis 
(Sydney score less than one). Tissue inflammation is not limited to cellular infiltrate. Other phenomena such as 

Figure 4.   Reflectance variations obtained using the multispectral camera and normalized on the non-infected 
control group, for each monoband image and at each time-point of H. pylori infection.

Table 1.   Patients characteristics.

N Age (±SEM) Gender ratio (H:F)

Gastritis group 8 54.9 (± 5.8) 3:1

Control group 17 59.6 (± 2.6) 0.7:1
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hemoglobin saturation, water concentration levels and cytoskeleton rearrangements are involved in inflamma-
tory process and can play a role in reflectance modifications17.

In mice, whatever the method of light analysis used, we observed that the reflectance between 620 and 
660 nm was statistically different after 1 and 3 months of infection. The changes at these wavelengths could be 
explained by differences in blood oxygenation, as oxyhemoglobin reflectance is higher between 600 and 700 nm 
in comparison with deoxy-hemoglobin18. At 12 months, the reflectance between 450 and 590 nm was significantly 
different between the infected and non-infected groups; these modifications could be related to size changes of 
the scatters and again the oxygen saturation of the tissue19.

The resulting tendency between the two methods in mice is identical (the variations go in the same direction), 
except at M12, where the spectrometer values are globally higher than in the control group, and the multispectral 
camera values are globally lower. This could be related to the uneven spatial distribution of lymphocyte aggregates 
which is only observable at M12. As reflectance measurements are based on 6 mm disks, they could simply miss 
lymphocytes aggregates.

Spectrometer is the gold standard of light intensity measurement, with small increments and high sensitivity. 
The spectral resolution of the multispectral camera is significantly lower than that of the spectrometer. But cam-
era spatial resolution is higher, and its wide range of acquisition allows the analysis of near infrared wavebands, 
unlike the spectrometer we used. Aiming to extrapolate our results to endoscopic methods for surveillance of 
large surfaces of tissues, results from the multispectral camera are of peculiar interest, especially since they are 
coherent with those of the spectrometer. Of note, multispectral camera results in mice did not show any statistical 
significance at M3 despite high differences, probably due to high variability.

In humans, changes in light based on tissue properties have been shown to be useful for diagnosis in human 
health7,20. New technology, such as narrow band imaging (NBI, Olympus), takes advantage of the tissue response 
at different wavelengths. It provides qualitative images that show clues of the sub-epithelial capillary network, by 
measuring the peaks of absorption of hemoglobin. However, the inflammatory cell infiltration cannot be detected 
as there is no significant change in the endoscopic appearance during the gastritis condition. In contrast with 
these systems, the optical device that we used during patients endoscopies analyzed more wavelengths and could 
be used for diagnosis by identifying inflammation-related quantitative changes in the tissue.

In humans, we observed that reflectance wavelengths at 560 nm, 600 nm and 640 nm are different in gastritis 
patients. Areas with a wavy appearance were highlighted at 560 nm; this wavelength is related to the absorption 
peak of hemoglobin and correlated to micro vessels density21,22. The reflectance changes observed at 600 nm 
and 640 nm could be linked with variation of cytoskeleton components, as collagen networks involved in tissue 
repair may also change the reflectance above 600 nm23–26. It should be noted that we observed a similar decrease 
of reflectance at 560 nm between infected mice at M7 and patients with gastritis. This observation suggests 
that similar events occurring both in mice and humans could account for the observed spectra. However, the 
identification of the physiological and biochemical origin of the mechanisms which, during inflammation, are 
responsible for the variation in reflectance need to be further investigated.

Figure 5.   Ratio of variation in the spectrum from patients with active inflammation compared with the 
reference spectrum from the control group. P values were obtained using Wilcoxon–Mann–Whitney test.
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Interestingly, our method does not require any external marker, unlike other techniques using a marker that 
is injected or applied locally27. The safety and accessibility of this method are therefore guaranteed.

In this exploratory study, using multispectral imaging, we have robustly shown in the mouse model and in 
humans that gastritis mucosa exhibits modifications of reemitted light around 560 nm, 600 nm and 640 nm. 
These promising results pave the way for the development of improved endoscopes with tailored virtual chro-
moendoscopic properties to detect gastritis. These three wavelengths could thus be used as biomarkers of gastritis 
and allow real-time optical biopsy obtention, leading to a better prevention of gastric cancer with cost efficient 
endoscopies.

Received: 18 April 2020; Accepted: 2 November 2020
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