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Abstract. We present tuCLEVER, a theorem prover for the strongest
conditional logics of counterfactual reasoning introduced by Lewis in
the seventies. tuCLEVER implements some hypersequent calculi recently
introduced for the system VTU and its main extensions. tuCLEVER

is inspired by the methodology of leanTAP and it is implemented in
Prolog. Preliminary experimental results show that the performances of
tuCLEVER are promising.

1 Introduction

Conditional logics are extensions of classical logic by a conditional operator �.
They have a long history going back, e.g., to the works of Stalnaker, Lewis,
Nute, Chellas, Burgess, Pollock in the 60’s-70’s [26, 18, 19, 5, 4]. Conditional logics
have since found an interest in several fields of knowledge representation, from
reasoning about prototypical properties and nonmonotonic reasoning [16] to
modeling belief change. A successful attempt to relate conditional logic and
belief update (as opposite to belief revision) was carried out by Grahne [13], who
established a precise mapping between belief update operators and Lewis’ logic
VCU, an extension of the basic system VTU mentioned above. The relation is
expressed by the so-called Ramsey’s Rule:

A ◦B → C holds if and only if A→ (B� C) holds

where the operator ◦ is any update operator satisfying Katsuno and Mendelzon’s
postulates [15], that are considered the “core” properties for any concrete, plausi-
ble belief-update operator. The relation means that C is entailed by “A updated
by B” if and only if the conditional B� C is entailed by A. In this sense it
can be said that the conditional B� C expresses an hypothetical update of a

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



2 M. Girlando et al.

piece of information A. They have even been also adopted to reason about access
control policies [9].

One of the most important contribution to conditional logic is due to Lewis. In
his seminal work [18], he proposed a formalization of conditional logics to capture
hypothetical conditionals. His aim was to represent conditional sentences that
cannot be captured by material implication and, in particular, counterfactuals,
e.g. conditionals of the form “if A were the case, then B would be the case”, where
A is false. In [18] Lewis introduced a family of conditional logics semantically
characterized by sphere models, in which each world x is equipped with a set of
nested sets of worlds SP(x). Each set in SP(x) is called a sphere: the intuition
is that according to x, worlds in inner spheres are more plausible than worlds
belonging only to outer spheres.

Lewis takes as primitive the comparative plausibility operator 4, with a
formula A 4 B meaning “A is at least as plausible as B”. The conditional
A� B is “A is impossible or A ∧ ¬B is less plausible than A ∧B” (where the
latter case can be simplified to “A ∧ ¬B is less plausible than A”). Vice versa, 4
can be defined in terms of �.

Here we consider the logics of Lewis’ family satisfying two natural properties
for hypothetical reasoning and belief change modelling:

– Uniformity : all worlds have the same set of accessible worlds, where the worlds
accessible from a world x are those belonging to any sphere α ∈ SP(x);

– Total reflexivity : every world x belongs to some sphere α ∈ SP(x).

The basic logic is VTU. We also consider some of its extensions, including the
above mentioned VCU. It is worth mentioning that equivalent logics are those of
Comparative Concept Similarity studied in the context of ontologies [25]. These
logics contain a connective ⇔, which allows to express, e.g,

PicassoPainting v BraquePainting ⇔ GiottoPainting

asserting that “Picasso’s paintings are more similar to Braque’s paintings than
to Giotto’s ones”. The semantics is provided in terms of Distance Space Models,
defined as a set of worlds equipped with a distance function. It turns out that
the basic logic of Comparative Concept Similarity coincides with Lewis’ logic
VWU, an extension of the basic system VTU with a property known as weak
centering, and the one defined by “minspace” Distance Models coincides with
VCU, so that Distance Space Models provide an alternative simple and natural
semantics for conditional logics with uniformity [25, 1]. All these logics contain
modal logic S5 as a fragment: �A can be defined as ⊥ 4 ¬A (or ¬A� ⊥).

In previous works [24, 10] we proposed some internal sequent calculi for
Lewis’ logics without Uniformity. Internal calculi are proof methods where each
configuration of a derivation corresponds to a formula of the corresponding logic,
in contrast to external calculi which make use of extra-logical elements (such
as labels, terms and relations on them). We implemented these calculi with the
theorem prover VINTE [12]. However, the mere sequent structure is not powerful
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enough to capture conditional logic with Uniformity5. In [11] we proposed the
first proof systems for VTU and its extensions in the form of hypersequent
calculi. Hypersequents are finite sets of sequents; and in these calculi sequents are
“extended” by a structural connective 〈.〉, representing disjunctions of ♦-formulae.

In this work we present a Prolog implementation of the hypersequent calculi
for VTU and its extensions [11]. The program, called tuCLEVER (Total reflexivity
and Uniformity Conditional LEwis logics theorem proVER) is, to the best of our
knowledge, the only existing prover for conditional logics with Uniformity6. The

conception of tuCLEVER is inspired by the methodology of leanTAP [3]. The
idea is that each axiom or rule of the sequent calculi is implemented by a single
Prolog clause. No ad-hoc data structure is used. The resulting code is therefore
simple and compact: the implementation of tuCLEVER for the basic system VTU
consists of only 3 predicates, 21 clauses and 118 lines of code.

The prover provides a decision procedure for the respective logics: it imple-
ments the invertible version of the calculi in [11], where the principal formula or
structure is kept in the premises of each rule (similarly to the so-called kleened
calculi). In this way, termination is obtained by simply avoiding redundant
applications of the rules.

Even if a set of benchmark formulae does not exist, the experimental results
obtained so far show that the performances of tuCLEVER are promising. Being
the unique theorem prover for conditional logics with Uniformity, tuCLEVER is
not directly comparable with any other prover for conditional logics. Nonetheless,
we show that on sets of formulae provable in other (weaker) conditional logics and
on randomly generated formulas, the performances of tuCLEVER are surprisingly
better than the ones of other provers for conditional logics, notably VINTE [11]
which covers weaker logics of the Lewis family. Whether this fact depends on the
strength of the logic implemented by tuCLEVER, on the features of the calculi,
or on the implementation is an open question.

The program tuCLEVER, as well as all the Prolog source files, are available
for free usage and download at http://193.51.60.97:8000/tuclever/.

The article is organized as follows. Section 2 introduces the axioms and the
models of the logics under scope. In Section 3 we recall the hypersequent calculi
from [11]. Section 4 presents the design of tuCLEVER, and Section 5 treats its
performances.

2 Lewis’ Conditional Logics

We consider the conditional logics of [18]. The set of conditional formulae is given
by

A ::= p | ⊥ | > | ¬A | A→ A | A ∧A | A ∨A | A 4 A
5 Conditional logics without Uniformity are PSPACE complete, whereas conditional

logics with Uniformity (but without Absoluteness) are EXPTIME complete [8].
6 The only possible exception is the theorem prover CSLLean [2] which implements a

calculus for the logic of Comparative Concept Similarity over minspaces, which is
equivalent to logic VCU.
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where p ∈ V is a propositional variable. Intuitively, a formula A 4 B is interpreted
as “A is at least as plausible as B”. Lewis’ counterfactual implication � is
defined by A� B ≡ (⊥ 4 A) ∨ ¬((A ∧ ¬B) 4 A), whereas the outer modality
� is defined by �A ≡ (⊥ 4 ¬A). The logics we consider are defined as follows:

Definition 1. A model is a triple 〈W, SP, J. K〉, consisting of a non-empty set

W of elements, called worlds, a mapping SP : W → 22W , and a propositional
valuation J. K : V → 2W . Elements of SP(x) are called spheres. We assume the
following conditions:

– For every α ∈ SP(w) we have α 6= ∅ (non-emptiness)
– For every α, β ∈ SP(w) we have α ⊆ β or β ⊆ α (sphere nesting)
– For all w ∈W we have SP(w) 6= ∅ (normality)
– For all w ∈W we have w ∈

⋃
SP(w) (total reflexivity)

– For all w, v ∈W we have
⋃

SP(w) =
⋃

SP(v) (uniformity)

The valuation J. K is extended to all formulae as follows:

J⊥K = ∅
J>K = W
J¬AK = W − JAK
JA ∧BK = JAK ∩ JBK
JA ∨BK = JAK ∪ JBK
JA→ BK = (W − JAK) ∪ JBK
JA 4 BK = {w ∈W | ∀α ∈ SP(w). if JBK ∩ α 6= ∅, then JAK ∩ α 6= ∅}

Validity and satisfiability of formulae in a class of models are defined as usual.
The logic VTU is the set of formulae valid in all models.

We can add to the syntax the conditional operator A� B, since it will be used
in formulas handled by the prover. A� B can be defined in terms of Lewis’
plausibility 4 as recalled in the Introduction, and its truth condition is as follows:

JA� BK = {w ∈W | either
⋃

SP(w) ∩ JAK = ∅ or ∃α ∈ SP(w) such that
α ∩ JAK 6= ∅ and α ∩ JAK ⊆ JBK}.

Extensions of VTU are defined by adding conditions on the class of models:

– For all α ∈ SP(w) we have w ∈ α (weak centering)
– For all w ∈W we have {w} ∈ SP(w) (centering)
– For all w, v ∈W we have SP(w) = SP(v) (absoluteness)

Extensions of VTU are denoted by concatenating letters for these properties: W
for weak centering, C for centering, and A for absoluteness. We consider7:

VTU VTA: VTU + absoluteness
VWU: VTU + weak centering VWA: VTA + weak centering
VCU: VTU + centering VCA: VTA + centering

7 Observe that VTA + weak centering collapses to S5, and that VTA + centering
collapses to classical logic.
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(CPR)
` B → A
` A 4 B (CPA) (A 4 A ∨B) ∨ (B 4 A ∨B)

(TR) (A 4 B) ∧ (B 4 C)→ (A 4 C) (CO) (A 4 B) ∨ (B 4 A)
(N) ¬(⊥ 4 >) (T) (⊥ 4 ¬A)→ A
(U1) ¬(⊥ 4 A)→ (⊥ 4 (⊥ 4 A)) (U2) (⊥ 4 ¬A)→ (⊥ 4 ¬(⊥ 4 ¬A))
(W) A→ (A 4 >) (C) (A 4 >)→ A
(A1) (A 4 B)→

(
⊥ 4 ¬(A 4 B)

)
(A2) ¬(A 4 B)→

(
⊥ 4 (A 4 B)

)
AVTU := {(CPR), (CPA), (TR), (CO), (N), (T), (U1), (U2)}

AVWU := AVTU ∪ {(W)} AVCU := AVTU ∪ {(W), (C)} AVTA := AVTU ∪ {(A1), (A2)}
AVWA := AVTU ∪ {(W), (A1), (A2)} AVCA := AVTU ∪ {(W), (C), (A1), (A2)}

Table 1. Lewis’ logics and axioms.

These logics can be characterized by axioms in a Hilbert-style system [18, Chp. 6].
The modal axioms in the language with only the comparative plausibility operator
are given in Table 1 (∨ and ∧ bind stronger than 4). Propositional axioms and
rules are standard.

3 Hypersequent Calculi for Lewis’ Logics

We recall hypersequent calculi for VTU and extensions from [11]. These calculi
are based on hypersequents, namely non-empty, finite multisets of extended
sequents. The extended sequents contain in the succedent a structural connective
〈.〉 interpreting possible formulae.

Formally, we define:

– a conditional block, which is a tuple [Σ C C] containing a finite multiset Σ
of formulae and a single formula C;

– a transfer block, which is a finite multiset of formulae, written 〈Θ〉;
– an extended sequent, which is a tuple Γ ⇒ ∆ consisting of a finite multiset Γ

of formulae and a finite multiset ∆ containing formulae, conditional blocks,
and transfer blocks;

– an extended hypersequent, which is a finite multiset containing extended
sequents, written Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n.

The rules of the calculi introduced in [11] are shown in Fig. 1. Given
♦A ≡ ¬(⊥ 4 A), the formula interpretation of an extended sequent and of
an extended hypersequent are given by:

ιe(Γ ⇒ ∆, [Σ1 C C1] , . . . , [Σn C Cn] , 〈Θ1〉 , . . . , 〈Θm〉) :=
∧
Γ →

∨
∆ ∨

∨n
i=1

∨
B∈Σi

(B 4 Ci) ∨
∨m
j=1 ♦(

∨
Θj)

ιe(Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n) := � ιe(Γ1 ⇒ ∆1) ∨ · · · ∨� ιe(Γn ⇒ ∆n).

Theorem 2 (Soundness and Completeness). For A formula, A ∈ L if and
only if SHiL ` ⇒ A.



6 M. Girlando et al.

The calculi of Fig. 1 can be used to define a decision procedure for the corre-
sponding logics.

G | Ω,⊥ ⇒ Θ
⊥L G | Ω ⇒ Θ,> >R G | Ω, p⇒ Θ, p

init
G | Ω,¬A⇒ Θ,A

G | Ω,¬A⇒ Θ
¬i

L

G | Ω,A⇒ Θ,¬A
G | Ω ⇒ Θ,¬A ¬i

R

G | Ω,A ∧B,A,B ⇒ Θ,A

G | Ω,A ∧B ⇒ Θ
∧i

L

G | Ω ⇒ Θ,A ∨B,A,B
G | Ω ⇒ Θ,A ∨B ∨i

R

G | Ω ⇒ Θ,A ∧B,A G | Ω ⇒ Θ,A ∧B,B
G | Ω ⇒ Θ,A ∧B ∧i

R

G | Ω,A ∨B,A⇒ Θ G | Ω,A ∨B,B ⇒ Θ

G | Ω,A ∨B ⇒ Θ
∨i

L

G | Ω,A→ B,B ⇒ Θ G | Ω,A→ B ⇒ Θ,A

G | Ω,A→ B ⇒ Θ
→i

L

G | Ω,A⇒ Θ,A→ B,B

G | Ω ⇒ Θ,A→ B
→i

R

G | Σ ⇒ Π,A 4 B, [A C B]

G | Σ ⇒ Π,A 4 B
4i

R

G | Ω ⇒ Θ, [Σ C A] | A⇒ Σ

G | Ω ⇒ Θ, [Σ C A]
jumpi

G | Ω,C 4 D ⇒ Θ, [D,Σ C A] G | Ω,C 4 D ⇒ Θ, [Σ C A] , [Σ C C]

G | Ω,C 4 D ⇒ Θ, [Σ C A]
4i

L

G | Ω ⇒ Θ, [Σ1, Σ2 C A] , [Σ2 C B] G | Ω ⇒ Θ, [Σ1 C A] , [Σ1, Σ2 C B]

G | Ω ⇒ Θ, [Σ1 C A] , [Σ2 C B]
comi

G | Σ,A 4 B ⇒ Π, 〈Θ〉 | A⇒ Θ G | Σ,A 4 B ⇒ Π, 〈Θ,B〉
G | Σ,A 4 B ⇒ Π, 〈Θ〉 Ti

G | Γ ⇒ ∆, 〈⊥〉
G | Γ ⇒ ∆

initrf
G | Γ ⇒ ∆, 〈Θ〉 | Σ ⇒ Θ,Π

G | Γ ⇒ ∆, 〈Θ〉 | Σ ⇒ Π
jumpiU

G | Γ ⇒ ∆, 〈Θ〉 , Θ
G | Γ ⇒ ∆, 〈Θ〉 jumpiT

G | Γ ⇒ ∆, [Σ C A] , Σ

G | Γ ⇒ ∆, [Σ C A]
Wi

G | Γ,C 4 D,C ⇒ ∆ G | Γ,C 4 D ⇒ D,∆

G | Γ,C 4 D ⇒ ∆
Ci

G | Γ,A 4 B ⇒ ∆ | Σ,A 4 B ⇒ Π

G | Γ,A 4 B ⇒ ∆ | Σ ⇒ Π
absiL

G | Γ ⇒ A 4 B,∆ | Σ ⇒ A 4 B,Π

G | Γ ⇒ A 4 B,∆ | Σ ⇒ Π
absiR

PC = {⊥L,>R, init,¬i
L,¬i

R,∧i
L,∧i

R,∨i
L,∨i

R,→i
L,→i

R}
SHi

VTU = PC ∪ {4i
R,4

i
L, com

i, jumpi,Ti, initrf , jumpiU , jumpiT }
SHi

VWU = SHi
VTU ∪ {Wi} SHi

VCU = SHi
VWU ∪ {Ci} SHi

VTA = SHi
VTU ∪ {absiL, absiR}

SHi
VWA = SHi

VWU ∪ {absiL, absiR} SHi
VCA = SHi

VCU ∪ {absiL, absiR}

Fig. 1. The hypersequent calculi for VTU and its extensions.

4 Design of tuCLEVER

In this section we present a Prolog implementation of the hypersequent calculi
recalled in Section 3. The program, called tuCLEVER, is inspired by the “lean”

methodology of leanTAP, even if it does not follow its style in a rigorous manner.
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The program comprises a set of clauses, each of them implementing a sequent
rule or axiom of the calculi. tuCLEVER implements a cumulative, or kleened,
version of the calculi SHiL, in which each rule keeps its principal formula in the
premises. In this way, termination is ensured in an immediate way by checking
redundancy of the rules applications. The proof search is provided for free by
the mere depth-first search mechanism of Prolog, without any additional ad hoc
mechanism.

tuCLEVER represents an hypersequent as a Prolog list of extended sequents. In
turn, an extended sequent is represented as a pair of Prolog lists [Gamma,Delta],
where Gamma and Delta represent the left-hand and the right-hand side of the
extended sequent, respectively. An extended sequent contains conditional blocks
and transfer blocks. A conditional block [Σ C C] is a pair [Sigma,C], i.e. a Prolog
list with two elements, where Sigma is a list of formulas. A transfer block 〈Θ〉 is
implemented by a term transfer Theta, where again Theta is a Prolog list. Sym-
bols > and ⊥ are represented by constants true and false, respectively, whereas
connectives ¬, ∧, ∨, →, 4, and � are represented by -, and, or, ->, <, and
=>. Propositional variables are represented by Prolog atoms. As an example, the
sequent A,¬B ∨ C ⇒ A ∧ C,D,A→ B, 〈⊥〉, [A 4 C,B C A ∨ C] is represented
by the list: [[a,−b or c], [a and c, d, a − > b, transfer[false], [[a < c, b], a or c]]].

The hypersequent calculi are implemented for each logic by the predicate

prove(Hypersequent,ProofTree).

This predicate succeeds if and only if the hypersequent represented by the
list Hypersequent is derivable. When it succeeds, the output term ProofTree

matches with a representation of the derivation found by the prover. For in-
stance, in order to prove the formula (A 4 A ∨ B) ∨ (B 4 A ∨ B) in VTU,
one queries tuCLEVER with the goal: prove([[],[(a < a or b) or (b < a

or b)]],ProofTree). Each clause of prove implements an axiom or rule of the
calculi in Figure 1. To search a derivation, tuCLEVER proceeds as follows. First
of all, if the hypersequent is an instance of either ⊥L or >R or init, the goal will
succeed immediately by using one of the following clauses for the axioms:

prove(Hypersequent,tree(...)) :-

member([Gamma,Delta],Hypersequent),member(false,Gamma),!.

prove(Hypersequent,tree(...)) :-

member([Gamma,Delta],Hypersequent),member(true,Delta),!.

prove(Hypersequent,tree(...)) :- member([Gamma,Delta],Hypersequent),

member(X,Gamma),member(X,Delta),atom(X),!.

If the hypersequent is not an instance of the ending rules, then the first applicable
rule will be chosen, e.g. if a sequent Γ ⇒ ∆ contains a formula A < B in the
right-hand side ∆, then the clause implementing the 4iR rule will be chosen,
and tuCLEVER will be recursively invoked on the unique premise of such a rule
introducing a conditional block [A C B]. tuCLEVER proceeds in a similar way
for the other rules. The ordering of the clauses is such that the application of
the branching rules is postponed as much as possible. As an example, the clause
implementing 4iR is as follows:
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1. prove(Hypersequent,tree(condR,Hypersequent,[Gamma,Delta],no,

SubTree1,no)) :-

2. select([Gamma,Delta],Hypersequent,Remainder),

3. member(A < B, Delta),

4. \+findBlock(Delta,[[A],B]),!,

5. prove([[Gamma,[[[A],B]|Delta]]|Remainder],SubTree1).

In line 4, the auxiliary predicate findBlock is invoked in order to implement
the decision procedure described at the beginning of this section: if a conditional
block [A C B], represented by the Prolog pair [[A],B], already belongs to ∆,
then the negation as failure returns a failure, and the rule is no longer applied.
Since the rule is invertible, Prolog cut ! is used in line 4 to eventually block
backtracking.

As an another example, the following clause implements the rule jumpiU :

1. prove(Hypersequent,tree(jumpU,Hypersequent,[Gamma,Delta],

[Gamma2,Delta2],SubTree1,no)) :-

2. select([Gamma,Delta],Hypersequent,Remainder),

3. member(transfer Theta, Delta),

4. select([Gamma2,Delta2],Remainder,Remainder2),

5. \+subset(Theta,Delta2),

6. append(Delta2,Theta,NewDelta2),

7. !,

8. prove([[Gamma,Delta],[Gamma2,NewDelta2]|Remainder2],SubTree1).

In line 3, the predicate member checks whether there is a block 〈Θ〉, represented
by the Prolog term transfer Theta, in this case the main predicate is recursively
invoked on the only premise of the rule, by adding formulas in Θ in the right
hand side of the sequent represented by Gamma2 and Delta2.

Implementations of the calculi for extensions of VTU proceed in a similar way.
To show some examples, here are the clauses implementing the rules Wi and Ti,
belonging to the implementations of the systems involving axioms W and C.

1. prove(Hypersequent,tree(w,Hypersequent,[Gamma,Delta],no,

SubTree1,no)) :-

2. select([Gamma,Delta],Hypersequent,Remainder),

3. member([Sigma,_],Delta),

4. \+subset(Sigma,Delta),

6. append(Delta,Sigma,NewDelta),!,

7. prove([[Gamma,NewDelta]|Remainder],SubTree1).

In line 4 the predicate \+subset(Sigma,Delta) checks whether Σ, represented
by the Prolog list Sigma, belongs to ∆, represented by the Prolog list Delta, in
order to avoid multiple applications of the rule over the same set Σ.

The Prolog source code implementing the rule Ti is as follows:

1. prove(Hypersequent,tree(t,Hypersequent,[Gamma,Delta],no,

SubTree1,SubTree2)) :-
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2. select([Gamma,Delta],Hypersequent,Remainder),

3. member(A < B,Gamma),

4. select(transfer Theta,Delta,Delta2),

5. \+member(B,Theta),

6. \+findSequent(Hypersequent,[[A],Theta]),

7. !,

8. prove([[Gamma,Delta],[[A],Theta]|Remainder],SubTree1),

9. prove([[Gamma,[transfer [B|Theta]|Delta2]]|Remainder],

SubTree2).

In line 8 an extended sequent A ⇒ Θ is added as a new component of the
hypersequent, whereas in line 9 the formula B is added to 〈Θ〉 in the right-hand
side of the sequent under consideration. Lines 5 and 6 are used in order to
implement the decision procedure, by avoiding useless applications of the rule
in case either B already belongs to Θ or an extended sequent A⇒ 〈Θ〉 already
exists in the hypersequent.

Let us conclude by showing the Prolog clauses implementing the rules absiL
and absiR characterizing the systems allowing the axiom A.

1. prove(Hypersequent,tree(absL,Hypersequent,[Gamma,Delta],

[Gamma2,Delta2],SubTree1,no)) :-

2. select([Gamma,Delta],Hypersequent,Remainder),

3. member(A < B,Gamma),

4. select([Gamma2,Delta2],Remanider,Remainder2),

5. \+member(A < B,Gamma2),

6. !,

7. prove([[Gamma,Delta],[[A < B|Gamma2],Delta2]!Remainder2],

SubTree1).

1. prove(Hypersequent,tree(absR,Hypersequent,[Gamma,Delta],

[Gamma,Delta],SubTree1,no)) :-

2. select([Gamma,Delta],Hypersequent,Remainder),

3. member(A < B,Delta),

4. select([Gamma2,Delta2],Remainder,Remainder2),

5. \+member(A < B,Delta2),

6. !,

7. prove([[Gamma,Delta],[Gamma2,[A < B|Delta2]]|Remainder2],

SubTree1).

The system tuCLEVER has also a graphical user interface implemented in the
form of a responsive Web Application. As already mentioned in the Introduction,
the program tuCLEVER, as well as all the Prolog source files, are available for
free usage and download at http://193.51.60.97:8000/tuclever/.

5 Performance of tuCLEVER

The performance of tuCLEVER are promising. We have tested it by running SWI
Prolog 7.6.4 on an Acer Aspire E5-575G, 2.7 GHz Intel Core i7 7500U, 16GB
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Fig. 2. Home page of tuCLEVER. When the users want to check whether a formula F
is valid, then (i) they select the conditional logic to use, (ii) they type F in the form
and (iii) click the button in order to execute the calculi presented in Section 3.

Fig. 3. When the formula is valid, tuCLEVER computes both a pdf containing the
derivation found by the prover and its LATEX source file.

RAM, Ubuntu 19.04 amd64 machine. In absence of theorem provers specifically
tailored for Lewis’ logics, we have compared the performances of tuCLEVER with
those of VINTE [12] on formulas provable in both systems. We have performed
two kinds of experiments. On the one hand, we have tested the two provers over a
set of valid formulas, on the other hand we have tested tuCLEVER with randomly
generated formulas, therefore including not provable ones.
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Fig. 4. When the submitted formula is valid, then the user can have a look at the
derivation built by tuCLEVER, stored in a pdf file. As an alternative, the user can
download the LATEX source file of the derivation.

Fig. 5. All Prolog source files, including those for testing the performance of tuCLEVER,
are available on the web page.

5.1 Tests over valid formulas

First of all, we have tested both tuCLEVER and VINTE over 76 valid formulas in
the basic Lewis’ system V without Uniformity [18], obtained by translating valid
formulas of the basic modal logic K [14] provided by Heuerding in conditional
formulas: �A is replaced by >� A8, whereas ♦A is replaced by ¬(>� ¬A).
We have observed the results in Figure 6 concerning the number of timeouts,
witnessing a significant increase of performances with respect to those of VINTE.

8 It is worth noticing that this translation introduces an exponential blowup.
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Theorem prover 1 s 60 s 180 s

VINTE 49 34 31
tuCLEVER 8 3 3

Fig. 6. Percentage of timeouts for tuCLEVER and VINTE over valid formulas.

This result could be explained by the fact that, even if tuCLEVER manipu-
lates “heavier” hypersequents, all rules implemented by tuCLEVER are invertible,
avoiding backtracking points that are present in VINTE.

We have then compared the performance of both the provers tuCLEVER and
VINTE with valid formulas obtained as instances of three different schemas, by
fixing a time limit of 60 seconds, and by letting a parameter n vary, starting
from n = 1. The first schema is as follows:

(A1 4 A2) ∨ (A2 4 A3) ∨ · · · ∨ (An 4 A1),

We have observed that tuCLEVER is able to answer also with n = 25, whereas
VINTE is able to answer only until n = 9. Similarly, we have compared the
performance of the provers on:

(A1 4 A2) ∧ (A2 4 A3) ∧ · · · ∧ (An−1 4 An)→ (A1 4 An)

obtaining that tuCLEVER is able to answer also with n = 15, whereas VINTE
is able to answer only until n = 5. The prover VINTE has, however, better
performances than those of tuCLEVER over formulas following the following
schema:

(A1 4 (A1 ∨A2 ∨ · · · ∨An)) ∨ (A2 4 (A1 ∨A2 ∨ · · · ∨An)) ∨ . . .
. . . ∨ (An 4 (A1 ∨A2 ∨ · · · ∨An))

where tuCLEVER is able to answer with n = 4, whereas VINTE is able to answer
also for n = 15.

5.2 Tests over randomly generated formulas

We have tested tuCLEVER over randomly generated formulas, fixing two different
time limits, namely 1 second and 10 seconds, and varying the depth of a formula
(i.e. the maximum level of nesting of connectives) as well as the number of
different propositional variables. We have considered the system VTU as well as
all the extensions, obtaining the percentages of timeouts in Figures 7 and 8.
In all cases, the quite low percentages of timeouts suggest that the performance
of tuCLEVER are encouraging.

6 Conclusions and Future Issues

We have introduced tuCLEVER, a theorem prover implementing hypersequent
calculi for Lewis’ conditional logics with Total Reflexivity and Uniformity in-
troduced in [11]. As far as we know, this is the first theorem prover for these
stronger logics of the Lewis’ family.
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Depth / var 1 s 10 s

5/3 0% 0%
6/3 2% 0%
7/3 4% 2%
8/3 7% 5%
5/5 0% 0%
6/5 2% 1%
7/5 6% 4%
8/5 10% 7%

Depth / var 1 s 10 s

5/3 0% 0%
6/3 1% 0%
7/3 3% 2%
8/3 7% 4%
5/5 0% 0%
6/5 2% 1%
7/5 6% 4%
8/5 10% 6%

Fig. 7. Percentage of timeouts in SHi
VTU (left) and SHi

VWU (right).

Depth / var 1 s 10 s

5/3 0% 0%
6/3 2% 1%
7/3 5% 3%
8/3 8% 5%
5/5 0% 0%
6/5 4% 2%
7/5 7% 5%
8/5 11% 9%

Depth / var 1 s 10 s

5/3 6% 3%
6/3 12% 9%
7/3 21% 17%
8/3 25% 22%
5/5 8% 7%
6/5 20% 16%
7/5 27% 20%
8/5 31% 28%

Fig. 8. Percentage of timeouts in SHi
VCU (left) and SHi

VTA (right).

We have compared the performance of tuCLEVER with those of VINTE, a
theorem prover for the weaker Lewis’ logics, and we have observed that the
performance of tuCLEVER are promising. We aim at extending our performance
evaluation by considering other significant schemas of valid formulas: as an
example, we plan to consider valid formulas obtained by the translations of the
rules Rn,m of the sequent calculus for V according to the translation from rules to
axioms described in [17]. Furthermore, we aim at comparing the performance of
tuCLEVER also with those of other provers for conditional logic, like CondLean [21],
GoalDUCK [20], and NESCOND [22, 23]. As already mentioned, the theorem
prover CSLLean [2] implements a labelled calculus for the logic of Comparative
Concept Similarity over minspaces, which is equivalent to logic VCU: we aim
at comparing tuCLEVER with CSLLean, by repeating tests both over randomly
generated formulas and over valid VCU formulas.

Finally, we are currently working on extending tuCLEVER in order to handle
countermodel generation for unprovable formulas: intuitively, given a failed proof,
tuCLEVER checks another Prolog predicate essentially implementing the same
clauses of prove, with the objective of finding an open, saturated branch, following
the line of the theorem provers for Lewis’ logics of counterfactual reasoning [6,
7]. Clauses introducing a branch in the computation, i.e. those implementing
rules with two premises, are split in two clauses, each one considering a single
branch. The last clause of this additional Prolog predicate will check whether
the hypersequent is not an instance of the initial sequents: in this way, this
predicate will succeed if and only if (i) no rule of the calculi is further applicable
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(ii) the hypersequent does not contain a valid extended sequent, therefore a model
falsifying it can be extracted from the sequent itself.
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