Theorem proving for Lewis Logics of Counterfactual Reasoning
Marianna Girlando, Bjoern Lellmann, Nicola Olivetti, Stefano Pesce, Gian Luca Pozzato

To cite this version:
Marianna Girlando, Bjoern Lellmann, Nicola Olivetti, Stefano Pesce, Gian Luca Pozzato. Theorem proving for Lewis Logics of Counterfactual Reasoning. CILC 2020 - 35th Edition of the Italian Conference on Computational Logic, Oct 2020, Rende / Virtual, Italy. hal-03080670

HAL Id: hal-03080670
https://hal.science/hal-03080670
Submitted on 17 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Theorem proving for Lewis Logics of Counterfactual Reasoning

Marianna Girlando1, Björn Lellmann2, Nicola Olivetti3, Stefano Pesce4, and Gian Luca Pozzato4

1 Équipe Partout, Inria Saclay, LIX - École Polytechnique, France - marianna.girlando@inria.fr
2 Technische Universität Wien, Austria - lellmann@logic.at
3 Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296, 13397, Marseille, France - nicola.olivetti@univ-amu.fr
4 Dipartimento di Informatica, Università di Torino, Italy - \{gianluca.pozzato@, stefano.pesce356@\}unito.it

Abstract. We present tuCLEVER, a theorem prover for the strongest conditional logics of counterfactual reasoning introduced by Lewis in the seventies. tuCLEVER implements some hypersequent calculi recently introduced for the system \(\forall TU\) and its main extensions. tuCLEVER is inspired by the methodology of lean74P and it is implemented in Prolog. Preliminary experimental results show that the performances of tuCLEVER are promising.

1 Introduction

Conditional logics are extensions of classical logic by a conditional operator \(\rightarrow\). They have a long history going back, e.g., to the works of Stalnaker, Lewis, Nute, Chellas, Burgess, Pollock in the 60’s-70’s [26, 18, 19, 5, 4]. Conditional logics have since found an interest in several fields of knowledge representation, from reasoning about prototypical properties and nonmonotonic reasoning [16] to modeling belief change. A successful attempt to relate conditional logic and belief update (as opposite to belief revision) was carried out by Grahne [13], who established a precise mapping between belief update operators and Lewis’ logic \(\forall VC\), an extension of the basic system \(\forall TU\) mentioned above. The relation is expressed by the so-called Ramsey’s Rule:

\[A \circ B \rightarrow C \text{ holds if and only if } A \rightarrow (B \rightarrow C) \text{ holds} \]

where the operator \(\circ\) is any update operator satisfying Katsuno and Mendelzon’s postulates [15], that are considered the “core” properties for any concrete, plausible belief-update operator. The relation means that \(C\) is entailed by “\(A\) updated by \(B\)” if and only if the conditional \(B \rightarrow C\) is entailed by \(A\). In this sense it can be said that the conditional \(B \rightarrow C\) expresses an hypothetical update of a...
piece of information \(A\). They have even been also adopted to reason about access control policies [9].

One of the most important contribution to conditional logic is due to Lewis. In his seminal work [18], he proposed a formalization of conditional logics to capture hypothetical conditionals. His aim was to represent conditional sentences that cannot be captured by material implication and, in particular, counterfactuals, e.g. conditionals of the form “if \(A\) were the case, then \(B\) would be the case”, where \(A\) is false. In [18] Lewis introduced a family of conditional logics semantically characterized by sphere models, in which each world \(x\) is equipped with a set of nested sets of worlds \(\mathcal{SP}(x)\). Each set in \(\mathcal{SP}(x)\) is called a sphere: the intuition is that according to \(x\), worlds in inner spheres are more plausible than worlds belonging only to outer spheres.

Lewis takes as primitive the comparative plausibility operator \(\preceq\), with a formula \(A \preceq B\) meaning “\(A\) is at least as plausible as \(B\)”. The conditional \(A \rightarrow B\) is “\(A\) is impossible or \(A \land \neg B\) is less plausible than \(A \land B\)” (where the latter case can be simplified to “\(A \land \neg B\) is less plausible than \(A\)”). Vice versa, \(\preceq\) can be defined in terms of \(\rightarrow\).

Here we consider the logics of Lewis’ family satisfying two natural properties for hypothetical reasoning and belief change modelling:

- **Uniformity**: all worlds have the same set of accessible worlds, where the worlds accessible from a world \(x\) are those belonging to any sphere \(\alpha \in \mathcal{SP}(x)\);
- **Total reflexivity**: every world \(x\) belongs to some sphere \(\alpha \in \mathcal{SP}(x)\).

The basic logic is \(\text{VTU}\). We also consider some of its extensions, including the above mentioned \(\text{VCU}\). It is worth mentioning that equivalent logics are those of Comparative Concept Similarity studied in the context of ontologies [25]. These logics contain a connective \(\equiv\), which allows to express, e.g.,

\[
\text{PicassoPainting} \sqsubseteq \text{BraquePainting} \equiv \text{GiottoPainting}
\]

asserting that “Picasso’s paintings are more similar to Braque’s paintings than to Giotto’s ones”. The semantics is provided in terms of Distance Space Models, defined as a set of worlds equipped with a distance function. It turns out that the basic logic of Comparative Concept Similarity coincides with Lewis’ logic \(\text{VVWU}\), an extension of the basic system \(\text{VTU}\) with a property known as weak centering, and the one defined by “minspace” Distance Models coincides with \(\text{VCU}\), so that Distance Space Models provide an alternative simple and natural semantics for conditional logics with uniformity [25, 1]. All these logics contain modal logic \(\text{S5}\) as a fragment; \(\Box A\) can be defined as \(\bot \preceq \neg A\) (or \(\neg A \rightarrow \bot\)).

In previous works [24, 10] we proposed some internal sequent calculi for Lewis’ logics without Uniformity. Internal calculi are proof methods where each configuration of a derivation corresponds to a formula of the corresponding logic, in contrast to external calculi which make use of extra-logical elements (such as labels, terms and relations on them). We implemented these calculi with the theorem prover \(\text{VINTE}\) [12]. However, the mere sequent structure is not powerful
enough to capture conditional logic with Uniformity5. In [11] we proposed the first proof systems for \forallTU and its extensions in the form of hypersequent calculi. Hypersequents are finite sets of sequents; and in these calculi sequents are “extended” by a structural connective $\langle \rangle$, representing disjunctions of \Diamond-formulae.

In this work we present a Prolog implementation of the hypersequent calculi for \forallTU and its extensions [11]. The program, called \texttt{tuCLEVER} (Total reflexivity and Uniformity Conditional LEwis logics theorem proVER) is, to the best of our knowledge, the only existing prover for conditional logics with Uniformity6. The conception of \texttt{tuCLEVER} is inspired by the methodology of \texttt{leanTAP} [3]. The idea is that each axiom or rule of the sequent calculi is implemented by a single Prolog clause. No ad-hoc data structure is used. The resulting code is therefore simple and compact: the implementation of \texttt{tuCLEVER} for the basic system \forallTU consists of only 3 predicates, 21 clauses and 118 lines of code.

The prover provides a decision procedure for the respective logics: it implements the invertible version of the calculi in [11], where the principal formula or structure is kept in the premises of each rule (similarly to the so-called kleened calculi). In this way, termination is obtained by simply avoiding redundant applications of the rules.

Even if a set of benchmark formulae does not exist, the experimental results obtained so far show that the performances of \texttt{tuCLEVER} are promising. Being the unique theorem prover for conditional logics with Uniformity, \texttt{tuCLEVER} is not directly comparable with any other prover for conditional logics. Nonetheless, we show that on sets of formulae provable in other (weaker) conditional logics and on randomly generated formulas, the performances of \texttt{tuCLEVER} are surprisingly better than the ones of other provers for conditional logics, notably \texttt{VINTE} [11] which covers weaker logics of the Lewis family. Whether this fact depends on the strength of the logic implemented by \texttt{tuCLEVER}, on the features of the calculi, or on the implementation is an open question.

The program \texttt{tuCLEVER}, as well as all the Prolog source files, are available for free usage and download at http://193.51.60.97:8000/tuclever/.

The article is organized as follows. Section 2 introduces the axioms and the models of the logics under scope. In Section 3 we recall the hypersequent calculi from [11]. Section 4 presents the design of \texttt{tuCLEVER}, and Section 5 treats its performances.

2 Lewis’ Conditional Logics

We consider the conditional logics of [18]. The set of conditional formulae is given by

$$A ::= p \mid \perp \mid \top \mid \neg A \mid A \rightarrow A \mid A \wedge A \mid A \vee A \mid A \leq A$$

5 Conditional logics without Uniformity are PSPACE complete, whereas conditional logics with Uniformity (but without Absoluteness) are EXPTIME complete [8].

6 The only possible exception is the theorem prover CSLLean [2] which implements a calculus for the logic of Comparative Concept Similarity over minspaces, which is equivalent to logic VCU.
where \(p \in V \) is a propositional variable. Intuitively, a formula \(A \preceq B \) is interpreted as “\(A \) is at least as plausible as \(B \)”. Lewis’ counterfactual implication \(\Box \rightarrow \) is defined by \(A \Box \rightarrow B \equiv (\bot \preceq A) \lor \neg((A \land \neg B) \preceq A) \), whereas the outer modality \(\Box \) is defined by \(\Box A \equiv (\bot \preceq \neg A) \). The logics we consider are defined as follows:

Definition 1. A model is a triple \(\langle W, SP, \llbracket \cdot \rrbracket \rangle \), consisting of a non-empty set \(W \) of elements, called worlds, a mapping \(SP : W \rightarrow 2^W \), and a propositional valuation \(\llbracket \cdot \rrbracket : V \rightarrow 2^W \). Elements of \(SP(x) \) are called spheres. We assume the following conditions:

- For every \(\alpha \in SP(w) \) we have \(\alpha \neq \emptyset \) (non-emptiness)
- For every \(\alpha, \beta \in SP(w) \) we have \(\alpha \subseteq \beta \) or \(\beta \subseteq \alpha \) (sphere nesting)
- For all \(w \in W \) we have \(SP(w) \neq \emptyset \) (normality)
- For all \(w \in W \) we have \(w \in \bigcup SP(w) \) (total reflexivity)
- For all \(w, v \in W \) we have \(\bigcup SP(w) = \bigcup SP(v) \) (uniformity)

The valuation \(\llbracket \cdot \rrbracket \) is extended to all formulae as follows:

\[
\begin{align*}
\llbracket \bot \rrbracket &= \emptyset \\
\llbracket \top \rrbracket &= W \\
\llbracket \neg A \rrbracket &= W - \llbracket A \rrbracket \\
\llbracket A \land B \rrbracket &= \llbracket A \rrbracket \cap \llbracket B \rrbracket \\
\llbracket A \lor B \rrbracket &= \llbracket A \rrbracket \cup \llbracket B \rrbracket \\
\llbracket A \rightarrow B \rrbracket &= (W - \llbracket A \rrbracket) \cup \llbracket B \rrbracket \\
\llbracket A \preceq B \rrbracket &= \{ w \in W \mid \forall \alpha \in SP(w). \text{ if } \llbracket B \rrbracket \cap \alpha \neq \emptyset, \text{ then } \llbracket A \rrbracket \cap \alpha \neq \emptyset \}
\end{align*}
\]

Validity and satisfiability of formulae in a class of models are defined as usual. The logic \(\text{VTU} \) is the set of formulae valid in all models.

We can add to the syntax the conditional operator \(A \Box \rightarrow B \), since it will be used in formulas handled by the prover. \(A \Box \rightarrow B \) can be defined in terms of Lewis’ plausibility \(\preceq \) as recalled in the Introduction, and its truth condition is as follows:

\[
\llbracket A \Box \rightarrow B \rrbracket = \{ w \in W \mid \text{ either } \bigcup SP(w) \cap \llbracket A \rrbracket = \emptyset \text{ or } \exists \alpha \in SP(w) \text{ such that } \alpha \cap \llbracket A \rrbracket \neq \emptyset \text{ and } \alpha \cap \llbracket A \rrbracket \subseteq \llbracket B \rrbracket \}.
\]

Extensions of \(\text{VTU} \) are defined by adding conditions on the class of models:

- For all \(\alpha \in SP(w) \) we have \(w \in \alpha \) (weak centering)
- For all \(w \in W \) we have \(\{ w \} \in SP(w) \) (centering)
- For all \(w, v \in W \) we have \(SP(w) = SP(v) \) (absoluteness)

Extensions of \(\text{VTU} \) are denoted by concatenating letters for these properties: \(W \) for weak centering, \(C \) for centering, and \(A \) for absoluteness. We consider\(^7\):

\[
\begin{align*}
\text{VTU} &
\text{VWU:} \quad \text{VTU} + \text{weak centering} \\
\text{VCU:} \quad \text{VTU} + \text{centering} \\
\text{VTA:} \quad \text{VTU} + \text{absoluteness} \\
\text{VWA:} \quad \text{VTA} + \text{weak centering} \\
\text{VCA:} \quad \text{VTA} + \text{centering}
\end{align*}
\]

\(^7\) Observe that \(\text{VTA} + \text{weak centering} \) collapses to \(\text{S5} \), and that \(\text{VTA} + \text{centering} \) collapses to classical logic.
The modal axioms in the language with only the comparative plausibility operator can be characterized by axioms in a Hilbert-style system [18, Chp. 6]. These logics can be interpreted in a Hilbert-style system with only the comparative plausibility operator are given in Table 1 (∨ and ∧ bind stronger than ≲). Propositional axioms and rules are standard.

3 Hypersequent Calculi for Lewis’ Logics

We recall hypersequent calculi for VTU and extensions from [11]. These calculi are based on hypersequents, namely non-empty, finite multisets of extended sequents. The extended sequents contain in the succedent a structural connective ⟨⟩ interpreting possible formulae.

Formally, we define:

- a conditional block, which is a tuple [Σ ≲ C] containing a finite multiset Σ of formulae and a single formula C;
- a transfer block, which is a finite multiset of formulae, written (Θ);
- an extended sequent, which is a tuple Γ ⇒ Δ consisting of a finite multiset Γ of formulae and a finite multiset Δ containing formulae, conditional blocks, and transfer blocks;
- an extended hypersequent, which is a finite multiset containing extended sequents, written Γ₁ ⇒ Δ₁ | ... | Γₙ ⇒ Δₙ.

The rules of the calculi introduced in [11] are shown in Fig. 1. Given ♦A ≡ ¬(⊥ ≲ A), the formula interpretation of an extended sequent and of an extended hypersequent are given by:

\[\iota_c(Γ) ≡ \Delta, [Σ_1 ≲ C_1], ..., [Σ_n ≲ C_n], (Θ_1), ..., (Θ_n) : A \quad F \rightarrow G \vee \bigvee_{i=1}^n \bigvee_{j=1}^m, B \in L : (C_i) = \bigvee_{i=1}^m (C_i) \quad \Theta \rightarrow (G \ast \Theta) \]

\[\iota_e(Γ₁ ⇒ Δ₁ | ... | Γₙ ⇒ Δₙ) : = \Box \iota_e(Γ₁ ⇒ Δ₁) \vee \cdots \vee \Box \iota_e(Γₙ ⇒ Δₙ). \]

Theorem 2 (Soundness and Completeness). For A formula, A ∈ L if and only if SH⁺ₕ ⊢ A.
The calculi of Fig. 1 can be used to define a decision procedure for the corresponding logics.

Fig. 1. The hypersequent calculi for $\mathcal{V}_T\mathcal{U}$ and its extensions.

4 Design of tuCLEVER

In this section we present a Prolog implementation of the hypersequent calculi recalled in Section 3. The program, called tuCLEVER, is inspired by the “lean” methodology of lean T^4P, even if it does not follow its style in a rigorous manner.
The program comprises a set of clauses, each of them implementing a sequent rule or axiom of the calculi. tuCLEVER implements a cumulative, or kleened, version of the calculi SHₐ, in which each rule keeps its principal formula in the premises. In this way, termination is ensured in an immediate way by checking redundancy of the rules applications. The proof search is provided for free by the mere depth-first search mechanism of Prolog, without any additional ad hoc mechanism.

tuCLEVER represents an hypersequent as a Prolog list of extended sequents. In turn, an extended sequent is represented as a pair of Prolog lists [[Gamma,Delta]], where Gamma and Delta represent the left-hand and the right-hand side of the extended sequent, respectively. An extended sequent contains conditional blocks and transfer blocks. A conditional block [Σ ⊲ C] is a pair [Sigma,C], i.e. a Prolog list with two elements, where Sigma is a list of formulas. A transfer block ⟨Θ⟩ is implemented by a term transfer Theta, where again Theta is a Prolog list. Symbols ⊤ and ⊥ are represented by constants true and false, respectively, whereas connectives ¬, ∧, ∨, →, ≼, and ⊣→ are represented by -, and, or, -, <, and ⇒. Propositional variables are represented by Prolog atoms. As an example, the sequent A, ¬B ∨ C ⇒ A ∧ C,D,A → B, ⟨⊥⟩, [A ≼ C,B < A ∨ C] is represented by the list: [[a,-b or c],[a and c,d,a - > b,transfer[false],[[a < c,b],a or c]].

The hypersequent calculi are implemented for each logic by the predicate

\[\text{prove(Hypersequent,ProofTree).} \]

This predicate succeeds if and only if the hypersequent represented by the list Hypersequent is derivable. When it succeeds, the output term ProofTree matches with a representation of the derivation found by the prover. For instance, in order to prove the formula (A ≼ A ∨ B) ∨ (B ≼ A ∨ B) in VTU, one queries tuCLEVER with the goal: prove([],[(a < a or b) or (b < a or b)],ProofTree). Each clause of prove implements an axiom or rule of the calculi in Figure 1. To search a derivation, tuCLEVER proceeds as follows. First of all, if the hypersequent is an instance of either ⊤ or ⊥ or init, the goal will succeed immediately by using one of the following clauses for the axioms:

\begin{verbatim}
prove(Hypersequent,tree(...)) :- member([Gamma,Delta],Hypersequent),member(false,Gamma),!.
prove(Hypersequent,tree(...)) :- member([Gamma,Delta],Hypersequent),member(true,Delta),!.
prove(Hypersequent,tree(...)) :- member([Gamma,Delta],Hypersequent),member(X,Gamma),member(X,Delta),atom(X),!.
\end{verbatim}

If the hypersequent is not an instance of the ending rules, then the first applicable rule will be chosen, e.g. if a sequent \(\Gamma \Rightarrow \Delta \) contains a formula \(A \prec B \) in the right-hand side \(\Delta \), then the clause implementing the \(\prec_{i} \) rule will be chosen, and tuCLEVER will be recursively invoked on the unique premise of such a rule introducing a conditional block \([A \prec B] \). tuCLEVER proceeds in a similar way for the other rules. The ordering of the clauses is such that the application of the branching rules is postponed as much as possible. As an example, the clause implementing \(\prec_{i} \) is as follows:

\begin{verbatim}
prove(Hypersequent,tree(...)) :-
 member([Gamma,Delta],Hypersequent),member(false,Gamma),!
prove(Hypersequent,tree(...)) :-
 member([Gamma,Delta],Hypersequent),member(true,Delta),!
prove(Hypersequent,tree(...)) :- member([Gamma,Delta],Hypersequent),
 member(X,Gamma),member(X,Delta),atom(X),!.
\end{verbatim}
1. `prove(Hypersequent,tree(condR,Hypersequent,[Gamma,Delta],no,SubTree1,no)) :-`
2. `select([Gamma,Delta],Hypersequent,Remainder),`
3. `member(A < B, Delta),`
4. `\+findBlock(Delta,[[A],B]),!`,
5. `prove([[Gamma,[[[A],B]|Delta]|Remainder],SubTree1)).`

In line 4, the auxiliary predicate `findBlock` is invoked in order to implement the decision procedure described at the beginning of this section: if a conditional block `\[A \triangleleft B \]`, represented by the Prolog pair `[[A],B]`, already belongs to `\Delta`, then the negation as failure returns a failure, and the rule is no longer applied. Since the rule is invertible, Prolog cut `!` is used in line 4 to eventually block backtracking.

As an another example, the following clause implements the rule `jump^i_U`:

1. `prove(Hypersequent,tree(jumpU,Hypersequent,[Gamma,Delta],[Gamma2,Delta2],SubTree1,no)) :-`
2. `select([Gamma,Delta],Hypersequent,Remainder),`
3. `member(transfer Theta, Delta),`
4. `select([Gamma2,Delta2],Remainder,Remainder2),`
5. `\+subset(Theta,Delta2),`
6. `append(Delta2,Theta,NewDelta2),`
7. `!`,
8. `prove([[Gamma,Delta],[Gamma2,NewDelta2]|Remainder2],SubTree1)).`

In line 3, the predicate `member` checks whether there is a block `\langle \Theta \rangle`, represented by the Prolog term `transfer Theta`, in this case the main predicate is recursively invoked on the only premise of the rule, by adding formulas in `\Theta` in the right hand side of the sequent represented by `Gamma2` and `Delta2`.

Implementations of the calculi for extensions of `VTU` proceed in a similar way. To show some examples, here are the clauses implementing the rules `W^i` and `T^i`, belonging to the implementations of the systems involving axioms `\text{W}` and `\text{C}`.

1. `prove(Hypersequent,tree(w,Hypersequent,[Gamma,Delta],no,SubTree1,no)) :-`
2. `select([Gamma,Delta],Hypersequent,Remainder),`
3. `member(\Sigma,_,Delta),`
4. `\+subset(\Sigma,Delta),`
5. `append(Delta,\Sigma,NewDelta),!`,
6. `prove([[Gamma,NewDelta]|Remainder],SubTree1)).`

In line 4 the predicate `\+subset(Sigma,Delta)` checks whether `\Sigma`, represented by the Prolog list `Sigma`, belongs to `\Delta`, represented by the Prolog list `Delta`, in order to avoid multiple applications of the rule over the same set `\Sigma`.

The Prolog source code implementing the rule `T^i` is as follows:

1. `prove(Hypersequent,tree(t,Hypersequent,[Gamma,Delta],no,SubTree1,SubTree2)) :-`
2. select([\Gamma,\Delta],\text{Hypersequent},\text{Remainder}),
3. member(A < B,\Gamma),
4. select(\text{transfer} \Theta,\Delta,\Delta_2),
5. \lnot\text{member}(B,\Theta),
6. \lnot\text{findSequent}(\text{Hypersequent},[[A],\Theta]),
7. !,
8. prove([[\Gamma,\Delta],[[A],\Theta]|\text{Remainder}],\text{SubTree1}),
9. prove([[\Gamma,\text{transfer}[B|\Theta]|\Delta_2]|\text{Remainder}],
\text{SubTree2}).

In line 8 an extended sequent \(A \Rightarrow \Theta\) is added as a new component of the
hypersequent, whereas in line 9 the formula \(B\) is added to \(\langle \Theta \rangle\) in the right-hand
side of the sequent under consideration. Lines 5 and 6 are used in order to
implement the decision procedure, by avoiding useless applications of the rule
in case either \(B\) already belongs to \(\Theta\) or an extended sequent \(A \Rightarrow \langle \Theta \rangle\) already
exists in the hypersequent.

Let us conclude by showing the Prolog clauses implementing the rules \(\text{abs}_L\)
and \(\text{abs}_R\) characterizing the systems allowing the axiom \(A\).

\begin{verbatim}
1. prove(Hypersequent, tree(absL, Hypersequent, [\Gamma, \Delta],
\quad [\Gamma_2, \Delta_2], SubTree1, no)) :-
2. select([\Gamma, \Delta], Hypersequent, Remainder),
3. member(A < B, \Gamma),
4. select([\Gamma_2, \Delta_2], Remainder, Remainder_2),
5. \lnot\text{member}(A < B, \Gamma_2),
6. !,
7. prove([[\Gamma, \Delta],[[A < B|\Gamma_2], \Delta_2]|Remainder_2],
\text{SubTree1}).
\end{verbatim}

\begin{verbatim}
1. prove(Hypersequent, tree(absR, Hypersequent, [\Gamma, \Delta],
\quad [\Gamma, \Delta], SubTree1, no)) :-
2. select([\Gamma, \Delta], Hypersequent, Remainder),
3. member(A < B, \Delta),
4. select([\Gamma_2, \Delta_2], Remainder, Remainder_2),
5. \lnot\text{member}(A < B, \Delta_2),
6. !,
7. prove([[\Gamma, \Delta],[[\Gamma_2,A < B|\Delta_2]|Remainder_2],
\text{SubTree1}]).
\end{verbatim}

The system tuCLEVER has also a graphical user interface implemented in the
form of a responsive Web Application. As already mentioned in the Introduction,
the program tuCLEVER, as well as all the Prolog source files, are available for
free usage and download at http://193.51.60.97:8000/tuclever/.

5 Performance of tuCLEVER

The performance of tuCLEVER are promising. We have tested it by running SWI
Prolog 7.6.4 on an Acer Aspire E5-575G, 2.7 GHz Intel Core i7 7500U, 16GB
Fig. 2. Home page of tuCLEVER. When the users want to check whether a formula F is valid, then (i) they select the conditional logic to use, (ii) they type F in the form and (iii) click the button in order to execute the calculi presented in Section 3.

Fig. 3. When the formula is valid, tuCLEVER computes both a pdf containing the derivation found by the prover and its \LaTeX source file.

RAM, Ubuntu 19.04 amd64 machine. In absence of theorem provers specifically tailored for Lewis’ logics, we have compared the performances of tuCLEVER with those of VINTE [12] on formulas provable in both systems. We have performed two kinds of experiments. On the one hand, we have tested the two provers over a set of valid formulas, on the other hand we have tested tuCLEVER with randomly generated formulas, therefore including not provable ones.
When the submitted formula is valid, then the user can have a look at the derivation built by tuCLEVER, stored in a pdf file. As an alternative, the user can download the \LaTeX{} source file of the derivation.

All Prolog source files, including those for testing the performance of tuCLEVER, are available on the web page.

5.1 Tests over valid formulas

First of all, we have tested both tuCLEVER and VINTE over 76 valid formulas in the basic Lewis’ system V without Uniformity [18], obtained by translating valid formulas of the basic modal logic K [14] provided by Heuerding in conditional formulas: $\Box A$ is replaced by $\top \rightarrow A^8$, whereas $\Diamond A$ is replaced by $\neg (\top \rightarrow \neg A)$. We have observed the results in Figure 6 concerning the number of timeouts, witnessing a significant increase of performances with respect to those of VINTE.

\footnote{It is worth noticing that this translation introduces an exponential blowup.}
This result could be explained by the fact that, even if tuCLEVER manipulates “heavier” hypersequents, all rules implemented by tuCLEVER are invertible, avoiding backtracking points that are present in VINTE.

We have then compared the performance of both the provers tuCLEVER and VINTE with valid formulas obtained as instances of three different schemas, by fixing a time limit of 60 seconds, and by letting a parameter n vary, starting from $n = 1$. The first schema is as follows:

$$(A_1 \lessdot A_2) \lor (A_2 \lessdot A_3) \lor \cdots \lor (A_n \lessdot A_1),$$

We have observed that tuCLEVER is able to answer also with $n = 25$, whereas VINTE is able to answer only until $n = 9$. Similarly, we have compared the performance of the provers on:

$$(A_1 \lessdot A_2) \land (A_2 \lessdot A_3) \land \cdots \land (A_{n-1} \lessdot A_n) \rightarrow (A_1 \lessdot A_n)$$

obtaining that tuCLEVER is able to answer also with $n = 15$, whereas VINTE is able to answer only until $n = 5$. The prover VINTE has, however, better performances than those of tuCLEVER over formulas following the following schema:

$$(A_1 \lessdot (A_1 \lor A_2 \lor \cdots \lor A_n)) \lor (A_2 \lessdot (A_1 \lor A_2 \lor \cdots \lor A_n)) \lor \cdots \lor (A_n \lessdot (A_1 \lor A_2 \lor \cdots \lor A_n))$$

where tuCLEVER is able to answer with $n = 4$, whereas VINTE is able to answer also for $n = 15$.

5.2 Tests over randomly generated formulas

We have tested tuCLEVER over randomly generated formulas, fixing two different time limits, namely 1 second and 10 seconds, and varying the depth of a formula (i.e. the maximum level of nesting of connectives) as well as the number of different propositional variables. We have considered the system VTU as well as all the extensions, obtaining the percentages of timeouts in Figures 7 and 8.

In all cases, the quite low percentages of timeouts suggest that the performance of tuCLEVER are encouraging.

6 Conclusions and Future Issues

We have introduced tuCLEVER, a theorem prover implementing hypersequent calculi for Lewis’ conditional logics with Total Reflexivity and Uniformity introduced in [11]. As far as we know, this is the first theorem prover for these stronger logics of the Lewis’ family.
We have compared the performance of tuCLEVER with those of VINTE, a
theorem prover for the weaker Lewis’ logics, and we have observed that the
performance of tuCLEVER are promising. We aim at extending our performance
evaluation by considering other significant schemas of valid formulas: as an
example, we plan to consider valid formulas obtained by the translations of the
rules $R_{n,m}$ of the sequent calculus for V according to the translation from rules to
axioms described in [17]. Furthermore, we aim at comparing the performance of
tuCLEVER also with those of other provers for conditional logic, like CondLean [21],
GOALD UCK [20], and NESCOND [22, 23]. As already mentioned, the theorem
prover CSLLean [2] implements a labelled calculus for the logic of Comparative
Concept Similarity over minspaces, which is equivalent to logic VCU: we aim
at comparing tuCLEVER with CSLLean, by repeating tests both over randomly
generated formulas and over valid VCU formulas.

Finally, we are currently working on extending tuCLEVER in order to handle
countermodel generation for unprovable formulas: intuitively, given a failed proof,
tuCLEVER checks another Prolog predicate essentially implementing the same
clauses of `prove`, with the objective of finding an open, saturated branch, following
the line of the theorem provers for Lewis’ logics of counterfactual reasoning [6, 7].
Clauses introducing a branch in the computation, i.e. those implementing
rules with two premises, are split in two clauses, each one considering a single
branch. The last clause of this additional Prolog predicate will check whether
the hypersequent is not an instance of the initial sequents: in this way, this
predicate will succeed if and only if (i) no rule of the calculi is further applicable
(ii) the hypersequent does not contain a valid extended sequent, therefore a model falsifying it can be extracted from the sequent itself.

References

Acknowledgements

This work is partially supported by the Projects TICAMORE ANR-16-CE91-0002-01, WWTF project MA16-28, and INDIM-GNCS “METALLIC #2” INDIM-GNCS Project 2020.