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Sorbonne Université and CNRS UMR 7589, 4 place Jussieu, 75252 Paris Cedex 05, France

2Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany
3Laboratoire de Physique des Solides, CNRS UMR 8502,
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We report on the study of the non-trivial Berry phase in superconducting multiterminal quantum dots biased
at commensurate voltages. Starting with the time-periodic Bogoliubov-de Gennes equations, we obtain a tight
binding model in the Floquet space, and we solve these equations in the semiclassical limit. We observe that
the parameter space defined by the contact transparencies and quartet phase splits into two components with
a non-trivial Berry phase. We use the Bohr-Sommerfeld quantization to calculate the Berry phase. We find
that if the quantum dot level sits at zero energy, then the Berry phase takes the values ϕB = 0 or ϕB = π . We
demonstrate that this non-trivial Berry phase can be observed by tunneling spectroscopy in the Floquet spectra.
Consequently, the Floquet-Wannier-Stark ladder spectra of superconducting multiterminal quantum dots are
shifted by half-a-period if ϕB = π . Our numerical calculations based on Keldysh Green’s functions show that
this Berry phase spectral shift can be observed from the quantum dot tunneling density of states.

I. INTRODUCTION

The geometric phase is a general concept common to
both classical and quantum physics1. In a quantum sys-
tem, the wave function can accumulate a geometric phase,
also called Berry phase, following cyclic adiabatic evolu-
tion around the phase space origin2–6. Over the years, the
Berry phase has been extensively studied both theoretically
and experimentally5,6 as it can provide deep insight on fun-
damental problems in qubits7–10, topological insulators11,
skyrmions12, single and bilayer graphene13–16, molecular
physics17, Bose-Einstein condensates18,19 to cite but a few.

Recently, superconducting multiterminal devices have trig-
gered broad interest owing to many exotic phenomena un-
covered in these systems, like emergence of Majorana
fermions20–22, topological states associated to zero-energy
Andreev Bound States (ABS) and Weyl singularities23–27,
or new correlations among pairs of Cooper pairs so-called
quartets28–32. As a new kind of elementary process, the quar-
tets appear when the leads are driven by commensurate volt-
ages in a three-terminal geometry (see Fig. 1) and occur as
the differential resistance features30,32 theoretically predicted
in Ref. 28. Moreover, in the case of superconducting quan-
tum dots (QD), we have lately demonstrated that the nontriv-
ial ABS time-periodic dynamics yields sharp resonances in
the Floquet energy spectrum33,34. Interestingly, these Floquet-
Wannier-Stark (FWS) ladders in the presence of quartets ex-
hibit Landau-Zener-Stückelberg interference patterns34–36.

In this Article, we present analytical calculations of the
FWS ladder spectrum in superconducting multiterminal QD,
in the limit of small dc voltage bias. In this limit, we can use
the semiclassical approximation, which shows that the FWS
spectrum is controlled by the value of a Berry phase. We find
that, if the quantum dot level sits at zero energy, a non-trivial
Berry phase ϕB = π can develop under commensurate voltage
biasing on the quartet line. We obtain the Bohr-Sommerfeld

quantization condition by matching the semiclassical wave-
functions between the different pieces of the classical trajec-
tories in phase space. We use the quartet phase and super-
conducting contact transparencies as a parameter space which
is divided in two regions with ϕB = 0 and ϕB = π , separated
by a hypersurface on which the gap closes between the dy-
namically generated Andreev bands. Finally, we confirm our
analytical theory by obtaining evidence for the characteristic
half-a-period spectral shift in the FWS ladder spectrum for
ϕB = π , from a numerical calculation of the quantum dot tun-
nel density of states.
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FIG. 1: (a) A superconducting three-terminal QD biased on the quar-
tet line at voltages Va,b = ±V and Vc = 0, with in addition a tunnel-
contacted normal lead to probe the quantum dot density of states. (b)
The values of (ϕa(t),ϕb(t)) during one period of Josephson oscilla-
tions. Commensurate bias voltage implies that (ϕa,ϕb) encloses a
cycle on a two-dimensional torus.

This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian used as a model of multiterminal supercon-
ducting quantum dots. We develop a tight binding model in
Floquet space for these systems in section III. The adiabatic
limit, relevant for small dc voltage biases, is presented in sec-
tion IV, in which the FWS spectrum is shown to depend on
a Berry phase. This phase is controlled by a winding num-
ber, whose phase diagram in parameter space is shown. The
tunneling spectra together with the numerical results on the
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shifted FWS ladder induced by the non-trivial Berry phase are
presented in Sec. V. Summary and perspectives are provided
in Sec. VI. The Appendix gives a detailed presentation of
semi-classical calculations, aimed at evaluating the first non-
analytic corrections in ∆/V , which arise from Landau-Zener-
Stückelberg transitions between the two FWS ladders origi-
nating from the two ABS bands.

II. HAMILTONIAN

We consider in this paper a quantum dot coupled to N su-
perconducting leads, which are biased at commensurate dc

voltages Vi (1 ≤ i ≤ N). We write Vi = siV where si is an
integer (see Fig. 1). For example, in the so-called quartet con-
figuration, we have N = 3, and si = 0,±1.

The Hamiltonian of the superconducting-quantum dot takes
the following form:

H(t) = H0 +HJ(t), (1)

where H0 is the BCS Hamiltonian for the superconducting
leads, and HJ(t) describes the tunneling processes between
these reservoirs and the quantum dot. Specifically:

H0 =
N

∑
j=1

∑
σ

∫ dDk
(2π)D

(
ε( j,k)c†

σ ( j,k)cσ ( j,k)+∆ jc
†
↑( j,k)c†

↓( j,−k)+∆
∗
jc↓( j,−k)c↑( j,k)

)
(2)

HJ =
N

∑
j=1

J j ∑
σ

∫ dDk
(2π)D

(
e−is jω0tc†

σ ( j,k)dσ + eis jω0td†
σ cσ ( j,k)

)
. (3)

Here c†
σ ( j,k) and cσ ( j,k) are creation and annihilation op-

erators for an electron on reservoir j with momentum k and
spin σ along the quantization axis. The corresponding oper-
ators on the dot are denoted by d†

σ and dσ . The dimension D
of the reservoirs is denoted by D (with D = 3 in all numerical
calculations). The basic frequency ω0 is associated to single
electron tunneling processes, and it is equal to ω0 = eV/h̄. We
have ω0 = ωJ/2, where ωJ is the Josephson frequency associ-
ated to V . For simplicity, we assume that the superconducting
gaps in all reservoirs take the same value ∆, and we use the
notation ∆ j = ∆eiϕ j .

III. FLOQUET QUASI-PARTICLE OPERATORS

A. Reduction to a 1D chain

After eliminating the superconducting leads, the Floquet
theory of the time-periodic Bogoliubov-de Gennes equations
produces an effective one-dimensional (1D) tight binding

model for the two-component Nambu spinors Ψm describing
the part of the wave-function located on the dot. Here, we de-
scribe the corresponding demonstration of the 1D tight bind-
ing model.

The Hamiltonian given by Eqs. (1)-(3) is quadratic in the
basic fermion operators. Then, the many-body problem re-
duces to the simpler time-dependent Bogoliubov-de Gennes
equations

i
d
dt

Γ
†(t) = [H(t),Γ†(t)], (4)

where Γ†(t) denotes a quasi-particle creation operator. Be-
cause the Hamiltonian is periodic in time with period T =
2π/ω0, the Floquet theorem leads to

Γ
†(t +T ) = e−iET/h̄

Γ
†(t). (5)

Taking the hermitian conjugate of Eq. (4) leads to another Flo-
quet solution Γ(t), with E changed into its opposite.

The Fourier series of Γ
†
σ (t) is the following:

Γ
†
σ (t) = e−iEt/h̄

∑
m∈Z

e−imω0t

(
umd†

σ +σvmd−σ +
N

∑
i=1

∫ dDk
(2π)D (um(i,k)c†

σ (i,k)+σvm(i,k)c−σ (i,k))

)
, (6)

where E is the Floquet quasi-energy. Substituting into Eq. (4) leads to

(E +mω0− ε(i,k)+ iη)um(i,k) = ∆ivm(i,k)+ Jium−si(7)
(E +mω0 + ε(i,k)+ iη)vm(i,k) = ∆

∗
i um(i,k)− Jivm+si ,(8)
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and

(E +mω0 + iη)um =
N

∑
i=1

Ji

∫ dDk
(2π)D um+si(i,k) (9)

(E +mω0 + iη)vm = −
N

∑
i=1

Ji

∫ dDk′

(2π)D vm−si(i,k). (10)

Here, we have introduced a small positive imaginary part η

to the quasi-energies. Eliminating the amplitudes in the reser-
voirs using Eqs. (7), (8), and substituting into Eqs. (9), (10)

leads to

(E +mω0 + iη)um−
N

∑
i=1

J2
i U (i)

m = 0 (11)

(E +mω0 + iη)vm−
N

∑
i=1

J2
i V (i)

m = 0, (12)

where

U (i)
m = g(i)11(E +(m+ si)ω0)um−g(i)12(E +(m+ si)ω0)vm+2si (13)

V (i)
m = −g(i)21(E +(m− si)ω0)um−2si +g(i)22(E +(m− si)ω0)vm. (14)

Later, we will make extensive use of the linear operator act-
ing on the collection of amplitudes um, vm, which appears on
the left hand side of Eqs. (11), (12). This operator will be de-
noted by L (E). We have shown in a previous work34 that all
single particle creation and annihilation operators can be ex-
pressed in terms of the resolvent operator R(E) = L (E)−1.
The function g(i)ab(ω) is the Fourier transform of the retarded

Green’s function g(i)ret(t) of the isolated reservoir i on the tun-
neling site connected to the dot, defined as

g(i)ret(t)=−i

(
{Ψi,σ (t),Ψ

†
i,σ (0)} σ{Ψi,σ (t),Ψi,−σ (0)}

σ{Ψ†
i,−σ

(t),Ψ†
i,σ (0)} {Ψ

†
i,−σ

(t),Ψi,−σ (0)}

)

for t > 0 and g(i)ret(t) = 0 for t < 0. Here Ψiσ =
∫ dDk′

(2π)D cσ (i,k′).
Explicitely, assuming that ℑω > 0, we have:

g(i)(ω) =
∫ dDk′

(2π)DD(ω, i,k′)

(
ω + ε(i,k′) ∆i

∆∗i ω− ε(i,k′)

)

where D(ω, i,k′) = ω2− ε(i,k′)2−|∆i|2.
Let us introduce the family of two-component spinors

Ψm = (um,vm)
T , labeled by m. We focus on the case of three

reservoirs (N = 3), with dc bias voltages in the quartet config-
uration: sa = −1, sb = 1, and sc = 0. In this case, the homo-
geneous Eqs. (11) and (12) take the form

M0(m)Ψm−M+(m+1)Ψm+2−M−(m−1)Ψm−2 = 0, (15)

The off-diagonal terms in m are second order Andreev re-
flection processes between the dot and the reservoirs, which
explains why m is coupled to m± 2. The expanded forms of

the matrices M0(m) and M±(m) are presented in the following
subsection.

B. Explicit forms of M0(m) and M±(m)

Now, we provide the expression of the the matrices M0 and
M± [see Eq. (15)]. To simplify the discussion, we assume a
constant density of states ρ0 in the normal state. We take the
Fermi energy at εF = 0, and assume an infinite bandwidth,
which implies exact particle-hole symmetry in the leads. This
suggests to introduce the integral

I(E) = ρ0

∫
∞

−∞

dε

E2−|∆|2− ε2 . (16)

Here, we are interested in the retarded Green’s function, and
an infinitesimal positive imaginary part is added to energy E.
Then, Eq. (16) takes the form

I(E) =
−πρ0√
|∆|2−E2

, E2 < |∆|2 (17)

I(E) =
−iπρ0√
E2−|∆|2

sign(E), E2 > |∆|2. (18)

The retarded Green’s function is then given by

g(ω) = I(ω)

(
ω ∆

∆∗ ω

)
.

Let us now give explicit expressions for the M0(m) and M±(m) matrices introduced in Eq. (15). The matrices depend also on
the energy E. We introduce the variable ξ = mω0, where ω0 = eV/h̄. The density of states in reservoir j is denoted by ρ0, j. It
is also convenient to define Γ j = πρ0, jJ2

j . We assume ∆ j = ∆eiϕ j . Global gauge invariance allows us to set ϕc = 0. In the case
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|E +ξ |< ∆, we have:

M0(m) =

 (E +ξ )

(
1+ ∑ j Γ j√

∆2−(E+ξ )2)

)
− Γc∆√

∆2−(E+ξ )2)

− Γc∆√
∆2−(E+ξ )2)

(E +ξ )

(
1+ ∑ j Γ j√

∆2−(E+ξ )2)

)
 (19)

M+(m) =

 0 Γb∆eiϕb√
∆2−(E+ξ )2)

Γa∆e−iϕa√
∆2−(E+ξ )2)

0

 , and M−(m) =

 0 Γa∆eiϕa√
∆2−(E+ξ )2)

Γb∆e−iϕb√
∆2−(E+ξ )2)

0

 . (20)

In the case |E +ξ |> ∆, these expressions become

M0(m) =

 (E +ξ )

(
1+ i ∑ j Γ j√

(E+ξ )2−∆2

)
− iΓc∆√

(E+ξ )2−∆2

− iΓc∆√
(E+ξ )2−∆2

(E +ξ )

(
1+ i ∑ j Γ j√

(E+ξ )2−∆2

)
 (21)

M+(m) =

 0 iΓb∆eiϕb√
(E+ξ )2−∆2

iΓa∆e−iϕa√
(E+ξ )2−∆2

0

 , and M−(m) =

 0 iΓa∆eiϕa√
(E+ξ )2−∆2

iΓb∆e−iϕb√
(E+ξ )2−∆2

0

 (22)

From these matrices, we build the 2×2 matrix L0(ξ ,k). This matrix will be used to obtain the classical trajectories according to
det L0(ξ ,k) = 0 in our semiclassical treatment in the forthcoming section. We have:

L0(ξ ,k) =

 (E +ξ )

(
1+ ∑ j Γ j√

∆2−(E+ξ )2)

)
− (Γaei(ϕa−k)+Γbei(ϕb+k)+Γc)∆√

∆2−(E+ξ )2)

− (Γae−i(ϕa−k)+Γbe−i(ϕb+k)+Γc)∆√
∆2−(E+ξ )2)

(E +ξ )

(
1+ ∑ j Γ j√

∆2−(E+ξ )2)

)
 , if |E +ξ |< ∆ (23)

L0(ξ ,k) =

 (E +ξ )

(
1+ i∑ j Γ j√

(E+ξ )2−∆2

)
− i(Γaei(ϕa−k)+Γbei(ϕb+k)+Γc)∆√

(E+ξ )2−∆2

− i(Γae−i(ϕa−k)+Γbe−i(ϕb+k)+Γc)∆√
(E+ξ )2−∆2

(E +ξ )

(
1+ i∑ j Γ j√

(E+ξ )2−∆2

)
 , if |E +ξ |> ∆. (24)

They explicitly depend on the quasiparticle Floquet energy
E, but only via the combination E +mω0, where ω0 = eV/h̄.
This allows us to interpret Eq. (15) as the Schrödinger equa-
tion for a 1D Floquet tight-binding Hamiltonian which con-
tains a fictitious uniform electric field ω0, related to the en-
ergy −mω0 of the Cooper pairs transmitted by Andreev re-
flection in the superconducting leads. For such tight-binding
models38,39, the energy spectrum consists of several Wannier-
Stark ladders, each containing equally spaced levels separated
by h̄ω0. In addition, for the superconducting-QD of inter-
est, the Floquet states are connected by multiple Andreev re-
flections to the superconducting quasiparticle continua in the
leads, if |E + mω0| > ∆ (with ∆ the superconducting gap).
This provides a finite life-time (or equivalently a finite spectral
width) to the FWS resonances33,34.

IV. ADIABATIC APPROXIMATION

A. Zero voltage limit

In a three-terminal superconducting-QD, the condition for
emergence of quartets is set by commensurate voltage biasing
(Va ,Vb,Vc) = (V,−V, 0) on the superconducting leads Sa, Sb
and Sc

28. The matrices M0(m) and M±(m) no longer depend
on m in the “classical” limit V = 0. We can then use Bloch
theorem to solve Eq. (15), which produces plane-wave solu-
tions Ψm = exp(ikm/2)Ψ. The wave vector k appears as a
free parameter and it can be physically interpreted by not-
ing that the adiabatic approximation for the time-dependent
problem becomes exact if V → 0. These plane-wave so-
lutions correspond to the quasiparticle operators for static
Bogoliubov-De Gennes Hamiltonians with the superconduct-
ing order-parameter phases given by

ϕ j(k) = ϕ j + s jk, (25)
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where s j =±1, 0 according to the voltage Vj =±V, 0 on lead
S j. The doublet of ABS bands has then energy dispersion
relation E = ±EA(k), which is a 2π-periodic function of the
analogous wave-vector k. The first task here is to calculate
this dispersion relation, including self-energy corrections due
to the reservoirs. It is easy to show that it is determined by
solving the equation:

det(L0(ξ = 0,k)) , (26)

where E = ±EA(k) lies inside the superconducting gap, so
Eq. (23) has to be used to define the two by two matrix L0.

B. Andreev bound-state dispersion relation

In our three terminal setting biased in the quartet configu-
ration, Eq. (26) takes the form

f (x) =±|Γ(k)|
∆

(27)

with x = EA(k)/∆, f (x) = x(
√

1− x2 + c), c = ∑ j Γ j/∆,
and Γ(k) = Γaei(ϕa−k) + Γbei(ϕb+k) + Γc, using a gauge in
which ϕc = 0. This provides an implicit determination of
EA(k). Since this equation is valid inside the BCS gap in
the reservoirs, it requires that |x| < 1. When x increases
from 0, f (x) first increases, it reaches a maximum at x =
xM , and then decreases until x = 1. Explicitely, xM =√

4− c2 + c
√

8+ c2/
√

8. In the tunnel limit, c� 1, xM '√
2/2. We have the useful inequality:

0 <
|Γ(k)|

∆
≤ c = f (1). (28)

Note that |Γ(k)|/∆ = c only if exp(i(ϕa− k)) = 1 =
exp(i(ϕb + k)), which implies that ϕq = ϕa +ϕb = 0 mod 2π .
When ϕq 6= 0 mod 2π , for any k, there is a unique solution to
Eq. (27) with 0 < x(k)< xM . Some examples of ABS disper-
sion relations are shown as the magenta curves on panels (b)
and (d) of Fig. 4 in the Appendix.

In the tunnel limit, when Γ j� ∆, solutions of Eq. (27) sat-
isfy |x(k)| � 1, and f (x) can be well approximated by its
tangent near the origin, i.e. f (x) ' cx. This approximation
amounts to neglecting the energy dependence of self energy
corrections, at least in the subgap region, and we will use it
quite often in the following discussions. This corresponds to
making the following approximation:

L0(ξ = 0,k)'

(
(1+ c)E −Γ(k)
−Γ(k)∗ (1+ c)E

)
(29)

In this case, Eq. (27) becomes:

EA(k) =±
|Γ(k)|
1+ c

(30)

The gap between the two Andreev bound-state bands closes
when there is at least one value of k such that x(k) = 0, which

requires Γ(k) = 0. For this to happen, the triangular inequality
|Γa−Γb| ≤ Γc ≤ Γa +Γb has to be satisfied [see the shaded
inner triangle on Fig. 2]. If this is the case, there are two an-
gles α and β , lying in ]−π,π[, whose values depend on Γ j’s,
such that x(k) = 0 if and only if (ϕa− k,ϕb + k) = ±(α,β ).
This shows that, generically (precisely when Γa 6=Γb), the gap
closes for two different values of ϕq =±(α +β ). For each of
them, there is a unique value of k such that x(k) = 0. The gap
closes at ϕq = 0 mod. 2π if Γa = Γb and α + β = 0 mod.
2π , and there are two values of k such that x(k) = 0. This gap
closing condition can be formulated as follows in the generic
case Γa 6= Γb or ϕq 6= 0 mod. 2π: the gap closes if Γc = Γ

(0)
c ,

with

Γ
(0)
c =

|Γ2
a−Γ2

b|√
Γ2

a +Γ2
b−2ΓaΓb cosϕq

. (31)

This relation is represented by the magenta datapoints on
Fig. 2.

FIG. 2: Ternary diagram for the gap closing condition: The nodal
lines, displayed in magenta and calculated for ϕq/2π = 0.2, repre-
sent the values of the parameters for which the gap between the two
Andreev bound state bands vanishes [see Eq. (31)]; below these two
lines, the Berry phase takes the value ϕB = π . The smaller shaded
inner triangle shows all the possible values of the nodal lines when
0 < ϕq/2π < 1.

C. Floquet energies in the adiabatic limit

In the adiabatic limit, the solution of the time-dependent
Bogoliubov-de Gennes Eq. (4) is well approximated by:

Γ
†(t) = e−iϕ(t)

Γ
†
A(t), (32)

where Γ
†
A(t) is a quasiparticle creation operator associated

to the Andreev bound-state for the Hamiltonian H(t). This
means that Γ

†
A(t) satisfies:

[H(t),Γ†
A(t)] = EA(t)Γ

†
A(t). (33)
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The physical time variable t is directly related to the the wave-
vector k discussed earlier by k = 2ω0 t = ωJ t. As usual4, the
phase-factor ϕ(t) is the sum of two contributions, a dynamical
phase ϕd and a geometrical phase ϕg. As always:

ϕd =
1
h̄

∫ t

0
EA(t ′)dt ′. (34)

The geometrical phase ϕg depends generically on an arbitrary
choice of phases for the instantaneous quasi-particle operators
Γ

†
A(t), excepted when the system Hamiltonian at time t is the

same as at t = 0, in particular when t is equal to the Josephson
period TJ = 2π/ωJ . In this case, ϕg is gauge invariant, and is
an example of a Berry phase ϕB.

To evaluate this Berry phase, we have to describe in more
detail how the quasi-particle operators Γ

†
A(k) vary as k evolves

from −π to π . Writing:

Γ
†
Aσ

(k) = u(k)d†
σ +σv(k)d−σ + ..., (35)

where the dots refer to virtual contributions from the super-
conducting reservoirs, and the spinor χ(k) = (u(k),v(k))T is
a nul eigenvector for L0(ξ = 0,k), i.e. L0(ξ = 0,k)χ(k) = 0,
with E = EA(k) in L0(ξ = 0,k). From Eq. (29), we see that
the Nambu spinor χ(k) associated to the dot is subjected to a
fictitious magnetic field lying in the x− y plane and oriented
along Γ(k) (after identifying complex numbers with points in
the x− y plane in the usual way). As k runs from −π to π ,
Γ(k) describes an ellipse E around the origin of the complex
plane. For such closed path, the winding number w is defined
as

α(π)−α(−π) = 2πw, (36)

where Γ(k) = |Γ(k)|eiα(k). Correspondingly, the pseudo-spin
associated to the Nambu spinor χ(k) performs w turns around
the equator on the Bloch sphere, which induces a Berry
phase ϕB ≡−wπ4. The appearance of Berry phases in multi-
component WKB equations has been pointed out by many au-
thors, both in the mathematics42 and in the physics43,44 com-
munities. In this specific model, when the dot level lies ex-
actly at zero energy, ϕB takes only two values: 0 or π modulo
2π .

At this point, we should emphasize that this quantization is
not robust. A finite gate voltage acting on the the dot adds a
term proportional to the Pauli matrix σ z in L0(ξ = 0,k). As
a result, the spinor χ(k) is no longer confined to the equator,
but to a constant altitude circle on the Bloch sphere. In this
situation, the Berry phase is now equal to wζ , where ζ = π

at zero gate voltage, and departs from π linearly at small gate
voltage.

We have w = 0 so ϕB = 0 when the origin of the complex
plane is not inside the ellipse E , and w = ±1 so ϕB = ±ζ

otherwise. This implies that ϕB jumps from 0 to±ζ , precisely
at the point in parameter space where the minimum over k
of |Γ(k)| vanishes. Interestingly, we always have ϕB ≡ ±ζ

in the two-terminal case, so that the third terminal biased is
necessary in order to observe the jump of the Berry phase from
±ζ to 0.

A cautious reader may worry that the Berry phase might
be sensitive to virtual contributions from the superconduct-
ing reservoirs, whose existence is reminded by the dots in
Eq. (35). In fact, such virtual contributions are fully taken into
account through the self-energies, which appear in the expres-
sion (23) for L0(ξ ,k). So the previous discussion of the Berry
phase does take into account these virtual contributions.

The Berry phase ϕB manifests itself on the Floquet spec-
trum, as we request that the quasiparticle operator Γ†(t)
should satisfy the periodicity condition

Γ
†(t +TJ) = e−iETJ Γ

†(t). (37)

This leads to

ϕd(TJ)+ϕB = ETJ +2πn, (38)

where n is an arbitrary integer. Because ϕd(TJ) = 〈EA〉TJ ,
where 〈EA〉 denotes the Andreev bound-state energy averaged
over one period, this leads to the following Bohr-Sommerfeld
type formula:

E = 〈EA〉− (2n+w
ζ

π
)ω0 (39)

Because of the charge conjugation symmetry of the
Bogoliubov-de Gennes equations, applying hermitian conju-
gation to Γ†(t) produces a second Wannier-Stark ladder in
which E is replaced by−E modulo ωJ . At the level of the adi-
abatic approximation presented in this subsection, these two
Wannier-Stark ladders remain decoupled.

D. Floquet spectrum beyond the adiabatic limit

Going beyond the adiabatic approximation does induce
some coupling, and physically, this coupling corresponds to
Landau-Zener transitions between the two Andreev bound-
state bands. A natural way to capture them is to go back to
the general Floquet formulation presented in section III. At
small dc voltage bias, the linear potential term mω0 entering
in Eqs. (7) to (10) is small, so the difference equation (15)
can be treated by the WKB method. Since this is a standard
method, and given that explicit calculations are a bit tedious,
we have relegated this contribution to the Appendix. Interest-
ingly, the shift in the Floquet spectra induced by a non trivial
Berry phase is still present at intermediate voltages (compared
to the superconducting gap). To cover the full range of possi-
ble voltages, a full numerical calculation is necessary, whose
results will be presented on Fig. 3 below.

V. TUNNELING SPECTRA CALCULATIONS

Here, we would like to illustrate our prediction by exploring
the FWS ladder spectra under the presence of the non-trivial
Berry phase. We evaluate the spectra which could possibly
be measured in a superconducting multiterminal quantum dot
with an additional tunneling probe, as depicted in Fig. 1.
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FIG. 3: Tunnel spectroscopy of the Berry phase: The figure features the logarithm of the local density of states on the quantum dot (in
colorscale) as a function of inverse voltage ∆/eV (x-axis) and tunnel probe bias voltage eVtun/∆ (y-axis). The Berry phase is ϕB = 0 on panel
(a), and ϕB = π on panel (b). The tunnel spectra reveal the Floquet-Wannier-Stark ladders, and they are compared to the tilted white lines
which correspond to w = 0 in Eq. (B17). The half-a-period shift appearing on panel (b) is signature of nontrivial Berry phase ϕB = π , while
ϕB = 0 for the nonshifted tunnel spectrum on panel (a). The three-terminal superconducting-QD has Γa/∆ = 0.4, Γb/∆ = 0.2 and ϕq = 0, with
(a) Γc/∆ = 1.0 and (b) Γc/∆ = 0.3.

A. Tunneling density of states

One way to detect FWS ladders is to perform local tun-
neling spectroscopy on the dot. For this, we tunnel-couple a

normal probe to the quantum dot. The differential tunneling
conductance is given by:

∂ Itun(t)
∂Vtun

=−e2
∫

∞

−∞

dω

2π
J2

tun(ω) f ′FD(ω + eVtun)∑
n

i
(
GR

d (ω)n−GR
d (ω)∗−n

)
e−inω0t . (40)

Here, J2
tun(ω) is the Fermi golden rule squared tunneling am-

plitude times the density of states in the normal probe at en-
ergy ω , and f ′FD(ω) is the derivative of the Fermi-Dirac distri-
bution. Because of the periodic time dependence of the BCS
Hamiltonian, the tunneling current Itun(t) is also periodic in
time. GR

d (ω)n is the Fourier transform of the retarded Green’s

function on the dot, defined explicitely as:

GR
d (t, t

′) =
∫

∞

−∞

dω

2π
∑
n

GR
d (ω)ne−iω(t−t ′)e−inω0t . (41)
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In fact, GR
d (ω)n is directly related to the resolvent operator

defined earlier through GR
d (ω)n = R(ω)n,0. The dc tunneling

current takes a particularly simple form:

∂ Itun

∂Vtun
= 2e2

∫
∞

−∞

dω

2π
J2

tun(ω) f ′FD(ω + eVtun)ℑGR
d (ω)n=0.

(42)
Finally, in the zero temperature limit, we obtain:

∂ Itun

∂Vtun
=−2e2J2

tun(−eVtun)ℑGR
d (ω)n=0. (43)

B. Numerical results

These results raise the question of the possible experimen-
tal observation of these effects. Recently, we have shown that
finite frequency noise measurements provide an experimental
access to differences En−En′ between two FWS quasi-energy
eigenvalues 34. This is interesting to evidence level repulsion
induced by Landau-Zener-Stückelberg inter ladder tunneling
processes, but this noise spectroscopy is not sensitive to the
global shift of the FWS spectrum induced by Berry phase
jumps. Therefore, we propose to perform tunnel spectroscopy
on the quantum dot [see Fig. 1(a)]. The differential dc-tunnel
conductance through the dot directly probes the FWS ladder
density of states. Fig. 3 shows two tunnel spectra, one for
ϕB = 0 [panel (a)], and the other one for ϕB = π [panel (b)].
The global shift associated to a Berry phase jump is clearly
visible in Fig. 3 while comparing in both cases the numerical
tunnel spectra to the tilted reference white line corresponding
to w= 0 in Eq. (B17). For further details on the numerical cal-
culation of the resolvent, see Section III in the Supplemental
Material37.

VI. SUMMARY AND PERSPECTIVES

To conclude, we have shown that, in superconducting mul-
titerminal QD, a non-trivial Berry phase ϕB can appear on
the quartet line at commensurate voltages. Via semiclassical
calculations, we have demonstrated that the parameter space
splits into two regions with ϕB = 0 or ϕB = π , separated by
a hypersurface on which the gap between the Andreev bands
closes. We have seen that the FWS spectrum is controlled by
the Berry phase. The non-trivial Berry phase can be revealed
by probing the density of states of the quantum dot in a tun-
neling spectroscopy experiment. Our numerical calculations
directly show that the FWS ladder spectra is shifted by half-a-
period when ϕB = π , as compared to ϕB = 0. While our cal-
culations are performed when the superconducting quantum
dot level sits at zero energy, one may expect to continuously
tune the Berry phase by changing the energy of the dot, for
example via electrostatic gating.
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Appendix A: Local semi-classical solutions

1. General idea

A small bias voltage V plays formally the role of
Planck’s constant h̄ in the Wentzel–Kramers–Brillouin
(WKB) approximation40. The classical limit h̄ → 0 in
standard quantum mechanics corresponds to eV/∆ → 0 in
superconducting-QD. The semiclassical approximation for
eV � ∆ in superconducting junctions was pioneered by Bra-
tus’ et al.41. In this approximation, the wave-vector k has slow
variations with m. Let us first transform m into a continuous
variable via

ε = 2ω0, mω0 = ξ , (A1)

where ε is a small parameter. Eq. (15) reads

M0(ξ )Ψ(ξ )−M+(ξ +
ε

2
)Ψ(ξ +ε)−M−(ξ−

ε

2
)Ψ(ξ−ε)= 0.

(A2)
The semiclassical Ansatz takes the form

Ψ(ξ ) = ei θ(ξ )
ε χ(ξ ), (A3)

where χ(ξ ) can be expanded in ε according to

χ(ξ ) =
∞

∑
n=0

ε
n
χn(ξ ). (A4)

Assuming that θ(ξ ) and χ(ξ ) have infinitely many deriva-
tives, we can view the linear operator acting on χ(ξ ) in
Eq. (A2) as a differential operator L of infinite order, which
can also be expanded in ε according to

L =
∞

∑
n=0

ε
nLn. (A5)

This leads to an infinite set of equations, from which we keep
the first two of lowest order:

L0χ0(ξ ) = 0 (A6)

L0χ1(ξ )+L1χ0(ξ ) = 0. (A7)
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2. Classical phase-space trajectories

Let us first consider the zero-th order Eq. (A6):

L0(ξ ,θ
′(ξ ))χ0(ξ ) = 0, (A8)

where

L0(ξ ,θ
′(ξ )) = M0(ξ )−M+(ξ )eiθ ′(ξ )−M−(ξ )e−iθ ′(ξ )

(A9)
is a 2×2 matrix. The L0 operator acts on χ0(ξ ) only through
point-wise multiplication, i.e. it does not involve any differen-
tial operator involving the ξ variable. Eq. (A6) has nontrivial
solutions if det L0(ξ ,k) = 0, namely

det
(

M0(ξ )−M+(ξ )eiθ ′(ξ )−M−(ξ )e−iθ ′(ξ )
)
= 0. (A10)

In the general spirit of semiclassical (or WKB) approxima-
tion, we introduce the ξ -dependent wave number k(ξ ) by
k(ξ ) = θ ′(ξ ). Eq. (A10) determines a curve in the (ξ ,k)
plane called the classical trajectory in phase space. Recalling
that, in Eq. (15), E and m enter only through the combination
E +mω0, we see that E and ξ enter Eq.(A10) only through
E +ξ . As a result, this classical trajectory is related in a very
simple manner to the Andreev subbands energy dispersion re-
lation EA(k) by:

E +ξ = σEA(k) (A11)

where σ = ±1 labels the two Andreev subbands. In
Eq. (A11), the total energy E is the sum of the “kinetic term”
σEA(k) arising from the ABS dispersion relation, and the “po-
tential term” −ξ resulting from dc-voltage biasing. Here, the
(ξ ,k) variables are seen as the equivalent position-momentum
phase-space of a fictitious spin-1/2 particle. For a given
choice of E and σ , Eq. (A11) defines a curve TE,σ in this
(ξ ,k) plane, which we call the “classical trajectory” in phase
space. If k is used as parameter, Eq. (A11) implies that ξ (k)
is simply given by the ABS dispersion relation, up to a shift
of ξ by −E. In the time-dependent picture, we have k = ω0t,
and ξ is a periodic function of time, as expected for Bloch
oscillations in the solid-state analog33,34.

Because of Heisenberg’s uncertainty principle, a small bias
voltage induces quantum fluctuations ∆ξ ∆k ∼ eV around
the classical trajectories, and also produces Landau-Zener-
Stückelberg transitions between the two Andreev bands. In
the semi-classical approximation, Landau-Zener tunneling is
captured by paths connecting both classical trajectories TE,+
and TE,−. Along these tunneling paths, ξ is still a real num-
ber but k becomes complex, as it is expected for evanescent
wave-functions in tunneling processes.

The classical trajectories and the tunneling paths are dis-
played in Fig. 4. Two representative sets of parameters are
used in Figs. 4 (a)-(b) and Figs. 4 (c)-(d), differing by the
value of Γc/∆ [i.e. Γ

(a,b)
c /∆ = 0.25 on panels (a), (b) and

Γ
(c,d)
c /∆ = 0.8 on panels (c), (d)], all other parameters be-

ing the same for all panels [i.e. Γa/∆ = 0.4, Γb/∆ = 0.2
and ϕq/2π = 0.1]. Here, Γ j = J2

j /W stands from the con-
tact transparency between the dot and superconducting reser-
voir j, where J j is the corresponding tunnel amplitude and W

Γa/∆=0.4 Γb/∆=0.2, Γc
(a,b)

/∆=0.25, ϕq/2π=0.1
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FIG. 4: Classical trajectories: The figure shows the classical trajec-
tory TE,±, together with the tunneling paths, i.e. the four complex
solutions kα of Eq. (A11) for a given each value of E + ξ . In these
plots, we use the complex variable λα = exp(ikα ). Panels [(a), (c)]
and [(b), (d)] show respectively log10 |λα | and arg(λα )/2π on x-axis.
The y-axis on each panel features E+ξ normalized to the gap ∆. The
dispersion relation EA(k) (in magenta) has two local minima and two
local maxima N (a,b) = 2 in panel (b), as k varies in the interval
−π < k < π . Panel (d) corresponds to a single local minimum and
maximum N (c,d) = 1. The color-code is explained in the text.

the band-width. The variable ϕq = ϕa +ϕb−2ϕc denotes the
time-independent quartet phase.

On all panels (a)-(d) of Fig. 4, the y-axis is E + ξ [see
Eq. (A11)]. On x-axis, panels (a) and (c) feature log10 |λα | and
panels (b) and (d) show arg(λα)/2π , where λα = exp(ikα).
The set of solutions to the discrete homogeneous Eq. (15) has
dimension 4. Then, for each choice of ξ , there are 4 real
or complex solutions k(ξ )mod. 2π of det L0(ξ ,k) = 0. The
magenta curves on Fig. 4 (a)-(d) correspond to ξ and k tak-
ing real values, thus with log10 |λα | = 0. On panels (b) and
(d), the magenta data-points coincide with the ABS disper-
sion relations ±EA(k)/∆. The |E + ξ | > ∆ branches in green
on Figs. 4 (a)-(d) have complex k values, due to the coupling
of the dot level to the quasi-particle continua above the su-
perconducting gap in the leads. The tunneling paths between
the two ABS are shown in blue. Those between the ABS and
quasiparticle branches are shown in orange. The tunneling
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paths connecting the two continua at energies E + ξ < −∆

and E +ξ > ∆ are shown in yellow on panels (c) and (d).

FIG. 5: Ternary diagrams for the number of minima in EA(k): the
domain in parameter space in which the dispersion relation for N =
1 and 2 minima is shown in blue and red respectively, for ϕq/2π =
0.2.

The number N of local minima and maxima in the disper-
sion relation EA(k) changes from N (a,b) = 2 to N (c,d) = 1
as Γc/∆ increases from Γ

(a,b)
c /∆ [panels (a), (b)] to Γ

(c,d)
c /∆

[panels (c), (d)]. The values N = 1, 2 coincide with the
number of tunneling loops between the two Andreev bands.
Indeed, two or a single tunneling loop can be visualized
in blue on Fig. 4 (a) or Fig. 4 (c). The jump in N de-
fines a hypersurface in the 3-dimensional parameter space
(Γa/Γc, Γb/Γc, ϕq), separating the two regions with N =
1, 2. A representative constant-ϕq section of this parameter
space is shown in Fig. 5.

3. N = 1 to N = 2 transition

Now we provide more details on the determination of N
and of the boundary between N = 1 and N = 2 regions in
parameter space. Eq. (27) shows that it is useful to specify
the variations of |Γ(k)| when k varies from −π to π . The
Fourier series |Γ(k)|2 contains harmonics of the form eimk for
|m| ≤ 2, therefore we have two possibilities: either |Γ(k)|2
has two minima and two maxima in [−π,π] (N = 2), or it has
only one minimum and one maximum (N = 1). In the former
case, as ξ increases across a given classically allowed region,
the number of real k(ξ ) values is equal to 2, next 4, and then
2 again. An illustration of this situation is shown on Fig. 4
(b). In the later case, the number of real k(ξ ) values is only
2 throughout each classically allowed region. This shows that
for any value of ξ , there are at least two k(ξ ) values which are
not real. Thus, we obtain a qualitatively simpler situation in
which two complex branches of solutions are decoupled from
the real classical trajectory, as shown by the yellow lines on
panels (c) and (d) of Fig. 4.

These two possible regions with N = 1, 2 are sepa-
rated by a hypersurface in the 3-dimensional parameter space
(Γa/Γc, Γb/Γc, ϕq). Its equation is obtained by imposing that
the first and the second derivatives of |Γ(k)|2 vanish simulta-
neously, which is equivalent to the vanishing of the resultant
for two degree-4 polynomials. A simple geometric interpre-
tation for this hypersurface can be obtained, in spite of the
rather complex corresponding equation. When k varies, Γ(k)
moves along an ellipse E in the complex plane. An extremum
of |Γ(k)|2 occurs when the origin lies on the normal to E at
the Γ(k) point. At the N = 1 to N = 2 transition point, a
minimum and a maximum of |Γ(k)|2 collide, so the origin be-
longs to the intersection of infinitely close normals, i.e. it is
the curvature center of E at Γ(k). So the N = 1 to N = 2
transition occurs when the origin lies on the evolute of E .

4. Dissipative high energy branches

Because of the coupling of the dot levels to quasi-particle
continua, we have two complex branches with ℑk > 0, which
correspond to quickly decreasing solutions at large ξ , and two
branches with ℑk < 0, which generate growing solutions. On
physical grounds, the resolvent operator R(E) will be built
from solutions which decay as ξ →±∞, so we have to choose
the branches with ℑk > 0 as ξ → ∞ and with ℑk < 0 as
ξ → −∞. Let us describe the former with the simplifying
assumption that E + ξ � ∆. From the explicit form of L0
given in Eq. (24), we see that, in this regime, the equation
det L0(ξ ,k) = 0 simplifies and becomes:

exp(2ik) =− ∆2ΓaΓb

(E +ξ )4 exp(i(ϕa−ϕb)), (A12)

which leads to

k = σ
π

2
+

ϕa−ϕb

2
+ i log

(
(E +ξ )2
√

ΓaΓb∆

)
, σ =±1. (A13)

The leading exponential factor in these decaying solutions is:

exp
{
−|E +ξ |

ε

(
log
(
(E +ξ )2
√

ΓaΓb∆

)
−2
)}

(A14)

Exactly at the BCS gap, i.e. if E +ξ =±∆, Eq. (A10) simpli-
fies into

Γ(k)Γ(k∗)∗ = (∑
j

Γ j)
2. (A15)

This equation has no real k solution unless ϕq = 0, and thus,
the vicinity of the BCS gap then lies in the classically forbid-
den regions. For further details on the reflections induced at
gap edges, see Section I in the Supplemental Material37.

5. Non degeneracy condition

Let us consider Eq. (A8). This equation has non trivial so-
lutions χ0(ξ ) when (ξ ,k = θ ′(ξ )) lies on the classical tra-
jectory (extended to complex k-values). A priori, two cases
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are possible. Generically, when det L0(ξ ,k) = 0, the rank
of L0(ξ ,k) is equal to unity, so that the direction of the two
component spinor χ0(ξ ) is unambiguously determined. We
therefore associate a line in C2 to each point (ξ ,k) ∈ R×C
such that L0(ξ ,k) is of rank 1. A less common possibility is
that the rank of L0(ξ ,k) is equal to 0, i.e. L0(ξ ,k) = 0. For
this to happen, we need to have simultaneously E + ξ = 0,
and Γ(k) = Γ(k∗)∗ = 0. Setting λ = eik, this happens when
the polynomials P(λ ) = Γbeiϕbλ 2+Γcλ +Γaeiϕa and Q(λ ) =
Γ∗ae−iϕaλ 2+Γ∗cλ +Γ∗be−iϕb have at least one common root. A
necessary and sufficient condition for this to happen is that
their resultant R vanishes, which reads explicitely:

R = (Γ2
a−Γ

2
b)

2−Γ
2
c(Γ

2
a +Γ

2
b−2ΓaΓb cosϕq) = 0. (A16)

A little algebra shows that R = 0 is possible in two situations:
either the gap between the two Andreev band closes, or the
gap does not close, but we have Γa = Γb < Γc/2 and cosϕq =
1. Except for these particular cases, the solutions of Eq. (A8)
define a smooth line bundle B over the classical trajectory C
(extended to complex k values).

Let us choose a smooth local frame e(ξ ,k(ξ )) for this bun-
dle, i.e. a smooth solution of L0(ξ ,k(ξ ))e(ξ ,k(ξ )) = 0. To
lowest order in the small ε parameter, local semiclassical so-
lutions have the form χ0(ξ ) = f (ξ )e(ξ ,k(ξ )) for so far un-
known smooth scalar functions f (ξ ), i.e. they are smooth
local sections of the bundle B. To determine f (ξ ) requires
more information, which is provided by the first order equa-
tion (A7).

6. Transport equation

To simplify the discussion, we discard the ξ -dependence in
M±(ξ ) by using the approximate forms:

M0(ξ ) =

(
(E +ξ )(1+ c) −Γc

−Γc (E +ξ )(1+ c)

)
(A17)

M+(ξ ) =

(
0 Γbeiϕb

Γae−iϕa 0

)
(A18)

M−(ξ ) =

(
0 Γaeiϕa

Γbe−iϕb 0

)
(A19)

Note that M+ and M− are independent of ξ in this approxima-
tion. This is motivated by the observation that, as explained
in subsection IV B, self energies barely affect the shape of the
real part of the classical trajectory. With this simplification,
the L1(ξ ,k(ξ )) operator is the following:

L1 = (−M+eik +M−e−ik)
d

dξ
− i

2
k′(ξ )(M+eik +M−e−ik).

(A20)

It is convenient to introduce the operator K(ξ ,k(ξ )) =

− i
2 (M+eik(ξ ) −M−e−ik(ξ )). Then, using d/dξ = ∂/∂ξ +

k′(ξ )∂/∂k, we have:

iL1 = 2K +
dK
dξ

. (A21)

We also have a useful relation between K and L0:

dL0

dξ
= (1+ c)I +2k′(ξ )K. (A22)

Eq. (A7) imposes that L1χ0 should be in the image of L0,
which is of rank 1 on the classical trajectory. It is conve-
nient to introduce a left eigenvector frame 〈e(ξ ,k(ξ ))| such
that 〈e(ξ ,k(ξ ))|L0(ξ ,k(ξ )) = 0. Taking Eq. (A21) into ac-
count, the first order equation reads

2〈e|K d
dξ
|χ0〉+ 〈e|

dK
dξ
|χ0〉= 0. (A23)

Geometrically, this defines a connection on the bundle B. An
explicit solution of this equation is derived in Section III of
the Supplemental Material37.

Appendix B: Coupled FWS ladders

Now, we demonstrate the Bohr-Sommerfeld quantization
condition for periodic orbits. Then, we solve the Landau-
Zener-Stückelberg transitions between the Andreev bound
state branches with N = 1 and N = 2 tunneling paths (see
Fig. 2 (c)-(d) and Fig. 2 (a)-(b) respectively).

1. Handling open orbits

There is a domain in parameter space such that the number
of real k(ξ ) values is only 2 throughout each classically al-
lowed region, corresponding to N = 1. The classical orbit is
delimited by the two intervals [ξ1,ξ2] and [ξ3,ξ4], with ξ2 < ξ3
(see Fig. 6). Note that 2E+ξ1+ξ4 = 2E+ξ2+ξ3 = 0. When
k runs from −π to π , on the left piece of the classical trajec-
tory, ξ decreases from ξ5 to ξ1, forming the lower part of
the k2(ξ ) branch. Then ξ increases from ξ1 to ξ2, forming
the full k1(ξ ) branch. Eventually, ξ decreases from ξ2 to ξ5,
forming the upper part of the k2(ξ ) branch. Most notations
are explained on Fig. 6. The semiclassical Ansatz, to lowest
order in ε , amounts to write the wave function in [ξ1,ξ2] as:
Ψ(ξ ) = Ψ1(ξ )+Ψ2(ξ ), with:

Ψ1(ξ ) = a1k′1(ξ )
1/2e

i
ε

∫ ξ

ξ1
k1(ξ

′)dξ ′
e(ξ ,k1(ξ )), (B1)

where e(ξ ,k(ξ )) denotes the right zero eigenvector of
L0(ξ ,k(ξ )) introduced in Section III of the Supplemental
Material37. Because we are dealing with an open classical or-
bit, the k2(ξ ) branch is discontinuous at ξ5, with k(ξ +δξ )−
k(ξ −δξ )→ 2π as δξ → 0+, and thus, we prefer to slightly
postpone the discussion of Ψ2(ξ ). As usual, the turning points
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FIG. 6: Semiclassical wave-function for N = 1: The semiclassical
trajectory TE,− (resp. TE,+) exhibits turning points at ξ1 and ξ2
(resp. ξ3 and ξ4). The wave vector k(ξ ) jumps by 2π at ξ5 and ξ6.
Classical trajectories TE,− and TE,+ are depicted by full lines, and
they are connected by a pair of tunneling paths depicted by dashed
lines. Arrows near turning points indicate either an increasing phase
function θ(ξ ) along classical trajectories, or an increasing modulus
along tunneling paths.

at ξ1 and ξ2 (where two branches meet) need special care. In
the vicinity of ξ1, we have k1(ξ ) = k(ξ1)+ c(ξ −ξ1)

1/2 + ...,
and θ(ξ ) = k(ξ1)(ξ − ξ1)+

2c
3 (ξ − ξ1)

3/2 + ..., where c is a

positive constant. As ξ
>→ ξ1, we have:

Ψ1(ξ )'
a1

(ξ −ξ1)1/4 e
i2c
3ε

(ξ−ξ1)
3/2

Φ1,reg(ξ ), (B2)

with Φ1,reg(ξ ) a smooth function near ξ1.
For Ψ2(ξ ), we can use the same definition as Eq. (B1) for

Ψ1(ξ ), with k1(ξ ) replaced by k2(ξ ), as long as ξ1 ≤ ξ ≤ ξ5.
Near ξ1, we get then:

Ψ2(ξ )'
a2

(ξ −ξ1)1/4 e−
i2c
3ε

(ξ−ξ1)
3/2

Φ2,reg(ξ ). (B3)

The key point here is that Φ1,reg(ξ1) = Φ2,reg(ξ1), so that, as
usual40, we can match the various semiclassical wavefunc-
tions near the turning point at ξ1 using Airy functions. Im-
posing decay in the classically forbidden side ξ < ξ1 leads
to

a1 =−ia2. (B4)

Let us for a moment neglect the tunneling processes be-
tween the two Andreev bands. We would like to apply a sim-
ilar relation for the turning point at ξ2. For this, we need the
leading behavior of Ψ1(ξ ) and Ψ2(ξ ) near ξ2. On the one
hand, we have

Ψ1(ξ )'
a′1

(ξ2−ξ )1/4 e
i2c
3ε

(ξ2−ξ )3/2
Φ̃1,reg(ξ ), (B5)

where

a′1 = a1e
i
ε

∫ ξ2
ξ1

k1(ξ )dξ
. (B6)

For Ψ2(ξ ), we have to address the matching problem across
ξ5. Let us write

Ψ2(ξ ) = a2(−k′2(ξ ))
1/2e

i
ε

∫ ξ

ξ1
k<2 (ξ ′)dξ ′

e(ξ ,k<2 (ξ )) (B7)

if ξ1 ≤ ξ ≤ ξ5, and

Ψ2(ξ ) = a′2(−k′2(ξ ))
1/2e−

i
ε

∫ ξ2
ξ

k>2 (ξ ′)dξ ′e(ξ ,k>2 (ξ )) (B8)

if ξ5 ≤ ξ ≤ ξ2. Here k>2 (ξ )− k<2 (ξ ) = 2π . This leads to

e
i
ε

k>2 (ξ5)ξ = e
i
ε

k<2 (ξ5)ξ (B9)

for ξ = nε , n integer. Then, we obtain

a′2 = (−1)wa2e
i
ε

(∫ ξ5
ξ1

k<2 (ξ )dξ+
∫ ξ2

ξ5
k>2 (ξ )dξ+2πξ5

)
. (B10)

Note that ξ5 is not necessarily an integer multiple of ξ . It is
thus important to keep the last term of the exponential factor
in Eq. (B10). The winding number w around the origin of the
ellipse described by Γ(k) as k increases by 2π . As explained
in the main text, w = 0 if the origin lies outside the ellipse,
and w = ±1 if it lies inside. From the expression of e(ξ ,k)
given in Section III of the Supplemental Material37, we get
e(ξ ,k+2π) = (−1)we(ξ ,k). With this definition of Ψ2(ξ ), it
behaves as follows near ξ2:

Ψ2(ξ )'
a′2

(ξ2−ξ )1/4 e−
i2c
3ε

(ξ2−ξ )3/2
Φ̃2,reg(ξ ). (B11)

As for the turning point near ξ1, Φ̃1,reg(ξ2) = Φ̃2,reg(ξ2), so
matching with Airy functions leads to

a′1 =−ia′2. (B12)

From the matching conditions Eqs. (B4) and (B12), and the
propagation rules for the amplitudes [see Eqs. (B6), (B10)],
we obtain the Bohr-Sommerfeld quantization condition:

(−1)we
i
ε

(∫ ξ5
ξ1

k<2 (ξ )dξ+
∫ ξ2

ξ5
k>2 (ξ )dξ+2πξ5−

∫ ξ2
ξ1

k1(ξ )dξ

)
= 1.

(B13)
This can be recast in a much more appealing way, introduc-
ing 〈ξ 〉σ =

∫
π

−π
dk
2π

ξσ (k), where ξσ (k) denotes the piece of
the classical trajectory such that σ(E + ξσ (k)) > 0, σ = ±1.
Then, the quantization condition becomes:

(−1)wei 2π〈ξ 〉σ
ε = 1. (B14)

The above discussion has considered σ = −1, but the σ = 1
case is completely analogous.

The solution of Eq. (B14) reads:

〈ξ 〉σ = (2n+w)ω0, (B15)
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with n arbitrary integer. To go further, it is useful to recall
Eq. (A11) for the classical trajectories. It can be recast as

E +ξσ (k) = σEA(k), (B16)

where EA(k) is positive and 2π periodic in k. Taking averages
over k, Eq. (B15) becomes:

E = σ〈EA〉− (2n+w)ω0 (B17)

This is the semiclassical form of a single infinite Wannier-
Stark ladder, one for each value of σ . Using this expression
in (B16), we see that quantization selects an infinite discrete
family of classical orbits given by

ξσ (k) = σ(EA(k)−〈EA〉)+(2n+w)ω0. (B18)
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FIG. 7: Semiclassical wave-function for N = 2: The semiclassical
trajectory TE,− (resp. TE,+) exhibits now four turning points. Clas-
sical trajectories TE,− and TE,+ are depicted by full lines, and they
are connected by a pair of tunneling loops depicted by dashed lines.
These tunneling loops are characterized by tunneling amplitudes η1,
η2, and by tunneling phases θ1, θ2. Arrows near turning points in-
dicate an increasing phase function θ(ξ ) along classical trajectories.

2. Tunneling processes: N = 1 case

In the time-dependent picture, Landau-Zener tunneling in-
duces transitions between the two Andreev levels at any fi-
nite voltage. In the Floquet picture, the effective Hamiltonian
becomes time-independent, but with an additional linear po-
tential −ξ . In the classically forbidden regions ξ2 < ξ < ξ3,
Landau-Zener transitions are captured by semiclassical solu-
tions associated to complex k-values. As shown on Fig. 4 (c),
there are two complex k paths connecting the top of the nega-
tive energy Andreev subband to the bottom of the positive en-
ergy Andreev subband. For each ξ such that ξ2 < ξ < ξ3, the

two values of k(ξ ) on these paths are mutually conjugate. Let
us denote by kτ(ξ ) the branch such that the sign of ℑ(kτ(ξ ))
is the sign of τ =±1. Then k+(ξ )= k−(ξ )∗ when ξ ∈ [ξ2,ξ3].

On this interval, it is then natural to write Ψ(ξ ) = Ψ+(ξ )+
Ψ−(ξ ), with

Ψτ(ξ ) = cτ(−iτk′τ(ξ ))
1/2e

i
ε

∫ ξ

ξ2
kτ (ξ

′)dξ ′
e(ξ ,kτ(ξ )). (B19)

Note that Ψ+(ξ ) is a semiclassical solution which decreases
as ξ moves away from ξ2, and which therefore increases as ξ

moves away from ξ3.
However, a closer inspection reveals that this form is not

correctly written because one of the components of the local
frame e(ξ ,kτ(ξ )) diverges as ξ +E→ 0. Indeed, if E+ξ = 0,
we have ρ(k+)ρ(k−) = 0, with ρ(k) = |Γ(k)|. Let us de-
note by τ̃ the value of τ such that ρ(kτ̃) = 0 as E + ξ = 0.
From the expressions given in Section III of the Supplemen-
tal Material37 for the local frame e(ξ ,kτ(ξ )), we see that,
if the definition (B19) holds when ξ2 < ξ < −E, then the
smooth solution matching this one at E + ξ = 0 becomes,
when −E < ξ < ξ3:

Ψτ(ξ ) = τ̃τcτ(iτk′τ(ξ ))
1/2e

i
ε

∫ ξ

ξ2
kτ (ξ

′)dξ ′
e(ξ ,kτ(ξ )). (B20)

From Eqs. (B19) and (B20), we deduce that the connec-
tion on the bundle B has a non trivial holonomy along the
closed path defined by the composition of the two branches
ξ → kτ(ξ ), oriented in such a way that ξ increases from ξ2
to ξ3 (resp. ξ decreases from ξ3 to ξ2) when τ = 1 (resp.
τ = −1). This is a consequence of the presence of an extra
global τ factor in Eq. (B20), which is absent in Eq. (B19).
Taking this relative sign into account , we can write down the
Airy matching conditions on both sides of ξ2 as:

c−
c+

= (2i)
1− (−1)wei 2π〈ξ 〉−

ε

1+(−1)wei 2π〈ξ 〉−
ε

. (B21)

Likewise, across ξ3, we get:

d+
d−

= (2i)
1− (−1)wei 2π〈ξ 〉+

ε

1+(−1)wei 2π〈ξ 〉+
ε

, (B22)

with d± = exp( i
ε

∫ ξ3
ξ2

k±(ξ )dξ )c±. It is convenient to write
d+ = λc+ and d− = (λ ∗)−1c− with |λ | < 1. The Bohr-
Sommerfeld condition takes the form

1− (−1)wei 2π〈ξ 〉−
ε

1+(−1)wei 2π〈ξ 〉−
ε

1− (−1)wei 2π〈ξ 〉+
ε

1+(−1)wei 2π〈ξ 〉+
ε

=−|λ |
2

4
, (B23)

where λ is the strength of the tunneling amplitude associated
to Landau-Zener-Stückelberg processes. The previous version
of the Bohr-Sommerfeld condition [see Eq. (B17) above and
Eq. (39) in the article] is recovered in the limit of vanishingly
small |λ |.

Now, tunneling is treated as a small perturbation. We have
to distinguish between the cases of equal or unequal values of
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exp(2iπ〈ξ 〉+/ε) and exp(2iπ〈ξ 〉−/ε). For equal values, we
find

δEσ = i
ελ 2

4π

1+(−1)wei 2π〈ξ 〉−σ
ε

1− (−1)wei 2π〈ξ 〉−σ
ε

, (B24)

where δEσ is real-valued. The wave function is mostly local-
ized on the σ piece of the classical trajectory.

The situation changes qualitatively in the degenerate case.
The degeneracy is lifted at first order in |λ | according to

δEσ =±σ
ε

2π
|λ |. (B25)

The right-hand side of Eq. (B25) is much larger than its coun-
terpart in Eq. (B24) at small |λ |. This is the analogue of en-
ergy level repulsion, in the setting of Floquet theory for time
periodic Hamiltonians. This phenomenon has already been
reported in our previous numerical study33.

The support of the semiclassical wave function is very dif-
ferent, depending on whether the uncoupled Wannier-Stark
ladders are distinct or degenerate. In the nondegenerate case,
the solutions are strongly localized on one piece σ of the clas-
sical trajectory. In the degenerate case, they are linear super-
positions with equal weights of semiclassical wave functions
associated to both pieces of the classical trajectory. These
superpositions appear clearly in the resolvent when the two
Wannier-Stark ladders are nearly degenerate, as shown in
Fig. 2 of the Supplemental Material37.

3. Tunneling processes: N = 2 case

Let us now consider the case when the function ξ (k) on ei-
ther piece of the classical trajectory has two minima and two
maxima when k increases from −π to π , i. e. N = 2. As
shown on Fig. 4 (a), the two classically allowed regions are
now connected by two tunneling loops. More of the notations
used here are shown in Fig. 7. Imposing the Airy matching
rules at each of the two turning points located at the extremi-
ties of the tunneling loop gives:(

a′2
b′2

)
= S1

(
a′1
b′1

)
,

(
a′4
b′4

)
= S2

(
a′3
b′3

)
, (B26)

with:

S j = i

(
(1−η2

j )
1/2 η je−iθ j

η jeiθ j −(1−η2
j )

1/2

)
(B27)

Denoting by k j,+(ξ ) the tunneling branch with a positive
imaginary part for k, we set λ j = exp( i

ε

∫
k j,+(ξ )dξ ), where

the integral is taken on the j-th tunneling path ( j = 1,2), and
|λ j| � 1 in the small voltage limit. Then, the parameters en-
tering the unitary matrix S j are:

η j =
|λ j|

1+ |λ j |2
4

, eiθ j = τ̃ j
λ j

|λ j|
, (B28)

where τ̃ j =±1. Between the two tunneling loops, we have the
usual semiclassical propagation of amplitudes:(

a′3
b′3

)
= P1

(
a′2
b′2

)
,

(
a′4
b′4

)
= P2

(
a′3
b′3

)
, (B29)

with:

Pj =−i

(
eiϕ jL 0

0 −eiϕ jR

)
. (B30)

The phase factors eiϕ jL and eiϕ jR are expressed in terms of
oscillating integrals of the form exp( i

ε

∫
k(ξ ) dξ ) taken on

appropriate paths. When j = 2, an extra Berry phase factor
(−1)w has to be taken into account. Setting M = P2S2P1S1,
the Bohr-Sommerfeld quantization condition reads:

det(M− I) = 0. (B31)

The entries of M are:

M11 = (1−η
2
1 )

1/2(1−η
2
2 )

1/2eiϕL −η1η2ei(ϕ1R+ϕ2L+θ1−θ2)

M22 = (1−η
2
1 )

1/2(1−η
2
2 )

1/2eiϕR −η1η2ei(ϕ1L+ϕ2R−θ1+θ2)

M12 = η1(1−η
2
2 )

1/2ei(ϕL−θ1)+η2(1−η
2
1 )

1/2ei(ϕ1R+ϕ2L−θ2)

−M21 = η1(1−η
2
2 )

1/2ei(ϕL+θ1)+η2(1−η
2
1 )

1/2ei(ϕ1L+ϕ2R+θ2).

Here, we have introduced ϕL = ϕ1L +ϕ2L, ϕR = ϕ1R +ϕ2R. If
we shift the energy E by δE, Eq. (A11) shows that the clas-
sical trajectory is shifted along the ξ axis by δξ = −δE. A
simple analysis (using integration by parts) of the phase fac-
tors involved in the entries of M shows that M is multiplied by
exp(i 2πδE

ε
). This implies that the Bohr-Sommerfeld quantiza-

tion condition is invariant when E is shifted by integer multi-
ples of ε = 2eV/h̄, and therfore, we get a periodic Wannier-
Stark ladder spectrum.

Let us now treat tunnel amplitudes η1, η2, as small per-
turbations. When these amplitudes vanish (e.g. as the bias
voltage V → 0), Eq. (B31) becomes (eiϕL − 1)(eiϕR − 1) = 0,
and we have two uncoupled ladders, one associated to each
piece of the classical trajectory. When we switch on small
tunneling amplitudes, we have to distinguish between the non-
degenerate case eiϕL 6= eiϕR and the degenerate one. In the for-
mer case, the energy shift δE for the left ladder (we assume
eiϕL = 1) is given by:

2πδE
ε

=
η2

1 +η2
2

2
cot(

ϕR

2
) (B32)

+η1η2
cos(ϕ1L +

ϕ2R−ϕ1R
2 −θ1 +θ2)

sin(ϕR
2 )

The energy shift for the right ladder is given by a similar
expression, after replacing R by L. In the degenerate case
(eiϕL = eiϕR = 1), the degenerate levels are repelled from each
other according to:

2πδE
ε

= ±
(
η

2
1 +η

2
2+ (B33)

+2η1η2 cos(ϕ1L +ϕ2R−θ1 +θ2))
1/2 .
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Here, the new qualitative feature is the presence of interfer-
ences between the two tunneling paths. They appear via the

voltage-dependent phases θ1 and θ2 in Eqs. (B33), (B33). For
an illustration of such interferences, see Fig. 4 (d) in Ref. 34.
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gineering the Floquet spectrum in superconducting multiterminal
quantum dots, Phys. Rev. B 100, 035450 (2019).

35 S.N. Shevchenko, S.Ashhab, and F. Nori, Lan-
dau–Zener–Stückelberg interferometry, Phys. Rep. 492, 1
(2010).

36 E. Dupont-Ferrier, B. Roche, B. Voisin, X. Jehl, R. Wacquez,
M. Vinet, M. Sanquer, and S. De Franceschi, Coherent coupling
of two dopants in a silicon nanowire probed by Landau-Zener-
Stückelberg interferometry. Phys. Rev. Lett. 110, 136802 (2013).

37 The Supplemental Material contains technical details of the ana-



16

lytical calculations.
38 G.H. Wannier, Wave-functions and effective Hamiltonian for

Bloch electrons in an electric field, Phys. Rev. 117, 432 (1960).
39 F. Bentosela, V. Grecchi, and F. Zironi, Oscillations of Wannier

Resonances, Phys. Rev. Lett. 50, 84 (1983).
40 L.D.Landau, E.M. Lifshitz, Quantum Mechanics, Third Ed.,

Butterworth-Heinemann (2008).
41 E.N. Bratus’, V.S. Shumeiko, E.V. Bezuglyi, and G. Wendin, dc-

current transport and ac Josephson effect in quantum junctions at
low voltage, Phys. Rev. B 55, 12666 (1997).

42 V. Guillemin and S. Sternberg, Geometric asymptotics, Mathe-
matical Surveys and Monographs, volume 14, American Mathe-
matical Society (1977), see in particular chapter II.

43 M. Wilkinson, An example of phase holonomy in WKB theory, J.
Phys A: Math. Gen. 17, 3459 (1984).

44 Y. Y. Wang, B. Pannetier, and R. Rammal, Quasiclassical ap-
proximations for almost-Mathieu equations, J. Physique 48, 2067
(1987).


	I Introduction
	II Hamiltonian
	III Floquet quasi-particle operators
	A Reduction to a 1D chain
	B Explicit forms of M0(m) and M(m)

	IV Adiabatic approximation
	A Zero voltage limit
	B Andreev bound-state dispersion relation
	C Floquet energies in the adiabatic limit
	D Floquet spectrum beyond the adiabatic limit

	V Tunneling spectra calculations
	A Tunneling density of states
	B Numerical results

	VI Summary and perspectives
	 Acknowledgments
	A Local semi-classical solutions
	1 General idea
	2 Classical phase-space trajectories
	3 N=1 to N=2 transition
	4 Dissipative high energy branches
	5 Non degeneracy condition
	6 Transport equation

	B Coupled FWS ladders
	1 Handling open orbits
	2 Tunneling processes: N=1 case
	3 Tunneling processes: N=2 case

	 References

