
HAL Id: hal-03080514
https://hal.science/hal-03080514v1

Submitted on 17 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

KD-means: clustering method for massive data based on
kd-tree

Nabil El Malki, Franck Ravat, Olivier Teste

To cite this version:
Nabil El Malki, Franck Ravat, Olivier Teste. KD-means: clustering method for massive data based on
kd-tree. 22nd International Workshop On Design, Optimization, Languages and Analytical Processing
of Big Data - DOLAP 2020 -, Mar 2020, Copenhagen, Denmark. �hal-03080514�

https://hal.science/hal-03080514v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

KD-means: clustering method for massive data based on
kd-tree

Nabil El malki

Capgemini, Université de Toulouse,

UT2J, IRIT(CNRS/UMR5505)

Toulouse, France

nabil.el-malki@capgemini.com

Franck Ravat

Université de Toulouse, UT1,

IRIT(CNRS/UMR 5505)

Toulouse, France

franck.ravat@irit.fr

Olivier Teste

Université de Toulouse, UT2J,

IRIT(CNRS/UMR 5505)

Toulouse, France

olivier.teste@irit.fr

ABSTRACT
K-means clustering is a popular unsupervised classification algo-

rithm employed in several domains, e.g., imaging, segmentation,

or compression. Nevertheless, the number of clusters k, fixed apri-

ori, affects mainly the clustering quality. Current State-of-the-art

k-means implementations could automatically set of the number

of clusters. However, they result in unreasonable processing time

while classifying large volumes of data. In this paper, we propose

a novel solution based on kd-tree to determine the number of

cluster k in the context of massive data for preprocessing data

science projects or in near-real-time applications. We demon-

strate how our solution outperforms current solutions in terms

of clustering quality, and processing time on massive data.

1 INTRODUCTION
Up to now, data clustering, also known as cluster analysis, has

been one of the most important tasks in exploratory data analy-

sis. It is also applied in a variety of applications, e.g., web page

clustering, pattern recognition, image segmentation, data com-

pression and nearest neighbor search [12]. Various clustering

algorithms have been available since the early 1950s. The goal of

data clustering is to classify a set of patterns, points or objects

into groups known as clusters. Data of each group are as similar

as possible to one another, and different groups are as dissimilar

as possible from one another [11]. In this paper, we consider one

of the most widely used data clustering algorithm, i.e., k-means

[6, 8]. Due to its simplicity and understandability, this algorithm

has been popular for more than four decades [11][13]. Given a

set of points 𝑋 = {𝑥1, ..., 𝑥𝑛} where each point is defined in the

d-dimensional space R𝑑 and 𝑘 an integer, k-means aims to parti-

tion 𝑋 into a set of clusters 𝐶 = {𝐶1, ...,𝐶𝑘 } by minimizing the

euclidean distance between the points (data) within each cluster:

𝑘∑
𝑗=1

∑
∀𝑥 ∈𝐶𝑘

| |𝑥 −𝐺𝑘 | |2 (1)

where 𝐺𝑘 the centroid of the cluster 𝐶𝑘 and | |.| | the euclidean
distance. Minimizing this function requires an iterative process

that ends when centroids do not change between two iterations.

This process consists of two steps:

• assigning each point to the nearest centroid using the

euclidean distance;

• recalculating the centroids, i.e., the average of the point

values, of the newly formed clusters.

Disadvantageously, k-means requires that the user should pre-

define the value of 𝑘 . Thus, determining the inaccurate value of

k has a direct negative impact on the clustering quality. Different

©Copyright 2020 for this paper held by its author(s). Published in the proceedings of

DOLAP 2020 (March 30, 2020, Copenhagen, Denmark, co-located with EDBT/ICDT

2020) on CEUR-WS.org. Use permitted under Creative Commons License Attribution

4.0 International (CC BY 4.0).

solutions have been proposed to estimate the relevant number of

clusters 𝑘 [10, 16, 17]. Among the limitations of these solutions,

we show three major ones that challenge their normal process:

• they unroll k-means several times on the same detailed

data. However, k-means has difficulties in scaling because

it has a temporal complexity proportional to 𝑘𝑛𝑡 with 𝑡

the number of iterations [11]. Consequently, in a context

of massive data, repetitive access to data caused by the

repetitive use of k-means on the same data make them

computational time consuming or unusable for applica-

tions that require near-real-time responses;

• they hardly supports overlaped clusters. This problem can

lead to two different cases. i) overestimating the number

of clusters exaggeratedly, compared to the actual number,

thus increasing the processing time significantly. ii) un-

derestimating the value of k, thus producing a very poor

clustering quality;

• if we consider clusters that approach the sphere form,

which k-means identifies, then these k estimation solu-

tions tend to capture clusters of this form. While, in real

data sets, there are also clusters of spherical shapes that are

more or less elongated, approaching the elliptical shape

and its declines. These clusters could also have different di-

rections. We consider a cluster to be strictly spherical if it

represents a perfectly or almost spherical shape. Similarly,

a cluster not strictly or less spherical when it has a shape

that tends towards the elliptical. All these clusters of dif-

ferent sphericity will be called natural clusters. Formally,

when a cluster has a strictly spherical data distribution

then the variances of each data dimension are equal. If the

cluster has a non-strict sphericity, then the dimensions

have different variances. Statistically, these clusters can

be assimilated to gaussian distributions.

In this paper, we propose a solution to these problems. We

introduce an algorithm, based on the use of kd-tree[3], that esti-

mates the number of 𝑘 clusters for massive data. This estimation

performs in reasonable processing time, and thus it is possi-

ble to integrate such solutions into data-intensive applications,

e.g., near-real-time applications, or the preprocessing stage of

a data analysis project. Our solution is an algorithm, based on

kd-tree(k dimentional tree), which hierarchically structures data

aggregates, e.g., clusters of data points and their corresponding

metadata, with different levels of precision details. Furthermore,

we define several new clusters merge criteria to support more

efficiently overlapping and natural clusters.

We compare our solution to known methods of estimating 𝑘

from literature (x-means [16] and g-means [7, 10]). We show that

our solution is faster than current methods while ensuring better

clustering quality on massive data.

This paper is organized as follows. In Section 2, we study the

state-of-the-art solutions. Next, in Section 3 we introduce our

Figure 1: Estimation of k by each of the three algorithms when clusters overlap. The respective estimates of x-means and g-means are
67 and 26. The centroids are represented by black crosses. The horizontal and vertical axes refer to both dimensions of the used dataset.

contribution. In Section 4, we compare our solution with that of

our competitors on data sets containing up to 4 million points.

Finally we conclude in Section 5.

2 BACKGROUND
For several decades, the problem of estimating the number of

clusters 𝑘 remains significant in the literature. Several studies

have been conducted to prevent the user from defining an inex-

act value of 𝑘 , thus leading to counterintuitive results, and it is

disparate from the expected value of k. We identify two types of

clustering solutions close to k-means. Some integrate the estima-

tion of the value of 𝑘 . Others do not, as in the case of Birch [22].

The latter is a hierarchical algorithm based on a micro-clustering

approach. It consists of two main phases. The first tends to pro-

duce many small spherical clusters without having to specify

the number to be produced. The second uses another clustering

algorithm to perform macro-clustering. We have not retained it

in our study because in the second phase an algorithm should be

used to apply it on the representatives of small clusters (usually

centroids). The most used algorithms in the second phase and

adapted for the first phase are often k-means or the hierarchical

ascendant clustering [12] to which the value of 𝑘 should be given

a priori. We focus on two algorithms specialized in the automatic

estimation of k: x-means [16] and g-means [7, 10].

X-MEANS. X-means [16] is a k-means-based algorithm that

consists of searching for the set of centroids that best fit the data.

Starting from a minimum 𝑘 (𝑘𝑚𝑖𝑛), generally equal to one, the

algorithm iteratively adds new centroids if necessary until the

maximum value of k (𝑘𝑚𝑎𝑥) is reached. At each iteration, the

algorithm identifies the subset of centroids that must be divided

in two. This identification is done using a statistical criterion

called bayesian information criterion (BIC). This is used for model

selection and is based on the likelihood function.

The x-means process consists of two operations that are iter-

ated until completion: Imporve_param and improve_structure.

Imporve_param is only the execution of k-means with the cur-

rent k as parameter. Improve_structure researches where new

centroids must be added. For each centroid and its associated

region of points, three sub-operations follow each other:

• the corresponding bic is calculated

• k-means is executed with k=2, two children’s centroids

are obtained

• the bic of the same region is calculated but taking into

account the two children’s centroids instead of their parent

centroid.

If the previous Bic is smaller than the next Bic, then the parent

centroid is replaced by its two children’s centroids or the parent

centroid is retained.

G-MEANS. This algorithm [10] wraps k-means and adopts

almost the same approach as x-means. Instead of the BIC criterion

the gaussianity test (at the level of 𝛼 confidence defined by the

user) on clusters is used to decide whether to divide a centroid

in two.

It starts from a set of centroids of size 𝑘𝑚𝑖𝑛 and it increases

the set size during the process. The value of 𝑘𝑚𝑖𝑛 is initialized to

1 because usually we have no a priori knowledge of the possible

values of k. In this case, the first centroid corresponds to the

artihmetic mean of the values of all data points. A list is defined

to contain the centroids whose sets of points surrounding them

are gaussians so as not to be processed in subsequent iterations.

At each iteration, the centroids not stored in the list called

parent centroids, are divided into two children’s centroids c1 and

c2. This division is operated via the principal component analysis

(pca). The pca method is a time complexity of 𝑂 (𝑛𝑑2 + 𝑑3) [21]
with 𝑑 the data point dimension and 𝑛 the size of the dataset. So

the authors recommended using accelerated versions of pca such

as pca based on the power method [4]. The children’s centroids

are then refined through the execution of 2-means (k=2). Then

the gaussianity test, via the Anderson-Darling test [19] (only

works on points defined in one dimension), is performed on

points around the parent centroid. To do this, the points around

the parent centroid are first projected on the vector 𝑣 = 𝑐1 − 𝑐2
linking the two children centroids to obtain points defined on a

single dimension. If these points follow a gaussian distribution

then the centroid is added to the list of centroids that will no

longer be processed in the following iterations. Otherwise, it is

replaced by its two children’s centroids. The value assigned to 𝛼

by the authors [10] is 0.0001 to test their solution on synthetic

and real data.

LIMITATIONS. The limitations of the above methods are

related to the difficulty of dealing with overlapping clusters, the

Figure 2: Overall solution for estimating the value of k.

quality of clustering (and therefore also the value of k) they

produce as well as the execution time to provide a result.

The both methods are of different computational complexity

and each can identify only a limited number of more or less spher-

ical cluster types. X-means is suitable for data whose clusters

are strictly spherical [10]. If other forms of clusters are present,

then the estimate of k could be overestimated. On the other hand,

g-means could identify clusters whose spherical shape is less

strict than that identified by x-means. If the clusters are well

spaced apart, g-means could provide the relevant value of k [10].

In addition to this distribution, the strict sphericity requirement

must be added to the clusters for x-means to have the same per-

formance. If the clusters overlap then none of them estimates the

correct value of k. Under these conditions x-means and g-means

tend to overestimate k.

These cases are illustrated by Figure 1. There are 5 gaussian

clusters that have been generated but with a more or less different

sphericity. Two clusters are well separated from each other. The

other three overlap. All three algorithms were run on this set of

20,000 data. The 𝑘𝑚𝑎𝑥 has been set at 140. G-means identified 26

clusters but detected the 2 clusters well separated from the others.

However, there is overfitting on the remaining three clusters, an

overestimation of 24 clusters instead of only estimating 3. X-

means estimated k at 76. Overestimation is slightly higher for

overlapping clusters than for separate clusters.

In terms of execution time, the two algorithms are not suitable

when the data are massive and it is even more accentuated when

the estimated value of k tends to be large.

3 CONTRIBUTION
In this section, we will define our solution that addresses the

problem of estimating k in a context of massive data and over-

lapping clusters. Figure 2 illustrates the different steps of our

solution.

The solution is composed of two main parts; i) the storage and

organization of the𝑋 data provided by the user in a data structure,

and ii) the processing is done on this structure to estimate 𝑘

(Merging task and Cluster regularization).

We opted for the kd-tree[3] data structure to fulfill the roles

of storage and data organization. A kd-tree is a binary tree that

represents a hierarchical subdivision of space using splitting

planes that are orthogonal to the coordinate dimensions (do not

confuse the k of kd-tree which is just the dimension of the data

stored in the tree and the k of k-means which corresponds to the

number of clusters). In Subsection 3.1 we discuss the advantages

of kd-tree as well as the method that builds the kd-tree in 3.1.2.

Concerning the processing part, first of all we proceed to the

estimation of k clusters in each of the leaves (see 3.1.4). This op-

eration results, in each leaf, in the constitution of several clusters.

Then the clusters of the nodes are merged recursively from the

leaves to the root according to rules defined in Subsection 3.2.2.

These rules are built to manage overlapping clusters. The final

step is a regularization phase (Subsection 3.3). It decides whether

the small cluster is a separate cluster or should be merged with

another cluster. This phase avoids having an overestimation of k

due to small clusters. Note that the nodes are processed according

to the post-fixed path, i.e., each node is processed after each of

its children is processed. This path avoids exploring a node un-

necessarily (time consuming task because it involves conditional

tests) in case it will not be processed because none of its children

are processed yet.

3.1 KD-TREE
Kd-tree puts points that are spatially close together in the same

node. This property is exploited by several machine learning

methods to accelerate calculations related to point space. One

of the best known cases is the k-closest neighbors algorithm [5].

This property is advantageous to us in two cases. First of all,

it partly addresses the problem of k-means, which is to group

together the most similar points possible in the same cluster.

Second, it provides an optimized spatial subdivision of space to

accelerate data processing. It recursively splits the whole dataset

into partitions, in a manner similar to a decision tree acting on nu-

merical datasets [9]. The root node is the whole data space, while

the leaves are the smallest possible partitions of the data space.

A node is associated with several closed rectangular regions of

space, called hyper-rectangles. Traditionally, in the literature, the

hyper-rectangle is only used to represent the subspace that the

node represents. In addition, we will also use it for other pur-

poses in 3.1.1 because of its advantages in terms of calculation

and representation of sets.

3.1.1 HYPER-RECTANGLE. Formally, it corresponds to the

smallest possible rectangle (generalized to𝑛 dimensions) covering

all the data points of a set. It is defined by the following equation:

𝐻 = {𝑋 |𝑋𝑚𝑖𝑛𝑠 ⩽ 𝑋𝑖 ⩽ 𝑋𝑚𝑎𝑥𝑒𝑠∀𝑖} (2)

where, 𝑚𝑖𝑛𝑠 and 𝑚𝑎𝑥𝑒𝑠 respectively represent the lower and

upper limits of the hyper-rectangle. Indeed, 𝑚𝑖𝑛𝑠(𝑚𝑎𝑥𝑒𝑠) is a

vector corresponding to the minimum (maximum) values of each

dimension of the 𝑋 data set (see Figure 3).

In our case, we consider a hyper-rectangle as a geometric

object to approximate the overall spatial distribution of a set of

points contained in the node. In other words, each of the clusters

of a node is geometrically represented by a hyper-rectangle. From

this representation results, in our solution, a time saving on the

calculations that involves sets (a set is a cluster of points). For

example, to calculate a distance between two sets or perform

a set operation involving at least two sets, their corresponding

hyper-rectangles could be used. Therefore, instead of visiting all

the data points of the sets, it is only necessary to use the𝑚𝑖𝑛𝑠 and

𝑚𝑎𝑥𝑒𝑠 vectors of the hyper-rectangles for the above calculations.

This greatly saves a lot of time on large amounts of data.

Figure 3: A 2-dimensional hyper-rectangle𝐻 and the associated
bounds𝑚𝑎𝑥𝑒𝑠 and𝑚𝑖𝑛𝑠 located on the corners (upper right and
lower left). Note that 𝑋 is the dataset with two dimensions (d0
and d1) and the circles represent the points of X. The𝑚𝑎𝑥 (𝑚𝑖𝑛)
function returns the maximum (minimum) of both dimensions.

3.1.2 SPILITTING METHOD. The partitioning of a data space
of an internal node (i.e., not leaf) is performed mainly based

on two cutting elements that must be specified: a given data

dimension (𝑠𝑑) of the node space and a value of this dimension

(𝑠𝑣). Thus the points whose value at the dimension 𝑠𝑑 is less

(resp. greater) than 𝑠𝑣 then they will be assigned to the child’s

node which is called 𝑙𝑒𝑠𝑠𝑐ℎ𝑖𝑙𝑑 (resp. 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑐ℎ𝑖𝑙𝑑). This process

is carried out recursively from the root to the leaves.

Several rules for splitting nodes are proposed to choose the op-

timal dimension and associated value for correct data separation.

Among them, we opted for sliding midpoint splitting rule [18]
because it provides an optimized data organization than other

classical rules [14]. This performance on others is explained be-

cause it does not produce empty nodes or nodes whose data

space is very sparse (i.e., a very large space, specifically at the

sides, compared to the data it represents when it should be small).

In addition, the classical rules choose the median as the cutting

value 𝑠𝑣 while the sliding midpoint splitting rule chooses the mid-

dle of the points ((𝑚𝑎𝑥 +𝑚𝑖𝑛)/2) which is less expensive. The

dimension 𝑠𝑑 chosen is the one that is the longest (𝑚𝑎𝑥 −𝑚𝑖𝑛).
Note that theoretically there is no guarantee on the limit of

the depth that kd-tree can have, the trees could be very deep (so

the time of tree construction is increased). As a result, we have

added two stopping conditions to avoid deep trees. These two

conditions are performed at the beginning of the method that

partitions the node in two. If one of the conditions is verified

then the node will not be divided and will be considered as a leaf:

• the depth of the leaf is limited to 𝑙𝑜𝑔(𝑛) to save construc-

tion time compared to the normal time taken if the depth

is not limited. The root has a depth of 1;

• each node is limited by a minimum number of points, ψ.
It is not interesting to have leaves that have a number

of points close to one in a context of massive data. This

would result in a very long kd-tree construction time and

therefore make our solution unsuitable for near real-time

applications. In addition, if the sum of the number of points

of the node is less than 2 ∗ ψ then it will be considered

as a leaf. Indeed, two cases are possible if this limit is

not defined. Either the two children will be leaves if their

number of points (size) is less than ψ. Either the size of
one will be greater than ψ and therefore the other is a leaf.

In the latter case a difference in depth will occur which

brings a certain imbalance of the tree. This condition limits

the number of small leaves, limits the depth of the tree

and contributes to the balance of the tree.

3.1.3 NODE COMPONENTS. Each node contains a set of

hyper-rectangles. We call this set 𝐿𝐻 . Each hyper-rectangle is

associated with a list of indices of the data points that it rep-

resents, the arithmetic mean of these data and the sum of the

squared differences (𝑠𝑠𝑒) between each point and the arithmetic

mean. The data points are not stored in the tree but are accessed

via the indices. The internal nodes have in addition the splitting

dimension index 𝑠𝑑 as well as the associated value 𝑠𝑣 .

3.1.4 INITIALIZATION OF LEAVES. During the tree building

and more precisely during the instantiation of the leaf, we es-

timate the number of clusters present in the subset of the data

represented by this leaf (see Algorithm 1). At the same time the

clustering of these data is carried out, which results in a set of

clusters. When clusters are close to each other or overlap, they

could overestimate the value of 𝑘 in an exaggerated way. For

this, the value of 𝑘 was limited to a maximum value (𝑙𝑒𝑎𝑓 _𝑘𝑚𝑎𝑥)

so that g-means (this version of g-means is called 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐾 in

Algorithm 1) cannot return more than a limited number of clus-

ters. This number is called 𝑘𝑡 with 𝑡 ∈ N∗ the 𝑖𝑡ℎ iteration of

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐾 . Indeed, at each iteration 𝑡 we test if 𝑘𝑡 >= 𝑙𝑒𝑎𝑓 _𝑘𝑚𝑎𝑥 .

The value of 𝑘𝑡 could be up to 2
𝑡
. This case only occurs if all

the centroids have been split in two because they have not been

evaluated as gaussian. Note that even if the total number of clus-

ters in all leaves exceeds 𝑘𝑚𝑎𝑥 then our merging algorithms will

approach this number towards the real k of the dataset.

Let𝑤 be the number of leaves that kd-tree has, 𝑙𝑒𝑎𝑓 _𝑘𝑚𝑎𝑥 is

then defined as follows:

𝑙𝑒𝑎𝑓 _𝑘𝑚𝑎𝑥 =

{√
𝑘𝑚𝑎𝑥 , if𝑤 >=

√
𝑘𝑚𝑎𝑥

𝑘𝑚𝑎𝑥

𝑤 , otherwise

(3)

If we assume that in Equation 3 only the second condition ex-

ists and 𝑙𝑒𝑎𝑓 _𝑘𝑚𝑎𝑥 will always be equal to the result of this same

condition then this would induce 𝑙𝑒𝑎𝑓 _𝑘𝑚𝑎𝑥 to tend towards a

value of 1 or 0. Indeed for a given value of 𝑘𝑚𝑎𝑥 , the greater𝑤 is

the greater the 𝑙𝑒𝑎𝑓 _𝑘𝑚𝑎𝑥 tends towards 1 if𝑤 <= 𝑘𝑚𝑎𝑥 . When

𝑤 > 𝑘𝑚𝑎𝑥 then 𝑙𝑒𝑎𝑓 _𝑘𝑚𝑎𝑥 tends towards 0. These cases could

make the solution ineffective because they would underestimate

the number of clusters in the leaf and by extension underestimate

the number of clusters in the tree dataset. The first condition

is essential to maintain a balance between having an underesti-

mation of 𝑘 if there is only the second condition and having an

overestimation of k if there is no condition that would limit the

value of k.

After the estimation of k, each cluster of data points is repre-

sented by a hyper-rectangle as well as the associated aggregated

calculations (arithmetic mean (G) and the difference between the

points and G (𝑠𝑠𝑒)).

Algorithm 1: InitializeLeaf
input :𝑘𝑚𝑖𝑛 ,𝑘𝑚𝑎𝑥 ,𝑑𝑎𝑡𝑎,𝑙𝑒𝑎𝑓

output :𝐿𝐻

1 𝐿𝐷 ← 𝑑𝑎𝑡𝑎𝑙𝑒𝑎𝑓 .𝑖𝑛𝑑𝑒𝑥𝑒𝑠

2 𝐺,𝑘, 𝐼 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐾 (𝐿𝐷, 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥)
3 for 𝑗 = 1 to 𝑗 = 𝑘 do
4 𝐿𝐻 𝑗 .𝑖𝑛𝑑𝑒𝑥𝑒𝑠 ← 𝐼 𝑗

5 𝐿𝐻 𝑗 .𝐺 ← 𝐺 𝑗

6 𝐿𝐻 𝑗 .𝑚𝑎𝑥𝑒𝑠 ←𝑚𝑎𝑥 (𝐿𝐷𝐼 𝑗)
7 𝐿𝐻 𝑗 .𝑚𝑖𝑛𝑠 ←𝑚𝑖𝑛(𝐿𝐷𝐼 𝑗)

3.2 NODE MERGING
At the end of node initialization, clusters are obtained in each

node that are considered as subclusters of the final clusters. These

latter are located in the root and are considered to be the closest to

real clusters. The merging of clusters is necessary to achieve the

final clusters. In this subsection Algorithms 3 and 2 for merging

clusters will be presented. But first, we will list the functions and

definitions that will be used in these algorithms.

3.2.1 DEFINITIONS.

Definition 3.1. Let 𝐿𝐻 be a set of hyper-rectangles, the𝑚𝑎𝑥𝑒𝑠

(resp. 𝑚𝑖𝑛𝑠) vector associated with 𝐿𝐻 is the maximum (resp.

minimum) of each dimension of the𝑚𝑎𝑥𝑒𝑠 (resp.𝑚𝑖𝑛𝑠) vectors

of the hyper-rectangles of 𝐿𝐻 :

𝑔𝑒𝑡𝐵𝑜𝑢𝑛𝑑𝑠 (𝐿𝐻) =
{
𝑚𝑖𝑛𝑠 =𝑚𝑖𝑛({𝐿𝐻ℎ .𝑚𝑖𝑛𝑠 |ℎ ∈ [1; 𝑐𝑎𝑟𝑑 (𝐿𝐻)]})
𝑚𝑎𝑥𝑒𝑠 =𝑚𝑎𝑥 ({𝐿𝐻ℎ .𝑚𝑎𝑥𝑒𝑠 |ℎ ∈ [1; 𝑐𝑎𝑟𝑑 (𝐿𝐻)])

(4)

Definition 3.2. Let 𝑃 = {(𝑢, 𝑣) |𝑢, 𝑣 ∈ N ∩ [1;𝑘] and 𝑢 ≠ 𝑣}
a list of index pairs of hyper-rectangles of a node. We consider

(𝑢, 𝑣) = (𝑣,𝑢) and consequently P contains only one of them. The

average of the pairwise distances is calculated by the following

function:

𝑎𝑝𝑑 (𝐿𝐻) =
∑
(𝑢,𝑣) ∈𝑃 | |𝐿𝐻𝑢 .𝐺 − 𝐿𝐻𝑣 .𝐺 | |

𝑐𝑎𝑟𝑑 (𝑃) (5)

Lemma 3.3. Given two datasets𝑈 ∈ R𝑑 and 𝑃 ∈ R𝑑 . 𝑛1 and 𝑛2

are respectively the number of points contained in 𝑈 and 𝑃 . If the
sum of squared errors of 𝑈 and 𝑃 are as follow:

𝑆𝑆𝐸𝑈 =

𝑛1∑
𝑖=1

| |𝑢𝑖 − 𝑢 | |2

𝑆𝑆𝐸𝑃 =

𝑛2∑
𝑖=1

| |𝑝𝑖 − 𝑝 | |2

then the the sum of squared errors of 𝑉 = 𝑈 ∪ 𝑃 is:

𝑆𝑆𝐸𝑉 = 𝑆𝑆𝐸𝑈 + 𝑆𝑆𝐸𝑃 + 𝑛1 | |𝑈 −𝑉 | |2 + 𝑛2 ∗ ||𝑃 −𝑉 | |2 (6)

where 𝑉 can computed as the average of the weighted averages

𝑛1𝑈 + 𝑛2𝑃

𝑛1 + 𝑛2

(7)

Proof. We are trying to calculate the sum of two sse:

𝑆𝑆𝐸𝑉 =

𝑛1∑
𝑖=1

| |𝑈𝑖 −𝑉 | |2︸ ︷︷ ︸
𝑆𝑆𝐸𝑈𝑉

+
𝑛2∑
𝑖=1

| |𝑃𝑖 −𝑉 | |2︸ ︷︷ ︸
𝑆𝑆𝐸𝑃𝑉

Let focus on the first term of this equation:

𝑆𝑆𝐸𝑈𝑉 =

𝑛1∑
𝑖=1

| |𝑈𝑖 −𝑉 | |2 =

𝑛1∑
𝑖=1

| | (𝑈𝑖 −𝑈) + (𝑈 −𝑉) | |2

=

𝑛1∑
𝑖=1

| |𝑈𝑖 −𝑈 | |2 + 2

(𝑛1∑
𝑖=1

(𝑈𝑖 −𝑈)
)
(𝑈 −𝑉) + 𝑛1 | |𝑈 −𝑉 | |2

But:

𝑛1∑
𝑖=1

(𝑈𝑖 −𝑈) =
𝑛1∑
𝑖=1

𝑈𝑖 −
𝑛1∑
𝑖=1

𝑈 = 𝑛1𝑈 − 𝑛1𝑈 = 0

So 𝑆𝑆𝐸𝑈𝑉 = 𝑆𝑆𝐸𝑈 + 𝑛1 | |𝑈 −𝑉 | |2. If we repeat the same cal-

culation for the second term 𝑆𝑆𝐸𝑃𝑉 then we obtain Equation

6.

The minimum distance between two hyper-rectangles x and y

is calculated as follows:

𝑚𝑖𝑛𝐻 (𝑥,𝑦) = | |0−𝑚𝑎𝑥 (0,𝑚𝑎𝑥 (𝑥 .𝑚𝑖𝑛𝑠−𝑦.𝑚𝑎𝑥𝑒𝑠,𝑦.𝑚𝑖𝑛𝑠−𝑥 .𝑚𝑎𝑥𝑒𝑠)) | |
(8)

where the function𝑚𝑎𝑥 () returns the maximum of the two num-

bers given as parameters.

Algorithm 2: Local merger

input :𝐿𝐻 , τ, 𝑙𝑒𝑛𝑔ℎ𝑡 , 𝑡ℎ_𝑒𝑣𝑜
output :𝐿𝐻

1 𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝑇𝑟𝑢𝑒

2 𝑖𝑡 ← 0

3 𝑜𝑙𝑑_𝑐𝑎𝑟𝑑_𝑙ℎ ← 𝑐𝑎𝑟𝑑 (𝐿𝐻)
4 while𝑚𝑒𝑟𝑔𝑒𝑑 = 𝑇𝑟𝑢𝑒 do
5 𝑥 ← 𝐿𝐻𝑖𝑡

6 𝑇 ← {𝑖𝑡}
7 𝑡𝑚𝑝_𝑖𝑛𝑑𝑒𝑥𝑒𝑠 ← {0, ..., 𝑜𝑙𝑑_𝑐𝑎𝑟𝑑_𝑙ℎ}
8 𝑡𝑚𝑝_𝑖𝑛𝑑𝑒𝑥𝑒𝑠 ← 𝑡𝑚𝑝_𝑖𝑛𝑑𝑒𝑥𝑒𝑠\{𝑖𝑡}
9 for 𝑖 𝑖𝑛 𝑡𝑚𝑝_𝑖𝑛𝑑𝑒𝑥𝑒𝑠 do
10 𝑦 ← 𝐿𝐻𝑖

11 Δ𝐺 ← ||𝑥 .𝐺 − 𝑦.𝐺 | |
12 𝑟𝑎𝑡𝑖𝑜 ← Δ𝐺/𝑙𝑒𝑛𝑔ℎ𝑡
13 if 𝑟𝑎𝑡𝑖𝑜 < τ /𝜖 then
14 Δ𝐶 ← ||((𝑥 .𝑚𝑖𝑛𝑠 + 𝑥 .𝑚𝑎𝑥𝑒𝑠)/2) −

((𝑦.𝑚𝑖𝑛𝑠 + 𝑦.𝑚𝑎𝑥𝑒𝑠)/2) | |
15 𝑒 ← 𝐹𝑎𝑙𝑠𝑒

16 if Δ𝐺 < Δ𝐶 then
17 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋𝑌 ←𝑚𝑖𝑛𝐻 (𝑥,𝑦)
18 if 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋𝑌 = 0 and

Δ𝐺 < Δ𝐶 ∗ 𝜆 then
19 𝑒 ← 𝑇𝑟𝑢𝑒

20 if 𝑒 = 𝑇𝑟𝑢𝑒 and 𝑒𝑣𝑜 <= 𝑡ℎ_𝑒𝑣𝑜 and
𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑋𝑌/𝑙𝑒𝑛𝑔ℎ𝑡 <= τ /𝜖 then

21 𝑒 ← 𝑇𝑟𝑢𝑒

22 ‘if 𝑒 = 𝑇𝑟𝑢𝑒 then
23 𝑇 ← 𝑇 ∪ 𝑖
24 if 𝑐𝑎𝑟𝑑 (𝑇) > 1 then
25 𝐿𝐻 ←𝑚𝑒𝑟𝑔𝑒 (𝑇)
26 //The new hyper-rectangles are placed at

the end of the list

27 𝑛𝑒𝑤_𝑐𝑎𝑟𝑑_𝑙ℎ ← 𝑐𝑎𝑟𝑑 (𝐿𝐻)
28 if 𝑜𝑙𝑑_𝑐𝑎𝑟𝑑_𝑙ℎ < 𝑛𝑒𝑤_𝑐𝑎𝑟𝑑_𝑙ℎ then
29 𝑜𝑙𝑑_𝑐𝑎𝑟𝑑_𝑙ℎ ← 𝑛𝑒𝑤_𝑐𝑎𝑟𝑑_𝑙ℎ

30 𝑖𝑡 ← 0

31 else
32 if 𝑖𝑡 + 1 < 𝑛𝑒𝑤_𝑐𝑎𝑟𝑑_𝑙ℎ then
33 𝑖𝑡 ← 𝑖𝑡 + 1

34 else
35 𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒

3.2.2 PROPOSED MERGE ALGORITHMS. It cannot be objec-
tively confirmed that two clusters naturally correspond to the

same cluster (i.e., they must form a single cluster) because this

confirmation implies the use of clustering related concepts such

as close, similar or complementary whose definition is also sub-

jective. Consequently, we focus on the detection of clusters that

k-means could detect (i.e., clusters close to strict sphericity) but

also less spherical clusters as present in real data. So our goal is,

first, to capture natural clusters as defined in Section 1. Secondly,

to identify these clusters even if they overlap with each other.

As a result, a natural cluster is a cluster with a certain sphericity

and at the same time it has low connectivity with another cluster

if it overlaps with it. By connectivity between two clusters we

mean of how close two clusters are in form. If two clusters of dif-

ferent shapes overlap considerably, they could be considered as

two separate clusters. The distance between clusters alone is not

enough. Note that considering only the distance between clusters

to conclude that two clusters form a single cluster could lead

to the following situation: if two clusters that do not naturally

correspond to the same cluster (i.e., they have low connectivity)

and whose distance is zero or partially overlapping, could be

considered as a single cluster. This could perhaps contradict the

reality of the meaning given to the data points. By taking into

account the distance and connectivity between two clusters, we

consider that if two clusters are of the same shape and overlap

only partially then they are two different clusters that could not

be merged. So it is necessary to take into account the connectivity

between clusters in addition to distance when deciding to merge

two clusters.

We define a set of criteria to evaluate how much two clus-

ters correspond to the same cluster in order to decide whether

two clusters can be merged in accordance with the definition of

natural clusters that we have mentioned. These criteria involve

measures of proximity and connectivity between clusters. The

fusion algorithms 3 and 2 incorporate these criteria.

Note that merging several clusters signifies merging the asso-

ciated hyper-rectangles. It consists of calculating the weighted

mean of the means of the point values contained in the hyper-

rectangles already calculated, concatenating the lists of the point

indices, calculating the 𝑠𝑠𝑒 based on Equation 6 and to calculate

the𝑚𝑖𝑛𝑠 and𝑚𝑎𝑥𝑒𝑠 vectors according to Equation 4.

Algorithm 2 (
⁀
local merger) allows us to merge clusters whose

representative hyper-rectangles are included in the 𝐿𝐻 set. 𝐿𝐻

hyper-rectangles are associated with a list of ascending ordered

numerical indices. Thus the indices of the first and last elements

of LH are respectively 0 and 𝑐𝑎𝑟𝑑 (𝐿𝐻) − 1. We consider 𝑥 to be

a temporary variable that runs through the 𝐿𝐻 elements. The al-

gorithm process is as follows. First we assign the first element of

𝐿𝐻 to 𝑥 . This one is now a hyper-rectangle representing a cluster.

We then check if all the other clusters represented by hyper-

rectangles 𝑦 are mergeable with the cluster represented by 𝑥 . If

𝑥 is not mergeable to any of them then the next hyper-rectangle

in 𝐿𝐻 is assigned to 𝑥 . On the other hand, if it is mergeable to at

least one hyper-rectangle, then the concerned hyper-rectangles

are merged resulting in a new hyper-rectangle (merging operated

by the𝑚𝑒𝑟𝑔𝑒 function). In this case the first item of freshly recon-

stituted 𝐿𝐻 is reassigned to 𝑥 . This procedure is repeated until 𝑥

is the second last element of 𝐿𝐻 and there are no more mergers.

During the fusion test between two hyper-rectangles 𝑥 and 𝑦,

several criteria, formed from inequalities and equations, must be

verified. The first two criteria only select the hyper-rectangles

candidates 𝑦 for merger and at the same time they reduce the

number of hyper-rectangles to be processed in the other two

criteria. While the last two decide whether to merge 𝑥 and 𝑦 or

not.

criterion 1. Let𝑚𝑖𝑛𝑠 and𝑚𝑎𝑥𝑒𝑠 the limits of a defined data
space ∈ R𝑑 and 𝐿𝐻 the list of hyper-retangles belonging to this
space then two clusters represented by the hyper-rectangles 𝑥 ∈ 𝐿𝐻
and 𝑦 ∈ 𝐿𝐻 are possibly mergeable if:

𝑟𝑎𝑡𝑖𝑜 <
τ

𝜖
(9)

where τ =
𝑎𝑝𝑑 (𝐿𝐻)

| |𝑚𝑎𝑥𝑒𝑠−𝑚𝑖𝑛𝑠 | | , 𝑟𝑎𝑡𝑖𝑜 =
| |𝑥.𝐺−𝑦.𝐺 | |
| |𝑚𝑎𝑥𝑒𝑠−𝑚𝑖𝑛𝑠 | | and 𝜖 ∈ N

∗.

Criterion 1 is based on the proximitymeasure. It checkswhether

two hyper-rectangles are close enough to be possibly considered

mergeable. It is based on the average of the pairwise distances

between centroids (𝑎𝑝𝑑) to approximate the average distance

between clusters of a node without calculating the distances

between all point pairs of all clusters. The pairwise distances

reduces the bias brought by the very distant centroids from the

majority of other centroids. The values of 𝑟𝑎𝑡𝑖𝑜 and τ of the

inequality are normalized between 0 and 1 by the maximum

length of the data space to be compared. The value of 𝜖 controls

the boundary between the qualifiers "distant" and "close" when

referring to the distance between clusters of 𝑥 and 𝑦. If this crite-

rion is verified then other criteria must be verified to confirm the

fusion between 𝑥 and 𝑦. Note that the higher the value of 𝜖 is, the

fewer hyper-rectangles validate the criterion. Moreover, if 𝜖 = 1,

then a significant amount of hyper-rectangles will validate the

criterion, which could lead to further tests and probably lead to

a non fusion result because if two clusters are very distant then

there will be no fusion. The value of 𝜖 is to be adjusted according

to the strictness level of the "enough close" notion required by

the criterion including this parameter.

criterion 2. Let 𝑥 and 𝑦 two hyper-rectangles, Δ𝐶 the distance
between the centers of x and y and Δ𝐺 the distance between the
centroids of the x and y clusters. If Δ𝐺 < Δ𝐶 then x and y are
possibly mergeable.

Criterion 2 refines the set of hyper-rectangles from the first

criterion. It estimates how strong the connectivity between two

clusters is. Knowing that a hyper-rectangle corresponds to the

smallest rectangular envelope covering all the data points of

a cluster, then it could be ruled that the center of the hyper-

rectangle would roughly correspond to the centroid of the cluster

if the points of the cluster are uniformly distributed with a certain

sphericity. So the cluster with these characteristics is probably a

natural cluster apart. As a result the closer the distance between

centroids (Δ𝐺) is to the distance between centers (Δ𝐶) the smaller

the probability of merging 𝑥 and 𝑦. This probability is considered

null when Δ𝐺 >= Δ𝐶 .
The first two criteria make it possible to identify relatively

close clusters but also to consider that two clusters are distant if

their centroids are also distant even if the two clusters are con-

tiguous. The latter could occur if the majority of points surround

the centroid while a minority are far from the centroid. However,

these criteria are based only on the distances applied to centroids

and centers. Two clusters could be considered as close, but one

or more clusters could be located between them. In this case

they cannot be merged directly. They could only be if at least

one cluster between them merges with them. The following two

criteria require stricter distances and stronger connectivity to

avoid directly merging two nearby clusters separated by other

clusters.

criterion 3. Let be 𝑥 and 𝑦 two hyper-rectangles. We merge
𝑥 and 𝑦 when Criteria 1 and 2 are verified and if𝑚𝑖𝑛𝐻 (𝑥,𝑦) = 0

and Δ𝐺 < Δ𝐶 ∗ 𝜆 with 𝜆 ∈]0; 1]
Criterion 3 only deals with contiguous or overlapping hyper-

rectangles. Indeed𝑚𝑖𝑛𝐻 (𝑥,𝑦) returns 0 if the two hyper-rectangles
overlap or if their distance is zero. Also, a connectivity constraint

is added. It results in a constraint on the proximity between cen-

troids: for two hyper-rectangles 𝑥 and 𝑦 the distance between

centroids must be less than Δ𝐶 ∗𝜆. The smaller 𝜆, the more the no-

tion of "close enough" between clusters to the point of matching

the same cluster is strict.

criterion 4. Let 𝑥 and 𝑦 two hyper-rectangles and 𝜖 ∈ N∗. We
merge 𝑥 and 𝑦 when Criteria 1 and 2 are verified and if 𝑒𝑣𝑜 <=

𝑡ℎ_𝑒𝑣𝑜 and𝑚𝑖𝑛𝐻 (𝑥,𝑦) normalized is less than τ/𝜖 with 𝑒𝑣𝑜 the
sum of the squared errors (𝑠𝑠𝑒) of the 𝑥 and 𝑦 data points union.

Unlike Criterion 3, to validate Criterion 4 hyper-rectangles

are not necessary to be contiguous but a maximum distance is

required. The normalized distance𝑚𝑖𝑛𝐻 (𝑥,𝑦) must be less than

τ/𝜖 . It may be that two clusters are not contiguous but almost

when the distance is as small as it does not allow a cluster to

interpose itself between two clusters concerned by the calcu-

lations of the criterion. In addition to this, the criterion adds a

requirement on the compactness of 𝑥 and 𝑦 clusters. To do this,

it uses the homogeneity measure called sum of square error (𝑠𝑠𝑒).

In this criterion we have the choice to limit the quantity of 𝑠𝑠𝑒 for

possible mergers. Indeed, two clusters are merged only if the 𝑠𝑠𝑒

of their data is less than the limit is 𝑡ℎ_𝑒𝑣𝑜 . Its value is entered by

the user. However, 𝑡ℎ_𝑒𝑣𝑜 is adapted according to the value of Δ𝑘
provided Equation 10. The latter evaluates the difference between

the value of 𝑘𝑚𝑎𝑥 and the total sum of the values of k specific to

each leaf (

∑
𝑘ϑ). The purpose of this adaptation is to approach

the estimated value k on the entire dataset at 𝑘𝑚𝑎𝑥 and avoid an

overestimation of 𝑘 compared to 𝑘𝑚𝑎𝑥 . If 𝛿𝑘 >= 1 it means

∑
𝑘ϑ

is at least equal to 𝑘𝑚𝑎𝑥 and therefore 𝑡ℎ_𝑒𝑣𝑜 will be unchanged.

Otherwise, if 𝑘𝑚𝑎𝑥 >
∑
𝑘ϑ then 𝑡ℎ_𝑒𝑣𝑜 is recalculated according

Equation 11.

𝛿𝑘 = 1 − 𝑘𝑚𝑎𝑥∑
𝑘ϑ

(10)

𝑡ℎ_𝑒𝑣𝑜 =

{
𝑡ℎ_𝑒𝑣𝑜, if 𝛿𝑘 >= 1

𝑡ℎ_𝑒𝑣𝑜 + 𝛿𝑘, otherwise

(11)

Algorithm 3: Global merger

input :𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ,𝑡ℎ_𝑒𝑣𝑜
output :𝐿𝐻

1 𝐿𝐻 ← 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .𝑙𝑒𝑠𝑠 .𝐿𝐻
⋃
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .𝑔𝑟𝑒𝑎𝑡𝑒𝑟 .𝐿𝐻

2 𝑚𝑖𝑛𝑠,𝑚𝑎𝑥𝑒𝑠 ← 𝑔𝑒𝑡𝐵𝑜𝑢𝑛𝑑𝑠 (𝐿𝐻)
3 𝑙𝑒𝑛𝑔ℎ𝑡 ← ||𝑚𝑎𝑥𝑒𝑠 −𝑚𝑖𝑛𝑠 | |
4 if card(internal.greater.LH)>1 then
5 τ ← 𝑎𝑝𝑑 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .𝑔𝑟𝑒𝑎𝑡𝑒𝑟 .𝐿𝐻)/𝑙𝑒𝑛𝑔ℎ𝑡
6 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .𝑔𝑟𝑒𝑎𝑡𝑒𝑟 .𝐿𝐻 ←

𝑙𝑜𝑐𝑎𝑙𝑀𝑒𝑟𝑔𝑒𝑟 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .𝑔𝑟𝑒𝑎𝑡𝑒𝑟 .𝐿𝐻, τ , 𝑙𝑒𝑛𝑔ℎ𝑡, 𝑡ℎ_𝑒𝑣𝑜)

7 if card(internal.less.LH)>1 then
8 τ ← 𝑎𝑝𝑑 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .𝑙𝑒𝑠𝑠 .𝐿𝐻)/𝑙𝑒𝑛𝑔ℎ𝑡
9 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .𝑙𝑒𝑠𝑠 .𝐿𝐻 ←

𝑙𝑜𝑐𝑎𝑙𝑀𝑒𝑟𝑔𝑒𝑟 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .𝑙𝑒𝑠𝑠 .𝐿𝐻, τ , 𝑙𝑒𝑛𝑔ℎ𝑡, 𝑡ℎ_𝑒𝑣𝑜)
10 𝐿𝐻 ← 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .𝑙𝑒𝑠𝑠 .𝐿𝐻

⋃
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .𝑔𝑟𝑒𝑎𝑡𝑒𝑟 .𝐿𝐻

11 τ ← 𝑎𝑝𝑑 (𝐿𝐻)/𝑙𝑒𝑛𝑔ℎ𝑡
12 𝐿𝐻 ← 𝑙𝑜𝑐𝑎𝑙𝑀𝑒𝑟𝑔𝑒𝑟 (𝐿𝐻, τ , 𝑙𝑒𝑛𝑔ℎ𝑡, 𝑡ℎ_𝑒𝑣𝑜)

The global merger fusion algorithm can be seen as a layer

that envelops the algorithm local merger. Intuitively, for a given
internal and parent node, a good part of the clusters of one of its

children are closer to each other than to the other child’s clusters.

So we process the clusters of a child node locally but in the data

space of the parent node. Hence the proposal of the global merger
algorithm. It performs the merging of clusters node by node

using the local merger algorithm. It starts first with the children

of the "internal" node and then concatenates the hyper-rectangles
of the both children to form the list of hyper-rectangles of the

internal node. Finally, local merger is applied to internal. Before
the children node is processed, the 𝑎𝑝𝑑 function is normalized

by the maximum length of the parent node hyper-rectangle. This

normalization allows to have the same distance ratio in the three

nodes (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ,𝑔𝑟𝑒𝑎𝑡𝑒𝑟 and 𝑙𝑒𝑠𝑠). On the other hand, the value

of 𝑎𝑝𝑑 changes from one node to another because it depends

only on the clusters of the concerned node. Consequently, if

two clusters have not been merged into one of the two children

nodes, they could be merged into the parent node. Note that the

processing of the children nodes can even be parallelized because

they are independent.

3.3 CLUSTER REGULARIZATION
This subsection discusses the strategy we have defined to identify

clusters that should not be as such but rather be part of another

cluster. The algorithms of the previous step could produce small

(in number of points) but compact clusters. A small cluster is

located in three cases: either it is a natural cluster different from

the others, or it is part of an agglomeration of small clusters

that represent a single cluster, or it is part of a large cluster. The

definition of a small cluster has no objective purpose.We consider

the definition of the small cluster resulting from the work [1] as

a cluster with a number of points less than

√
𝑛 with 𝑛 the size of

the cluster.

We have developed an algorithm that makes it possible to

match a small cluster to one of the three cases. The goal of the

algorithm is to get as many natural clusters as possible. Knowing

that the final result of our solution is in the root of the tree

then this algorithm is unrolled only in this one. The algorithm

consists of two parts that are executed consecutively once. The

first identifies the small clusters and then merges those that are

close to each other. The second re-identifies small clusters from

the new list of small clusters from the first part and affects those

that are close to large clusters. If a small cluster has not undergone

a merger operation in both parts then it will be considered as a

separate natural cluster.

One of the reasons for the presence of small clusters is due to

Criteria 3 and 4 where the limit of the minimum distance between

hyper-rectangles is very strict. Indeed, if the minimum distance

between two hyper-rectangles, at least one of which is a small

cluster, is greater than this limit, then they cannot be merged.

This limit is respectively equal to 0 in Criterion 3 and τ /𝜖 in

Criterion 4. The τ /𝜖 limit is more flexible than the first one, it

was used in both parts of the algorithm to define the boundary

between "close" and "distant" regarding the distance between

hyper-rectangles.

4 EXPERIMENTAL ASSESSMENTS
In this section, we carried out experiments to study the perfor-

mance of our solution, to demonstrate its effectiveness compared

to the algorithms listed in Section 2(x-means and g-means) and

to give recommendations on the values that the parameters of

our solution could take (the minimum size of an internal node

ψ and limit 𝑡ℎ_𝑒𝑣𝑜 of Equation 11). In the experiments, real data

and synthetic data were used.

4.1 EXPERIMENTAL PROTOCOL
Our solution and the compared algorithms were implemented

in python 3.6. All of them use the Elkan version of k-means [6].

It corresponds to an exact version of standard k-means but is

suitable for massive data in execution time. Moreover, k-means++

[2] is used for initializing the centroids before applying Elkan

algorithm.

Different values are assigned to parameters 𝑘 ,𝑑 , 𝑛, 𝑡ℎ_𝑒𝑣𝑜 and

ψ to study the sensitivity of our algorithm to these parameters.

All combinations of the values of these parameters have been

tested:

• 𝑘 ∈ [10, 32, 80]
• 𝑑 ∈ [4, 6, 8]
• 𝑛 ∈ [1 × 10

6, 2 × 10
6, 4 × 10

6]
• 𝑡ℎ_𝑒𝑣𝑜 ∈ [0.05, 0.10, 0.15, 0.20, 0.25, 0.30]
• ψ ∈ [4, 8, 10, 12]

An experiment is structured as follows:

• first of all a combination of the above-mentioned parame-

ters is defined. Parameter 𝑘 represents the real number of

clusters in a dataset. It should be noted that parameters 𝑘 ,

𝑑 and 𝑛 above refer only to synthetic data. The values of

these parameters are defined in the characteristics of the

real datasets,

• then follows the data generation in the case of synthetic

data, otherwise the real data is loaded,

• finally, the estimation of 𝑘 is performed by the three algo-

rithms.

For each combination of these parameters the experiment is

conducted five times.

We set the values of 𝜖 and 𝜆 in the different criteria as follows:

• 𝜖 has been defined as 2 and 10 respectively in Criteria 1

and 4. The value 2 is the least strict while 10 is the most

strict;

• in the cluster regularization algorithm, 𝜖 = 8 in the first

part of the algorithm. If there are still small clusters left,

then the second part is executed. In this case 𝜖 = 4;

• in Criterion 3, 𝜆 = 0.75. As a result, Δ𝐺 must be less than

75% of Δ𝐶 .

We allow our algorithm and x-means to search up to 𝑘𝑚𝑎𝑥 =

5𝑘 centroids.

4.1.1 SYNTHETIC DATA. In order to get closer to the real

data, natural and overlapping clusters were generated. These

synthetic data have the following properties:

• a cluster is a set of data that follows a normal distribution.

To generate this set, a semi positive covariance matrix and

an average (a vector) are generated at random. Indeed, the

values of the covariance matrix allow to define a cluster

shape that is not isotropic (strictly spherical) and that can

have different variances separately on an arbitrary basis of

directions and not necessarily on those of the dimensions;

• there are at least two overlapping clusters;

• if the centroid of one cluster is in the hyperectangle of

another cluster thenwe consider that themaximum degree

of overlap has been exceeded. So as a result at least one of

the clusters concerned is replaced by a new cluster;

• clusters do not have the same number of points. The car-

dinalities are chosen at random so that their sum is equal

to the total number of points 𝑛 defined previously.

4.1.2 REAL DATA. The real data comes from three known

sources: Openml, UCI and Kaggle. They are all of a numerical

type. These data are used in other research projects to perform

benchmarking machine learning methods [20]. The values of real

𝑘 , 𝑛 and 𝑑 are given in Table 2. The data sets used are diverse and

they can be organized into several groups:

• black and white or grayscale images; clustering is ap-

plied in this case directly to the pixels.𝐸𝑚𝑛𝑖𝑠𝑡 and 𝐹𝑎𝑠ℎ𝑖𝑜𝑛−
𝑚𝑛𝑖𝑠𝑡 contain images respectfully on the first 10 digits and

clothing and shoes. Each image was flattened to form a

single vector. And each vector has been assigned its corre-

sponding class (label);

• 4-band multispectral images; they characterize differ-

ent types of soil. The corresponding dataset is 𝑠𝑎𝑡𝑖𝑚𝑎𝑔𝑒;

• sounds; the 𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒𝑉𝑜𝑤𝑒𝑙𝑠 dataset is a set of digitized
Japanese vowel sounds. Each sound is associated with a

speaker;

• historization of people’s activities; the 𝑙𝑑𝑝𝑎 dataset is
a collection of the positions of sensors present on people

in order to identify the movement they perform at a given

time. The 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 dataset is a set of people’s activities

designed to determine the authors;

• images represented by characteristics extracted from
the object to be identified; for example, in the 𝐹𝑜𝑢𝑟𝑖𝑒𝑟

dataset each record is a set of coefficients of the charac-

ter (one of the first 10 digits) shapes; similarly in 𝑍𝑒𝑟𝑛𝑖𝑘𝑒

each instance of a digit is of rotation invariant Zernike

moments of the digit (between 0 and 9); in 𝑃𝑒𝑛𝑑𝑖𝑔𝑖𝑡𝑠 each

individual is a positions sequence characterizing a digit;

in 𝐿𝑒𝑡𝑡𝑒𝑟 each instance of a letter of the English alpha-

bet contains statistical moments and edge counts of the

given letter; in 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 dataset a data point is just a set of

geometric characteristics of a given vehicle.

4.1.3 METRICS FOR EVALUATING EXPERIMENTAL RESULTS.
To evaluate the results of the algorithms we are comparing, three

metrics were used. First, the execution time (Δ𝑡) of the algorithm,

the relative difference (Δ𝑘) between the actual value of k and the

estimated value of k and finally the distance between the actual

partitioning and the partitioning proposed by the algorithm.

The relative difference is calculated as follows:

Δ𝑘 =
|𝑘𝑟𝑒𝑎𝑙 − 𝑘𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 |

𝑘𝑟𝑒𝑎𝑙
(12)

The variation of the information (𝑣𝑖) [15] was used as a dis-

tance between two partitionings. It measures the amount of infor-

mation gained and lost for a dataset passing from a partition A to

another partition B. It respects the three properties of triangular

inequality. So the smaller the 𝑣𝑖 is, the closer the partitionings

are to each other.

4.2 RUNTIME ANALYSIS
If we consider the performance of the three algorithms according

to the metric Δ𝑡 , our algorithm takes the least time to provide

a clustering result. This is true in both synthetic and real data

and regardless of the value of 𝑘 , 𝑑 and 𝑛. Our algorithm is 5.5 to

12.9 times faster than g-means and 15.4 to 75.2 times faster than

x-means in synthetic data, respectively. The same trend occurs

in real data, but from 16.3 to 1566.6 times compared to g-means

KD-means G-means X-means

k d n k(Δ𝑘) vi Δ𝑡 k(Δ𝑘) vi Δ𝑡 k(Δ𝑘) vi Δ𝑡

10 4 1 × 10
6

8.4(0.17) 0.4 39.7 74.0(6.4) 2.2 344.3(8.7) 45.7(3.57) 2.5 816.2(20.6)

2 × 10
6

8.3(0.21) 0.5 65.4 91.0(8.1) 2.4 774.1(11.8) 45.7(3.57) 2.5 1420.5(21.7)

4 × 10
6

8.3(0.18) 0.5 117.4 87.0(7.7) 2.3 1517.3(12.9) 44.6(3.46) 2.4 2203.6(18.8)

6 1 × 10
6

8.6(0.15) 0.4 41.9 69.2(5.92) 2.2 396.4(9.5) 46.0(3.6) 2.3 1101.5(26.3)

2 × 10
6

8.1(0.2) 0.5 72.9 89.0(7.9) 2.5 926.9(12.7) 46.1(3.61) 2.3 1869.9(25.7)

4 × 10
6

8.0(0.23) 0.5 133.7 79.1(6.91) 2.2 1628.0(12.2) 45.9(3.59) 2.3 3061.4(22.9)

8 1 × 10
6

7.4(0.39) 0.8 45.9 63.2(5.32) 2.6 386.0(8.4) 45.9(3.59) 1.5 789.4(17.2)

2 × 10
6

6.9(0.37) 0.8 81.2 71.3(6.13) 2.8 823.1(10.1) 45.5(3.55) 1.6 1253.5(15.4)
4 × 10

6
6.0(0.41) 0.9 153.6 78.9(6.89) 2.8 1727.2(11.2) 46.2(3.62) 1.6 2378.8(15.5)

32 4 1 × 10
6

35.4(0.38) 0.9 77.6 99.3(2.1) 1.9 535.6(6.9) 148.4(3.64) 2.9 2817.2(36.3)

2 × 10
6

31.4(0.35) 0.8 132.5 114.1(2.57) 2.0 1152.8(8.7) 147.6(3.61) 2.9 4831.0(36.5)

4 × 10
6

27.3(0.36) 1.0 233.7 132.1(3.13) 2.1 2468.4(10.6) 145.2(3.54) 2.9 7628.1(32.6)

6 1 × 10
6 40.2(0.47) 0.9 79.2 101.0(2.16) 1.8 586.7(7.4) 150.2(3.69) 2.7 3689.9(46.6)

2 × 10
6

34.6(0.44) 0.9 146.9 122.5(2.83) 2.1 1375.6(9.4) 149.1(3.66) 2.7 7880.7(53.7)

4 × 10
6

29.1(0.44) 1.0 260.2 107.9(2.37) 1.7 2485.1(9.5) 135.9(3.25) 2.7 7901.8(30.4)

8 1 × 10
6

35.7(0.36) 1.0 82.2 115.2(2.6) 2.2 665.7(8.1) 149.0(3.66) 1.9 2491.6(30.3)

2 × 10
6

37.2(0.42) 1.0 154.9 126.8(2.96) 2.3 1383.3(8.9) 148.1(3.63) 1.8 3740.0(24.2)

4 × 10
6

36.4(0.46) 0.9 299.5 136.5(3.27) 2.6 2883.7(9.6) 133.8(3.18) 1.8 5037.7(16.8)

80 4 1 × 10
6

90.5(0.24) 0.9 141.5 144.1(0.8) 1.5 781.9(5.5) 368.2(3.6) 3.3 7807.2(55.2)

2 × 10
6

88.3(0.29) 1.0 283.2 170.4(1.13) 1.8 1673.6(5.9) 373.1(3.66) 3.3 14147.0(50.0)

4 × 10
6

83.0(0.3) 1.2 570.8 186.9(1.34) 2.0 3417.8(6.0) 366.6(3.58) 3.4 21887.1(38.3)

6 1 × 10
6

96.2(0.37) 0.9 148.3 167.0(1.09) 1.6 893.0(6.0) 376.1(3.7) 3.2 10385.8(70.1)

2 × 10
6

97.4(0.39) 0.9 285.4 186.2(1.33) 1.8 1892.4(6.6) 375.0(3.69) 3.2 22403.6(78.5)

4 × 10
6

92.8(0.4) 1.1 578.0 200.4(1.51) 1.7 4039.2(7.0) 363.3(3.54) 2.9 37716.6(65.3)

8 1 × 10
6

57.5(0.28) 1.2 151.5 207.8(1.6) 2.0 1016.0(6.7) 377.2(3.71) 2.2 7834.6(51.7)

2 × 10
6

98.6(0.43) 0.9 308.2 150.2(0.88) 1.4 1708.6(5.5) 373.6(3.67) 3.2 21824.6(70.8)

4 × 10
6 99.2(0.47) 1.0 626.4 166.9(1.09) 1.5 3581.8(5.7) 377.7(3.72) 3.2 47130.8(75.2)

Table 1: Comparison of the three algorithms (our KD-means algorithm, g-means and x-means) executed on synthetic data. Note that Δ𝑡
is expressed in seconds. In the Δ𝑡 sub-column of the g-means and x-means columns, the number in brackets represents how many times
our algorithm is faster than the compared algorithm.

KD G-means X-means

dataname k d n k(Δ𝑘) vi Δ𝑡 k(Δ𝑘) vi Δ𝑡 k(Δ𝑘) vi Δ𝑡

vehicle 4 18 1 × 10
6

3.0(0.28) 2.9 38.6 2226(555.5) 11.8 60530.8(1566.6) 16.0(3.0) 5.3 281.5(7.3)

satimage 6 36 1 × 10
6 28.9(3.81) 2.7 54.5 1177(195.17) 8.8 34595.7(635.3) 28.7(3.78) 3.8 1151.0(21.1)

japaneseVowels 9 14 1 × 10
6

9.4(0.83) 4.5 75.6 3377(374.22) 12.5 55220.1(730.5) 32.0(2.56) 7.7 534.8(7.1)

pendigits 10 16 1 × 10
6

29.1(1.91) 3.6 31.0 2574(256.4) 9.1 40806.3(1316.9) 32.0(2.2) 4.0 759.2(24.5)

fourier 10 76 1 × 10
6

39.2(2.92) 3.0 91.6 1309(129.9) 8.0 38210.3(417.0) 57.3(4.73) 3.9 2791.2(30.5)

fashion-mnist 10 784 70000 10.9(0.11) 3.3 58.6 533(52.3) 7.1 954.1(16.3) 32.0(2.2) 4.0 697.0(11.9)

ldpa 11 5 164860 32.5(1.96) 6.3 12.5 1766(159.55) 10.8 5996.6(480.7) 47.2(3.3) 7.1 132.3(10.6)

walking 22 4 149332 39.6(1.35) 6.7 14.7 1257(56.14) 10.0 3254.1(220.8) 100.7(3.58) 8.4 93.7(6.4)
letter 26 16 999999 59.7(1.3) 7.2 57.8 1581(59.81) 11.1 22502.6(389.5) 117.0(3.5) 8.6 6272.4(108.6)
zernike 47 47 1 × 10

6
86.9(1.08) 5.3 118.1 1157(23.62) 9.0 35710.8(302.3) 128.0(1.72) 6.4 5583.1(47.3)

emnist 62 784 697932 45.6(0.26) 6.0 948.6 3073(48.56) 8.6 46224.8(48.7) 256.0(3.13) 6.7 36029.7(38.0)

Table 2: Comparison of the three algorithms executed on real data.

and from 6.4 to 108.6 times compared to x-means. Maximum

execution times were reached for all three algorithms at 𝑑 = 8,

𝑛 = and 𝑘 = 80 in the synthetic data. In this combination, the

elapsed execution times are 10.43 minutes for our algorithm,

59.41 minutes for g-means and 13h05 for x-means respectively.

In the real data, the maximums are reached in the configuration

𝑑 = 784, 𝑛 = 697932 and 𝑘 = 62 for x-means and KD-means. That

is 15.48 minutes for KD-means and 10 hours for x-means. In the

case of g-means, the maximum is even higher than that of the

others, it is reached at 16.48 hours (𝑘 = 4, 𝑑 = 18, 𝑛 = 1 × 10
6
).

4.3 CLUSTER QUALITY ANALYSIS (Δ𝑘/𝑣𝑖)
KD-means is better than other algorithms in estimating k with

good clustering quality in synthetic and real data.

In the synthetic data, KD-means does not exceed 0.47 in Δ𝑘
and 1.2 in 𝑣𝑖 . X-means even reaches Δ𝑘 = 3.72 and 𝑣𝑖 = 3.4. The

same for g-means with Δ𝑘 = 8.1 and 𝑣𝑖 = 2.8. The decrease in

Δ𝑘 g-means when 𝑘 increased in the synthetic data is due to the

presence of many gaussian clusters that are well separated from

each other. KD-means has a better estimate of good quality than

the others. In terms of 𝑣𝑖 , it is on average 2.46 and 3.05 better

than g-means and x-means. Same performance in Δ𝑘 , better on
average by 2.83 (g-means) and 4.29 (x-means). It could be pointed

out that g-means is better than x-means in terms of quality (𝑣𝑖)

in several combinations of (𝑘,𝑑, 𝑛).
In real data, the KD maxima do not exceed Δ𝑘 = 3.81 and

𝑣𝑖 = 7.2. They are higher for x-means and g-means, they reach

respectively (Δ𝑘 = 4.73, 𝑣𝑖 = 8.6) and (Δ𝑘 = 555.5, 𝑣𝑖 = 12.5). The

values of Δ𝑘 and 𝑣𝑖 are higher in real data than in synthetic data.

Indeed, the distributions of clusters in real data are more complex

than synthetic clusters (gaussian). As a result, these complex rep-

resentations of clusters are difficult to capture completely point

by point. This increase is much higher for g-means because it

tends to identify gaussian clusters in particular. However, clus-

ters in real data are not necessarily gaussian because they are

not constituted by gaussian distribution generators. As a result,

Synthetic data Real data

th_evo Δ𝑘 vi Δ𝑡 Δ𝑘 vi Δ𝑡

0.05 0.3 0.8 213.2 1.7 4.9 132.5

0.10 0.3 0.8 203.1 1.6 4.8 144.5

0.15 0.3 0.8 198.2 1.5 4.7 134.0

0.20 0.3 0.8 193.5 1.4 4.7 141.1

0.25 0.3 0.9 188.6 1.2 4.5 136.5

0.30 0.4 1.0 183.8 1.3 4.6 130.5

Table 3: Performance of our algorithm as a function of the value
of 𝑡ℎ_𝑒𝑣𝑜

Synthetic data Real data

ψ Δ𝑘 vi Δ𝑡 Δ𝑘 vi Δ𝑡

4 0.5 1.1 195.0 1.3 4.2 131.1

8 0.3 0.8 201.5 1.2 4.4 141.3

10 0.3 0.7 200.0 1.4 4.8 136.1

12 0.3 0.8 190.5 1.9 5.3 137.5

Table 4: Performance of our algorithm as a function of the value
of ψ

g-means makes an execessive overestimation of k (therefore Δ𝑘
high) compared to KD. The KD-means algorithm is the least

affected by the gaussianity of clusters because in its operation

gaussianity is not explicitly sought.

4.3.1 PARAMETER SENSITIVITY ANAlYSIS. We analyze the

three metrics (Δ𝑡 , 𝑣𝑖 and Δ𝑘) according to 𝑡ℎ_𝑒𝑣𝑜 and ψ. This is
done in both data contexts (real and synthetic).

In Tables 3 and 4, 𝑡ℎ_𝑒𝑣𝑜 and ψ do not have a particular in-

fluence on the execution time of KD-means. Indeed, the range

(difference between the maximum and minimum values) of Δ𝑡
does not exceed 10.2 seconds with respect to ψ. It is about 30
seconds for 𝑡ℎ_𝑒𝑣𝑜 . If we take into account the Δ𝑡 magnitude of

the three algorithms, these differences are negligible.

In the synthetic data, concerning ψ, the values of Δ𝑘 are iden-

tical except for ψ = 4 where the value is slightly higher than the

others by 0.2. The values of 𝑣𝑖 have a maximum difference of 0.4.

This difference is 0.1 when ψ ∈ [8, 10, 12] for which 𝑣𝑖 is minimal.

At ψ = 4 Δ𝑘 is slightly higher by 0.3 compared to the rest. In real

data, the range is 1.1 for 𝑣𝑖 but at 0.2 if ψ ∈ [4, 8]. This range is
0.7 for Δ𝑘 but drops to 0.2 for ψ ∈ [4, 8, 10].

Concerning 𝑡ℎ_𝑒𝑣𝑜 in the synthetic data, the values of Δ𝑘 and

𝑣𝑖 have a range of 0.2. In real data, the respective ranges of Δ𝑘
and 𝑣𝑖 are 0.5 and 0.4. They drop to 0.2 when ψ ∈ [0.20, 0.25, 0.30]
for Δ𝑘 and ψ ∈ [0.15, 0.20, 0.25, 0.30] for 𝑣𝑖 .

The observed ranges of the two metrics 𝑣𝑖 and Δ𝑘 are lower

than the values of the same metrics of the competitors algo-

rithms in the real and synthetic data. But if we are stricter by

just accepting ranges less than or equal to 0.2 then the optimal

values, when the data are gaussian, are ψ ∈ [8, 10, 12] and 𝑡ℎ_𝑒𝑣𝑜
taking all the values tested. When the data is real (not neces-

sarily gaussian clusters), the optimal values are ψ ∈ [4.8] and
𝑡ℎ_𝑒𝑣𝑜 ∈ [0.20, 0.25, 0.30].

5 CONCLUSION AND PERSPECTIVES
The estimation of the number of clusters (𝑘), that k-means must

find, is a major problem in the literature. And it is more significant

when data is massive and clusters overlap.We provided a solution,

based on kd-tree, that automatically estimates the value of 𝑘 on

massive and high dimensional data. It is robust even if clusters

overlap. Four criteria were defined to guide the procedure for

estimating k. Through experiments, we have shown that our

solution is very competitive compared to the known x-means

and g-means algorithms, which have proven to be unsuitable

for scaling up and overlapping clusters. We plan to improve our

solution in several areas:

• implement a strategy that manages nested indexing. Be-

cause the indices of a node are also in the parent node;

• use random kd-tree and multiple kd-tree in case the num-

ber of dimensions is even larger to have more very good

performance in searching for information stored in kd-

tree or to have the best data separation. This performance

will help our solution to make better decisions on cluster

merging.

ACKNOWLEDGMENTS
These studies are supported by the ANRT and Capgemini funding

under CIFRE-Capgemini partnership.

REFERENCES
[1] Nir Ailon, Yudong Chen, and Huan Xu. 2013. Breaking the Small Cluster

Barrier of Graph Clustering. CoRR abs/1302.4549 (2013). arXiv:1302.4549

[2] David Arthur and Sergei Vassilvitskii. 2007. k-means++: the advantages of

careful seeding. In ACM-SIAM symposium on Discrete algorithms. 1027–1025.
arXiv:1212.1121

[3] Jon Louis Bentley. 1975. Multidimensional binary search trees used for as-

sociative searching. Commun. ACM 18 (September 1975), 509–517. Issue 9.

https://doi.org/10.1145/361002.361007

[4] Gianna M. Del Corso. 1997. Estimating an Eigenvector by the Power Method

with a Random Start. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997), 913–937.
https://doi.org/10.1137/S0895479895296689

[5] T. Cover and P. Hart. 2006. Nearest Neighbor Pattern Classification. IEEE Trans.
Inf. Theor. 13, 1 (Sept. 2006), 21–27. https://doi.org/10.1109/TIT.1967.1053964

[6] Charles Elkan. 2003. Using the Triangle Inequality to Accelerate K-means. In

Proceedings of the Twentieth International Conference on International Confer-
ence on Machine Learning (ICML’03). AAAI Press, 147–153.

[7] Aislan G. Foina, Judit Planas, Rosa M. Badia, and Francisco Javier Ramirez-

Fernandez. 2011. P-means, a parallel clustering algorithm for a heterogeneous

multi-processor environment. In Proceedings of the 2011 International Con-
ference on High Performance Computing and Simulation, HPCS 2011. IEEE,
239–248.

[8] E.W. Forgy. 1965. Cluster analysis of multivariate data: efficiency versus

interpretability of classifications. Biometrics (1965).
[9] Guojun Gan, Chaoqun Ma, and Jianhong Wu. 2007. Data Clustering: The-

ory, Algorithms, and Applications (ASA-SIAM Series on Statistics and Applied
Probability). Society for Industrial and Applied Mathematics.

[10] Greg Hamerly and Charles Elkan. 2003. Learning the K in K-means. In Pro-
ceedings of the 16th International Conference on Neural Information Processing
Systems (NIPS’03). MIT Press, 281–288.

[11] Anil K. Jain. 2010. Data clustering: 50 years beyond K-means. Pattern Recog-
nition Letters 31, 8 (jun 2010), 651–666.

[12] A K Jain, M N Murty, and P. J. Flynn. 1999. Data clustering: a review.

[13] Chuanren Liu, Tianming Hu, Yong Ge, and Hui Xiong. 2012. Which distance

metric is right: An evolutionary k-means view. In Proceedings of the 12th SIAM
International Conference on Data Mining, SDM 2012.

[14] Songrit Maneewongvatana and David M. Mount. 1999. It’s Okay to Be Skinny,

If Your Friends Are Fat. In Center for Geometric Computing 4th Annual Work-
shop on Computational Geometry.

[15] Marina Meilă. 2003. Comparing Clusterings by the Variation of Information.

In Learning Theory and Kernel Machines, Bernhard Schölkopf and Manfred K.

Warmuth (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 173–187.

[16] Dau Pelleg and Andrew Moore. 2000. X-means: Extending K-means with

Efficient Estimation of the Number of Clusters. In In Proceedings of the 17th
International Conf. on Machine Learning. Morgan Kaufmann, 727–734.

[17] D T Pham, S S Dimov, and C D Nguyen. 2005. Selection of K in K-means

clustering. Proceedings of the Institution ofMechanical Engineers, Part C: Journal
of Mechanical Engineering Science 219, 1 (jan 2005), 103–119.

[18] Hanan Samet. 2005. Foundations ofMultidimensional andMetric Data Structures.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[19] M. A. Stephens. 1974. EDF Statistics for Goodness of Fit and SomeComparisons.

J. Amer. Statist. Assoc. 69, 347 (1974), 730–737.
[20] Jan N. van Rijn, Geoffrey Holmes, Bernhard Pfahringer, and Joaquin Van-

schoren. 2014. Algorithm Selection on Data Streams. In Discovery Science, Sašo
Džeroski, Panče Panov, Dragi Kocev, and Ljupčo Todorovski (Eds.). Springer

International Publishing, 325–336.

[21] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component

analysis. Chemometrics and Intelligent Laboratory Systems 2, 1 (1987), 37 –
52. Proceedings of the Multivariate Statistical Workshop for Geologists and

Geochemists.

[22] Tian Zhang, Raghu Ramakrishnan, andMiron Livny. 1996. BIRCH: An Efficient

Data Clustering Method for Very Large Databases. SIGMOD Record 25, 2 (jun

1996), 103–114.

http://arxiv.org/abs/1302.4549
http://arxiv.org/abs/1212.1121
https://doi.org/10.1145/361002.361007
https://doi.org/10.1137/S0895479895296689
https://doi.org/10.1109/TIT.1967.1053964

	Abstract
	1 Introduction
	2 BACKGROUND
	3 CONTRIBUTION
	3.1 KD-TREE
	3.2 NODE MERGING
	3.3 CLUSTER REGULARIZATION

	4 EXPERIMENTAL ASSESSMENTS
	4.1 EXPERIMENTAL PROTOCOL
	4.2 RUNTIME ANALYSIS
	4.3 CLUSTER QUALITY ANALYSIS (k/vi)

	5 CONCLUSION AND PERSPECTIVES
	Acknowledgments
	References

