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Let S be a Clifford module for the complexified Clifford algebra C pR n q, S 1 its dual, ρ and ρ 1 be the corresponding representations of the spin group SpinpR n q. The group G " SpinpR 1,n`1 q is the (twofold covering) of the conformal group of R n . For λ, µ P C, let π ρ,λ (resp. π ρ 1 ,µ ) be the spinorial representation of G on S-valued λ-densities (resp. S 1 -valued µ-densities) on R n . For 0 ď k ď n and m P N, we construct a symmetry breaking differential operator B pmq k;λ,µ from C 8 pR n ˆRn , SbS 1 q into C 8 pR n , Λ k pR n qq which intertwines the representations π ρ,λ b π ρ 1 ,µ and π τ k ,λ`µ`2m , where τ k is the representation of SpinpR n q on Λ k pR n q.

Introduction

In the last years there had been a lot of work on symmetry breaking differential operators (SBDO for short), initiated by a program designed by T. Kobayashi (see [START_REF] Kobayashi | F-method for symmetry breaking operators[END_REF] and [START_REF] Kobayashi | Differential symmetry breaking operators II. Rankin-Cohen operators for symmetric pairs[END_REF] for more information on the subject). The present authors have already contributed to the construction of some SBDO (see [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF][START_REF] Ben Saïd | Conformally covariant bidifferential operators on a simple Jordan algebra[END_REF][START_REF] Ben Saïd | Conformally covariant bidifferential operators for differential forms[END_REF][START_REF] Clerc | Symmetry breaking differential operators, the source operator and Rodrigues formula[END_REF]). In the present paper, we construct such operators in the context of tensor product of two spinorial principal series representations of the conformal spin group of R n (a two-fold covering of the Lorentz group SO 0 p1, n `1qq.

The method we follow has been named source operator method by the first author (see [START_REF] Clerc | Symmetry breaking differential operators, the source operator and Rodrigues formula[END_REF] for a systematic presentation). An essential ingredient is the Knapp-Stein operator for the spinorial series, which is presented along new lines in the ambient space approach (subsection 2.3). The construction of the source operator requires some Fourier analysis on R n and in this paper 1 we develop an approach through an ad hoc symbolic calculus, which eases the computations (subsection 3.3). As a result, an explicit expression for the source operator (of degree 4 with polynomial coefficients) is obtained (see (3.11)).

Once the source operator is computed, the sequel is standard and yields a family of constant coefficients bi-differential operators which are covariant for the action of the conformal spinor group. In complement, a recurrence formula on these operators is obtained. An explicit formula is obtained for the "simplest" SBDO (scalar-valued and of degree 2).

When the dimension n is equal to 1, the operators thus constructed coincide with the classical Rankin-Cohen brackets of even degree, see (4.3).

At the very beginning of the present work, the first author benefited from a discussion with Bent Ørsted during a visit at Aarhus University and wishes to thank him and its institution for the invitation.

Clifford modules

This section contains what is necessary to know about Clifford algebras and their modules in order to read this article without any claim to originality. We use [START_REF] Delanghe | Clifford algebra and spinor-valued functions[END_REF] and [START_REF] Berline | Grundlehren der mathematischen Wissenschaften[END_REF] as main references.

The Clifford algebra and the spin group

Let pE, x¨, ¨yq be a Euclidean vector space of dimension n. The Clifford algebra C pEq is the algebra over R generated by the vector space E and the relations xy `yx " ´2xx, yy for x and y P E , where ´2xx, yy is identified with ´2xx, yy1 and 1 being the algebra identity element.

There is a natural action of the Clifford algebra on the exterior algebra ΛpEq. For x P E and ω P ΛpEq, let εpxqω be the exterior product of x with ω, and let ιpxqω be the contraction of ω with the covector xx, .y. The Clifford action of a vector x P E on ΛpEq is given by cpxqω " εpxqω ´ιpxqω.

The classical formula εpxqιpyq `ιpxqεpyq " 2xx, yy implies that cpxqcpyq `cpyqcpxq " ´2xx, yy and by the universal property of the Clifford algebra, the action c can be extended to C pEq. Associated to this action is the symbol map σ : C pEq ÝÑ ΛpEq given by σpaq " cpaq1 for a P C pEq.

The symbol map can be shown to be an isomorphism, and its inverse γ : ΛpEq ÝÑ C pEq is called the quantization map, see [START_REF] Berline | Grundlehren der mathematischen Wissenschaften[END_REF] for more information.

To give an explicit realization of the quantization map, let e 1 , e 2 , . . . , e n be an orthonormal basis of E. Then

γpe i 1 ^ei 2 ^¨¨¨^e i k q " e i 1 e i 2 . . . e i k , (1.1) 
where 1 ď i 1 ă i 2 ă ¨¨¨ă i k ď n. Moreover, σ (and hence γ) is an isomorphism of OpEq-modules.

The conjugation α is the unique anti-involution of C pEq such that for x P E, αpxq " ´x. Notice that

x P E, |x| " 1 implies αpxq " x ´1
The pin group PinpEq is defined as the multiplicative subset of C pEq given by PinpEq " tg P C pEq, g " x 1 x 2 . . . x k , |x j | " 1 for 1 ď j ď ku, the inverse of the element g " x 1 x 2 . . . x k being the element g ´1 " αpgq .

The spin group SpinpEq is defined similarly as SpinpEq " tg P C pEq, g " x 1 x 2 . . . x 2k , |x j | " 1 for 1 ď j ď 2ku.

Let

x P E such that |x| " 1. Then for any y P E, xyx ´1 belongs to E and xyx ´1 " s x y, where s x is the orthogonal symmetry with respect to the hyperplane perpendicular to x. As a consequence, if g P PinpEq, then for any x P E, gxg ´1 P E and the map τ g : x Þ ÝÑ gxg ´1 belongs to OpEq. If moreover g P SpinpEq, then τ g belongs to SOpEq. 

Clifford module and its dual

Let E be the complexification of E and extend the inner product on E to a symmetric C-bilinear form. Denote by C pEq the complex Clifford of E, which can be identified with C pEq b C. A Clifford module pS, ρq is a complex vector space together with a (left) action ρ of C pEq on S. By restriction, the action ρ yields representations of the groups PinpEq or SpinpEq, also denoted by ρ. As PinpEq is compact, there exists an inner product x ¨, ¨y on S for which the action of the group PinpEq is unitary. Now for any v P E and for any s, t P S xρpvqs, ty " ´xs, ρpvqty.

In fact, it suffices to prove the formula for v P E such that |v| " 1. But then ρpvq 2 " ´1, so that xρpvqs, ty " ´xρpvqs, ρpvqρpvqty " ´xs, ρpvqty using the unitarity of ρpvq for v P PinpEq.

The dual space S 1 is also a Clifford module with the action ρ 1 given by

x P E, t 1 P S 1 ρ 1 pxq t 1 " ´t1 ˝ρpxq , and then extended to a representation of C pEq. The restriction of ρ 1 to SpinpEq (still denoted by ρ 1 ) coincides with the contragredient representation of ρ.

Denote the duality between S and S 1 by ps, t 1 q, for s P S and t 1 P S 1 . Then @x P E, s P S, t 1 P S 1 , pρpxqt, t 1 q " ´pt, ρ 1 pxqt 1 q (1.2) @g P SpinpEq, s P S, t 1 P S 1 , pρpgqs, ρ 1 pgqt 1 q " ps, t 1 q .

(1.3)

Decomposition of the tensor product S b S 1

Define Ψ : S b S 1 ÝÑ Λ ˚pEq b C by the following formula, for s P S, t 1 P S 1 and ω P ΛpEq Ψps b t 1 qpωq " pρ `γpωq ˘s, t 1 q or more explicitly (see (1.1)), for ω " e i 1 ^¨¨¨^e i k , where 1 ď i 1 ă i 2 ă ¨¨¨ă i k ď n, Proof. Let g P SpinpEq. Recall that for any x P E, τ pgqx " gxg ´1, so that ρpxqρpgq " ρpgqρpg ´1xgq " ρpgqρ `τ pg ´1qxq ȃnd hence, for

Ψps b t 1 q `ei 1 ^¨¨¨^e i k ˘" `ρpe i 1 q ¨¨¨ρpe i k q s, t 1 ˘.
1 ď i 1 ă i 2 ă ¨¨¨ă i k ď n ρpe i 1 q ¨¨¨ρpe i k qρpgq " ρpgqρ `τ pg ´1qe i 1 ˘¨¨¨ρ `τ pg ´1qe i k ˘.
so that for s P S, t 1 P S 1

Ψpρpgqs, ρ 1 pgqt 1 q `ei 1 ^¨¨¨^e i k ˘" `ρpe i 1 q . . . ρpe i k qρpgqs, ρ 1 pgqt 1 " `ρpgqρ `τ pg ´1qe i 1 ˘¨¨¨ρ `τ pg ´1qe i k ˘s, ρ 1 pgqt 1 " `ρ`τ pg ´1qe i 1 ˘¨¨¨ρ `τ pg ´1qe i k ˘s, t 1 " τ pgq ˚Ψps, t 1 qpe i 1 ^¨¨¨^e i k q we thus get Ψpρpgqs, ρ 1 pgqt 1 q " `τ pgq ˚Ψ˘p s, t 1 q .

The space Λ ˚pEq b C decomposes further under the action of the group SpinpEq (which reduces to an action of SOpEq) and in fact

ΛpEq ˚b C " n à k"0 Λ k pEq b C,
where Λ k pEq is the space of alternating k-forms on E. For 0 ď k ď n let

Ψ pkq : S b S 1 ÝÑ Λ k pEq b C Ψ pkq " proj k ˝Ψ ,
the operator proj k being the projector from Λ ˚pEq b C on Λ k pEq b C.

The following lemma will be needed in the proof of the next proposition.

Lemma 1.3. Let J " t1 ď j 1 , ă j 2 ă ¨¨¨ă j k ď nu and let e J " e j 1 e j 2 ¨¨¨e j k . Then

n ÿ i"1
e i e J e i " p´1q k´1 pn ´2kq e J .

(1.4)

Proof. Let 1 ď i ď n. Assume first that i R J. Then e i e J e i " e i pe j 1 e j 2 ¨¨¨e j k qe i " p´1q k pe j 1 e j 2 ¨¨¨e j k qe i e i " p´1q k´1 e J .

Assume on the contrary that i " j for some , 1 ď ď k. Then e i pe j 1 e j 2 ¨¨¨e j ´1 qe j pe j `1 ¨¨¨e j k qe i " p´1q ´1p´1q k´ pe j 1 e j 2 . . . e j ´1 qe i e j e i pe j `1 . . . e j k q " p´1q k e J .

Hence

n ÿ i"1
e i e J e i " pn ´kqp´1q k´1 `kp´1q k " pn ´2kqp´1q k´1 .

Let L be the operator on S b S 1 given by

Lpv b w 1 q " n ÿ i"1 ρpe i qv b ρ 1 pe i qw 1 .
Proposition 1.4. Let 1 ď k ď n. Then Ψ pkq ˝L " p´1q k pn ´2kqΨ pkq .

(1.5)

Proof. Fix v P S and w 1 P S 1 . Let J " t1 ď j 1 ă j 2 ă ¨¨¨ă j k ď nu and let e J be the corresponding k-vector. Then Ψ `Lpv b w 1 q ˘pe J q "

n ÿ i"1
pρpe j 1 qρpe j 2 q ¨¨¨ρpe j k qρpe i qv, ρ 1 pe i qw 1 q which by (1.2) is equal to

´n ÿ i"1
pρpe i qρpe j 1 qρpe j 2 q . . . ρpe j k qρpe i qv, w 1 q " ´˜ρ ˜n ÿ

i"1

e i e j 1 e j 2 . . . e j k e i ¸v, w 1 ¸, and according to (1.4) we have Ψ `Lpv b w 1 q ˘pe J q " p´1q k pn ´2kqpρpe j 1 e j 2 . . . e j k qv, w 1 q " p´1q k pn ´2kqΨ pkq pv b w 1 qpe J q and the conclusion follows.

Spinors and irreducible representations of SpinpEq

For sake of completeness, we now discuss the irreducible Clifford modules and the corresponding representations of the spin group, known as spinor spaces.

When n is even, say n " 2m, there exists, up to equivalence a unique irreducible Clifford module S 2m of dimension 2 m . As a representation of SpinpR 2m q, S 2m splits into two irreducible non equivalent representations, the half spinors spaces S 2m and S 2m , each of dimension 2 m´1 .

When n is odd, say n " 2m`1, there exist two non-equivalent irreducible Clifford modules, of dimension 2 m . As representations of the spin group SpinpR 2m`1 q, they are irreducible and equivalent, thus leading to a unique spinor space S 2m`1 .

Wether n is even or odd, the dual of the Clifford module S n is isomorphic to itself as a representation of the spin group SpinpR n q. In the even case, the half spinor space is either self dual or isomorphic to its opposite half spinor space, depending on m, but in any case, S 2m b S 2m " pS 2m b S 2m q ' pS 2m b S 2m q ' pS 2m b S 2m q ' pS 2m b S 2m q.

The representation of the spin group SpinpR n q on Λ ˚pR n q goes down to a representation of SOpnq and decomposes as À n k"0 Λ k pR n q. The Hodge operator yields an isomorphism Λ k pR n q » Λ n´k pR n q. In the odd case Λ k pR n q is irreducible for any k, whereas for n " 2m, Λ k pR n q is irreducible except for k " m, and in fact, Λ mpR 2m q splits in two irreducible non equivalent representations.

In the present article we chose to work with Clifford modules. The latter considerations show that it is clearly possible to deduce results for spinor spaces, just by refining the decomposition under the action of the spin group.

The conformal spin group and the spinorial representations

In this Section, we present the construction of the conformal spin group G of the space E, its conformal action on E and the representations of G associated by induction of the Clifford modules. For convenience we identify E and R n .

The conformal spin group of R n

Let E " R 1,n`1 be the real vector space of dimension n `2 equipped with the symmetric bilinear form given by Qpx, yq " x 0 y 0 ´x1 y 1 ´¨¨¨´x n`1 y n`1 .

Denote by C pEq the corresponding Clifford algebra, generated by E and subject to the relation xy `yx " 2Qpx, yq

Let α be the conjugation of the Clifford algebra, i.e. the unique antiinvolution of C pEq such that αpxq " ´x. Let G " Spin 0 p1, n `1q be defined by

! v 1 v 2 . . . v 2k , k P N, v j P E, Qpv j q " ˘1, #tj, Qpv j q " ´1u even ) .
Then G is a connected Lie group, the inverse of an element g is equal to g ´1 " αpgq. For x P E and g P G, the element gxαpgq belongs to E and the map τ g : x ÝÑ gxαpgq defines an isometry of pE, Qq. Moreover, the map g ÝÑ τ g is a Lie group homomporphism from G onto SO 0 pEq » SO 0 p1, n `1q which turns out to be a twofold covering (see [START_REF] Delanghe | Clifford algebra and spinor-valued functions[END_REF] for more details).

The Lie algebra g of G can be realized as the subspace C 2 pEq of bivectors in C pEq generated by te i e j , 0 ď i ă j ď n `1u. The Lie algebra g is isomorphic to op1, n `1q. The isomorphism of E given by

e 0 Þ ÝÑ e 0 , e j Þ ÝÑ ´ej , 1 ď j ď n `1
can be extended as an involution of C pEq which, when restricted to C 2 pEq yields a Cartan involution θ of g. The corresponding decomposition of g is given by g " k ' s, where

k " à 1ďiăjďn`1 R e i e j , s " n`1 à j"1
Re 0 e j .

A Cartan subspace a of s is given by a " RH, where H " e 0 e n`1 .

Now let

m " ÿ 1ďiăjďn Re i e j , n " n à j"1
Re j pe 0 ´en`1 q, n "

n à j"1
Re j pe 0 `en`1 q , and notice that rH, ms " 0, ad H |n " `2, ad H |n " ´2 .

Then g " n ' m ' a ' n is a Gelfand-Naimark decomposition of g. By elementary calculation, for t P R a t :" exppte 0 e n`1 q " cosh t `sinh t e 0 e n`1 " e 0 `cosh t e 0 `sinh t e n`1 ȃnd for y P R n n y :" exp ype 0 ´en`1 q 2 " 1 `ype 0 ´en`1 q 2 and similarly, for

z P R n n z :" exp zpe 0 `en`1 q 2 " 1 `zpe 0 `en`1 q 2 .
The analytic Lie subgroups of G associated to a, n and n are isomorphic to their counterparts in SO 0 p1, n `1q and hence are denoted respectively by A, N and N .

The Cartan involution of g can be lifted to a Cartan involution of G. The fixed points set of this involution is a maximal compact subgroup

K " tv 1 v 2 . . . , v 2k , v j P n`1 à i"1
Re i , Qpv j q " ´1, 1 ď j ď 2ku , isomorphic to Spinpn `1q and a twofold covering of K » SOpn `1q. Let M be the centralizer of A in K which is isomorphic to Spinpnq and is a twofold covering of M . Let M 1 be the normalizer of A in K. Then the Weyl group M 1 {M has two elements. As a representative of the non trivial Weyl group element choose

w " e 1 e n`1

and observe in fact that

wHw ´1 " 1 2
e 1 e n`1 e 0 e n`1 e n`1 e 1 " ´1 2 e 0 e n`1 " ´H .

The Gelfand Naimark decomposition

To the decomposition of g is associated a (partial) decomposition of the group G, often called the Gelfand Naimrak decomposition. More precisely, the map

N ˆM ˆA ˆN Q pn, m, a, nq Þ ÝÑ nman P G
is injective and its image is a dense open subset of full measure in G. Conversely, let g P G and assume that g belongs to the image. Then there are unique elements npgq P N , mpgq P M, apgq P A, npgq P N such that g " npgqmpgqapgqnpgq .

The following result will be needed in the sequel.

Proposition 2.1. Let x P R n , and assume that x ‰ 0. Let x 1 " e 1 xe 1 .Then the following identity holds true :

w ´1n x " n x 1 |x| 2 ˆ´e 1 x |x| ˙aln |x| n x |x| 2 . (2.1)
In particular, mpw ´1n x q " ´e1 x |x| , ln apw ´1n x q " ln |x| .

Proof. First

w ´1n x " e n`1 e 1 `1 `1 2 xpe 0 `en`1 q " ´1 2 e 1 x ´1 2 e 1 xe 0 e n`1 ´e1 e n`1 .
The right side of the identity (2.1) is equal to

ˆ1 `x1 pe 0 `en`1 2|x| 2 ė1 x |x| ˙ˆ1 2 ˆ|x| `1 |x| ˙`1 2 ˆ|x| ´1 |x| ˙e0 e n`1 1 
`xpe 0 ´en`1 q 2|x| 2
ẇhereas the left handside is obtained by a standard computation, using in particular the fact that e 1 x commutes to e 0 e n`1 and the relation

x 1 e 1 x " |x| 2 e 1 .
Through the covering map G ÝÑ SO 0 p1, n `1q, G acts (rationally) on R n » À n j"1 Re j . In particular, the action of M on R n is given by

m P M, x P R n , v Þ ÝÑ mxm ´1 ,
and the action of A is given by

a t P A, x P R n n x Þ ÝÑ n e 2t x .

The representation induced from a Clifford module and the associated Knapp-Stein operators

Let pS, ρq be a Clifford module for the Clifford algebra C pEq. The restriction of ρ to the spin group M yields a representation of M , still denoted by ρ.

For λ P C, let χ λ be the character of A given by χ λ pa t q " e 2tλ for t P R . Now consider the representation of P " MAN given by

ρ b χ λ b 1 .
and let π ρ,λ " Ind G P ρ b χ λ b 1 be the associated induced representation from P to G. Let S ρ,λ be the associated bundle G ˆρ,λ S over G{P and let H ρ,λ be the space of smooth sections of S ρ,λ . The natural action of G on S ρ,λ gives a realization of π ρ,λ on H ρ,λ . Another realization of the representation π ρ,λ , more fitted for calculations is the noncompact picture, see [START_REF] Knapp | Representation theory of semisimple Lie groups, an overview based on examples[END_REF]chapter VII]. In this model, the representation is given by

π ρ,λ pgqF pnq " χ λ `apg ´1nq ˘´1 ρ `mpg ´1nq ˘´1 F pg ´1nq ,
where F is a smooth S-valued function on N . Consider now the representation wρ of M defined by @m P M, pwρqpmq " ρpw ´1mwq .

Proposition 2.2. The representation wρ is equivalent to ρ. More precisely, for all m P M ρp´e 1 q ˝wρpmq " ρpmq ˝ρp´e 1 q .

(2.2)

Proof. Recall that w " e 1 e n`1 so that for any m P M wρpmq " ρpe n`1 e 1 me 1 e n`1 q .

As e n`1 anticommutes to e 1 and commutes to m, this implies wρpmq " ρpe 1 mp´e 1 qq " ρpe 1 qρpmq ρp´e 1 q from which (2.2) follows by left multiplication by ρp´e 1 q " ρpe 1 q ´1. Now form the induced representation π wρ,n´λ " Ind G P pwρ b χ n´λ b 1q .

The Knapp-Stein operators J ρ,λ are intertwining operators between π ρ,λ and π wρ,n´λ , see again [START_REF] Knapp | Representation theory of semisimple Lie groups, an overview based on examples[END_REF] for general information on these operators. Using the equivalence between wρ and ρ, introduce the operators I ρ,λ " ρp´e 1 q ˝Jρ,λ .

Proposition 2.3. For any g P G, I ρ,λ ˝πρ,λ pgq " π ρ,n´λ pgq ˝Iρ,λ .

Proof. First, by induction Proposition 2.2 implies for any µ P C ρp´e 1 q ˝πwρ,µ pgq " π ρ,µ pgq ˝ρp´e 1 q .

Hence I ρ,λ ˝πρ,λ pgq " ρp´e 1 q ˝Jρ,λ ˝πρ,λ pgq " ρp´e 1 q ˝πwρ,n´λ pgq ˝Jρ,λ " π ρ,n´λ pgq ˝ρp´e 1 q ˝J ρ,λ " π ρ,n´λ pgq ˝Iρ,λ .

The expression of the corresponding Knapp-Stein operator in the noncompact picture is given by J ρ,λ F pn x q " ż R n e ´p2n´2λq ln apw ´1ny q ρpmpw ´1n y qqF pn x`y qdy, which, using Proposition 2.1, can be rewritten more explicitly as

J ρ,λ F pn x q " ż R n |y| ´2n`2λ ρ ˆ´e 1 y |y| ˙F pn x`y qdy.
In turn, the operator I ρ,λ " ρp´e 1 q ˝Jλ is given by

I ρ,λ F pn x q " ż R n |y| ´2n`2λ ρ ˆy |y| ˙F pn x´y qdy ,
after the change of variables y Þ Ñ y 1 " ´y. The Knapp-Stein operator I ρ,λ is thus shown to be a convolution operator on N , or otherwise said over R n . Notice the these operators were already introduced and studied in [START_REF] Clerc | Conformal covariance for the powers of the Dirac operator[END_REF]. Now consider simultaneously S and its dual S 1 . For λ, µ P C the corresponding induced representations are

π λ " Ind G P ρ b χ λ b 1, π 1 µ " Ind G P ρ 1 b χ µ b 1 .
Simplifying the notation, the corresponding intertwining operators are

I λ f pxq " ż R n |y| ´2n`2λ ρ
ˆy |y| ˙f px ´yqdy,

I 1 µ f pxq " ż R n |y| ´2n`2µ ρ 1 ˆy |y| ˙f px ´yqdy . (2.3) 
Finally, consider the "outer" tensor product ρ b ρ 1 as a representation of M ˆM and, for λ, µ P C form the tensor product representation µ q and pπ n´λ b π 1 n´µ q of G ˆG. The diagonal subgroup of G ˆG will be denoted simply by G, and viewed as acting diagonally on R n ˆRn . Needless to say, the previous proposition implies that I λ b I 1 µ is an intertwining operator for the action of G on C 8 pR n ˆRn q by the "inner" tensor product π λ b π 1 µ .

π λ b π 1 µ " Ind GˆG PˆP pρ b χ λ b 1q b pρ 1 b χ µ b 1q . Proposition 2.
3 The source operator

Definition of the source operator and the main theorem

Let M be the operator on C 8 pR n ˆRn , S b S 1 q defined for F a smooth function on R n ˆRn with values in S b S 1 by MF px, yq " |x ´y| 2 F px, yq . 

where apg, xq " apgn x q. This is equivalent to the more classical formula

|gpxq ´gpyq| 2 " κpg, xq |x ´y| 2 κpg, yq (3.2) 
where κpg, xq stands the conformal factor of g at x. The equivalence of (3.1) and (3.2) comes from the relation κpg, xq " χ 1 `apg, xq ˘´1 " e ´2 ln apg,xq , which can be checked easily for g in N , M and A and can be deduced for g " w ´1 from the Gelfand Naimark decomposition of w ´1n x obtained in Proposition 2.1. The proof of the intertwining property is then straightforward. In fact, let g P G and F P C 8 pR n ˆRn q. Then M ˝`π λ pgq b π 1 µ pgq ˘F px, yq " " |x ´y| 2 e ´2λ ln apg ´1, xq e ´2µ ln apg ´1, yq ρpmpg ´1n x qq b ρpmpg ´1n y q ˘F `g´1 pxq, g ´1pyq ȃnd by using (3.1) this can be transformed as |g ´1pxq ´g´1 pyq| 2 e ´2pλ´1q ln apg ´1, xq e ´2pµ´1q ln apg ´1, yq ρpmpg ´1n x qq b ρpmpg ´1n y q ˘F `g´1 pxq, g ´1pyq " pπ λ´1 pgq b π µ´1 pgqqMF px, yq .

There is a version of these results in the induced picture. In fact, Proposition 3.1 implies that for each pλ, µq there exists an operator M λ,µ :

H λ b H 1 µ ÝÑ H λ´1 b H 1 µ´1 intertwining π λ b π 1
µ and π λ´1 b π 1 µ´1 which is expressed in the local chart N ÝÑ G{P by the operator M.

Now let consider the operator E λ,µ defined by the following diagram

H λ,µ E λ,µ ÝÝÝÑ H λ`1,µ`1 I λ bI 1 µ § § đ İ § § I n´λ´1 bI 1 n´µ´1 H n´λ,n´µ M λ,µ ÝÝÝÑ H n´λ´1,n´µ´1
Theorem 3.2. The operator E λ,µ is a differential operator on G{P ˆG{P which satisfies, for any g P G

E λ,µ ˝`π λ pgq b π 1 µ pgq ˘" `πλ`1 pgq b π 1 µ`1 pgq ˘˝E λ,µ .
This is the main theorem of the article. The operator is named the source operator as it is the key to the construction of the SBDO as we will show later. The fact that E λ,µ is G-intertwining is a consequence of the definition. The fact that it is a differential operator is much more subtle and will be shown by working in the noncompact picture. There is however some difficulty when using the noncompat picture, due to the fact that the space of C 8 vectors in the noncompact picture is not very manageable, specially when using the Fourier transform on R n . Hence we have to use a slightly different path to construct and explicitly calculate the local expression of the operator E λ,µ . Coming bak to the compact picture, for generic λ (resp. µ) the Knapp-Stein operator I λ is invertible, and up to a constant (‰ 0), its inverse is equal to I n´λ . So that the operator E λ,µ (up to a the constant) satisfies the relation

`In´λ´1 b I n´µ´1 ˘˝M " E λ,µ ˝`I n´λ b I n´µ ˘.
This is the way we will introduce and calculate the expression of the source operator in the noncompact picture (cf Subsection 3.4).

Riesz distributions for Clifford modules

Up to that point, the intertwining operators are only formally defined and we need to look more carefully to the convolution kernels of the Knapp-Stein operators.

First recall the classical Riesz distributions. For s P C, the Riesz distribution r s on R n is given by r s pxq " |x| s .

More precisely, for psq ą ´n, the function r s is locally integrable and has moderate growth at infinity, so that r s is a well-defined tempered distribution. The family of distributions thus defined can be extended analytically in the parameter s P C, with poles at ´n ´2k, k P N.

Let pS, ρq be a Clifford module and for s P C define the associated Clifford Riesz distribution by

{ r s pxq " |x| s ρ ˆx |x| ˙" |x| s´1 ρpxq . (3.3)
Let E j " ρpe j q, 1 ď j ď n. Then, for x " ř n j"1 x j e j , ρpxq " ř n j"1 x j E j . Use the identity

x j |x| s´1 " 1 s `1 B Bx j p|x| s`1 q, to conclude that { r s pxq " 1 s `1 n ÿ j"1 B r s`1 Bx j pxqE j .
From this expression it is easy to deduce the next statement.

Proposition 3.3. The family { r s defined by (3.3) is a meromorphic family of EndpSq-valued tempered distributions with poles at s " ´n ´1 ´2k, k P Z.

Further properties of these distributions will be needed in the sequel. Parts of the present results were already obtained in [START_REF] Clerc | Conformal covariance for the powers of the Dirac operator[END_REF] and in [START_REF] Fischmann | Somberg Bernstein-Sato identities and conformal symmetry breaking operators[END_REF]. Proof. First B j `|x| s´1 ρpxq ˘" `ps ´1qx j |x| s´3 ˘ρpxq `|x| s´1 ρpe j q " `ps ´1qx j |x| s´3 ˘ρpxq ´|x| s´3 ρpe j qρpxqρpxq " `ps ´1qx j ´ρpe j xqq|x| s´3 ρpxq , and (3.4) follows.

Next, using (3.4) B 2 j { r s pxq " `ps ´1q ´ρpe j e j q ˘|x| s´3 ρpxq ``ps ´1qx j ´ρpe j xq ˘`ps ´3qx j ´ρpe j xq ˘|x| s´5 ρpxq " s|x| s´3 ρpxq ``ps ´1qps ´3qx 2 j ´p2s ´4qx j ρpe j xq `ρpe j xe j xq ˘|x| s´5 ρpxq . Now sum over j from j " 1 to j " n and use that

n ÿ j"1 x 2 j " |x| 2 , n ÿ j"1
x j e j " x, n ÿ j"1 e j xe j " pn ´2qx

to get ∆{ r s pxq " `ns|x| 2 `ps ´1qps ´3q|x| 2 `p2s ´4q|x| 2 ´pn ´2q|x| 2 ˘|x| s´5 ρpxq " `s2 `pn ´2qs ´n `1˘| x| s´3 ρpxq, and (3.5) follows.

We will also need the Fourier transform of the Riesz distributions. The Fourier transform of a function f on E is defined by the formula

Ff pξq " p f pξq " ż E e ´ixx,ξy f pxqdx .
The Fourier transform is an isomorphism of SpEq onto SpEq, the definition of the Fourier transform can be extended by duality to the space of tempered distribution S 1 pEq. For V a finite dimensional real vector space, denote by SpE, V q (resp. S 1 pV q) the space of V -valued Schwartz functions (resp. tempered distributions). The Fourier transform can also be extended to these spaces. Recall the following classical result for the usual Riesz distributions, see e.g. [START_REF] Gelfand | Generalized functions[END_REF]. Proposition 3.5. The Fourier transform of the Riesz distribution r s is given by Fpr s qpξq " c s r ´s´n pξq,

where c s " 2 s`n π n 2
Γp s`n 2 q Γp´s 2 q .

Proposition 3.6. The Fourier transform of { r s is given by

F { r s " { c s { r ´s´n (3.6) 
where

{ c s " ´i2 s`n π n 2
Γp s`n`1 2 q Γp´s ´1 2 q .

Proof. For any j, 1 ď j ď n, a basic formula for the Fourier transform yields Fpx j |x| s´1 qpξq " i B Bξ j pF|x| s´1 qpξq " ic s´1 B Bξ j p|ξ| ´s`1´n q " ip´s `1 ´nqc s´1 ξ j |ξ| ´s´1´n " { c s ξ j |ξ| ´s´n´1 . and (3.6) follows easily by using the linearity of x Þ Ñ ρpxq.

A symbolic calculus

This subsection describes in a general context a symbolic calculus, inspired by the calculus for the Weyl algebra or of the pseudo-differential calculus E, but designed for our specific problems to be treated in the next subsection. Let E a Euclidean vector space of dimension n, and let V a finite dimensional vector space.

Let k P S 1 pE, EndpV qq. Then, for f P SpE, V q, the formula

Kf pxq " ż E kpx ´yqf pyqdy defines a convolution operator K which maps SpE, V q in S 1 pE, V q.
As in the scalar case, these operators have a nice version through the Fourier transform, namely y Kf pξq " p kpξq p f pξq, ξ P E , where p k P S 1 pE 1 , V q is the Fourier transform of the distribution k.

Let ppxq be a EndpV q-valued polynomial function on E. Then, for f P SpE, V q the formula f Þ ÝÑ `x Þ Ñ ppxqf pxq defines an operator on SpE, V q denoted by f Þ ÝÑ pf and referred to as the multiplication operator by p. A multiplication operator can be extended to S 1 pE, V q.

We will have to deal with operators from SpE, V q into S 1 pE, V q which are obtained by composing a convolution operator (say K) followed by a multiplication operator by an EndpV q-valued polynomial function (say p) on E. Such an operator will be denoted by p K. By definition, its symbol is given by symbpp Kqpx, ξq " ppxq ˝p kpξq

x P E, ξ P E 1 .

viewed as the polynomial function on E with values in S 1 pEndpV qq

x Þ ÝÑ ppxq ˝p kpξq .

We let OppE, V q be the family of finite linear combinations of such operators.

In other words, an element of OppE, V q can be written in a unique way as

ÿ α x α A α K α
where α " pα 1 , α 2 , . . . , α n q denotes a n-multiindex, A α P EndpV q and K α is a convolution operator by a tempered EndpV q-valued distribution on E, with the tacit convention that only a finite number of terms in the sum are non zero. Then the symbol of such an operator is given by ÿ α

x α A α p k α pξq .

A constant coefficients EndpV q-valued differential operators on E is an example of convolution operator with a tempered distribution, namely a combination of derivatives of the Dirac distribution at 0 P E. In particular OppE, V q contains the EndpV q-valued Weyl algebra on E, denoted by WpE, V q, consisting of the differential operators on E with EndpV q-valued polynomial coefficients. Notice that these operators map SpE, V q into SpE, V q and S 1 pE, V q into S 1 pE, V q. Recall the usual definition of the symbol of a differential operator, namely the EndpV q-valued polynomial function σ D on E ˆE1 given De ixx,ξy " σ D px, ξqe ixx,ξy .

Then an elementary computation shows that σ D coincides with symbpDq (see [START_REF] Clerc | Symmetry breaking differential operators, the source operator and Rodrigues formula[END_REF] for the scalar case). More explicitly, let D " ř α p α pxqB α x be in WpE, V q, where p α is a EndpV q-valued polynomial. Then its symbol is given by symbpDqpx, ξq "

ÿ α p α pxqpiξq α
Although OppEq is not an algebra of operators, some compositions are possible. Although a more general result could be stated, we consider only two cases, which will be enough for the present paper.

Proposition 3.7. Let D be a EndpV q-valued differential operator on E, and let K be a convolution operator with a tempered distribution. Then D ˝K belongs to OppEq, and its symbol is given by symbpD ˝Kqpx, ξq " symbpDqpx, ξq ˝symbpKqpξq (3.7)

Proof. Let α be a n-multiindex and let k be the kernel of the convolution operator K. Then B α x ˝K is the convolution operator with kernel B α x kpxq. Hence symbpB α x ˝Kqpξq " piξq α p kpξq , which coincides with formula (3.7) for this particular case. The general formula follows easily.

The proof of the main theorem

We now study the behaviour of the operators involved in the previous construction under the action of the conformal group G.

The main observation is that up to a shift in the parameters, and up to a constant, the operator { R s (resp. { R 1 t ) are essentially the Knapp-Stein operators considered in Subsection 2.3.

For λ, µ P C generic, compare (2.3) and (3.9) to get

I λ " { c 2λ´2n { R 2λ´2n , I 1 µ " { c 2µ´2n { R 1 2µ´n .
Change the normalization of the Knapp-Stein operator (but still keeping the notation), that is redefine the Knapp-Stein operators by setting

I λ " { R 2λ´2n , I 1 µ " { R 1 2µ´2n .
Moreover, set s " ´2λ ´2, t " ´2µ ´2 and E λ,µ " F s,t " F ´2λ´2,´2µ´2 .

Notice that s `n `1 " ´2λ `n ´1, s `1 " ´2λ ´1 , Now (3.10) can be rewritten as

`In´λ´1 b I 1 n´µ´1 ˘˝M " dpλ, µq E λ,µ ˝`I n´λ b I 1 n´µ ˘,
where dpλ, µq " 1 p2λ ´n `1qp2λ `1qp2µ ´n `1qp2µ `1q .

Theorem 3.12. The differential operator E λ,µ satisfies, for any g P G

E λ,µ ˝`π λ pgq b π 1 µ pgq ˘" `πλ`1 pgq b π 1 µ`1 pgq ˘˝E λ,µ .
The equality holds when applied to fonctions f P C 8 pR n ˆRn , S b S 1 q with compact support and such that the action of g is defined on the support of f .

Proof. As G is connected, Theorem 3.12 is equivalent to its infinitesimal version, which we now formulate.

Theorem 3.13. For any X P g,

E λ,µ ˝`dπ λ pXq b id `id bdπ 1 µ pXq " `dπ λ`1 pXq b id `id bdπ 1 µ`1 pXq ˘˝E λ,µ . (3.12) 
A well-known and easy-to-prove result is that dπ λ pXq is a differential operator with EndpSq-valued polynomials coefficients, hence preserves the space SpR n , Sq, so that both sides of (3.12) are well defined and are differential operators on R n ˆRn with EndpS b S 1 q-valued polynomial coefficients.

In order to prove Theorem 3.13, let for X P g

A λ,µ pXq " E λ,µ ˝`dπ λ pXq b id `id bdπ 1 µ pXq dπ λ`1 pXq b id `id bdπ 1 µ`1 pXq ˘˝E λ,µ .
We want to prove that A λ,µ pXq " 0 for any X P g, and in order to do it, we first prove the following weaker statement.

Lemma 3.14. For any X P g

A λ,µ pXq ˝`I n´λ b I 1 n´µ ˘" 0 . (3.13)
Proof. It is sufficient to prove the results for pλ, µq generic, so that we may assume that λ, λ `1, n ´λ, n ´λ ´1 are not poles of I λ and same conditions on µ. Also assume that pλ, µq is not a pole of the rational function dpλ, µq.

Thus for any X P g

`dπ λ`1 pXq b id `id bdπ 1 µ`1 pXq ˘˝dpλ, µqE λ,µ ˝`I n´λ b I 1 n´µ " `dπ λ`1 pXq b id `id bdπ 1 µ`1 pXq ˘˝`I n´λ´1 b I 1 n´µ´1 ˘˝M " `In´λ´1 b I 1 n´µ´1 ˘˝`d π n´λ´1 pXq b id `id bdπ 1 n´µ´1 pXq ˘˝M " `In´λ´1 b I 1 n´µ´1 ˘˝M ˝`dπ n´λ pXq b id `id bdπ 1 n´µ pXq " dpλ, µqE λ,µ ˝`I n´λ b I 1 n´µ ˘˝`d π n´λ pXq b id `id bdπ 1 n´µ pXq ˘" dpλ, µqE λ,µ ˝`dπ λ pXq b id `id bdπ 1 µ pXq ˘˝`I n´λ b I 1 n´µ ˘,
and (3.13) follows.

The proof of Theorem 3.13 is achieved through the following lemma, valid in a more general context. Lemma 3.15. Let V be a finite-dimensional vector space. Let D be a differential operator acting on C 8 pR p , V q with EndpV q-valued polynomial coefficients. Let K be a convolution operator on R p by a EndpV q-valued tempered distribution k. Assume that its Fourier transform p k coincides on a dense open subset O Ă R p with an EndpV q-valued smooth function and satisfies for any ξ P O p kpξq P GLpV q .

Assume further that D ˝K " 0. Then D " 0.

Proof. Under the Fourier transform, the operator K corresponds to the multiplication operator by p k, and the operator D corresponds to a differential operator p D " ÿ I a I pξqB I ξ on R p with EndpV q-valued polynomial coefficients. The assumption D K " 0 implies p D ˝p K " 0, or in other words p Dp p kψq " 0 for any function ψ P SpR p , V q.

Let ξ 0 P O, v 0 P V and I 0 a p-multi-index. There exists a smooth Vvalued function ϕ 0 with compact support included in O and such that in a neighbourhood of ξ 0 ϕ 0 pξq " 1 I 0 ! pξ ´ξ0 q I 0 v 0 , so that B I 0 ϕ 0 pξ 0 q " v 0 . Now let ψ 0 be defined on O by ψ 0 pξq " p kpξq ´1ϕ 0 pξq and equal to 0 outside of O. The function ψ is a smooth function with compact support on R p and 0 " p Dp p kψ 0 qpξ 0 q " p Dpϕ 0 qpξ 0 q " a I 0 pξ 0 qv 0 .

This being valid for any v 0 P V , it follows that a I 0 pξ 0 q " 0. As ξ 0 was arbitrary in O and a I 0 is a polynomial, this implies a I 0 " 0 and finally, as I 0 was arbitrary p D " 0. This finishes the proof of the lemma.

For generic λ, µ, the operator K " I n´λ b I 1 n´µ satisfies the conditions of the lemma. Hence (3.12) holds true and Theorem 3.12 follows. [START_REF] Berline | Grundlehren der mathematischen Wissenschaften[END_REF] The symmetry breaking differential operators for the tensor product of two spinorial representations iiq is a direct consequence of the covariance property of the source operators and of the map r Ψ pkq . Next apply iiq to the case where g is a translation by an element of R n . This implies that B pmq k;λ,µ commutes to (diagonal) translations and hence has constant coefficients. Apply then to the case where g belongs to A acting by dilations of R n to get the homogeneity of degree 2m for the operator B 

Proposition 1 . 1 .

 11 The map g ÝÑ τ g induces homomorphisms τ : PinpEq ÝÑ OpEq, τ : SpinpEq ÝÑ SOpEq, which are twofold coverings.
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 31 Let λ, µ P C. Then for any g P G, M ˝`π λ pgq b π 1 µ pgq ˘" `πλ´1 pgq b π 1 µ´1 pgq ˘˝M . Proof. The result is a consequence of the following covariance property of the function |x ´y| 2 under a conformal transformation g P G |gpxq ´gpyq| 2 " e ´2 ln apg, xq |x ´y| 2 e ´2 ln apg, yq ,
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 4 B j { r s pxq " `ps ´1qx j ´ρpe j xq ˘{ r s´2 pxq (3.4) ∆{ r s pxq " ps ´1qps `n ´1q { r s´2 pxq (3.5)

4. 1

 1 The projections r Ψ pkqRecall the study of the tensor product S b S 1 under the action of M " SpinpEq and in particular for k, 1 ď k ď n, there is an M-intertwining mapΨ pkq : S b S 1 ÝÑ Λ k pEq b C. Recall that τ k is the representation of M on Λ k pEq.For ν P C and k, 0 ď k ď n, letπ k;ν " Ind G P τ k b χ ν b 1which is realized on the space C 8 pR n , Λ k pEqq in the noncompact picture. Further let r Ψ pkq : C 8 pR n ˆRn , S b S 1 q ÝÑ C 8 pΛ k `Rn q b C ˘, F Þ ÝÑ `Ψpkq F px, yq ˘|x"y .Let λ, µ P C. Form the spinorial representationsπ λ " Ind G P ρ b χ λ b 1, π 1 µ " Ind G P ρ 1 b χ µ b 1and the tensor product π λ b π 1 µ . The following result is a consequence of the fonctoriality of the induction process.

Proposition 4 . 1 . 4 . 2

 4142 The map r Ψ pkq satisfies r Ψ pkq ˝pπ λ pgq b π 1 µ pgqq " π k;λ`µ pgq ˝r Ψ pkq . Definition of the SBDOFor m P N, define the operator E pmq λ,µ : C 8 pR n ˆRn , S b S 1 q ÝÑ C 8 pR n Rn , S b S 1 q by E pmq λ,µ " E λ`m´1,µ`m´1 ˝¨¨¨˝E λ,µ .The operator E pmq λ,µ satisfies, for any g P GE pmq λ,µ ˝`π λ pgq b π 1 µ pgq ˘" `πλ`m pgq b π 1 µ`m pgq ˘˝E pmq ,µ " r Ψ pkq ˝Epmq λ,µ . Proposition 4.2.iq The operators B pmq k;λ,µ : C 8 `Rn ˆRn , S b S 1 ˘Ñ C 8 pR n , Λ k pR n q b Cq are constant coefficients bi-differential operators and homogeneous of degree 2m.iiq For any g P G B pmq k;λ,µ ˝`π λ pgq b π 1 µ pgq ˘" π k;λ`µ`2m pgq ˝Bpmq k;λ,µ . Proof.

  pmq k;λ,µ . This completes the proof of iq. The definition of the SBDO B pmq k;λ,µ yields a recurrence formula for these operators. Use the covariance relation (4.1) applied to diagonal translations on R n ˆRn to see that the coefficients of E pmq λ,µ are (operators valued)functions of px ´yq. Let o E pmq λ,µ be the constant coefficients part of E pmq λ,µ . Proposition 4.3. The SBDO B pmq k;λ,µ satisfy the recurrence relation B pmq k;λ,µ " B pm´1q k;λ`1,µ`1 ˝Eλ,µ . Proof. All coefficients of the difference E pmq λ,µ ´o E pmq λ,µ vanish on the diagonal of R n ˆRn . Hence r Ψ pkq ˝Epmq λ,µ " r Ψ pkq ˝o E pmq λ,µ . Now E pmq λ,µ " pE λ`m´1,µ`m´1 ˝¨¨¨˝E λ`1,µ`1 q ˝Eλ,µ " E pm´1q λ`1,µ`1 ˝Eλ,µ . Hence B pmq k;λ,µ " r Ψ pkq ˝Em´1 λ`1,µ`1 ˝Eλ,µ " B pm´1q k;λ`1,µ`1 ˝Eλ,µ .

Proposition 3.8. Let p be a scalar-valued polynomial on E, and let L be in OppEq. Then L ˝p belongs to OppEq and its symbol is given by symbpL ˝pqpx, ξq "

Proof. Assume first that L " K is a convolution operator by a tempered distribution k. Then the symbol of the composition K ˝p can be computed exactly as in the scalar case (see [START_REF] Clerc | Symmetry breaking differential operators, the source operator and Rodrigues formula[END_REF]Proposition 1.2]) and the result coincides with (3.8), due to the fact that we assume that p is a scalar-valued polynomial. The general case follows easily.

The main formula

We now apply the symbolic calculus developed in the previous subsection to the construction of the source operator in the noncompact picture. In particular, we come back to the context and notation of subsection 3.2.

For s, t P C, consider the normalized Clifford-Riesz convolution operators

The technical reason for this normalization is that

The family { R s depends meromorphically on the parameter s. Poles and residues were studied in [START_REF] Clerc | Conformal covariance for the powers of the Dirac operator[END_REF]. An example of residue is the Dirac operators, which in our context comes in two versions, given by

As a consequence, they satisfy an intertwining property under the action of the conformal group, and similar results are valid for their powers, see [START_REF] Clerc | Conformal covariance for the powers of the Dirac operator[END_REF]. Further, consider the operator

which clearly belongs to Op `Rn ˆRn , EndpS b S 1 q ˘as considered in subsection 3.3.

Proposition 3.9. We have,

Following (3.8) the composition formula for the symbols yields 

The symbol of the differential operator F s,t is equal to f s,t .

The symbol calculus yields also the following theorem, which is the main formula leading to the proof of Theorem 3.2.

Theorem 3.11. The following identity holds for s, t P C

where cps, tq " 1 ps `1qps `n `1qpt `1pt `n `1q .

Proof. The identity for the symbols obtained in Proposition 3.8 is translated as

˘.

An elementary computation gives

and the theorem follows.

so that

(3.11)

An example

Let us write explicitly the SBDO for the case k " 0 and m " 1.

Theorem 4.4. The operator B p1q 0;λ,µ : C 8 pR n ˆRn , S b S 1 q ÝÑ C 8 pR n q is given by

The operator B p1q 0;λ,µ satisfies, for any g P G B p1q 0;λ,µ ˝`π λ pgq b π 1 µ pgq ˘" π 0;λ`µ`2 pgq ˝Bp1q 0;λ,µ . Proof. First notice that Ψ p0q : S b S 1 ÝÑ C is given by Ψ p0q pv b w 1 q " pv, w 1 q , so that r Ψ p0q : C 8 pR n ˆRn q ÝÑ C 8 pR n q, is given by r Ψ p0q `vp¨q b w 1 p¨¨q ˘pxq " `vpxq, w 1 pxq ˘.

Now use (3.11) and observe that by (1.2)

and a similar result holds for ř n j"1 ´ρpe j q { Dvpxq, B By j w 1 pxq ¯. Also use (1.5) for k " 0 to get

The final expression for B p1q 0;λ,µ is obtained by putting together the partial computations.

The dimension n " 1 and the classical Rankin-Cohen brackets

Let E " R be the standard Euclidean space of dimension n " 1 and denote by e be the vector 1 (to distinguish it from the scalar 1). Let C pEq the corresponding Clifford algebra which is isomorphic to the complex plane. Let C pEq be its complexification. The spin group SpinpEq is equal to t1, ´1u.

Let S " C and define for v P S and x P R ρpxeqv " ixv and extend it as an action of C pEq on S, still denoted by ρ. Similarly, let S 1 " C and define for w 1 P S 1 and x P S 1 ρ 1 pxeqw 1 " ´ixw 1

Through the duality on pS, S 1 q given by pv, w 1 q Þ ÝÑ vw 1 , pρ 1 , S 1 q is the dual Clifford module of pρ, Sq, i.e. for x P R and v P S, w 1 P S 1 pρpxqv, w 1 q " ´pv, ρ 1 pxqw 1 q .

The corresponding Dirac operators are

For a smooth S-valued (resp. S and this coincides (up to a scalar) to the degree two Rankin-Cohen operator for the group SLp2, Rq which is isomorphic to Spin 0 p1, 2q. See [START_REF] Ben Saïd | Conformally covariant bidifferential operators on a simple Jordan algebra[END_REF] Theorem 10.7 and [START_REF] Kobayashi | Differential symmetry breaking operators II. Rankin-Cohen operators for symmetric pairs[END_REF] for more general results in this direction.