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a b s t r a c t 

Motivated by the design and optimization of the water exchange networks in Eco-Industrial Parks (EIP),

we investigate the abstract Blind-Input model for general exchange networks. This abstract model is based

on a Game Theory approach, formulating it as a Single-Leader-Multi-Follower (SLMF) game: at the upper

level, there is an authority (leader) that aims to minimize the consumption of natural resources, while,

at the lower level, agents (followers) try to minimize their operating costs. We introduce the notion of

Blind-Input contract, which is an economic contract between the authority and the agents in order to

ensure the participation of the latter ones in the exchange networks. More precisely, when participating

in the exchange network, each agent accepts to have a blind input in the sense that she controls only her

output fluxes, and the authority commits to guarantee a minimal relative improvement in comparison

with the agent’s stand-alone operation. The SLMF game is equivalently transformed into a single mixed- 

integer optimization problem. Thanks to this reformulation, examples of EIP of realistic size are then

studied numerically.

1. Introduction

In the last few decades, the development of the industrialized 

c  

s  

O  

r  

a  

t  

t

 

l  

t  

e  

c  

p  

s  

t  

C

V

t

approach to competitive advantage involving physical exchange of 

materials, energy, water and/or by-products” (see Chertow, 20 0 0 ). 

One key concept of industrial symbiosis is then the exchange net- 
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ountries has led to an increasing depletion of natural resources

uch as freshwater and energy (see, e.g., UNEP, 20 0 0 ; Scientific and

rganization), 2009 ). The conservation and sustainable use of such

esources play an important role in both, environmental impact

nd business success within the industry. In response to preserve

he environment while increasing the utilities of the enterprises,

he concept of industrial ecology has emerged ( Boix et al., 2015 ). 

Industrial ecology (IE) was first introduced in Frosch and Gal-

opoulos (1989) . They wrote “the consumption of energy and ma-

erials is optimized, waste generation is minimized and the efflu-

nts of one process . . . serve as the raw material for another pro-

ess”. This is an approach to the industrial design of products and

rocesses and the implementation of sustainable manufacturing

trategies. The idea is directly related to another concept, indus-

rial symbiosis , which involves “separate industries in a collective

∗ Corresponding author at: Laboratoire de Génie Chimique, UMR 5503
NRS/INP/UPS, Université de Toulouse, 31432 Toulouse, France.

E-mail addresses: david.salas@uoh.cl (D. Salas), kien.van@promes.cnrs.fr (K.C.

an), aussel@univ-perp.fr (D. Aussel), ludovic.montastruc@ensiacet.fr (L. Montas- 

ruc).
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orks . 

A perfect example of an exchange network which illustrates

he notion of industrial symbiosis is the concept of Eco-Industrial

arks (EIP). This notion has several definitions, but one widely ac-

epted is “an industrial system of planned materials and energy

xchanges that seeks to minimize energy and raw materials use,

inimize waste, and build sustainable economic, ecological and

ocial relationships” Alexander et al. (20 0 0) ; Boix et al. (2015) ;

ontastruc et al. (2013) . 

Recently, in works of Boix et al. (2015) and Kastner et al. (2015) ,

t has been pointed out that there is still a lack of systematic meth-

ds for designing the optimal configuration of an EIP. In previous

tudies ( Boix et al., 2011; 2015; Montastruc et al., 2013 ), water

ntegration networks (which is a classical example of EIP) were

odeled as a cooperative economy, in the framework of multi-

bjective optimization (MOO). This approach consist in creating a

ector function of n + 1 coordinates given by 

(F ) = 

(
Cost 1 (F ) , . . . , Cost n (F ) , Z(F ) 

)
here Cost i ( · ) is the cost function of the enterprise i, Z ( · )

s the global consumption of natural resources, and F is the flux

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.107053&domain=pdf
mailto:david.salas@uoh.cl
mailto:kien.van@promes.cnrs.fr
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Nomenclature 

Latin symbols 

n number of independent agents 

m number of regulated agents 

P set of independent agents 

R set of regulated agents 

I P index set of independent agents 

I R index set of regulated agents 

I assembly of index sets I P and I R 
I 0 assembly of index set I and sink node 0 

E network topology 

E max set of all admissible connections of the network 

E c set of connections that are not in E 

E i ,act set of active arcs of agent i 

E st stand-alone topology 

E set of all valid topologies 

Cost i ( · ) operating cost of agent i 

STC i stand-alone cost of agent i 

C ( i, j ) arc class of ( i, j ) 

C i family of all arc classes exiting from agent i 

D set of all arc classes of active agents 

y boolean variable 

x i,j flux through the connection ( i, j ) 

x i outlet flux vector of agent i 

x −i vector of all fluxes not exiting from agent i 

x P −i
vector of all fluxes exiting from an independent 

agent other than i 

x complete vector of fluxes through the network 

z i consumption of natural resource of the i th agent 

Z ( · ) total consumption of natural resources 

g i ( · ) input validation function of agent i 

F i vector of fluxes exiting from enterprise i (water 

exchange network) 

F −i vector of all fluxes not exiting from enterprise i 

(water exchange network) 

F P vector of fluxes exiting from enterprises (water 

exchange network) 

F P −i
vector of all fluxes exiting from an enterprise 

other than i (water exchange network) 

F R vector of fluxes exiting from regeneration units 

(water exchange network) 

F flux vector describing the distribution in the wa- 

ter exchange network 

M i contaminant load of enterprise i [g/h] 

C i ,in , C i ,out maximum contaminant concentration allowed in 

inlet/outlet of processes [ppm] 

C r ,in minimum inlet concentration allowed of reg. 

units [ppm] 

C r ,in exact outlet contaminant concentration of reg. 

units [ppm] 

A the lifetime of the park [h] 

Coef Penalization coefficient of stand-alone agents 

Acronyms 

EIP Eco-Industrial Park 

GNEP generalized Nash equilibrium problem 

Eq the set of equilibria for the induced GNEP 

KKT Karush-Kuhn-Tucker 

MILP Mixed-integer linear programming 

MPEC mathematical programs with equilibrium constraint 

SLMF Single-Leader-Multi-Follower 

STC stand-alone cost 
t  
Greek symbol 

α the minimal relative gain that each agent ask for 

participating in the network 

c the marginal cost of freshwater consumption [$/T] 

β i ,0 the discharge cost of polluted water of enterprise i 

[$/T] 

δi,j the cost sending polluted water from enterprise i to 

j [$/T] 

�r the marginal cost of regenerating water [$/T] 

ψ power associated to �r 

ector describing the distribution in the exchange network. Then,

he aim is to solve the problem of “minimizing” C with respect

o F , satisfying the physical constraints of the model. The result

f such minimization is called a Pareto front , which consists in

ll vectors F for which none of the coordinates of C can be im-

roved without worsen another one ( McCain, 2010; Emmerich and

eutz, 2018 ). Usually an authority, representing the EIP’s designer,

elects one of this solutions considering as criteria the distance to

n utopia point. 

The main problem with such an approach is that points of the

areto front are not necessarily economically stable: first, a Pareto

oint requires the enterprises to cooperate and share information,

hich is rarely the case of an EIP. Second, due to the noncooper-

tive economy, the different enterprises may deviate from the se-

ection of the authority since they may improve their cost function

y unilaterally changing their operation. In terms of game theory,

 solution of the MOO approach is a social optimization which may

ail to respect incentives (see Nisan et al., 2007 , Chapter 1). 

To solve this incompatibility, again in the context of water in-

egration networks, in the seminal work of Ramos et al. (2016) ,

urther developed in Ramos et al. (2018b) , a novel game theory

pproach has been proposed, by modeling the EIP design prob-

em as a Single-Leader-Multi-Follower (SLMF) game (see Aussel

nd Svensson, 2020; Hu and Fukushima, 2015 ): since the agents

o not want to exchange information, a confidential centralization

hrough an authority of the park is introduced. Then, at the up-

er level, there is the EIP authority which wants to minimize the

onsumption of natural resources Z ( F ), while at the lower level,

ach enterprise tries to minimize her cost function Cost i ( F ), re-

ated to her processes, consumption of natural resources and activ-

ty within the EIP. The authority of the park must choose the con-

ections of the exchange network and the operation of the regen-

ration units, while each enterprise controls their consumption of

atural resources and their output flux distribution. Based on the

IP authority decisions, all enterprises compete with each other

n a parametric non-cooperative generalized Nash game with the

trategies of the EIP authority as exogenous parameters. Fig. 1.1

hows the general scheme of such a model, where the enterprises

re considered the economic agents of the game. We refer the

eader to Nisan et al. (2007) ; Ichiishi (1983) for a primer in non-

ooperative games, to Pang and Fukushima (2005) ; Facchinei and

anzow (2010) for a survey of Generalized Nash Equilibrium prob-

ems, and Dempe et al. (2015) ; Dempe and Zemkoho (2020) for the

heory of bilevel optimization. For Single-Leader-Multi-Follower

ames, we refer to Hu and Fukushima (2015) and the references

herein. 

The main implicit assumption done in Ramos et al. (2016) is

hat each enterprise can only control her outlet distribution and her

wn fresh water consumption , but they are forced to accept what-

ver is sent to them through the exchange network. Furthermore,

hey have no knowledge about the particular actions of the other

gents of the network, excepting only the amount and quality of

he final inlet flux. In practice, this situation corresponds to the



Fig. 1.1. General scheme of SLMF game.

Fig. 1.2. Blind-Input Schema. z i , F k,i and F r,i are freshwater consumption, wastewater

sent from agent k to i , and regenerated water sent from regeneration unit r to i ,

respectively.
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ase when, at the entrance, each agent of the network has a mixer,

nd so she is only aware of the total input she is receiving, as

ig. 1.2 illustrates. In other words, when participating in the ex-

hange network, each agent accepts to have a blind input . 

While this model respects incentive consistency, it has two

ain drawbacks: the first one is that the rule that the park’s au-

hority imposes, that is, the blind input, is too restrictive. Indeed,

nder this paradigm, an enterprise may be forced to receive too

uch polluted water which could turn into higher costs than the

tand-alone operation outside the park (examples are easy to con-

truct with two enterprises). This violates the economical principle

well known in contract theory and mechanism design) of individ-

al rationality : an enterprise will participate in the EIP only if it

s convenient to her (see Jackson, 2014; Salanié, 2005; Bolton and

ewatripont, 2005 ); the second one is the strategy to compute a

olution. In Ramos et al. (2016) , the authors implemented the clas-

ic general approach to solve bilevel games, that is, to reformu-

ate it as a mathematical programming with complementarity con-

traints (MPCC): loosely speaking, for a given network, they write

he Karush-Kuhn-Tucker (KKT) conditions of each problem of the

ower level game, and put them as constraints in the authority’s

roblem. Then they implemented a Branch-and-Bound heuristic to

btain an approximated optimal exchange network, solving at each

teration the problem described above. However, it is known that

he MPCC problems, which is a particular class of mathematical

rogramming with equilibrium constraints (MPEC), are hard to solve

see, e.g., Baumrucker et al., 2008; Tseveendorj, 2013; Luo et al.,

996 ) and the heuristic itself doesn’t guarantee a real solution of

he problem ( Aussel and Svensson, 2019; Dempe and Dutta, 2012 ).

he literature on theoretical and algorithmic aspects of MPCC and

PEC problems is large and still an active field of research in

athematics. 
In this work, we further investigate the model proposed in

amos et al. (2016) for water exchange networks, briefly described

n Section 2 and fully exposed in Section 5 , but considering its

bstract form for general exchange networks in Section 3.2 . This

bstract model is called Blind-Input model , since we consider the

onstraint of full acceptance for each enterprise. To solve the draw-

ack given by the Individual Rationality constraint, we introduce in

ection 3.3 the notion of Blind-Input contract , which is an econom-

cal contract between the authority and each enterprise in order to

articipate in the Blind-Input model. We prove that, under some

inear structure of the costs functions Cost i ( · ) of each enterprise,

he Blind-Input model can be reduced from a Single-Leader-Multi-

ollower problem to a single mixed-integer optimization problem.

his reduction, which is our main contribution, is presented in

ection 4 . 

The proposed reformulation of the Blind-Input model opens the

oor to a lot of new developments, from the numerical treatment

f huge size problems thanks to classical MILP solvers to exhaus-

ive search of equilibria for small/medium size applications. This is

llustrated in the second part of the article for water exchange net-

orks in Eco-Industrial Parks: Section 6 illustrates a case of study

nd the obtained results which are then discussed in Section 7 .

onclusions and perspectives are presented in Section 8 . 

It is worth to mention that, even though this work is motivated

y the design problem of water exchange networks, its abstract

ormulation presented in Section 3 allows to apply it to other type

f networks, as for example energy networks ( Boix et al., 2015;

eves et al., 2020 ). In Section 8 , we will comment which are the

ain elements needed to apply the Blind-Input model to other

ontexts. 

To survey our contributions, a comparison between this work

nd Ramos et al. (2016) is given in Table 1 . It is important to men-

ion that the nooncoperative approach using SLMF games in EIPs

s very recent and, up to our knowledge, there is no other refer-

nce in the literature different from Ramos et al. (2016, 2018b) to

ompare our results with. 

. Motivation: EIP model for water exchange

In this section, we briefly describe the model of water exchange

etwork used to describe Eco-Industrial Parks. The model can be

ound in Ramos et al. (2016) ; Boix et al. (2015) among others. A

etailed version is further exposed in Section 5 . 



Table 1
Comparison between Ramos et al. (2016) and the present work. The first two rows are related to the numerical exam- 

ples used in each article.

Comparison criteria Ramos et al. (2016) . This work

Number of enterprises 3 15

Number of processes per

enterprise

5 1

Regeneration units Yes Yes

Admits multiple processes per

enterprise

Yes No

Tools to model the EIPs SLMF game SLMF game

Presence of Blind-Input model Implicitly used. Not formalized.

Economic drawbacks.

Explicit formalization.

Introduction of Blind-Input

contract as economic instrument.

Solution Method MPCC reformulation + Branch- 

and-Bound

Heuristic

Mixed-Integer Linear

programming (MILP) reduction.

Properties of the solution MPCC is hard to solve and existing

algorithms are not robust. The

solution of the MPCC may fail to

be a solution of the SLMF game.

MILP alogirthms are robust.

Commercial solvers are available.

Any global solution of the MILP

problem is a global solution of the

SLMF game.

The operating cost of each

participating enterprise in the EIP

is lower than that of stand-alone.

No Yes
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E  
In an Eco-Industrial Park (EIP), several enterprises exchange

wastes to reduce the global consumption of natural resources. Each

time an enterprise uses the natural resource in her industrial pro-

cess, it comes out degraded, but still can be used as input for

other enterprises in the park. One of the most classical examples

of EIP (see, e.g., Boix et al., 2015; Boix et al., 2012 corresponds to

the modeling of water exchange networks: each enterprise needs

to consume water for her industrial processes and the outcoming

water is partially polluted. Other examples using different natural

resources like energy or heat can be found in Boix et al. (2011) ;

Ramos et al. (2018a) . 

In Ramos et al. (2016) , the design of a water exchange network

is treated according to the following assumptions: first, the park

has a fixed number of n enterprises, each enterprise i has to dilute

an amount M i of contaminant, and the outlet concentration of con-

taminant must be less than a fixed concentration C i ,out . It is usually

assumed that each enterprise i has always an optimal operation , in

the sense that the outlet concentration of contaminant is always

equal to C i ,out . 

Second, each enterprise i can accept partially polluted water,

but with a maximal concentration C i ,in . This concentration is mea-

sured after a mixer (see Fig. 1.2 ) in such a way that no enterprise

can really know the operation of the other enterprises. However,

this measurement, that we will denote g i and which depends on

the actions of the other enterprises, allows enterprise i to perform

two fundamental actions: (1) report infeasibilities to the authority

of the park, whenever the income water after the mixer doesn’t

fulfill the constraints; and (2) compute how much fresh water she

needs to complete its process attaining the outlet concentration

C i ,out . 

Third, each enterprise has a cost function that depends on

four factors: (1) the marginal cost of fresh water that she con-

sumes, that we denote c i ; (2) the marginal cost of polluted wa-

ter that she discharges to the environment, that we denote γ i ,0 ;

(3) the cost of sending polluted water through a connection of

the park; and (4) the cost of receiving water from other agents

of the park (other enterprises but also regeneration units con-

trolled by the authority). The authority transfers the investment

cost of the EIP to the enterprises via the last two costs: the first

one, via a marginal cost γ which depends on the connections

that enterprise i uses to send water; and the second one via a

cost function Cost in i that will depend on the actions of the other

enterprises. 
Moreover, the main assumptions for the pricing instruments are

hat the prices of fresh water and discharged water are exogenous,

nd that the authority has no interest of making any profit, and

herefore she will fix the prices of using the connections only to

ecover the investment and maintenance costs. This yields to the

ollowing scenario: each enterprise wants to minimize its cost of

he use of water while the authority is in charge of the ecological

oncerns by minimizing the fresh water consumption. 

Finally, as we mentioned before, the authority may have regen-

ration units. Each regeneration unit r receives polluted water and

educes its contaminant concentration up to a certain value C r ,out .

hen, it sends the water to the enterprises for reuse. The costs as-

ociated to the regeneration units are charged to the enterprises

hrough the inlet cost function Cost in i . 

. Blind-input model

Taking inspiration from the water management model de-

cribed in Section 2 , our aim in this section is to define the concept

f abstract Blind-Input model for general exchange networks. We

ivided the model in two parts: the physical model, which gives

he constraints that the network must satisfy; and the economical

odel, which gives the incentives of each agent of the network, as

ell as the Blind-Input contract between the agents and the au-

hority, which will ensure the participation of the agents. 

.1. Network model 

We first consider two main actors: a set of agents participating

o an exchange network, and an authority that aims to minimize

he consumption of natural resources. Among the agents, we dif-

erentiate a set P := { P 1 , . . . , P n } of independent agents, and a set

 = { R 1 , . . . , R m 

} of regulated agents (controlled by the authority).

Regulated agents don’t have economical motivations, but they act

n the exchange network following the indications of the author-

ty. In the context of water exchange in EIP, the independent agents

re the enterprises, and the regulated ones model the regeneration

nits ( Ramos et al., 2016 ). 

We identify the independent agents with the index set I P =
 1 , . . . , n } and the regulated agents with I R = { n + 1 , . . . , n + m } . We

et I = I P ∪ I R and I 0 = { 0 } ∪ I, where 0 represents the sink node.

We define an exchange network as a simple directed graph ( I 0 ,

 ), where the edge e = (i, j) ∈ E means that the agent i can send
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art of her output to the agent j . The extra node 0 is identified

s a sink node, which represent the possibility of discharge of the

utput. A valid network ( I 0 , E ) must satisfy the following five con-

itions: 

I. E ⊆E max , where E max is the set of all admissible connections of

the network.

II. ( I 0 , E ) is a simple graph, that is, there is no multiple edges nor

graph loops in E .

II. Each independent agent i ∈ I P is connected with the sink node,

that is, ( i , 0) ∈ E .

V. Each regulated agent r ∈ I R is not connected with the sink node,

that is, ( r , 0) �∈ E .

V. The sink node has not exit edges in E that is (0, i ) �∈ E max , for

any i ∈ I .

In what follows, we will call E the topology of the network ( I 0 ,

 ), and we will denote by E the set of all valid topologies. Never-

heless, in order to simplify notations, the network ( I 0 , E ) will be

nly represented by its topology E . Observe that this representation

ay lead to ambiguity, since the set E doesn’t allow to distinguish

ossible isolated regulated agents (independent agents are never

solated, given hypothesis III). However, this is not a problem, since

ny isolated regulated agent will be simply removed from the net-

ork. 

For each edge ( i, j ) ∈ E max , we set the variable x i,j which rep-

esents the flux through the connection ( i, j ). For each i ∈ I , we

et x i := ( x i,j : ( i, j ) ∈ E max ), being thus the outcome vector of agent

 . Finally, we set x = (x i, j : (i, j) ∈ E max ) , the complete vector of

uxes through the network. 

To simplify the mathematical model we use, let us introduce

ome notation. We put x R := ( x r : r ∈ I R ) and x P := ( x i : i ∈ I P ). In

hat follows, for an agent i ∈ I , we will write 

 −i := 

(
x k, j : (k, j) ∈ E max , k ∈ I \ { i }),

 

P 
−i := 

(
x k, j : (k, j) ∈ E max , k ∈ I P \ { i }

)
.

For a topology subset A ⊆E max , we write 

 

∣∣
A 

:= (x i, j : (i, j) ∈ A ) .

imilarly, we define x i | A , x −i 

∣∣
A 
, x P | A , x 

P 
−i 

∣∣
A 

and x R | A . It will be useful

lso to denote A 

c := E max �A . 

.2. Physical model 

Let us fix a network topology E ∈ E . If E is implemented, then

or each agent i ∈ I , the physical model of the network is given by

he following six operational constraints: 

1. Null fluxes outside the network: each agent can use only the

connections in the topology E . Thus, we set

x i 
∣∣

E c 
= 0 , (3.1)

that is, for every edge ( i, j ) �∈ E , the flux x i,j is zero.

2. Consumption of natural resource: the consumption of natural

resource of the i th agent is given by the output fluxes of the

other players, that is,

z i = z i (x −i ) . (3.2)

This assumption is derived from an optimal response hypoth-

esis: we assume that, for a given value of x −i , the agent i is

capable of compute exactly the minimal amount of natural re-

source z i that she has to consume in order to perform her inner

processes.

3. Balance constraint: the fluxes must satisfy the Kirchoff’s law

for the agent i ∈ I , that is,

z i (x −i ) + 

∑ 

(k,i ) ∈ E
x k,i = 

∑
(i, j) ∈ E

x i, j . (3.3)
Since 0 is the sink node, it is not subject to this balance con-

straint. 

4. Input consistency: there exists a real-valued function g i which

allows the agent i ∈ I to validate the input coming from the

other agents. We write this validation as an abstract inequality

constraint

g i (x −i ) ≤ 0 . (3.4)

This constraint may represent maximal inlet fluxes, maximal in-

let contaminant concentration, minimal inlet temperature, etc. 

5. Positivity of fluxes: we assume that the fluxes on the graph, as

well as the consumed natural resource are all positive, that is,

x i ≥ 0 and z i (x −i ) ≥ 0 . (3.5)

6. Extra authority constraints: the exchange network may re-

quire additional constraints. We will model them here through

an abstract inclusion

x ∈ X,

where X ⊂ R 

| E max | represents the abstract additional feasible

set.

emark 3.1. Here, we assume that the degradation of the natural

esource is implicit in the connections of the topology E . In this

eneral model, we suppose that agent i can compute the degrada-

ion of its inlet flux through the functions g i and z i . 

An important element of this model is the total lack of direct

nformation among the agents. We suppose that agent i cannot

now the actions of other agents, that is, she doesn’t have ac-

ess to the exact value of x −i . However, she counts with indirect

bservations: even though x −i is unknown, the values of z i (x −i ) ,

 i (x −i ) and the total inlet flux �( k,i ) ∈ E x k,i are available. For wa-

er exchange, this could be interpreted as a measurement of the

mount of water and contaminant concentration after the mixer of

ig. 1.2 . This is a very important feature of our model, since enter-

rises want to keep as much private information as possible. The

nly agent that has all information is the authority, who has access

o the full vector x . 

.3. Economical model 

In this setting, the network authority has two vectors of deci-

ion variables: she must choose the topology of the network E ∈ E
nd she controls the operation of the regulated agents, that is, the

utput vectors x r , for every r ∈ I R . Each independent agent i ∈ I P 
ontrols her output vector x i . 

We assume that the authority doesn’t pay any cost associated

o the implementation and operation of the network. Instead, she

ransfers all these costs through a function γ : E max → R + , where

((i, j)) = γi, j represents the marginal cost for sending one unit of

ux through the connection ( i, j ). Using this pricing, the indepen-

ent agents will pay the investment cost of the network and also

he operation of the regulated agents. Thus, if there is a connection

 r 1 , r 2 ) ∈ E max between two regulated agents r 1 , r 2 ∈ I R , we assume

hat γr 1 ,r 2 = 0 . 

Since all the investment cost is transfered to the independent

gents, the authority is only concerned about minimizing the con-

umption of the natural resources, and so she aims to minimize

he function 

(x ) := 

∑ 

i ∈ I
z i (x −i ) . (3.6)

emark 3.2. It could be argued that the authority must be also

oncerned about efficiency of the network, by considering the total

nvestment cost of the park. However, we assume that the pricing
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instrument γ is given exclusively to pay the investment and main-

tenance cost of the park, and that it will be implemented as effi-

ciently as possible. The discussion over efficiency and right pricing

instruments, is out of the scope of this work. 

On the other hand any independent agent i ∈ I P wants to mini-

mize her global cost Cost i , which can be separated into three com-

ponents: the consumption of the natural resource z i (x −i ) , the cost

of discharging (using the connection ( i , 0)), and the use of the ex-

change network. Therefore her cost function Cost i is given as: 

Cost i 
(
x i , x 

P 
−i , x 

R , E 
)

= c i · z i (x −i ) + Cost in i 

(
x P −i , x 

R 
)

+ 

∑
(i, j) ∈ E

γi, j · x i, j . 

(3.7)

where Cost in i 

(
x P −i 

, x R
)

is the inlet operating cost of an agent i , and

it satisfies that ∑ 

(k,i ) ∈ E max 

x k,i = 0 ⇒ Cost in i 

(
x P −i , x 

R 
)

= 0 . 

Observe that, the cost concerning the exit connections is linear,

and so, the cost function is linear in the first component x i . 

Remark 3.3. Again, in terms of costs, agent i doesn’t have direct

access to the actions of the other agents. However, she must pay

an operating cost Cost in i (x P −i 
, x R ) that is communicated to her by

the authority. The choice of this function as pricing instrument

could be studied, but this is out of the scope of the work. For

now, we will suppose that agent i has enough indirect information

(through measurements after the mixer of Fig. 1.2 ) to consider the

cost Cost in i 

(
x P −i 

, x R 
)

as correct and therefore to accept it. 

With this model, the minimization problem of the i th indepen-

dent agent (parametrized by the topology E , the actions of regu-

lated agents x R and the actions of the other independent agents

x P −i 
) leads to problem P i 

(
x P −i 

, x R , E 
)
: 

min x i Cost i 
(
x i , x 

P 
−i 

, x R , E 
)

s.t. 

⎧ ⎪ ⎪⎪⎪⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

z i (x −i ) + 

∑ 

(k,i ) ∈ E
x k,i = 

∑ 

(i, j) ∈ E
x i, j 

g i (x −i ) ≤ 0 

z i (x −i ) ≥ 0 

x i ≥ 0 

x i 
∣∣

E c 
= 0 .

(3.8)

We denote by Eq( x R , E ) the set of equilibria for the induced gen-

eralized Nash equilibrium problem (GNEP, for short) given by the

vector x R and the topology E , that is 

x P ∈ Eq (x R , E) ⇐⇒ ∀ i ∈ I P , x i solves P i
(
x P −i , x 

R , E
)
. (3.9)

As we already discussed in Section 1 , the main problem of this

model is that each independent agent only controls her output

vector x i , which is not realistic. She is forced by the authority to

fully accept any inlet fluxes, which may be harmful. Thus, without

any extra constraint, agent i may not be willing to participate in

the network. 

Thus, to solve this problem, the authority must “buy” the par-

ticipation of agent i . This is modeled by the Blind-Input contract :

agent i accepts to control only her output fluxes, and the authority

commits to guarantee a minimal relative improvement of her cost,

with respect to the stand-alone operation of agent i . 

To formalize this requirement in the contract, let us denote the

stand-alone topology by E st ∈ E, that is, 

E st := { (i, 0) : i ∈ I P } .
For each independent agent i ∈ I P we define the stand-alone cost

STC i , as the optimal value of the problem P i (0, 0, E st ), that is, 

STC i = (c i + γi, 0 ) · z i (0) 
n other words, STC i is the cost of the i th agent assuming that all

ther agents (independent and regulated) are inactive, i.e. when

gent i only send fluxes to the sink node and doesn’t receive any

omplementary fluxes from other agents. Then, for each indepen-

ent agent P i , we can formulate the commitment of minimal im-

rovement in the Blind-Input contract as the following constraint:

ost i (x i , x 
P 
−i , x 

R , E) ≤ α · STC i , (3.10)

here α ∈ ]0, 1[ is the minimal relative gain that each agent ask

or participating in the network. We assume that α > 0 since, it is

mpossible to eliminate all costs, and that α < 1 since no agent is

ndifferent concerning her participation in the network. Indeed, if

ost i (x i , x 
P 
−i 

, x R , E) = STC i , then the agent i will prefer not to par-

icipate, since she has no gain, entering an exchange network is

omplicated and she knows she may be “helping the competition”.

Finally, we can write the authority’s problem as 

min E∈E,x ∈ R | E max | Z(x ) 

s.t. 

⎧ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪⎪⎪ ⎪ ⎨ 

⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x ∈ X, 

z r (x −r ) + 

∑ 

(k,r) ∈ E
x k,r = 

∑ 

(r, j) ∈ E
x r, j , ∀ r ∈ I R ,

z r (x −r ) ≥ 0 , ∀ r ∈ I R ,
g r (x −r ) ≤ 0 , ∀ r ∈ I R ,

x R ≥ 0 , 

x R 
∣∣

E c 
= 0 ,

x P ∈ Eq (x R , E) , 
Cost i (x i , x 

P 
−i 

, x R , E) ≤ α · STC i , ∀ i ∈ I P .

(3.11)

The optimization problem (3.11) can be interpreted as follows:

he authority will propose to the agents a topology E and an oper-

tion x ∈ R 

| E max | which satisfy all the physical constraints and also,

uch that the operation x respects: 1) the incentive consistency , in

he sense that no agent will have incentives to unilaterally devi-

te from the proposal due to the constraint x P ∈ Eq( x R , E ); and 2)

he individual rationality of each agent, in the sense that all agents

ill participate in the network since their participation has been

ought through the constraint (3.10) . The first criteria solves the

conomical inconsistency of MOO approach, and the second crite-

ia solves the participation problem of the Single-Leader-Follower

pproach. 

emark 3.4. In this work, we do not claim novelty in the

onstraint x P ∈ Eq( x R , E ). This is the main contribution of

amos et al. (2016) . However, the constraint (3.10) is new. In terms

f modeling and in this context, the fact to “attract” the indepen-

ent agents towards a participation in the general exchange net-

ork constitutes one of the important novelties of this work. 

emark 3.5. After reading the forthcoming Section 4 , the reader

ill observe that all proofs and reductions could be made con-

idering different values of α for each independent agent, that is,

utting a value αi ∈ ]0, 1[ for each i ∈ I P . The value of αi repre-

ents the “cost” of buying the participation of the i th independent

gent, which is exactly (1 − αi ) STC i . However, allowing to have dif-

erent costs depending on the enterprise rises the natural question

f how to decide these values. This problem lies in contract the-

ry (for an introduction to the field, we refer to Bolton and Dewa-

ripont (20 05) ; Salanié (20 05) ) and it is out the scope of the arti-

le. Thus, we will consider only uniform values of α, which can be

nterpreted as a public call for participation in the network. Uni-

orm values of α, however, imply that the cost of buying the par-

icipation of an agent is proportional to her size, due to the factor

TC i . 

emark 3.6. An important factor we do not consider in this work

s the rebound effect that costs reductions may have on the opera-

ion of agents. For example, it terms of water exchange, a diminu-
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ion of costs of agent i with respect to STC i may induce an incre-

ent of wastes production, that is, a variation in M i . Thus, this re-

ound effect may change the value of z i (x −i ) . Even though this is a

ery interesting problem, we suppose that the demand of natural

esource is given by a fixed process, on which the costs within the

etwork have no effect. In other words, the consumption of natural

esource of each agent is inelastic. 

. Mixed-integer programming reduction

The formulation of the authority’s problem (3.11) has the form

f a general MPEC problem (see, e.g., Baumrucker et al., 2008;

seveendorj, 2013; Luo et al., 1996 ). This section is devoted to

rove that this MPEC formulation, which is known to be hard to

olve, can be reformulated as a single Mixed-Integer programming

roblem. 

This reduction can be interpreted as follows: Blind-Input mod-

ls are a social optimization problem where, through Blind-Input

ontracts, the cooperation of each independent agent has been

ought. This social optimization is also economically stable, since

mplicitly it respect an equilibrium constraint ( x P ∈ Eq( x R , E )). This

eduction/reformulation will be presented in three steps. 

.1. Characterization of equilibria 

The following theorem characterizes the equilibrium set Eq( x R ,

 ) as a system of equations. This allows to reduce the MPEC of

roblem (3.11) to a single optimization problem. The reduction

e do here is based on the observation that, once every agent

as committed to a Blind-Input contract, her actions become pre-

ictable through the cost functions. Thus, the authority can choose

he network E such that each action of an independent agent is

nduced to reach the social optimum. 

To formalize this idea, let us introduce the notion of active arcs .

iven a topology E , for each independent agent i ∈ I P we define

he set of active arcs of i , denoted by E i ,act , as all the arcs e ∈ E

aving minimum cost, that is, 

 i, act := 

{
(i, j) ∈ E : γi, j = γ ∗

i := min 

(i,k ) ∈ E
γi,k 

}
. (4.1) 

s convention, for any regulated agent r ∈ I R , we set E r, act =
 (r, j) : (r, j) ∈ E} . 
heorem 4.1. For E ∈ E and x R ≥ 0 fixed, the equilibrium set Eq( x R ,

 ) is given by 

q (x R , E) = 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x P : ∀ i ∈ I P , 

z i (x −i ) + 

∑ 

(k,i ) ∈ E
x k,i = 

∑ 

(i, j) ∈ E
x i, j 

g i (x −i ) ≤ 0 

z i (x −i ) ≥ 0 

x i 
∣∣

E c
i, act

= 0 

x i ≥ 0 

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.2) 

hus, the authority’s problem (3.11) is equivalent to the following

ixted-Integer Programming problem: 

in x ∈ R | E max | ,E∈E Z(x ) 

.t. 

⎧ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x ∈ X, 

z i (x −i ) + 

∑ 

(k,i ) ∈ E
x k,i = 

∑ 

(i, j) ∈ E
x i, j , ∀ i ∈ I

x i 
∣∣

E c
i, act

= 0 , ∀ i ∈ I 

g i (x −i ) ≤ 0 , ∀ i ∈ I 
z i (x −i ) ≥ 0 , ∀ i ∈ I 

Cost i (x i , x 
P 
−i 

, x R , E) ≤ αi · STC i , ∀ i ∈ I P
x ≥ 0 . 

(4.3) 

roof. The second part of the proof is easily verified by replacing

he constraint x P ∈ Eq( x R , E ) by the system of equations in the right
and of equality (4.2) , and then just reorganizing. Thus, we only

eed to prove (4.2) . 

To simplify notation, let us denote by S ( x R , E ) the right-hand

et of (4.2) . First, let us prove that S ( x R , E ) ⊆Eq( x R , E ). Fix x P ∈ S ( x R ,

 ). Since E i ,act ⊂ E for each i ∈ I P , it is not hard to see that x i is a

easible set of P i (x P −i 
, x R , E) .

Now, fix i ∈ I P and let x ′ 
i 

be another feasible point of

 i (x P −i 
, x R , E) . Then, x ′ 

i 
≥ 0 and it satisfies the balance constraint

3.3) , which yields that 

Cost i = 

∑ 

(i, j) ∈ E
γi, j x 

′ 
i, j − γ ∗

i 

( ∑ 

(i, j) ∈ E i, act 

x i, j 

)

≥ γ ∗
i 

( ∑ 

(i, j) ∈ E
x ′ i, j −

∑ 

(i, j) ∈ E i, act 

x i, j 

)

≥ 0 , 

here 	Cost i := Cost i (x ′ 
i 
, x P −i 

, x R ) − Cost i (x i , x 
P 
−i 

, x R ) and the last in-

quality is due to the fact that ∑ 

i, j) ∈ E
x ′ i, j = z i (x −i ) +

∑ 

(k,i ) ∈ E
x k,i 

= 

∑ 

(i, j) ∈ E
x i, j = 

∑ 

(i, j) ∈ E i, act 

x i, j . 

hus, x i solves P i (x P −i 
, x R , E) , and since this holds for every i ∈ I P ,

e deduce that x P ∈ Eq( x R , E ). 

Now, let us prove that Eq( x R , E ) ⊆S ( x R , E ). Let x P ∈ Eq( x R , E ), and

uppose that x P �∈ S ( x R , E ). Since for each i ∈ I P the vector x i is a

easible point of P (x P −i 
, x R , E) , the only way for x P not to belong to

 ( x R , E ) is that there exist i 0 ∈ I P such that x i 0 

∣∣
E c

i 0 , act

� = 0 . Thus, there

s (i 0 , j 0 ) ∈ E \ E i 0 , act such that x i 0 , j 0 
> 0 . Let ( i 0 , j 1 ) ∈ E i ,act (which

s nonempty by definition) and let us consider the vector x ′ 
i 0

given

y 

 

′
i 0 ,k

= 

{ 

x i 0 ,k if k ∈ I \ { j 0 , j 1 } ,
0 if k = j 0 , 
x i 0 , j 1 + x i 0 , j 0 if k = j 1 . 

e have that x ′ 
i 0

≥ 0 (since x i 0 ≥ 0 ) and also

 i (x −i 0 ) +
∑ 

(k,i 0 ) ∈ E 
x k,i 0 =

∑ 

(i 0 , j) ∈ E 
x i 0 , j =

∑ 

(i 0 , j) ∈ E 
x ′ i 0 , j . 

hus, since x −i 0 
remains the same, x ′ 

i 0
is a feasible point

f P i (x P −i 0
, x R , E) . Furthermore, denoting by 	Cost i 0 =

ost i 0 (x ′ 
i 0 

, x P −i 0 
, x R , E) − Cost i 0 (x i 0 , x 

P 
−i 0

, x R , E) , we have that 

Cost i 0 =
∑ 

(i 0 , j) ∈ E 
γi 0 , j x 

′
i 0 , j −

∑ 

(i 0 , j) ∈ E 
γi 0 , j x i 0 , j 

= 

(
γi 0 , j 1 − γi 0 , j 0 

)
x i 0 , j 0 

= 

(
γ ∗ − γi 0 , j 0 

)
x i 0 , j 0 < 0 ,

ince, by construction, γi 0 , j 0 
> γ ∗. This yields that x i 0 doesn’t solve

 i (x P −i 0 
, x R , E) , which is a contradiction. Thus, x P ∈ S ( x R , E ), finishing

he proof. �

Intuitively, the above theorem says that, given a topology E ,

ach independent agent i ∈ I P will only use the connections of

inimal cost to send the excess of flux, that is, she will use only

er active arcs. Furthermore, each independent agent is indifferent

o the distribution of fluxes among the active arcs, so any feasible

ector x P satisfying the constraint x i 
∣∣

E c 
i, act

= 0 for every i ∈ I P must

e an equilibrium. This simplification is strongly based on the lin-

arity of the costs functions with respect to the agent’s variable
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4.2. Mixed-integer formulation 

Theorem 4.1 establishes the remarkable fact that the MPEC for-

mulation of the authority’s problem can be reformulated as a “clas-

sical” programming problem. But actually, a part of the variables of

this programming problem lies in the set of topologies of the ex-

change network and so, it can be considered as difficult to imple-

ment numerically. This is why, in this section, we will show how

one can finally work with a more classical mixed-integer program-

ming problem. 

Let us first introduce the key notion that we will use to ar-

rive to the final formulation, that is, what we call arc classes : let

( i, j ) ∈ E max . We define the arc class of ( i, j ) as the set 

(i, j) := 

{{ (i, k ) ∈ E max γi,k = γi, j } if i ∈ I P 
{ (i, k ) ∈ E max } if i ∈ I R 

. (4.4)

We denote by C i the family of all arc classes exiting from i , that

is, C i = { C(i, j) : (i, j) ∈ E max } . Finally, for C ∈ C i we define the uti-

lization cost of the class by 

γ (C) := γi, j , 

where ( i, j ) is any representative of C . 

Observe that, for two arcs ( i, j ), ( i, k ) ∈ E max such that γi, j = γi,k ,

one has that C(i, j) = C(i, k ) . Thus, a class C ∈ C i may have many

representations of the form C ( i, j ). Furthermore, the family C i in-

duces a partition of the set of arcs “exiting from” agent i , that is 

• 
⋃ 

C∈C i C = { e ∈ E max : e = (i, j) for some j ∈ I 0 } .
• For any two classes C, C ′ ∈ C i , either C = C′ or C ∩ C ′ = ∅ . 

Moreover, it is not hard to verify that for each topology E ∈ E
and for each agent i ∈ I P , there exists one class C ∈ C i such that 

E i, act ⊆ C, (4.5)

and this class must satisfy that 

γ (C) ≤ γ (C(i, 0)) . (4.6)

This class is then given by C = C(i, j) where ( i, j ) is any element of

E i ,act . We will call it the active class of E of the agent i , and we will

denote it by C i ( E ). 

Without loss of generality, we will assume that every class

 ∈ C i satisfies (4.6) . If not, any connection in a class violating

(4.6) would never been used, and therefore, in practice, they can

be erased from E max without changing the problem. 

Now, let D = 

⋃ 

i ∈ I P C i , the set of all arc classes of independent

agents. We introduce the boolean variable y = (y C ) C∈ D ∈ { 0 , 1 } | D | in
the following way: for each independent agent i ∈ I P and each arc

class C ∈ C i , we set 

y C = 

{
1 if C is the active class of i, 
0 otherwise. 

From y ∈ {0, 1} | D | , we will build the graph associated to y as 

E(y ) = ( 
⋃ { : y C = 1 } )

∪{ , 0) : i ∈ I P } ∪ { (r, j) ∈ E max : r ∈ I R } . (4.7)
e consider then the following Mixed-Integer optimization prob-

em: 

min x ∈ R N ,y ∈{ 0 , 1 } | D | Z(x ) 

s.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪⎪⎪⎨ 

⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x ∈ X, 

z i (x −i ) + 

∑ 

(k,i ) ∈ E max 

x k,i = 

∑ 

(i, j) ∈ E max 

x i, j , ∀ i ∈ I,

∑ 

C∈C i 
y C = 1 , ∀ i ∈ I P ,∑ 

(i, j) ∈ C
x i, j ≤ B · y C , ∀ C ∈ D, 

g i (x −i ) ≤ 0 , ∀ i ∈ I P ,
z i (x −i ) ≥ 0 , ∀ i ∈ I, 

Cost i (x i , x 
P 
−i 

, x R , E(y )) ≤ αi · STC i , ∀ i ∈ I P ,

x ≥ 0 , 

(4.8)

here B is a real number chosen arbitrarily, but bigger than the

aximum of the total entering flux over all enterprises. A simple

ption to set B is the value Z (0), which corresponds to the total

onsumption of the natural resource when there is no exchange

etwork. 

Here, the constraint 
∑ 

C∈C i y C = 1 says that, for the i th agent,

nly one class is active. Also, the constraint ∑ 

(i, j) ∈ C
x i, j ≤ B · y C , ∀ C ∈ D 

nsures that, whenever ( i, j ) doesn’t belong to the active class of

he i th agent, then x i, j = 0 . 

heorem 4.2. For every feasible point ( x, y ) of (4.8) , the pair ( x, E ( y ))

s a feasible point of (4.3) . Conversely, for every feasible point ( x, E ) of

4.3) , the pair ( x, y E ) is a feasible point of (4.8) , where y E ∈ {0, 1} | D |

s given by 

 

E 
C = 

{
1 if C = C i (E) for some i ∈ I P , 
0 otherwise . 

inally, one has that 

1. if ( x, E ) is an optimal solution of (4.3) , then ( x, y E ) is an optimal

solution of (4.8) .

2. if ( x, y ) is an optimal solution of (4.8) , then ( x, E ( y )) is an optimal

solution of (4.3) .

Proof. Let ( x, y ) be a feasible point of (4.8) . Let us fix an agent

 ∈ I P and let C i be the unique class in C i such that y C i = 1 . Then,

y construction, we know that 

(y ) i, act = C i and 

∑ 

(i, j) ∈ E max \ C i 
x i, j ≤ B ·

∑ 

C∈C i \{ C i } 
y C = 0 . 

e deduce then that 

 i 

∣∣
E(y ) c

i, act

= 0 . 

ince this constraint is valid for every active agent i ∈ I P , and since

 ( y ) contains all exiting arcs for every regulated agent r ∈ I R , we

an rewrite the balance constraint in problem (4.8) as 

(x −i ) + 

∑ 

(k,i ) ∈ E(y )

x k,i = 

∑ 

(i, j) ∈ E(y )

x i, j , ∀ i ∈ I.

e deduce then that ( x, E ( y )) is a feasible point of problem (4.3) . 

Now, let ( x, E ) be a feasible point of problem (4.3) . By inclusion

4.5) , for each independent agent i ∈ I P , there exists a unique active

lass C i ( E ). Let us define y E ∈ {0, 1} | D | as in the statement of the

heorem. 

Then, for every i ∈ I P , 
∑ 

C∈C i y 
E 
C 

= 1 . Now, fix a class C ∈ D , and

et i ∈ I P such that C ∈ C i . We have that 

∑ 

(i, j) ∈ C
x i, j ≤

{
B = B · y E C if C = C i (E) , 
0 = B · y E C if C � = C i (E) , 
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here the second inequality comes from the fact that, whenever

 � = C i ( E ), then C ⊆ E c 
i, act

and so x i 
∣∣
C 

= 0 .

For an agent i ∈ I P , the fact that E i ,act ⊆E ( y E ) lead us to the fact

hat 

ost i (x i , x 
P 
−i , x 

R , E(y E )) = Cost i (x i , x 
P 
−i , x 

R , E) ,

nd so, the constraint (3.10) is satisfied. We deduce that ( x, y E ) is

 feasible point of (4.8) , since all other constraints are directly sat-

sfied given that ( x, E ) is feasible for problem (4.3) . 

Now, let us assume that ( x, E ) is also optimal for problem (4.8) .

rom the development above, for every other feasible point ( x ′ , y ′ )
f (4.8) , we know that ( x ′ , E ( y ′ )) is also a feasible point of problem

4.3) , and so, Z ( x ) ≤ Z ( x ′ ). Thus, ( x, y E ) is optimal for the problem

4.8) . 

Let now assume that ( x, y ) is an optimal solution of problem

4.8) and suppose, by absurd, that ( x, E ( y )) is not optimal for prob-

em (4.3) . Then, there exists a feasible point ( x ′ , E ′ ) of problem

4.3) such that Z ( x ′ ) < Z ( x ). But, as proved above, (x ′ , y E ′ ) is also

easible for problem (4.8) , showing that ( x, y ) is not optimal for

4.8) , which is a contradiction. The proof is then completed. �

The reader could observe that, a priori, the mixed-integer prob-

em (4.8) is smaller than problem (4.3) in some sense, since it ad-

its only certain topologies (those ones of the form E ( y ) for some

easible point y ∈ {0, 1} | D | ). However the above theorem shows that

he set of flux distributions x for which ( x, E ) is an optimal solution

f (4.3) for at least one topology E coincides with the set of flux

istributions x for which ( x, y ) is an optimal solution of (4.8) for at

east one y . 

.3. Null class as exit option 

Physically, we know that the network has always a feasible

oint, which is the stand-alone configuration, that is, the topol-

gy E st and the fluxes given by the individual operations of the

ndependent agents and inactivity of the regulated ones. However,

hen we include the individual rationality constraint (3.10) , the

roblem may become infeasible. 

Infeasibility of problem (4.3) means that the authority is not ca-

able to find a solution that respect the Blind-Input contracts with

ll the agents. Thus, we need to include the possibility of excluding

ome agents from the network. 

Formally, for each independent agent i ∈ I P , we include a

oolean variable y i ,null ∈ {0, 1} such that 

 i, null = 

{
1 if i breaks the Blind-Input contract , 
0 otherwise. 

ith this new variable, we modify problem (4.8) as follows: 

1. For each agent i ∈ I P , we put

y i, null + 

∑
C∈C i 

y C = 1 ,

meaning that, either one arc class is active or the agent is out-

side the network. 

2. For each agent i ∈ I P , we put∑ 

(i, j) ∈ C(i, 0)

x i, j ≤ B · (y C(i, 0) + y i, null ) 

∑ 

(i, j ) ∈ E max , j � =0 

x i, j ≤ B · (1 − y i, null ) 

This is to ensure that, if the agent breaks the Blind-Input con-

tract, then she will use the discharge arc ( i , 0). 

3. For each agent i ∈ I P , we put∑
(k,i ) ∈ E max

x k,i ≤ B · (1 − y i, null ) .
This constraint establishes that, if the agent breaks the Blind-

Input contract, then nobody can send her any flux. 

4. For each agent i ∈ I P , we put

Cost i (x i , x 
P 
−i , x 

R , E(y )) ≤ αi STC i · (1 − y i, null ) + STC i · y i, null .

(4.9) 

Here, the individual rationality constraint is active only when

y i, null = 0 . Otherwise, since the agent is not connected to the

network, her cost will coincide with STC i . 

We set D = D ∪ { Null i : i ∈ I P } , where Null i is the null class,

ssociated to y i ,null , and D 0 = D \ { C(i, 0) : i ∈ I P } . Denoting

TC i (y i, null ) := αi STC i · (1 − y i, null ) + STC i · y i, null ,

he new optimization problem becomes 

min x ∈ R N ,y ∈{ 0 , 1 } | D | Z(x ) 

s.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪ ⎪ ⎪⎪⎨
⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x ∈ X, 

z i (x −i ) + 

∑ 

(k,i ) ∈ E max 

x k,i = 

∑ 

(i, j) ∈ E max 

x i, j , ∀ i ∈ I, 

y i, null + 

∑ 

C∈C i 
y C = 1 , ∀ i ∈ I P ,∑ 

(i, j) ∈ C 
x i, j ≤ B · y C , ∀ C ∈ D 0 ,∑ 

(i, j) ∈ C(i, 0)

x i, j ≤ B · (y C(i, 0) + y i, null ) , ∀ i ∈ I P ,∑ 

(i, j ) ∈ E max , j � =0 

x i, j ≤ B · (1 − y i, null ) , ∀ i ∈ I P ,∑ 

(k,i ) ∈ E max 

x k,i ≤ B · (1 − y i, null ) , ∀ i ∈ I P ,

g i (x −i ) ≤ 0 , ∀ i ∈ I P ,
z i (x −i ) ≥ 0 , ∀ i ∈ I, 

Cost i (x i , x 
P 
−i 

, x R , E(y )) ≤ STC i (y i, null ) , ∀ i ∈ I P ,

x ≥ 0 . 

(4.10) 

Observe that, whenever y i, null = 0 , then all constraints for the

 th agent are the same that those established in problem (4.8) .

lso, if y i, null = 1 , the only feasible solution for i is the stand-alone

peration. Thus, in this new problem, the authority first choose all

he agents that will participate in the network, represented by the

et 

 

′ 
P = { i ∈ I P : y i, null = 0 } ,
nd then it solves problem (4.8) replacing I by I ′ = I ′ 

P 
∪ I R . Of

ourse, as it is formulated, the authority takes both decisions si-

ultaneously, by solving problem (4.10) . It is not hard to verify

hat any optimal solution of problem (4.10) is an optimal solution

f Problem (4.8) for the reduced set of agents I ′ . We leave this ver-

fication to the reader. 

. Blind-Input model for water exchange networks

In this section we come back to our original motivation pre-

ented in Section 2 , the water exchange networks in Eco-Industrial

arks. We are now ready to describe in detail the model, and how

t fits into the Blind-Input model developed so far. 

First, an EIP consists in a set of enterprises P := { P 1 , . . . , P n } ,
hat are connected in an exchange network. Each enterprise P i can

e connected either to other enterprises, or to some regeneration

nits, which we denote R := { R 1 , . . . , R m 

} . The regeneration units

re controlled by a central authority. This authority plays the role

f designer (when deciding the connections within the network)

nd regulator of the park’s operation. Finally, we include a sink

ode 0, that represents a wastes’ pit to discharge useless polluted

ater. We identify P with the index set I P := { 1 , . . . , n } and R with

 := { n + 1 , . . . , n + m } . We put I = I ∪ I and I = { 0 } ∪ I. Finally,
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∀ (i, j) ∈ E, F ≥ 0 and ∀ i ∈ I P , z ≥ 0 . (5.7)
for an agent of the park we refer either to an enterprise or to a

regeneration unit. 

Each enterprise i ∈ I P generates a fixed amount of pollutant M i 

[g], coming from her internal production process, that needs to be

diluted before exiting the enterprise. To do so, enterprise i must

buy an amount of fresh water z i [T/h] such that, after dilution, the

pollutant concentration in the exit flux is less than a limit concen-

tration C i ,out [ppm]. If the enterprise discharges this polluted water

into the sink node, she has to pay a tax associated to the contam-

ination she is producing. We will assume a hypothesis of optimal

response: each enterprise i ∈ I P consumes exactly the fresh water

she needs to attain C i ,out , and therefore, her output pollutant con-

centration is always equal to this constant. 

We denote the marginal cost of fresh water as c [$/T], and the

tax of discharged water as β [$/T]. Observe that, if the enterprise i

doesn’t participate in the EIP, then her water consumption z i must

be 

z i = 

M i

C i, out 

.

Then, the cost of her stand-alone operation, which we denote by

STC i [$], is given by 

STC i = A · (c + β) 
M i 

C i, out 

,

where A [h] is a time constant that measures the lifetime of the

park. 

The goal of the authority is to built (and operate) an exchange

network so part of this polluted water could be reused by other

enterprises, minimizing the global consumption of fresh water

within the park. Here, an exchange network for the EIP is a sim-

ple directed graph ( I 0 , E ), where the connection ( i, j ) ∈ E means

that the agent i can send her output water to the agent j . In this

sense, if agent i uses the connection ( i , 0), then it means that she

is discharging water outside the park, to the environment. 

Defining the sets 

E st := { (i, 0) : i ∈ I P }
E max := { (i, j) : i ∈ I P , j ∈ I 0 } ∪ { (r, j) : r ∈ I R , j ∈ I P } ,

(5.1)

a valid exchange network must satisfy that E st ⊂ E ⊂ E max . This def-

inition yields that: (1) for every enterprise there is always the pos-

sibility of discharge; (2) the regeneration units can send water only

to enterprises; and (3) the sink node doesn’t have any exit connec-

tions (it is not possible to recover water once it is discharged). We

denote by E the family of valid networks for the EIP. Finally, for

any E ∈ E, we denote by E c the set of connections that are not in

E , that is, E c = E max \ E.

Note that, on the one hand, the set E st is the stand-alone config-

uration , where each enterprise only has access to fresh water and,

after using it, she must discharge it to the sink node. On the other

hand, E max stands for the complete park, in the sense that all en-

terprises are connected between them, and all of them have access

to the regeneration units. 

If an enterprise i ∈ I P receives fluxes from other agents within

the EIP, then these fluxed pass through a mixer. After the mix-

ing, the inlet flux is then mixed with the purchased fresh water z i .

Then, the contaminant concentration of the total flux cannot sur-

pass a limit inlet concentration C i ,in , which is given by technical

constraints. We always have that C i ,in < C i ,out . This structure is il-

lustrated in Fig. 5.1 . 

Every regeneration unit r ∈ I R , as the enterprises, has limit con-

centrations as well. The inlet concentration for r must be between

a threshold given by a minimal inlet concentration, C r ,in [ppm].

The output concentration C r ,out [ppm] denotes the concentration of

the output flux after the regeneration process. The main difference
ith the enterprises is that, while enterprises increase the contam-

nant concentration of fluxes, regeneration units reduce it. There-

ore, we always have C r ,out ≤ C r ,in . Fig. 5.2 illustrates the operation

f regeneration units. 

For each ( i, j ) ∈ E max we denote by F i,j [T/h] the water flux going

rom i to j through the connection ( i, j ). We consider the following

otation: 

• F i = { F i, j : j ∈ I} is the vector of fluxes exiting from agent i .

• F −i = (F k, j : k ∈ I \ { i } ) is the vector of all fluxes not exiting

from agent i .

• F P −i 
= (F k, j : k ∈ I P \ { i } ) is the vector of all fluxes exiting from

an enterprise different than i . 

• F R = (F r : r ∈ I R ) is the vector of fluxes exiting from regenera-

tion units.

• F P = (F i : i ∈ I P ) is the vector of fluxes exiting from enterprises.

Finally, for an agent i ∈ I , we may write F = (F i , F −i ) , to stress

the exiting fluxes of agent i . Moreover, if i ∈ I P , we may also write 

 −i = (F P −i , F 
R ) and F = (F i , F 

P 
−i , F 

R ) ,

o distinguish the actions of other enterprises and the actions of

egeneration units. This is classic notation in game theory (see, e.g.,

isan et al., 2007; Ichiishi, 1983; Pang and Fukushima, 2005 ). 

Then, for a fixed network E , a valid flux vector F = (F i, j :

(i, j) ∈ E max ) must satisfy the following constraints: 

1. Use of connections in E : Since E represents the available con-

nections, we must put

∀ (i, j) ∈ E c , F i, j = 0 . (5.2)

2. Water mass balance: Around an agent i ∈ I (different from the

sink node), we have that

z i + 

∑ 

(k,i ) ∈ E
F k,i = 

∑
(i, j) ∈ E

F i, j . (5.3)

If i ∈ I R then z i = 0 , that is, the regeneration units don’t con-

sume fresh water. The sink node is not subject to balance con-

straints. 

3. Contaminant mass balance: Around an enterprise i ∈ I P , we

have that

M i + 

∑ 

(k,i ) ∈ E
C k, out F k,i = C i, out 

∑
(i, j) ∈ E

F i, j , (5.4)

where the right-hand term corresponds to the inlet contami-

nant mass coming from other agents, and the left-hand corre-

sponds to the outlet contaminant mass. Thanks to the hypoth-

esis of optimal response, the inlet mass of an agent can be ex-

pressed in terms of fluxes, since for each agent k ∈ I , the outlet

concentration C k ,out is always attained. Observe that regenera-

tion units are not subject to contaminant mass balance, since

they clean the water that pass through them. 

4. Inlet/outlet concentration constraints: for an enterprise i ∈ I P
we have that

∑ 

(k,i ) ∈ E
C k, out F k,i ≤ C i, in 

( 

z i + 

∑
(k,i ) ∈ E

F k,i 

)
. (5.5)

In parallel, for regeneration unit r ∈ I R we have that 

C r, in 
∑ 

(k,r) ∈ E
F k,r ≤

∑ 

(k,r) ∈ E
C k, out F k,r . (5.6)

Both constraints are formulated in terms of contaminant mass,

but in practice they represent constraints of concentration. 

5. Positivity of fluxes: all the fluxes in the park must be positive:
i, j i 



Fig. 5.1. Water mixture description for a given enterprise. Here C i ,in ≤ C i ,out . 

Fig. 5.2. Water mixture description for a given regeneration unit. Here C r ,in ≥ C t ,out .The indexes i, j, k belong to I P . . 
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Observe that, combining Eqs. (5.3) and (5.4) we obtain: 

 i + 

∑ 

(k,i ) ∈ E
C k, out F k,i = C i, out 

(
z i + 

∑ 

(k,i ) ∈ E
F k,i 

)
, ∀ i ∈ I p , (5.8)

nd so, the fresh water bought by the enterprise i ∈ I P is given by

he fluxes of the other agents, that is, 

 i (F −i ) = 

1

C i, out 

(
M i + 

∑ 

(k,i ) ∈ E

(
C k, out − C i, out 

)
F k,i 

)
. (5.9)

n this model, each enterprise i ∈ I P has a cost function that she

ants to minimize, defined by 

Cost i (F ) = A 

[
c · z i (F −i ) + βF i, 0 + 2 δ

∑ 

r∈ I R 
(F i,r + F r,i ) 

+ δ
∑ 

k, j∈ I P 
(F k,i + F i, j ) + 

∑ 

r∈ I R 
�r F 

ψ 

r,i 

]
, (5.10) 

here �r [$/T] is the marginal cost of regenerating water depend-

ng on the technology of the regeneration unit and δ [$/T] is the

arginal cost of using a sharing connection. Note that the regen-

rated water cost is non-linear, due to the power ψ < 1, which

e usually set between 0.6 and 0.8 (see e.g. Ramos et al., 2016 ).

n fact the higher the volume of regenerated water, the lesser the

perating cost of the regeneration unit. We assume that β � 2 δ,

hat is, that the cost β is much higher than 2 δ. 

Observe also that each enterprise pays both for the entering

ater and the exiting water, for every connection she has. In the

ase of the connections between two enterprises, this means that

he cost of the connection is divided uniformly between the send-

ng enterprise and the receiving enterprise. In the case of regener-

tion units, the 2 δ factor means that the enterprise must pay for

he operation (when sending to and receiving from) of the regen-

ration unit. 

On her part, the authority wants to minimize the consumption

f the natural resources, and so she tries to minimize the function

(F ) = 

∑ 

i ∈ I P 
z i (F −i ) . (5.11)
ll investment costs are trespassed to the enterprises by the

arginal prices δ and �r and the exponent ψ . 

In order to get each enterprise i ∈ I P to participate in the EIP,

he authority engages in a Blind-Input contract with them of con-

tant α ∈ ]0, 1[. On the one hand, for each enterprise i ∈ I P , the

uthority must ensure a relative improvement of α in the costs,

ith respect to the stand-alone operation, that is, 

ost i (F i , F −i ) ≤ αSTC i . (5.12)

On the other hand, each enterprise commits to accept every in-

et flux sent to her through the connections of the park, whenever

hese fluxes respect her physical constraints (which are given by

5.5) ). 

With all these considerations, for a given network E ∈ E, the

roblem of each enterprise is given by problem P i ( F −i , E ) 

min F i Cost i ( F i , F −i ) 

s.t. 

{ 

Equations (5.2)-(5.3)-(5.5) ,
z i (F −i ) ≥ 0 , 

F i ≥ 0 . 

(5.13) 

Observe that constraint (5.4) is implicit in the expression of

 i (F −i ) given by (5.9) . For a network E ∈ E and a fixed operation of

he regeneration units F R , we say that a vector F P is an equilibrium

or the enterprises if and only if 

 i ∈ I P , F i solves the problem P i ( F −i , E ) .

e denote by Eq( F R , E ) the set of equilibria for F R and E . Then, the

roblem of the authority is 

min F ∈ R | E max | ,E∈E Z(F ) 

s.t. 

⎧ ⎪⎪⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪ ⎪ ⎨
⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ 

(i,r) ∈ E
F i,r = 

∑
(r, j) ∈ E

F r, j , ∀ r ∈ I R ,∑ 

(k,r) ∈ E 
C k, out F k,r ≤ C max 

r, in 

∑ 

(k,r) ∈ E
F k,r , ∀ r ∈ I R ,

C min 
r, in 

∑ 

(k,r) ∈ E
F k,r ≤

∑ 

(k,r) ∈ E
C k, out F k,r , ∀ r ∈ I R ,

F r, j = 0 , ∀ (r, j) ∈ E c , r ∈ I R ,

F P ∈ Eq (F R , E) , 
F R ≥ 0 , 

Cost i (F i , F −i ) ≤ αSTC i , ∀ i ∈ I P .

(5.14) 
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It is not hard to verify that Problem (5.14) together with the

lower level problems (5.13) fit into the general Blind-Input model

developed in Section 3 . Indeed we only need to identify the vari-

able x with the flux vector F , to observe that the costs functions

have the structure described in Section 3.3 and to note that con-

straint (5.5) can be rewritten with the form 

g i (F −i ) ≤ 0 . 

Thus, in the following, we will apply the reformulation described

in Section 4 . 

5.1. Problem formulation without regeneration units 

Now, we can reduce problem (5.14) to a Mixed-Integer pro-

gramming problem. In this section, we analyze the case when

there is no regeneration unit, that is, I R = ∅ . 
To do so, we need to identify the pricing function γ : E max →

R + which gives the marginal price of using exiting connections in

the park and then, for each i ∈ I P , we need to find the arc classes 

(i, j) = { (i, k ) ∈ E max : γ (i, j) = γ (i, k ) } .

Finally, we compute for each enterprise i ∈ I P the class set C i =
{ C(i, j) : (i, j) ∈ E max } .

Looking at the cost function (5.10) and assuming that there is

no regeneration units, the pricing function γ is given by 

γ (i, j) = 

{
δ if j ∈ I P , 
β if j = 0 . 

(5.15)

Thus, for each enterprise i ∈ I P , the set C i is equal to { C i,p , C i ,0 }

where 

 i,p = { (i, j) ∈ E max : j ∈ I P }
 i, 0 = { (i, 0) } .

Now, for each agent i ∈ I P , we include three integer variables,

y i,p , y i ,0 , y i ,null ∈ {0, 1} with the following interpretation: 

• If y i,p = 1 , it means that the connections in C i,p are included in

the network.

• If y i, 0 = 1 , it means that the connection ( i , 0) is the only exit

connection for i , and i participates in the EIP.

• If y i, null = 1 , it means that the connection ( i , 0) is the only

exit connection for i , and i does not participate in the EIP (she

works in stand-alone mode).

The main point is that only one of these variables takes the

value 1, and in doing so it determines the network E to be imple-

mented and the operation that each enterprises can do within this

network. We denote by y ∈ {0, 1} 3 n the vector of all integer vari-

ables of all enterprises. If an enterprise i is considered in the park,

then Eq. (5.12) is active, but if not, then her cost coincides with

STC i . Thus, we define the upper bound for the costs of enterprises

as a function of the variable y i ,null given by 

STC i (y i, null ) = αSTC i · (1 − y i, null ) + STC i · y i, null . (5.16)
hen, applying the reformulation of Section 4.3 we obtain the fol-
owing problem: 

in F,y Z(F ) 

.t. 

⎧ ⎪ ⎪ ⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎨
⎪⎪⎪⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

z i (F −i ) + 

∑ 

(k,i ) ∈ E max

F k,i = 

∑ 

(i, j) ∈ E max

F i, j , ∀ i ∈ I P , 

y i, null + y i,p + y i, 0 = 1 , ∀ i ∈ I P , ∑ 

(i, j) ∈ C i,p

F i, j ≤ B · y i,p , ∀ i ∈ I P , 

F i, 0 ≤ B · (y i, 0 + y i, null ) , ∀ i ∈ I P , ∑ 

(i, j ) ∈ E max , j � =0

F i, j ≤ B · (1 − y i, null ) , ∀ i ∈ I P , ∑ 

(k,i ) ∈ E max

F k,i ≤ B · (1 − y i, null ) , ∀ i ∈ I P , 

∑ 

(k,i ) ∈ E max

C k, out F k,i ≤ C i, in 

( 

z i (F −i ) + 

∑ 

(k,i ) ∈ E max

F k,i 

) 

, ∀ i ∈ I P , 

z i (F −i ) ≥ 0 , ∀ i ∈ I P , 

Cost i (F ) ≤ STC i (y i, null ) , ∀ i ∈ I P , 

F ≥ 0 . 

(5.17)

ere, B is a constant large enough so all fluxes within the park, re-

ardless the connections, are less than B . In practice, we set B as 

 := 

∑ 

i ∈ I P
z i (0) = 

∑ 

i ∈ I P

M i 

C i, out 

, (5.18)

hat is, the total fresh water consumption assuming that each enter-

rise works in stand-alone operation. 

.2. Problem formulation including regeneration units 

Let us now consider a network with regenaration units. Again,

e need to identify the pricing function γ : E max → R + and the

lass sets C i , for each enterprise i ∈ I P . Recall that we don’t need to

ork with classes for regeneration units, since they are controlled

y the authority and so they don’t have economic incentives. 

The function γ in this situation is given by 

(i, j) = 

{ 

δ if j ∈ I P , 
2 δ if j ∈ I R , 
β if j = 0 . 

(5.19)

Thus, for each enterprise i ∈ I P , the set C i = { C i,p , C i,r , C i, 0 }
here 

 i,p = { (i, j) ∈ E max : j ∈ I P }
C i,r = { (i, r) ∈ E max : r ∈ I R }
 i, 0 = { (i, 0) } .
s in Section 5.1 , for each agent i ∈ I P , we include four integer vari-

bles, y i,p , y i,r y i ,0 , y i ,null ∈ {0, 1} with the following interpretation: 

• If y i,p = 1 , it means that the connections in C i,p are included in

the network.

• If y i,r = 1 , it means that the connections in C i,r are included in

the network.

• If y i, 0 = 1 , it means that the connection ( i , 0) is the only exit

connection for i , and i participates in the EIP.

• If y i, null = 1 , it means that the connection ( i , 0) is the only

exit connection for i , and i does not participate in the EIP (she

works in stand-alone mode).

Again, only one of this variables can take the value 1. Keep-
ng the same notation y ∈ {0, 1} 4 n for the complete vector of inte-
er variables, setting STC i ( y i ,null ) and B as in definitions (5.16) and
5.18) , respectively, and applying the reformulation of Section 4.3 ,



Table 2

Enterprises’ parameters.

Enterprise i C i ,in (ppm) C i ,out (ppm) M i (g/h)

1 0 100 7500

2 0 200 6000

3 50 100 5000

4 80 800 30,000

5 400 800 4000

6 20 100 2500

7 50 100 2200

8 80 400 5000

9 100 800 30,000

10 400 1000 4000

11 30 60 2000

12 25 50 2000

13 25 75 5000

14 50 800 30,000

15 100 200 13,000
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Table 3

Associated costs.

Parameter Value ($/tonne)

c 0.13

β 0.22

δ 0.01

Table 4

Different regeneration units. We suppose C r, in = 

C r, out .

Unit r C r, out = C r, in (ppm) �r ($/tonne)

1 30 0.85

2 40 0.695

3 50 0.54

Fig. 6.1. The configuration in the case without regeneration units, α = 0 . 95 and 

Coef = 1 . Gray nodes are consuming strictly positive fresh water. Dashed nodes are 

operating in stand-alone mode.
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e obtain the following problem: 

in F,y Z(y ) 

.t. 

⎧ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎨
⎪⎪⎪⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪ ⎪ ⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

z i (F −i ) + 

∑ 

(k,i ) ∈ E max 

F k,i = 

∑ 

(i, j) ∈ E max

F i, j , ∀ i ∈ I P , ∑ 

(k,r) ∈ E max

F k,r = 

∑ 

(r, j) ∈ E max

F r, j , ∀ r ∈ I R , 

y i, null + y i,p + y i,r + y i, 0 = 1 , ∀ i ∈ I P , ∑ 

(i, j) ∈ C i,p

F i, j ≤ B · y i,p , ∀ i ∈ I P , 

∑ 

(i, j) ∈ C i,r
F i, j ≤ B · y i,r , ∀ i ∈ I P , 

F i, 0 ≤ B · (y i, 0 + y i, null ) , ∀ i ∈ I P , ∑ 

(i, j ) ∈ E max , j � =0

F i, j ≤ B · (1 − y i, null ) , ∀ i ∈ I P , ∑ 

(k,i ) ∈ E max

F k,i ≤ B · (1 − y i, null ) , ∀ i ∈ I P , 

∑ 

(k,i ) ∈ E max

C k, out F k,i ≤ C i, in 

( 

z i (F −i ) + 

∑ 

(k,i ) ∈ E max

F k,i 

) 

, ∀ i ∈ I P , ∑ 

(r,k ) ∈ E max

C min 
r, in F r,k −

∑ 

(k,r) ∈ E max

C k, out F k,r ≤ 0 , ∀ r ∈ I R , ∑ 

(k,r) ∈ E max

C k, out F k,r −
∑ 

(r,k ) ∈ E max

C max 
r, in F r,k ≤ 0 , ∀ r ∈ I R , 

z i (F −i ) ≥ 0 , ∀ i ∈ I P , 

Cost i (F ) ≤ α · STC i (y i, null ) , ∀ i ∈ I P , 

F ≥ 0 . 

(5.20) 

. Simulation with some academic examples

In this section we present numerical examples of the Blind-

nput model applied to water exchange networks in Eco-Industrial

arks. The detailed model we use is described in Section 5 . The

ptimization problems we solve correspond to adaptations of prob-

em (4.10) to the EIP: specifically, we solve problem (5.17) for parks

ithout regeneration units, and problem (5.20) for parks with re-

eneration units. 

The study case we present consists on an EIP made up of 15

nterprises, each one including only one process, and 3 regenera-

ion units. Data is partially inspired from Olesen and Polley (1996) ;

amos et al. (2016) . It is assumed that the EIP operates for one

our, that is, A = 1 h. We consider three different regeneration

nits which differ by their capacity to regenerate water. Concern-

ng the power ψ , we fix ψ = 0 . 6 . 

The data of 15 enterprises is given in Table 2 . Prices are shown

n Table 3 . In addition, the operating parameters of regeneration

nits are illustrated in Table 4 . In terms of concentration limits,

e set C r, out = C r, in for each r ∈ I R , to simplify the problem. 
Since the optimization problems we solve (problems (5.17) and

5.20) ) may have several solutions (see Section 6.3 for an exam-

le), we introduce a penalization term in the objective function in

rder to obtain the one having more participating enterprises. We

eplace Z ( F ) by 

(F ) + Coef ·
∑ 

i ∈ I P 
y i, null , (6.1)

here Coef ≥ 0 is a coefficient to penalize those optimal solutions

hat leave more enterprises outside the park. If Coef is too large,

e may sacrifice optimality of fresh water consumption by forc-

ng enterprises into the park. Numerical experiments show that

oef = 1 is a good value. The selection and impact of this coeffi-

ient should be further studied but such analysis is out the scope

f the article. 

All simulations where implemented with Julia v1.2.0
rogramming language ( Bezanson et al., 2017 ), using Gurobi
8.1.1 as solver ( LLC Gurobi Optimization, 2020 ).

.1. Numerical experiment without regeneration units 

Here, we present the results of the simulations with the data

xposed before. The optimized configuration of the EIP is pre-

ented in Fig. 6.1 , and it corresponds to a Blind-Input contract

ith α = 0 . 95 and Coef = 1 . Detailed results are summarized in

able 5 . Detailed results of fluxes within the network are presented

n Table A.10 . 

Of course, the optimization results are sensible to the parame-

er α chosen for the Blind-Input contract. Fig. 6.2 shows the results

hen considering α ∈ [0.5, 0.99], in terms of total fresh water con-

umption and the number of enterprises left out of the EIP, that

s, the number of stand-alone enterprises. For values of α smaller

han 0.5, it would mean that the authority is offering an improve-



Table 5

Summary of results of the EIP without regeneration units. Marked enterprises (∗
 ) are left outside the 

park, operating stand-alone.

Enterprise Fresh water stand-alone Fresh water in EIP Cost i stand-alone Cost i in EIP

1 ∗ 75.00 75.00 26.25 26.25

2 ∗ 30.00 30.00 10.50 10.50

3 50.00 42.08 17.50 6.52

4 37.50 8.33 13.13 10.58

5 5.00 0.00 1.75 1.31

6 25.00 20.83 8.75 3.13

7 ∗ 22.00 22.00 7.70 7.70

8 12.50 3.13 4.38 3.97

9 37.50 0.00 13.13 9.86

10 4.00 0.00 1.40 1.02

11 33.33 35.42 11.67 5.13

12 40.00 53.33 14.00 8.00

13 66.67 66.67 23.33 9.33

14 37.50 6.66 13.13 10.00

15 65.00 1.92 22.75 20.49

Total 541.00 365.37 189.37 133.79

Fig. 6.2. Sensitivity Analysis for α ∈ [0.50, 0.99] and Coef = 1 . Total fresh water 

consumption and number of stand-alone enterprises.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3. Piecewise linear approximations (dashed red) of marginal cost of regener- 

ating water. The function 
 r corresponds to Reg. Unit r ∈ I R = { 1 , 2 , 3 } . The original 

function f r is given in blue. The parameters of f r correspond to the data presented

at the beginning of Section 6 . . (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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ment of more than 50% to each participant of the park, which is

unrealistic. 

6.2. Numerical experiment including regeneration units 

The main difficulty to solve Problem (5.20) is that the function

Cost i described in (5.10) is nonlinear under the presence of Re-

generation Units. To tackle this obstruction, for each unit r ∈ I R 
we construct a piecewise linear approximation of the functions

f r : x �→ �r · x ψ , which is the marginal costs of regenerating water.

This approximation, that we denote 
 r , is constructed in the inter-

val [0, B ] (where B is the constant given in (5.18) ), with the ref-

erence points S = (s 0 , s 1 , s 2 , s 3 , s 4 , s 5 ) = (0 , 0 . 1 B, 0 . 2 B, 0 . 4 B, 0 . 6 B, B ) .

Fig. 6.3 shows the approximations 
 r for the regeneration units de-

scribed in Table 4 . 

The nonuniform partition of the interval [0, B ] is due to the fact

that B is not a tight bound: each value F r,j with r ∈ I R and i ∈ I P
should be a lot less than B . Thus, the approximation 
 r must be

more precise in the first part of the interval. 

As we did in Section 6.1 , we present the detailed results of

the simulations for α = 0 . 95 and Coef = 1 in Table 6 . The obtained

configuration of the park is given in Fig. 6.1 . Detailed results of

fluxes within the network are presented in Table A.11 . 
Finally, the sensitivity analysis of the results with respect to

∈ [0.5, 0.99] is shown in Fig. 6.5 , again, showing the variation

f total fresh water consumption and the number of stand-alone

nterprises. As in the case without regeneration units, we neglect

alues of α smaller than 0.5 due to the impossibility of implement

uch a contract ( Fig. 6.4 ). 

.3. Small case with multiple solutions 

In this last part, we present an small example to show that

roblem (5.17) may have multiple optimal solutions. This example

resents two optimal solutions that have different number of par-

icipating enterprises. The case of study consists on an EIP made

p of 5 enterprises described in Table 7 . The prices of the example

re the same as before, presented in Table 3 , and the Blind-Input

arameter is fixed as α = 0 . 99 . 

Given that the example is small, we were able to explore all

ombinations of participating enterprises: each time, we chose a

ubset A ⊂ I = { 1 , 2 , 3 , 4 , 5 } and we solved problem (5.17) with the
P 



Table 6

Summary of results of the EIP considering regeneration units with Coef = 1 . 

Enterprise Fresh water stand-alone Fresh water in EIP Cost i stand-alone Cost i in EIP

1 75.00 75.00 26.25 10.50

2 30.00 30.00 10.50 4.20

3 50.00 0.00 17.50 11.16

4 37.50 0.00 13.13 5.58

5 5.00 0.00 1.75 1.53

6 25.00 10.42 8.75 5.98

7 22.00 0.00 7.70 6.50

8 12.50 0.00 4.38 12.47

10 4.00 0.00 1.40 0.15

11 33.33 7.15 11.67 11.08

12 40.00 18.94 14.00 13.30

13 66.67 16.67 23.33 17.75

14 37.50 0.00 13.13 6.41

15 65.00 0.00 22.75 21.40

Total 541.00 158.17 189.35 132.17

Fig. 6.4. The configuration considering regeneration units, α = 0 . 95 and Coef = 1 . 

Gray nodes are consuming strictly positive fresh water. Regeneration unit R 3 is not

used and therefore removed from the park.

Table 7

Enterprises’ parameters for small size case of study.

Enterprise C i ,in (ppm) C i ,out (ppm) M p (g/h)

1 175 898 30,010

2 90 200 3000

3 30 35 1000

4 150 530 32,030

5 400 1095 90,000

e

y
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e  

2

 

o

 

s

Fig. 6.5. Sensitivity Analysis for α ∈ [0.50, 0.99] and Coef = 1 . Total fresh water 

consumption and number of stand-alone enterprises.

Fig. 6.6. The configuration in the case without regeneration units, α = 0 . 99 . Gray 

nodes are consuming strictly positive fresh water.

Fig. 6.7. The configuration in the case without regeneration units, α = 0 . 99 . Gray 

nodes are consuming strictly positive fresh water.
xtra constraint 

 i, null = 

{
0 if i ∈ A, 

1 otherwise. 

his exhaustive exploration can be done only because the set of

nterprises is small, since the number of possible subsets A ⊂ I P is

 

| I P | . 
After exploring all possible combination, we found two different

ptimal configurations that are shown in Figs. 6.6 and 6.7 . 

The results of fresh water consumption and economic cost are

ummarized in Tables 8 and 9 . 



Table 8

Fresh water consumption [T/h]. Stand-alone configuration and op- 

timal solutions. In the first solution, Enterprise 1 is left in stand- 

alone operation.

Enterprise Stand-alone First solution Second solution

1 33.42 33.42 ∗ 32.36

2 15 18.65 15

3 28.57 33.98 64.68

4 60.43 60.43 62.26

5 82.19 2.03 0

Total 219.61 148.51 148.51

Table 9

Economic cost [$/h]. Stand-alone configuration and optimal solu- 

tions. In the first solution, Enterprise 1 is left in stand-alone oper- 

ation.

Enterprise Stand-alone First solution Second solution

1 11.70 11.70 ∗ 11.58

2 5.25 2.65 2.1

3 10 4.76 8.30

4 21.15 8.46 5.39

5 28.77 26.71 27.45

Total 76.87 54.28 54.82

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1. Sensitivity Analysis for α ∈ [0.50, 0.99] and Coef = 1 . Total cost of the park 

for both study cases: without and with regeneration units.
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7. Discussion

The results presented for our academic example, in both cases

without and with regeneration units, show that optimal networks

under Blind-Input contracts provide substantial improvements in

terms of reducing the global consumption of water and the cost of

each participating enterprise. Relatively speaking, the EIP without

regeneration units reduces the amount of consumed water in 32%

with respect to the stand-alone configuration, while the EIP with

regeneration units reduces it is more than 70%. 

Moreover, each participating enterprise has a cost reduction of

at least 5%, as promised by the Blind-Input contract. Exploring

both, Tables 5 and 6 , the reader can observe that the reduction

is not uniform among the enterprises. This unbalanced benefit is

due to the nature of the problem: the authority is only concerned

by the total water consumption, and therefore, the costs of the en-

terprises is not relevant beyond the Blind-Input contract. This is

acceptable recalling that the Blind-Input model maintains the in-

formation of each enterprise private. 

From the perspective of each enterprise, she only interacts eco-

nomically with the authority and so she only perceives her gains. It

is therefore economically appealing to participate in the EIP under

the network proposed by the authority. However, the model pre-

sented in this work may not be economically efficient in the sense

that the total cost for the enterprises may not be optimal. Fig. 7.1

shows a sensitivity analysis of total cost for enterprises depending

on the Blind-Input parameter α ∈ [0.50, 0.99]. 

One would expect that total cost, at least starting from some

threshold where enough enterprises participate into the park,

should be increasing with respect to α, since larger the α, less ex-

igent are the enterprises. However, this is not the case. The behav-

ior of the total cost is quite chaotic, which is more evident for the

case with regeneration units. In terms of total cost of enterprises,

the only behavior that is natural is that the influence of regenera-

tion units not only reduces the total water consumption, but also

the total cost the enterprises. 

This behavior in economic cost can be explained by the multi-

plicity of optimal configurations. The small size example presented

in Section 6.3 emphasizes that there may be several optimal con-

figurations in terms of total water consumption, differing in the

number of stand-alone agents and total cost of enterprises. An in-

teresting question rising from this example and the behavior of
osts showed in Fig. 7.1 is how to select the “best” optimal con-

guration. 

In order to minimize the number of stand-alone enterprises

e introduce the penalization (6.1) . However, some other penal-

zation could be considered to try to force economic efficiency.

n real-size problems (more than 10 enterprises), it is not possi-

le to explore all configurations, and therefore penalized objective

unctions seem to be the solution. This could also be regarded in

he sense of multi-objective optimization: the authority could con-

ider not only the total water consumption, but also the number of

tand-alone enterprises and the economic efficiency as optimiza-

ion criteria. However, this could be delicate, since it is important

o keep the minimization of fresh water consumption as the pri-

ary goal of the park. In the case of study without regeneration

nits, Fig. 6.2 shows that the minimization of stand-alone enter-

rises could be relegated for a better solution in terms of water

onsumption: for α = 0 . 71 , 9 enterprises are left in stand-alone

peration, while for α = 0 . 72 , 10 enterprises are left in stand-alone

peration. While this could be interpreted as an ill behavior of

he algorithm, it is completely correct. Since α = 0 . 72 is bigger,

he authority has more freedom to built the optimal network, and

hile she could implement the same solution that for α = 0 . 71 ,

he chooses to left one extra enterprise outside of the park, and

hen reducing the fresh water consumption from 450.79 [T/h] (the

ptimal value for α = 0 . 71 ) to 443.08 [T/h] (the optimal value for

= 0 . 72 ). 

This same example shows another limitation for the Blind-Input

ontract: on the one hand, if enterprises are too exigent ( α small),

he authority may be incapable to find a economically feasible con-

guration. In fact, for α ≤ 0.70, the optimal solution is the stand-

lone configuration, which means that the authority cannot build

 park that attracts the exigent agents and also that reduces the

otal fresh water consumption. On the other hand, if enterprises

re too polluting, they may not be able to participate in the park,

ven without economic constraints. Indeed, starting from α = 0 . 89 ,

he authority leaves three enterprises outside the park, since their

articipation doesn’t contribute to the minimization of fresh wa-

er. This is solved only by introducing regeneration units, where

ull participation is attained starting from α = 0 . 92 . 
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. Conclusion and perspectives

Models for general exchange could lead to quite difficult prob-

ems like single-leader-multi-follower problems. In this work, our

im is to emphasize that under the Blind-Input paradigm which

s economically consistent, one can find some solutions by sim-

ly solving a mixed-integer linear problem. This clearly allows to

ackle large scale problems efficiently and propose exchange poli-

ics that attract enterprises to participate. 

In order to apply the Blind-Input model to an exchange net-

ork, the following main elements must be present: (1) for each

ndependent agent of the park, Kirchoff’s law and positivity of

uxes must be the only constraints of the her optimization prob-

em that include their own variables (i.e., the vector x i ); (2) the

uality of each inlet flux must depend only on the sending agent;

nd (3) the optimal response hypothesis must allow each agent

o compute the amount of natural resources needed. These three

onditions are present in many other examples. Particularly, en-

rgy networks also fit this profile (see, e.g., Boix et al., 2015;

eves et al., 2020 ). Under these conditions, our general model of

ection 3 (and of course the reductions and methods of Section 4 )

an be adapted and so, the network can be designed/operated fol-

owing the Blind-Input paradigm. It is important to note that the

conomic model is a design decision, suitable for Eco-Industrial

arks involving noncooperative enterprises. 

Of course, the Blind-Input paradigm can appear to be quite re-

trictive since followers are forced to accept the incoming fluxes.

hile this aspect is compensated by the Blind-Input contract, it

ould be interesting for a future work to consider exchange mod-

ls in which agents could have more “control” on their exchanges.

aking advantage of the MILP formulation, some other theoretical

esults could be deduced on the exchange models; for example,

tability results, dual formulations, among others. 

In terms of the physical model, several other developments can

e considered for future research. In this work, we only treat en-

erprises with single processes. Multi-process agents should also

e explored. Specifically in terms of the water exchange model,

e only consider a single-pollutant model. Multi-pollutant ex-

hange networks (where enterprises must dilute different types

f pollutants) introduce a particular difficulty with the inlet and

utlet concentrations. The optimal response hypothesis changes,
Table A1

The values of the flux in the case without regeneration units, α = 0 . 95 and Coef =

Enterprise 1 2 3 4 5 6 7 8

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 7.79 0.00 0.00 0.00 12.5

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 25.54 5.71 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 10.42 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 0.00 0.00 31.67 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ince each enterprise will have several outlet concentrations (one

or each pollutant) to observe, entailing that these concentra-

ions would become variable, changing the contaminant mass bal-

nce constraints as well as the formula for the fresh water con-

umption. A concrete perspective of this work is to include the

ulti-contaminant problem coupled with the energy network, fol-

owing the developments of Almaraz et al. (2016) . Finally, Eco-

ndustrial Parks with several exchange networks could be explored

s well under the Blind-Input paradigm, following the spirit of

amos et al. (2018b) . 
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ppendix A. Network fluxes of simulations 

The values of the flux corresponding to the case without

nd with regeneration unit in Sections 6.1 and 6.2 are given in

ables A.10 and A.11 , respectively. The entrance ( i, j ) of both tables

orresponds to the flux sent from agent i to agent j . 
 1 . 

9 10 11 12 13 14 15 Sink

0.00 0.00 0.00 0.00 0.00 0.00 0.00 75.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.00

0 42.86 4.44 0.00 0.00 0.00 0.00 6.15 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 41.67

0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.71

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.63

0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.86

0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.44

0.00 0.00 0.00 0.00 0.00 33.33 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 80.00 0.00

0.00 0.00 8.33 26.67 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 88.08



Table A2

The values of the flux in the case with regeneration units, α = 0 . 95 and Coef = 1 . 

Enterprise

and regen- 

eration

units 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 R 1 R 2 R 3 Sink

1 0.00 0.00 10.82 9.60 0.00 0.00 8.31 10.61 18.50 0.00 0.00 0.00 0.00 11.43 5.74 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 8.30 6.67 0.00 0.00 0.00 10.03 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41.67 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.67

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 31.25 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 44.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.63

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.86

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 66.67 0.00 0.00 0.00 0.00

12 0.00 0.00 35.08 0.00 0.00 0.00 3.24 1.90 0.00 0.00 10.72 0.00 0.00 0.00 20.62 0.00 0.00 0.00 0.00

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 62.55 37.45 0.00 0.00

14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 93.02

R 1 0.00 0.00 0.00 23.76 0.00 20.83 9.10 3.09 14.33 0.00 48.79 52.65 83.33 28.57 0.00 0.00 0.00 0.00 0.00

R 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Supplementary material associated with this article can be
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