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A B S T R A C T   

Alpine soils are warming strongly, leading to profound alterations in carbon cycling and greenhouse gas budgets, 
mediated via the soil microbiome. To explore microbial responses to global warming, we incubated eight alpine 
soils between 4 and 35 �C and linked the temperature dependency of bacterial growth with alterations in 
community structures and the identification of temperature sensitive taxa. The temperature optimum for bac-
terial growth was between 27 and 30 �C and was higher in soils from warmer environments. This temperature 
framing the upper limit of naturally occurring temperatures was a tipping point above which the temperature 
range for growth shifted towards higher temperatures together with pronounced changes in community struc-
tures and diversity based on both 16S rRNA gene and transcript sequencing. For instance, at the highest tem-
perature, we observed a strong increase in OTUs affiliated with Burkholderia-Paraburkholderia, Phenylobacterium, 
Pseudolabrys, Edaphobacter and Sphingomonas. Dominance at high temperature was explained by a priori adap-
tation to high temperature, high growth potential as well as stress resistance. At the highest temperature, we 
moreover observed an overall increase in copiotrophic properties in the community along with high growth 
rates. Further, temperature effects on community structures depended on the long-term climatic legacy of the 
soils. These findings contribute to extrapolating from single to multiple sites across a large range of conditions.   

1. Introduction 

Alpine environments are particularly susceptible to climate change. 
In the European Alps, temperatures are projected to rise by 2–6 �C by 
2085 compared to 1981–2010 with strongest warming in summer 
(Gobiet et al., 2014, CH2018, 2018). As 25% of the earth’s surface is 
covered by mountains, biogeochemical processes in alpine environ-
ments considerably influence global greenhouse gas budgets (Donhauser 
and Frey, 2018). Microbes are resistant to harsh conditions prevailing in 
alpine environments, such as low and fluctuating temperatures, mois-
ture fluctuations as well as high UV-radiation (Donhauser and Frey, 
2018; Adamczyk et al., 2019). Thus, they are key players determining 
ecosystem functioning in these environments. However, how the 
ambient temperature governs microbial diversity and function in alpine 
ecosystems above the treeline remains largely unknown. 

Bacterial temperature adaptation has been studied repeatedly using 

incorporation of 3H-leucine as a proxy for bacterial growth, both in field 
and microcosm studies e.g. (Barcenas-Moreno et al., 2009; Rinnan et al., 
2009; Rousk et al., 2012), although not in alpine ecosystems up to the 
nival zone. Three cardinal points define the temperature relationship of 
growth: The lower temperature limit for growth (Tmin), the optimum 
where growth rates are highest (Topt) and the upper thermal limit for 
growth (Tmax). Typically, growth rates increase quadratically up to Topt 
and sharply decline at higher temperatures in pure cultures (Ratkowsky 
et al., 1983) and environmental communities (Rinnan et al., 2009; 
Rousk et al., 2012; Birgander et al., 2013). Tmin was found to correlate 
with the mean annual temperature of the environment (Rinnan et al., 
2009; Nottingham et al., 2019) and is thought to be between � 15 and 
� 10 �C for polar environments, between � 5 and � 10 �C for temperate 
environments and between � 5 and 0 �C for tropical environments 
(Bååth, 2018). Below 0 �C, the reduced availability of liquid water af-
fects growth. As Tmin is inferred from extrapolation of measurements 
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above 0 �C, it is a theoretical concept, but nonetheless a useful descriptor 
of temperature adaptation. Topt has been shown to be substantially 
higher than normal in-situ temperatures (Barcenas-Moreno et al., 2009; 
Rinnan et al., 2009; van Gestel et al., 2013; Birgander et al., 2018). It has 
been hypothesized that fast proliferation of heat-adapted taxa and 
strong impairment of heat-sensitive taxa rapidly lead to dominance of 
the former at high temperature. Conversely, low temperatures do not 
exert sufficient selective pressure to lead to takeover of cold-adapted 
taxa throughout the course of the year (Rousk and Bååth, 2011; van 
Gestel et al., 2013). However, the changes in microbial community 
structures underlying changes in temperature adaptation of growth rates 
have not been investigated to date. To address this gap, we combine 
measurement of bacterial growth rates with an in depth assessment of 
diversity and community structures. 

Changes in the microbial community structure can lead not only to a 
shift in community level temperature adaptation but also in growth 
strategy: copiotrophs are able to respond quickly to favorable environ-
mental conditions and grow rapidly upon availability of labile C sources. 
Conversely, oligotrophs exhibit slow, continuous growth under low C 
and nutrient regimes with a high yield of biomass per unit substrate 
(Roller and Schmidt, 2015; Ho et al., 2017). As these growth strategies 
are potentially associated with the amount of CO2 emissions, in this 
study, we address whether shifts between oligotrophy and copiotrophy 
occur in response to temperature. 

Previous studies mostly addressed warming responses at a crude 
taxonomic resolution, yielding inconsistent results across studies (de 
Scally et al., 2016; Mateos-Rivera et al., 2016). However, temperature 
adaptation is conserved in the bacterial phylogeny only at a shallow 
level (Martiny et al., 2015). In addition, the temperature sensitivity of 
microbial community structures and the threshold at which direct 
temperature effects become apparent has rarely been linked with the 
ambient temperature regime. As alpine ecosystems harbor sharp cli-
matic gradients within short spatial distance, they provide ideal condi-
tions to study temperature adaptation of soil microbial communities 
keeping other environmental parameters such as bedrock comparable 
(Pauli, 2015; Adamczyk et al., 2019). 

Here, in a laboratory experiment, we compare the temperature 
response of bacterial communities in eight alpine soils with different 
microclimatic legacies associated with altitude and aspect, resulting in a 
gradient of mean annual temperatures spanning about 7 �C. We link 
temperature adaptation at the functional level (3H-leucine incorpora-
tion) with amplicon sequencing data of 16S rRNA genes and transcripts 
at high taxonomic resolution. To create a framework for predicting 
temperature responses, we incubated these soils for one month at five 
different temperatures between 4 and 35 �C, covering the current range 
of ambient temperatures plus 10 �C representing an increase in 

maximum temperature with global warming. 

2. Materials and methods 

2.1. Sites description and sampling 

We sampled soil from four alpine summits at the north and south 
aspect, respectively. The sites are located in the eastern Swiss Alps 
(coordinates and properties of the sites are summarized in Table 1) and 
situated above the treeline ranging from the alpine zone to the largely 
plant free nival zone. Our sites are partly based on the Swiss National 
Park 2 (SN2) sites from the GLORIA (GLobal Observation Research 
Initiative in Alpine environments) project (Pauli, 2015). The bedrock is 
siliceous leading to the development of relatively acid soils (pH 
3.87–4.59, Table 1). The treeline in the area is at approx. 2300 m a.s.l. At 
site 1, some dwarf shrubs grow, while site 2–4 are dominated by mosses 
and lichens on the north slope and by grasses on the south slope. Overall, 
at site 3 and 4, especially on the north slopes, vegetation is very sparse 
(<50% cover). We have monitored soil temperatures at 5 cm depth since 
August 2016. The sites are characterized by a mean annual soil tem-
perature (MAST) between � 1.9 and 4.8 �C with a minimum of � 17.3 �C 
in the coldest soil and a maximum of 27.2 �C in the warmest soil 
(Table 1). The mean growing season temperature (June–September) 
ranges from 3.7 to 11.0 �C. Carbon and nitrogen content range from 0.43 
to 3.48 and 0.03–0.28%, respectively. Five replicate soil samples were 
taken within a radius of 5 m from approximately 2 - 20 cm depth 
removing plants and roots as thoroughly as possible. Samples were 
transported to the lab as cool as possible, sieved at 4 mm mesh size and 
subsequently stored at 4 �C. Sampling took place in August 2016, the 
experiment for this study was conducted in March 2017. 

2.2. Conduction of the temperature incubation experiment 

The experimental set-up is shown in Fig. S1. The experiment was 
conducted in triplicates, which were prepared from the five field repli-
cates pooled at equal weight and split into three subsamples per con-
dition: the water content of each soil was adjusted to 60% of the water 
holding capacity with sterilized water and 20 g dry soil equivalent were 
distributed to autoclaved 100 ml Erlenmeyer flasks. All preparations 
took place at 4 �C. Moreover, an aliquot was frozen as a time 0 control 
for DNA and RNA analysis (samples for RNA were shock frozen in liquid 
nitrogen). The Erlenmeyer flasks were sealed with sterilized cellulose 
plugs allowing for aeration while preventing contamination. We incu-
bated the soils for 28 days at 4, 9, 15, 25 and 35 �C, respectively. The 
temperature was elevated by 1.5 �C every 30 min until the incubation 
temperature was reached and then kept stable. 4 �C represents the 

Table 1 
Site characteristics.   

Coordinates Altitude [m 
a.s.l] 

MAST 
[�C] 

MGSST 
[�C] 

Tmin [�C] 
(soil) 

Tmax [�C] 
(soil) 

% 
TC 

% 
TN 

pH % 
Sand 

% 
Silt 

% 
Clay 

Water holding 
capacity [L/g-1 dry 
soil] 

Site 1 
N 

N46� 43.0040 E10�

21.2640
2464 1.30 7.88 � 10.08 13.96 3.30 0.19 3.87 84 13 3 0.75 

Site 1 
S 

N46� 42.9590 E10�

21.2790
2465 4.77 10.98 � 6.01 27.24 2.58 0.19 3.75 74 19 6 0.65 

Site 2 
N 

N46� 41.6390 E10�

19.7700
2777 � 1.71 5.07 � 17.31 19.43 1.00 0.08 3.97 85 12 3 0.45 

Site 2 
S 

N46� 41.6320 E10�

19.7750
2777 4.08 9.70 � 3.46 24.40 3.48 0.28 3.96 82 13 4 0.80 

Site 3 
N 

N46� 29.7800 E9�

55.8870
2960 � 1.92 3.65 � 10.50 12.81 0.34 0.03 4.59 90 7 4 0.32 

Site 3 
S 

N46� 29.7530 E9�

55.9360
2960 1.12 6.39 � 11.83 20.48 0.82 0.05 4.52 87 11 3 0.33 

Site 4 
N 

N46� 42.5250 E10�

23.3070
3092 � 1.70 5.71 � 16.17 19.19 0.43 0.04 4.15 90 8 3 0.31 

Site 4 
S 

N46� 42.4560 E10�

23.3220
3049 0.93 7.39 � 15.33 22.33 1.63 0.13 3.98 84 12 4 0.46  
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control at storage temperature. Microbial communities at 4 �C were 
largely identical to the time 0 control, thus, the time 0 is not shown in 
the results section. Water loss was compensated gravimetrically with 
sterilized water daily for 25 and 35 �C treatments, every two days for the 
9 and 15 �C treatments and weekly for the 4 �C treatment. The maximum 
water loss due to evaporation amounted to about 10% of the total water. 
After the incubation, soil samples were harvested as quickly as possible 
to minimize temperature effects during handling of the samples. Ali-
quots for RNA extraction were frozen immediately in liquid nitrogen, 
aliquots for DNA extraction were frozen at � 20 �C, and soil samples for 
the measurement of 3H-leucine incorporation were immediately stored 
at 4 �C and cooled during transport to the university of Zurich where the 
measurements were conducted within 1 h after harvest. 

2.3. Temperature dependent measurement of 3H-leucine incorporation 

In order to investigate bacterial temperature adaptation, we assessed 
the temperature dependence of 3H- leucine incorporation as a proxy for 
bacterial growth. These measurements were conducted according to the 
method adapted for soil described by Bååth et al. (2001). Briefly, a 
bacterial suspension in water was produced from 5 g of soil in 20 ml 
sterilized, deionized water by vortexing for 30 s at maximum speed 
followed by 10 min centrifugation at 1000g. 3H-leucine (37MBq ml� 1 
and 5.74 TBq mmol� 1; Perkin Elmer, USA) mixed with unlabelled 
leucine resulting in a final concentration of 275 nM was then added to 
1.5 ml bacterial suspension. To measure the temperature dependence of 
leucine incorporation for each soil from the experiment, from the 20 ml 
soil suspension obtained from each soil, we prepared 7–8 aliquots of 1.5 
ml. After adding the radiolabeled tracer, the aliquots from soil samples 
after the incubation treatment (time 1) were incubated at 4, 12, 18, 25, 
30, 35 and 40 �C for incubation temperatures up to 25 �C and in addition 
at 45 �C for the 35 �C incubations, respectively. Hereafter, we refer to 
these temperatures as measurement temperatures. At time 0 (before the 
incubation treatment), due to logistic constraints 7 �C was used instead 
of 4 �C and 40 �C was excluded. Incubation times at different temper-
atures were chosen to obtain a similar signal across all samples while 
minimizing alterations in temperature adaptation during the measure-
ments (Rinnan et al., 2009). Thus, the 4 �C (or 7 �C) samples were 
incubated for 18 h, the 12 �C samples for 6 h and all other sample for 2 h 
3H-leucine incorporation was terminated by adding trichloroacetic acid. 
After removal of excess leucine and several washing steps, the 3H-ac-
tivity of incorporated leucine was determined by liquid scintillation 
counting. Subsequently, we calculated 3H-activity, which is propor-
tional to leucine incorporation, per h and g dry soil. 

2.4. Calculation of temperature dependent properties of 3H-leucine 
incorporation (Tmin, Topt, Q10) 

The temperature relationship of bacterial growth was assessed using 
the Ratkowsky square root model according to equation (1) (Ratkowsky 
et al., 1982, 1983) which has been shown to adequately model bacterial 
growth both in cultures (Ratkowsky et al., 1983; Ross et al., 2011) and 
environmental samples (Rinnan et al., 2009; Birgander et al., 2013, 
2018). 
ffiffiffiffiffiffiffiffi
Leu
p

¼ aðT � TminÞ�
�

1 � ebðT� TmaxÞ
�

(1)  

where Leu is the 3H-leucine incorporation rate, T is the temperature, a 
and b are slope parameters, Tmin is the minimum temperature for growth 
and Tmax is the maximum temperature for growth. Below the optimum 
temperature the equation can be simplified to a linear function: 
ffiffiffiffiffiffiffiffi
Leu
p

¼ aðT � TminÞ (2) 

According to Ratkowsky et al. (1983), we used equation (2) to esti-
mate a and Tmin (Tmin is the intercept with the x-axis), which were then 

used as constants to fit the model over the entire temperature range 
(equation (1)). Q10 (the ratio of a process at two temperatures at an 
interval of 10 �C) describes the temperature sensitivity and was calcu-
lated according to equation (3): 

Q10¼
LeuðT þ 10Þ

LeuðTÞ
¼

�
T þ 10 � Tmin

T � Tmin

�2

(3) 

Leu(T) is the rate of 3H-leucine incorporation at a given temperature 
and Leu(Tþ10) is the rate of 3H-leucine incorporation at 10 �C higher. 
We calculated Q10 over temperature intervals relevant for the field 
conditions in our soils. 

2.5. Extraction of nucleic acids, reverse transcription, PCR and 
sequencing 

Total DNA was extracted with the DNeasy PowerSoil Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s instructions. Total 
RNA was extracted using the RNeasy PowerSoil Total RNA Kit (Qiagen, 
Hilden, Germany) from 2 to 5 g soil according to the manufacturer’s 
instructions. RNA samples were cleaned with the RNeasy PowerClean 
Pro CleanUp Kit (Qiagen, Hilden, Germany) and subsequently remaining 
DNA contamination was removed using the DNAse Max Kit (Qiagen, 
Hilden, Germany). DNA was quantified with PicoGreen (Invitrogen, 
Carlsbad, CA, United States), RNA was quantified using the RNA specific 
Qubit RNA HS Assay Kit RNA (Invitrogen, Carlsbad, CA, United States). 
Complete removal of genomic DNA was ensured by PCR amplification of 
the bacterial 16S rRNA gene from the RNA samples. Subsequently, RNA 
was transcribed to cDNA using the QuantiTect Reverse Transcription Kit 
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions 
with the maximum possible amount of template RNA or the maximum 
volume for samples with low concentrations. The V3 – V4 region of the 
bacterial 16S rRNA gene was PCR amplified in triplicate reactions using 
the primer pair 341F and 806R and PCR conditions as described previ-
ously (Frey et al., 2016). 10 ng of template DNA or cDNA was used per 
PCR reaction. Triplicate PCR reactions were pooled and sent to the 
G�enome Qu�ebec Innovation Center at McGill University (Montr�eal, 
Canada) for barcoding using the Fluidigm Access Array technology 
(Fluidigm) and paired-end sequencing on the Illumina MiSeq v3 plat-
form (Illumina Inc., San Diego, CA, USA). 

2.6. Quantitative real time PCR 

Copy numbers of the 16S rRNA gene were measured by quantitative 
real-time PCR (qPCR) using 2 ng of template DNA with primers and PCR 
conditions as described previously (Rime et al., 2015). Standard curves 
were obtained in triplicates. 

2.7. Sequence quality control, OTU clustering, taxonomic assignments 
and prediction of 16S rRNA gene copy numbers 

Quality filtering, OTU clustering and assignment was conducted 
similarly as described previously (Frey et al., 2016) using a customized 
pipeline based on UPARSE (Edgar, 2013). Briefly, paired-end reads were 
merged using the fastq_mergepairs algorithm (Edgar and Flyvbjerg, 
2015), filtering for sequences with a minimum length of 300 bp and a 
minimum overlap of 50 bp. PCR primers were removed using Cutadapt 
(Martin, 2011) allowing for a maximum of one mismatch in the forward 
and reverse primer. Next, reads were quality filtered using the 
USEARCH fastq_filter function discarding reads with an expected error 
of one or greater. Dereplicated sequences were clustered into OTUs at 
97% sequence identity using the cluster_otu function. The clustering 
step includes an “on the fly” chimera removal algorithm. The OTU 
centroid sequences were then filtered for the presence of ribosomal 
signatures using Metaxa2 (Bengtsson-Palme et al., 2015). Subsequently, 
sequences were mapped back on the OTU centroid sequences and 
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taxonomic classification was conducted using a naïve Bayesian classifier 
(Wang et al., 2007) implemented in Mothur (Schloss et al., 2009) with a 
minimum bootstrap support of 0.6, querying against SILVA v128 (Quast 
et al., 2013). Raw sequences were deposited in the NCBI Sequence Read 
Archive under the accession number PRJNA611981. 

16S rRNA gene copy numbers per genome as a marker for bacterial 
trophic strategy (Klappenbach et al., 2000) were predicted using PIC-
RUSt (phylogenetic investigation of communities by reconstruction of 
unobserved states (Langille et al., 2013),). PICRUSt is a tool used to 
predict metagenomes based on an ancestral-state reconstruction algo-
rithm using marker gene data and a reference database containing fully 
sequenced bacterial genomes. 

2.8. Statistical analyses and visualization of results 

All statistical analyses were conducted using R (R Core Team, 2018) 
and primerE (Clarke and Gorley, 2006). R code used for this manuscript 
is available in the supplementary material. All plots were created using 
ggplot (Wickham, 2009). 

We linearly regressed properties related to leucine incorporation 
before the incubation treatment (time 0) against MAST to determine the 
effect of the climatic legacy. We also regressed against the mean growing 
season temperature, which we assumed to be more relevant in shaping 
microbial communities and biological activity. However, results were 
largely the same as for MAST. Therefore, for reasons of comparability 
with previous studies, we chose to represent only regressions against 
MAST. 

To assess the effect of the incubation treatment (time 1), we used a 
one-way analysis of variance (ANOVA) followed by Tukey’s Honestly 
Significant Difference (Tukey HSD) post-hoc tests to compare different 
temperatures in subsets for each soil. We used the Shapiro-test and the 
Bartlett-test to test for normality and homoscedasticity, respectively, 
and log-transformed to fulfill the assumptions of ANOVA if necessary. 

For the analysis of bacterial communities, alpha-diversity indices 
were calculated based on OTU abundance matrices rarefied to even 
sequencing depth. We performed a one-way ANOVA to test for signifi-
cant differences in observed richness and Shannon diversity in response 
to incubation temperature for each soil separately, followed by Tukey 
HSD test. Similarly, differences in 16S rRNA copy numbers (qPCR data) 
as well as average estimated 16S rRNA gene copy numbers per genome 
per sample (PICRUSt data) were estimated by ANOVA and Tukey HSD 
test. We tested if the assumptions of ANOVA were satisfied as described 
above and again log-transformed the data if necessary. Principal coor-
dinate analyses (PCoAs) were calculated based on Bray-Curtis distances 
using square-root transformed relative abundances. Differences in 
community structures with temperatures were assessed by permuta-
tional multivariate analysis of variance (PERMANOVA) in the subset for 
each soil. Pairwise comparisons between each temperature and the 4 �C 
control were conducted using Monte-Carlo simulations in primerE 
(Clarke and Gorley, 2006). Finally, we used Mantel test to compare 
bacterial community structures at the DNA and at the RNA level. To 
assess if changes in observed richness were related with the natural 
climatic legacy of the soils, we calculated the ratio between richness at 
the respective treatment temperature and the 4 �C control, which we 
linearly regressed against MAST. To determine the relationship between 
the impact of the incubation temperature on bacterial community 
structures and the climatic legacy at the sites, linear regression of the 
mean Bray-Curtis distance between the respective incubation tempera-
ture and 4 �C against MAST was used. 

Co-occurrence and mutual exclusion patterns were calculated at each 
temperature across our eight soils with three replicates (in total 24 
samples per temperature) using Spearman rank correlations of relative 
abundances. We used Benjamini-Hochberg corrections for multiple 
comparisons. For the subsequent network analysis, at each temperature, 
we included OTUs with at least one correlation with a padj. <0.01, a 
correlation coefficient < - 0.7 or >0.7, and occurring in more than 10 

out of 24 samples. The R-package igraph (Csardi and Nepusz, 2005) was 
used for constructing networks at each temperature. The OTUs are the 
nodes of the network and they are connected by an edge if their abun-
dance is correlated (fulfilling the criteria above). Networks were 
calculated separately for co-occurrence patterns based on positive cor-
relations and mutual exclusion patterns based on negative correlations. 
The node degree represents the number of edges connecting it to other 
nodes. Network density represents the ratio of edges present in the 
network to the maximum number of edges possible and reflects how 
connected the network is. 

In order to assess which OTUs were significantly affected by the in-
cubation temperature, for each treatment temperature, we calculated 
log2fold changes relatively to the 4 �C control at the DNA level, using 
DESeq2 (Love et al., 2014). As we used the RNA data to confirm viability 
of the OTUs identified as significantly changing in abundance in 
response to the treatment temperature, for this analysis, we used the 
four soils where both DNA and RNA was analyzed (site 2 N and S, site 4 
N and S). We controlled for the effect of site and aspect and calculated 
log2-fold changes between incubation temperatures. 

3. Results 

3.1. Bacterial growth 

3.1.1. Relationship with the natural temperature regime (time 0) 
For our experiment, we used soils with different climatic legacy 

(from four summits at different altitudes, north and south exposed, 
respectively) resulting in a gradient of mean annual soil temperature 
(MAST) from � 1.9 �C to 4.8 �C. First, we characterized the temperature 
adaptation of bacterial growth before the incubation treatment using 
incorporation of 3H-leucine, in order to relate descriptors of temperature 
adaptation with the natural climatic legacy. Below the optimum (tem-
peratures up to 25 �C), the relationship between square root transformed 
leucine incorporation and measurement temperature was well repre-
sented by a linear regression. We obtained R2 values > 0.97 in 75% of 
the samples and >0.9 in all samples. Tmin ranged from � 11.6 to � 4.2 �C 
(Fig. 1A, Table 2) and increased by 0.71 per �C increase in MAST (R2 ¼

0.43, P ¼ 0.08, Table 3). Topt where maximum leucine incorporation 
occurred was between 27.3 and 30.3 �C (Fig. 1A, Table 2) and also 
increased with MAST (R2 ¼ 0.28, P ¼ 0.17, increase per �C ¼ 0.18). The 
Q10 ranged from 2.1 to 2.9 between 10 and 20 �C and from 3.48 to 11.35 
between 0 and 10 �C (Table 2). Both correlated positively with MAST 
(Q10-20: R2 ¼ 0.35, P ¼ 0.12; Q0-10: R2 ¼ 0.2, P ¼ 0.27). Q10-20 increased 
by 0.063 per �C increase in MAST and Q0-10 by 0.47 (Table 3). 

3.1.2. Response to the incubation temperature (time 1) 
To assess the response to the incubation temperature, we measured 

leucine incorporation after the one month incubation. These measure-
ments were done in four of the eight soils (site 2 N and S and site 4 N and 
S). Also here, the temperature dependence was well modelled by a linear 
relationship with square root transformed leucine incorporation. The R2 

was >0.97 in 78% of the samples and >0.9 in all samples except one. In 
all four soils, Topt remained constant up to 15 �C but increased at 25 and 
35 �C (Table 4; Fig. 1B shows site 2 N as an example, Fig. S2 shows all 
four soils). Tmin and Q10-20 changed only after incubation at 35 �C where 
also overall leucine incorporation was substantially higher than at lower 
temperatures (Table 4, Fig. S3). 

3.2. Temperature effects on bacterial abundance, diversity, community 
structures and network properties 

3.2.1. Abundance and diversity 
To relate changes in growth rates and bacterial community struc-

tures with bacterial abundance we determined 16S rRNA gene copy 
numbers. They did not show a significant shift across incubation tem-
peratures in any of the soils (Fig. S4). Next, we investigated bacterial 
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diversity. We obtained 7 828 212 high quality sequences (36 242 � 9058 
per sample) that clustered into 12 921 OTUs (1953 � 609 per sample). 
At 4 �C, we found between 956 and 1708 OTUs in the different soils. This 
number remained constant up to 15 �C, decreased slightly at 25 �C and 
strongly at 35 �C (Fig. 2A). The same pattern was found for Shannon 
diversity (Fig. S5). In the four soils where we analyzed RNA, approx. 
60% of the OTUs found at the DNA level were also found at the RNA 
level at all incubation temperatures (Fig. S6). 

To test the hypothesis that soils with a lower in-situ temperature react 
more strongly to the incubation temperature, we regressed the per-
centage of OTUs remaining at 25 �C and 35 �C incubation temperature 
(where significant changes occurred) compared to 4 �C against MAST. 
Here, we found a significant correlation at 35 �C (R2 ¼ 0.921, P ¼ 0.001) 
but not at 25 �C (R2 ¼ 0.442, P ¼ 0.27, Table 3). 

3.2.2. Community structure 
In all soils, the community structures shifted gradually with incu-

bation temperature, with the most pronounced shift at high tempera-
tures (Fig. 2B). Both at the DNA and RNA level, community structures at 

Fig. 1. Temperature dependency of bacterial growth rates. Square root transformed bacterial growth rates (assessed by 3H-leucine incorporation) normalized to the 
growth rate at Topt plotted against measurement temperature. (A) The different soils before the experiment (time 0), (B) Site 2 N after exposure to different incubation 
temperatures (time 1); all four soils after the incubation are shown in Figs. S2 and S3. Values represent the mean � SD (n ¼ 2 for soils before incubation, n ¼ 3 for 
soils after the incubation); DPM ¼ disintegrations per minute. 

Table 2 
Characteristics of the temperature adaptation of bacterial growth analyzed using 
3H-leucine incorporation before the incubation (time 0).   

Tmin Topt Q10-20 Q0-10 

Site 1 N � 11.63 � 1.13 30.24 � 1.58 2.14 � 0.07 3.48 � 0.31 
Site 1 S � 5.92 � 0.27 28.45 � 0.07 2.65 � 0.03 7.24 � 0.41 
Site 2 N � 10.69 � 2.62 28.34 � 0.95 2.21 � 0.18 3.89 � 0.93 
Site 2 S � 6.50 � 0.04 29.38 � 0.13 2.58 � 0.00 6.45 � 0.05 
Site 3 N � 11.54 � 0.95 27.34 � 0.96 2.15 � 0.06 3.50 � 0.27 
Site 3 S � 9.24 � 3.32 28.53 � 0.55 2.34 � 0.28 4.74 � 1.79 
Site 4 N � 10.02 � 3.69 27.91 � 0.32 2.28 � 0.28 4.37 � 1.63 
Site 4 S � 4.22 � 0.01 28.86 � 0.48 2.90 � 0.00 11.35 � 0.03 

Values represent the mean � SD (n ¼ 2). Tmin ¼ minimum temperature for 
bacterial growth, Topt ¼ optimum temperature for bacterial growth, Q10-20 ¼Q10 
between 10 �C and 20 �C, Q0-10 ¼ Q10 between 0 and 10 �C, DPM ¼ disinte-
grations per minute. Altitude of the sites: Site 1: 2460 m a.s.l., Site 2: 2780 m a.s. 
l., Site 3: 2960 m a.s.l., Site 4: 3070 m a.s.l. N ¼ North, S ¼ South. 

Table 3 
Relationship between descriptors of bacterial temperature adaptation (Tmin, Q10- 

20, Q0-10, Topt) as well as treatment effect on diversity and community structure 
and the natural temperature regime of the soils.  

Leucine incorporation  

R2 P Increase per �C 

Tmin - MAST 0.43 0.079 0.709 
Q10-20 - MAST 0.35 0.121 0.063 
Q0-10 - MAST 0.20 0.266 0.465 
Topt - MAST 0.28 0.174 0.183  

Alpha-diversity (% richness at 25 and 35 relative to 4 �C)  
R2 P 

% richness 25 �C/4 �C - MAST 0.20 0.273 
% richness 35 �C/4 �C - MAST 0.85 0.001**  

Beta-diversity (mean distance to 4 �C)  
R2 P 

distance 15 �C/4 �C - MAST 0.17 0.312 
distance 25 �C/4 �C - MAST 0.59 0.026* 
distance 35 �C/4 �C - MAST 0.76 0.005** 

R2 and P values are derived from linear regression between the mean of repli-
cates and the mean annual soil temperature (MAST). Tmin ¼ minimum tem-
perature for bacterial growth, Topt ¼ optimum temperature for bacterial growth, 
Q10-20 ¼ Q10 between 20 �C and 10 �C, Q0-10 ¼ Q10 between 0 and 10 �C, MAST 
¼ mean annual soil temperature. n.s. not significant; *P < 0.05; **P < 0.01; 
***P < 0.001. 

J. Donhauser et al.                                                                                                                                                                                                                             



Soil Biology and Biochemistry 148 (2020) 107873

6

35 �C were different from those at 4 �C in all sites and at 25 �C in most of 
the sites but not at 15 and 9 �C except for site 3 N at 15 �C (Table 5). In 
the subsets per soil, Mantel test revealed highly similar community 
structures over the temperature gradient at the DNA and RNA level 
(Table 5). 

To test whether the community structures soils with a lower in-situ 
temperature react more strongly to the incubation temperature, we 
regressed the mean Bray-Curtis distance between each incubation tem-
perature and 4 �C against MAST, yielding significant correlations for 25 
and 35 �C incubation temperature (R2 ¼ 0.59, P ¼ 0.026 and R2 ¼ 0.76, 
P ¼ 0.005, Table 3). 

3.2.3. Co-occurrence and mutual exclusion network properties 
To explore the relationship among different bacterial taxa in 

response to the incubation temperature, we investigated co-occurrence 
(based on positive correlations) and mutual exclusion patterns (based 
on negative correlations) among OTUs across the temperature gradient 
using network analysis. OTUs represent the nodes of a network and two 
OTUs are connected with an edge if their abundance is significantly 
correlated. The node degree is the number of edges connected to a 
certain node. For all temperatures, it followed a power-law distribution 
for both co-occurrence and mutual exclusion networks, which indicates 
that the networks are scale-free (Fig. 3). However, for the co-occurrence 
network the distribution did not show a completely smooth decrease 
with increasing degree, but displayed a small peak for degrees of 
approximately 170. While the degree showed no pattern among incu-
bation temperatures for the co-occurrence networks, it strongly 
decreased with increasing temperature for the mutual exclusion net-
works. Network density, indicating how strongly the network is con-
nected, was higher at 35 �C compared to lower temperatures for the co- 
occurrence network, whereas it tended to decrease with increasing in-
cubation temperature at high temperatures for the mutual exclusion 
networks (Fig. 3). 

3.3. Temperature effects on bacterial growth strategies 

To identify changes in trophic strategy (copiotrophy versus oligo-
trophy) in the bacterial community, we calculated the average 16S rRNA 
gene copy number per genome in each sample. In five of our eight soils 
the 16S rRNA gene copy number per genome was significantly higher at 
35 �C compared to lower incubation temperatures indicating an increase 
in copiotrophic bacteria (Fig. 4). 

3.4. Identification of temperature sensitive taxa 

In order to identify temperature sensitive taxa, we estimated log2- 
fold changes (LFC) with incubation temperature across different soils (in 
the subset of soils where both DNA and RNA were analyzed) controlling 
for the effect of site and aspect and contrasting the respective temper-
ature with 4 �C. At 15 �C, we found 22 differentially abundant OTUs of 
which 12 increased and 10 decreased and whereof 10 could be classified 
at the genus level (Table S1). At 25 �C, 239 OTUs displayed a significant 

LFC (36 increasing and 203 decreasing, 106 classified at the genus 
level). At 35 �C, we observed 1067 differentially abundant OTUs (162 
increasing and 905 decreasing, 408 classified at the genus level). While 
at 15 and 25 �C, almost all OTUs were found at the RNA level, at 35 �C all 
of the increased OTUs were present at the RNA level but many of the 
decreased OTUs were not. The abundance of OTUs belonging to Bac-
teroidetes, especially within the genera Mucilaginibacter and Cytophaga 
was reduced consistently at all three treatment temperatures with 
increasingly strong LFC with increasing temperature (Fig. 5A). Simi-
larly, most genera within Actinobacteria decreased at 35 �C, with the 
exception of two OTUs affiliated with the genus Acidothermus. Of the 
genera reduced at 35 �C within Actinobacteria only the abundance of 
Lysinimonas was slightly reduced at 25 �C. In addition, several members 
of Firmicutes such as Bacillus and Clostridium slightly increased in 
abundance at 35 �C compared to 4 �C. Deltaproteobacteria consistently 
showed a moderate decrease at 25 and a stronger decrease at 35 �C 
(Fig. 5A). The same pattern was observed for Planctomycetes except for 
two OTUs within Singulisphaera at 25 �C and one OTU within Gemmata at 
35 �C. 

The OTUs that increased most strongly at 35 �C consistently dis-
played a very low abundance up to 15 �C, increased slightly at 25 �C in a 
few cases and then increased strongly at 35 �C representing up to 20% of 
the sequences at this temperature corresponding to an LFC up to 10 
compared to 4 �C (Fig. 5, Fig. S7A). These OTUs belonged to Bur-
kholderia-Paraburkholderia as well as Phenylobacterium, Pseudolabrys, 
Edaphobacter and Frateuria. OTUs within Burkholderia-Paraburkholderia 
and Phenylobacterium increased moderately at 25 �C (up to an LFC of 2) 
while the abundance of Pseudolabrys, Edaphobacter and Frateuria was 
unchanged at temperatures below 35 �C. Compared to the enriched 
OTUs, the most strongly decreasing OTUs at 35 �C showed a more 
gradual decrease over the temperature gradient with most OTUs 
showing a clearly decreased abundance already at 25 �C (Figs. 5B and 
S7B). 

At the RNA level, we largely observed identical patterns (Fig. S8). 
The main difference was that among Firmicutes only Acidibacillus 
increased at 35 �C and that among Deltaproteobacteria the genera 
Haliangium and H16 comprised OTUs that increased at 35 �C. Similarly, 
when all eight soils were included the main pattern was identical con-
firming the consistency of warming responses across different soils 
(Fig. S9). Only within Bacteroidetes, in contrast to the subset, we also 
found OTUs that increased at 35 �C and that belonged to Flavitalea, 
Mucilaginibacter, Candidatus amoebophilus and Segetibacter. In order to 
assess consistency of the changes observed in the combined analysis, we 
also calculated log2-fold changes individually for the soils shown in 
Fig. 5A (site 2 N and S, site 4 N and S) and compared them with the 
combined results in Fig. 5A (Fig. S10). Overall, the direction of change 
was consistent across sites, however the magnitude of the LFC varied. 
For instance, in site 2, the LFC of an OTU affiliated with Burkholderia- 
Paraburkholderia at 35 �C was 14, while it was less than 10 for the other 
soils. Also among the replicates, changes in abundances varied consid-
erably for some OTUs (Fig. S7). Disagreeing direction of change was 
mostly found only for OTUs that did not have a significant LFC in all of 

Table 4 
Characteristics of the temperature adaptation of bacterial growth analyzed using 3H-leucine incorporation after the incubation (time 1).   

Tmin Q10-20 Topt  

4 �C 35 �C 4 �C 35 �C 4 �C 25 �C 35 �C 

Site 2 N � 10.45 � 1.86 � 3.67 � 1.71** 2.23 � 0.14 3.03 � 0.34** 28.18 � 0.53 30.41 � 0.37* 33.35 � 1.10*** 
Site 2 S � 5.78 � 2.09 � 1.63 � 1.26n.s. 2.70 � 0.26 3.49 � 0.37* 28.42 � 0.74 29.99 � 0.54 33.92 � 1.04*** 
Site 4 N � 7.94 � 2.09 � 0.78 � 0.48* 2.44 � 0.19 3.72 � 0.15*** 28.13 � 0.36 31.25 � 0.65** 35.23 � 1.21*** 
Site 4 S � 5.04 � 2.75 � 4.99 � 1.31n.s. 2.83 � 0.37 2.79 � 0.20n.s. 29.64 � 0.33 33.38 � 1.32*** 34.06 � 0.46*** 

Temperatures are incubation temperatures (temperatures where significant changes compared to 4 �C occurred are shown). Asterisks indicate significant differences at 
the respective treatment temperature compared to 4 �C (Significance levels: n.s., not significant; *P < 0.05; **P < 0.01; ***P < 0.001). Values represent the mean � SD 
(n ¼ 3). Tmin ¼ minimum temperature for bacterial growth, Topt ¼ optimum temperature for bacterial growth, Q10-20 ¼ Q10 between 10 �C and 20 �C, DPM ¼ dis-
integrations per minute. Altitude of the sites: Site 1: 2460 m a.s.l., Site 2: 2780 m a.s.l., Site 3: 2960 m a.s.l., Site 4: 3070 m a.s.l. N ¼ North, S ¼ South. 
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Fig. 2. Temperature effects on diversity and community structures A) Observed richness (mean � SD, n ¼ 3) of bacterial OTUs at the DNA level in each soil at the 
different incubation temperatures. Different letters indicate a significant (P < 0.05) difference between temperatures as assessed by one-way analysis of variance 
(ANOVA) followed by Tukey HSD post hoc test in the subsets per soil. B) Principal coordinate analysis (PCoA) of bacterial community structures at the DNA level 
(left) and RNA level (right). Ordinations were based on Bray–Curtis dissimilarities square root-transformed relative abundances. The variation explained by each 
PCoA axis is given in parentheses. 
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Table 5 
Effect of incubation temperature on bacterial community structures based on 16S rRNA genes (DNA) and 16S rRNA transcripts (RNA).  

DNA (PERMANOVA)          

Site 1 N Site 1 S Site 2 N Site 2 S 

Overall (F4,14, P) 7.47 <0.0001*** 4.13 <0.0001*** 11.23 <0.0001*** 4.06 <0.0001*** 
Pairwise  t1,4 P(MC) t1,4 P(MC) t1,4 P(MC) t1,4 P(MC) 

4 �C, 9 �C 1.06 0.3703n.s. 1.04 0.401n.s. 1.02 0.423n.s. 1.06 0.3763n.s. 
4 �C, 15 �C 1.25 0.2206n.s. 1.26 0.2125n.s. 1.35 0.1649n.s. 1.16 0.2852n.s. 
4 �C, 25 �C 1.68 0.0546n.s. 1.48 0.109n.s. 2.24 0.0171* 1.43 0.1242n.s. 
4 �C, 35 �C 3.90 0.0034** 3.10 0.006** 4.92 0.0012** 2.78 0.0082**    

Site 3 N Site 3 S Site 4 N Site 4 S 
Overall (F4,14, P) 10.63 <0.0001*** 8.45 <0.0001*** 8.48 <0.0001*** 5.24 <0.0001*** 
Pairwise  t1,4 P(MC) t1,4 P(MC) t1,4 P(MC) t1,4 P(MC) 

4 �C, 9 �C 1.45 0.1193n.s. 1.13 0.3146n.s. 1.10 0.3502n.s. 1.05 0.3969n.s. 
4 �C, 15 �C 2.42 0.0143* 1.47 0.1087n.s. 1.69 0.0594n.s. 1.28 0.1909n.s. 
4 �C, 25 �C 3.12 0.0048** 2.05 0.0238* 1.87 0.0478* 1.79 0.0462* 
4 �C, 35 �C 3.56 0.0042** 3.89 0.0038** 4.61 0.0018** 3.69 0.0035**  

RNA (PERMANOVA)   
Site 2 N Site 2 S Site 4 N Site 4 S 

Overall (F4,14, P) 9.96 <0.0001*** 5.10 <0.0001*** 8.78 <0.0001*** 5.87 <0.0001*** 
Pairwise  t1,4 P(MC) t1,4 P(MC) t1,4 P(MC) t1,4 P(MC) 

4 �C, 9 �C 0.97 0.4722n.s. 1.03 0.4026n.s 0.99 0.4497n.s. 0.95 0.4953n.s. 
4 �C, 15 �C 1.21 0.2518n.s. 1.17 0.2794n.s 1.47 0.1113n.s. 1.21 0.2484n.s. 
4 �C, 25 �C 1.99 0.0289* 1.53 0.0898n.s 1.94 0.033* 1.45 0.1203n.s. 
4 �C, 35 �C 4.58 0.0013** 3.47 0.0039** 4.50 0.0016** 3.75 0.0029**  

Comparison of community structures at the DNA and RNA level (Mantel test)   
Site 2 N Site 2 S Site 4 N Site 4 S   
r P r P r P r P   
0.992 <0.001 *** 0.973 <0.001 *** 0.974 <0.001 *** 0.924 <0.001 *** 

Beta-diversity (differences in community structures based on Bray-Curtis dissimilarity) was analyzed in the subset for each soil using permutational multivariate 
analysis of variance (PERMANOVA). For pairwise comparisons, Monte Carlo simulations were used. Indices for F- and t-values indicate the numerator and residual 
degrees of freedom. Mantel test was used to compare community structures at the DNA and at the RNA level. n.s. not significant; *P < 0.05; **P < 0.01; ***P < 0.001. P 
(MC) ¼ Monte Carlo P-value. Altitude of the sites: Site 1: 2460 m a.s.l., Site 2: 2780 m a.s.l., Site 3: 2960 m a.s.l., Site 4: 3070 m a.s.l. N ¼ North, S ¼ South. 

Fig. 3. Temperature effects on network properties. Network parameters of co-occurrence (A) and mutual exclusion networks (B). Relative abundances of OTUs were 
correlated using Spearman rank correlations at each temperature across all soils. For each type of network the degree distribution (left), the average degree across all 
nodes in the network (top right) and the network density (bottom right) are shown. 
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the soils and that were not significant in the combined analysis. For 
example, at 35 �C, Flaviatela increased in site 4 N but decreased in site 2 
S. 

4. Discussion 

4.1. Temperature adaptation of bacterial communities 

Here, for the first time, we report on the temperature adaptation of 
bacterial growth in alpine soils from the alpine up to the nival zone. The 
range of Tmin and Topt in the different soils was between those for Ant-
arctic soils (Rinnan et al., 2009) and those for temperate environments 
(Birgander et al., 2018; Nottingham et al., 2019). Correspondingly, 
MAST ranged between that from Antarctic and temperate soils. How-
ever, the increase in Tmin per �C MAST (0.71 �C) is higher than in pre-
vious studies (Rinnan et al., 2009; Nottingham et al., 2019). The Q10 
values found here were comparable to those reported by Rinnan et al. 
(2009) in Antarctic soils. In accordance with previous studies, Topt was 
consistently 5–15 �C higher than the maximum recorded field soil 
temperature (Fig. 6A; Rinnan et al., 2009) and the temperature profile 
did not change when applying incubation temperatures significantly 
below the time 0 Topt (Barcenas-Moreno et al., 2009; Birgander et al., 
2013). Similarly, bacterial diversity and community structures remained 
constant with incubation temperatures up to Topt (Fig. 6B). Conversely, 
temperatures in the range of Topt (25 �C) and above (35 �C) caused a shift 
in the temperature dependency for bacterial growth towards higher 
temperatures, along with a strong decrease in diversity and a pro-
nounced shift in community structures (Fig. 6C). Temperatures above 
Topt exert high selective pressure on microorganisms (Barcenas-Moreno 
et al., 2009; Rinnan et al., 2009; van Gestel et al., 2013) and selection for 
taxa adapted to the whole range of in-situ temperatures can be expected 
(Wallenstein and Hall, 2012). Accordingly, temperature characteristics 
for microbial growth did not change seasonally (van Gestel et al., 2013; 
Birgander et al., 2018) nor in response to winter warming (Birgander 
et al., 2018). Conversely, permanent field warming by 5 �C led to an 
increase in Tmin and Q10 (Rousk et al., 2012), similar to incubation 
temperatures above Topt in the laboratory. The strong decrease in di-
versity at the highest incubation temperature underpins the selection 
process above Topt where heat-sensitive taxa disappear, likely due to 
death or transition to dormancy. We can exclude that this pattern arose 
from a relative decrease in abundance alone, as total bacterial abun-
dance remained constant across incubation temperatures. Patterns of 
diversity and community structures across incubation temperatures 
were comparable with previous studies in cold soils (Wu et al., 2015; 
Lulakova et al., 2019). In addition to previous studies, we found that a 
high proportion of OTUs was present at the RNA level at all incubation 
temperatures and communities at the RNA level showed highly similar 
changes compared to the DNA level. This confirms that our analysis was 
based on viable cells which has hampered the interpretability of previ-
ous microcosm studies due to the relative stability of DNA of lysed cells 
(Carini et al., 2016). Collectively, our results suggest that at short time 
scales the soil bacterial community is largely insensitive to temperature 
changes well within the range of in-situ temperatures and below Topt. 
Conversely, the maximum in-situ temperature is a tipping point, above 
which temperature regimes lead to profound changes in both bacterial 
community structures and activity, which are likely associated with 
significant alterations in ecosystem functioning. 

4.2. Temperature sensitivity depends on climatic legacy 

We hypothesized that bacterial communities from colder soils react 
more sensitively to a given incubation temperature. This hypothesis was 
supported by a stronger decrease in diversity and a more pronounced 
change in community structures in colder soils, however only at 25 and 
35 �C incubation temperature. At these temperatures in the range of or 
significantly above the community level Topt (25 and 35 �C), direct 

Fig. 4. Temperature effects on the trophic strategy. Average 16S rRNA gene 
copy number per bacterial genome (mean � SD, n ¼ 3) at different incubation 
temperatures as a proxy for the predominant trophic strategy (copiotrophs 
versus oligotrophy) in the community are shown. Different letters indicate a 
significant (P < 0.05) difference between temperatures as assessed by one-way 
analysis of variance (ANOVA) followed by Tukey HSD post hoc test in the 
subsets per soil. 
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temperature effects (i. e. temperatures exceeding the optimum of certain 
taxa slowing down growth and leading to cell death) explain this rela-
tionship. This is to say the magnitude by which Topt for individual taxa is 
exceeded at a given temperature is greater on average in soils with lower 
in-situ temperatures. At temperatures <25 �C, we did not observe sig-
nificant changes in diversity and community structures within the 

incubation time of one month except in one soil. At longer time scales, 
substrate depletion effects are expected to affect the community, also at 
the temperatures that do not cause direct effects. It remains questionable 
how such effects would be related with the natural temperature regime, 
as both the size of the potential consumer community (16S rRNA gene 
abundance) and the amount of substrate (C content) were lower in soils 

Fig. 5. Taxon level temperature effects. A) Differentially abundant OTUs compared to 4 �C at 35 �C (left), 25 �C (top right) and 15 �C (bottom right) at the DNA level. 
The soils where both DNA and RNA was analyzed (site 2 N and S, site 4 N and S) were included in the analysis and log2-fold changes at each temperature were 
estimated controlling for the effect of site and aspect. Points represent individual OTUs. OTUs with a log2-fold change significantly different from 0 (padj. < 0.05) and 
classified at the genus level are shown. At 35 �C the 250 most abundant OTUs fulfilling these criteria are shown. Closed symbols represent OTUs that were found at 
the RNA level at the temperature that was compared to 4 �C. Open symbols represent OTUs that were found at the DNA level only. The size of the points indicates the 
average abundance of that OTU across all samples included in the analysis (raw count data normalized by the size factor). B) Changes in relative abundance across 
the temperature gradient (example of typical pattern) for strongly increasing (left) and decreasing OTUs (right). If the abundance was zero, the points are represented 
by open symbols to distinguish from very low abundance. More examples are given in Fig. S7. 

Fig. 6. Summary of the main findings of the study and their implications. A) Conditions before the experiment: the natural temperature optimum (Topt) of bacterial 
growth represents a tipping point, determining whether bacterial communities are sensitive to the treatment. Incubation temperatures below Topt lead to subtle 
responses (B) while temperatures above Topt induce pronounced changes in bacterial community structures and the temperature dependency of growth (C). At the 
highest temperature fast growers, stress resistors and heat-adapted taxa become strongly enriched and dominate the community. An increase in fast growing taxa, 
which is associated with an overall increase in growth, might lead to a short-term increase in CO2. In the long term, emissions are then expected to decline owing to 
depletion of substrate pools. D) The magnitude of the effect of the incubation temperature on bacterial communities correlated with in-situ temperatures. These 
results might help to up-scale temperature responses to a more regional level. Map modified after Gobiet et al. (2014). 
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with lower in-situ temperatures before the incubation. Overall, the 
relationship between the magnitude of treatment response and the cli-
matic legacy found here provides an important first insight how 
different alpine soils react to warming with respect to each other 
(Fig. 6D). Since mountain soils exhibit a very pronounced small-scale 
heterogeneity, our results might help to extrapolate findings from sin-
gle site studies to a more regional scale. 

4.3. High temperature decreases mutual exclusion 

Environmental stimuli, such as alterations in the prevalent temper-
ature regime, not only directly affect the fitness of different taxa in the 
community, but also relationships between taxa within the community 
such as symbiotic and competitive behavior. Such interactions influence 
ecosystem services provided by the community (Foster and Bell, 2012; 
Bell et al., 2013). Our network analysis revealed that both positive re-
lationships (co-occurrence) and negative relationships (mutual exclu-
sion) did not occur randomly but followed a power-law distribution. 
This is a typical feature of biological networks and suggests the presence 
of few highly connected hubs (Barab�asi and Albert, 1999). Interestingly, 
the average degree (i. e. the number of connections per node) decreased 
strongly at high temperatures for the mutual exclusion network, which 
suggests a decrease in competition. These findings are in accordance 
with the hypothesis that under harsh environmental conditions (in our 
case high temperature), organisms show less antagonistic behavior in 
order to ensure survival (Bertness and Callaway, 1994). In addition, 
reduced mutual exclusion at 35 �C may be explained by a higher fraction 
of dormant taxa in response to high temperature stress allowing for 
coexistence of taxa that would outcompete each other if both were 
active. Network analyses based on correlations of abundances should be 
interpreted with care, as one cannot distinguish between true biological 
interaction and co-occurrence due to shared habitat preferences 
(R€ottjers and Faust, 2018). Hence, for instance increased network den-
sity in the co-occurrence network at the highest temperature may also be 
explained by a strong selection for taxa with similar temperature pref-
erence across all soils instead of an increased tendency to interact with 
other taxa. Further experimental evidence is needed to corroborate in-
teractions among members of the bacterial community. 

4.4. High temperature increases copiotrophic properties 

At the highest incubation temperature (35 �C), we found an increase 
in 16S rRNA gene copy numbers per genome in most of the soils, which 
indicates a shift towards a more copiotrophic community (Fig. 6C). 
Compared to oligotrophs, copiotrophs possess a higher copy number of 
the 16S rRNA gene, which is an essential component of protein synthesis 
and thus any cellular activity. Multiple gene copies presumably enable 
copiotrophs to capitalize rapidly on sudden availability of nutrients 
(Klappenbach et al., 2000; Roller et al., 2016). Increased C and nutrient 
availability owing to death and lysis of cells in response to high tem-
perature (B�erard et al., 2012; Mooshammer et al., 2017) might stimulate 
the growth of copiotrophs in our study. Similarly, Schostag et al. (2019) 
found an increase in average 16S rRNA copy number per genome (and 
thus copiotrophy) after maintaining permafrost soils at thawed condi-
tions for approximately two weeks, which they ascribed to increased 
nutrient availability in response to thaw. Moreover, reduced competi-
tion (as suggested by our network analysis) upon death or inactivity of 
heat-sensitive taxa might favor the dominance of fast growers (Zhang 
and Zhang, 2015; Abreu et al., 2019). Besides the increase in 16S rRNA 
copies per genome, rapid bacterial growth at 35 �C is supported by a 
strong increase in 3H-leucine incorporation at all measurement tem-
peratures. In the short term, a more copiotroph dominated community 
might contribute to elevated CO2 emissions due to high activity and low 
carbon use efficiency (Roller and Schmidt, 2015). In the long term, the 
initial increase in copiotrophs is expected to lead to a faster depletion of 
the pool of organic matter in the soil and thus lower CO2 emissions. 

Accordingly, long-term warming studies repeatedly found that the 
warming induced increase in respiration declined over time (Rustad 
et al., 2001; Melillo et al., 2002; Hartley et al., 2007) which was 
attributed to substrate depletion (Kirschbaum, 2004; Hartley et al., 
2008). Likewise, overall copiotrophy (rRNA gene copies per genome; 
DeAngelis et al., 2015) as well as bacterial growth rates (Rinnan et al., 
2011; Rousk et al., 2012) decreased under long-term field warming. In 
addition, under in-situ conditions, initially increased respiration might 
be compensated by enhanced plant growth, which can be stimulated by 
elevated availability of inorganic nitrogen in response to warming 
(Melillo et al., 2002; Dawes et al., 2017). 

4.5. Taxon-level shifts in the bacterial community 

Community structures in the different soils shifted in parallel with 
incubation temperature indicating that the soils responded similarly to 
temperature. By identifying differentially abundant OTUs, we were 
moreover able to detect individual taxa that were significantly influ-
enced by the incubation temperature across soils. Also at the taxon level, 
we found highly similar patterns at the DNA and RNA level and for all 
OTUs that increased with incubation temperature at the DNA level, 
presence at the RNA level was confirmed. These findings additionally 
corroborate that our analyses were based on viable cells. Total 16S rRNA 
gene copy numbers remained constant across all incubation tempera-
tures. Therefore, we expect changes in absolute abundance to be similar 
to changes in relative abundance. The separate analysis of log2 fold 
changes in the different soils (Fig. S10) revealed consistent direction of 
change across soils although with varying magnitude across both soils 
and replicates. This suggests that overall temperature favors the same 
taxa in different soils. Following disturbances involving partial eradi-
cation of local populations, stochastic recolonization plays an important 
role in community assembly (Fukami, 2015). In our study, where the 
temperature pressure is ongoing, likely, qualitatively, the temperature 
treatment determines the taxa becoming dominant in the community. 
However, similar to in post-disturbance community assembly, stochastic 
processes might determine quantitatively the success among surviving 
taxa to colonize newly available niches. Hence, stochasticity might 
explain varying changes in abundance with temperature across repli-
cates and soil types. Similarly, Jurburg et al. (2017b) highlighted sto-
chastic processes immediately upon heat disturbance. 

Most differentially abundant OTUs were found at 35 �C and some of 
the genera favored at this temperature (Burkholderia-Paraburkholderia, 
Phenylobacterium, Pseudolabrys) have been found to respond positively to 
heat shock treatment previously (Jurburg et al., 2017a, 2017b). Overall, 
the enrichment of taxa at the highest treatment temperature may be 
promoted by a priori adaptation to this temperature, high growth po-
tential as well as efficient mechanisms to withstand high temperature 
stress (Fig. 6C). A priori adaptation is supported by a shift in the opti-
mum of bacterial growth towards the treatment temperature. Accord-
ingly, mesophils to moderate thermophils such as Alicyclobacillus and 
Acidibacillus (both Firmicutes; Goto et al., 2007; Holanda et al., 2016) 
increased at 35 �C. Yet, several of the enriched genera (e.g. Edapho-
bacter, Phenylobacterium and Burkholderia-Paraburkholderia) have a 
temperature optimum around 30 �C according to the description of 
isolates (Coenye et al., 2001; Koch et al., 2008; Abraham et al., 2014). 
Transferring temperature relationships of isolates to environmental 
microorganisms can however be misleading, as the temperature range 
and optimum can vary significantly within the same species (Mongold 
et al., 1999; Coenye et al., 2001; Johnson et al., 2006). Stress tolerance 
as a mechanism of enrichment at high temperature is supported, as all 
genera comprising OTUs that increased strongly at 35 �C have been 
associated with harmful conditions such as heat shock as well as hy-
drocarbon and heavy metal contaminated soils (Frossard et al., 2017; 
Jurburg et al., 2017a, 2017b; Pires et al., 2017; Hemmat-Jou et al., 
2018; Kou et al., 2018). Further, high temperature associated genera 
survived transport through the atmosphere (Sphingomonas and 
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Phenylobacterium (�Santl-Temkiv et al., 2013; Krumins et al., 2014)) and 
were able to thrive on rock surfaces (Edaphobacter (Esposito et al., 
2015)) and to resist UV-radiation (Sphingomonas (Joux et al., 1999)). 
Such stressful conditions have in common that they cause misfolding of 
proteins, membrane disruption, oxidative stress and DNA damage (Nies, 
1999; Santos et al., 2012; Fashola et al., 2016; Marcen et al., 2016). 
Owing to the similar impacts of different stressful cues, a universal de-
fense mechanism is induced via heat-shock proteins upon the detection 
of damaged biomolecules rendering cross-resistance a common phe-
nomenon although also specific stress responses exist (Inbar and Ron, 
1993; Ramos et al., 2001; Ron, 2013). Increased stress tolerance can be 
achieved by alterations in the membrane structure to maintain integrity, 
enhanced protein stability through chaperones as well as repair or 
degradation and re-synthesis of damaged biomolecules (Ramos et al., 
2001; Denich et al., 2003; Mykytczuk et al., 2007; Ron, 2013). 

Among the genera enriched at high temperature, Burkholderia-Par-
aburkholderia represents a typical copiotroph. Therefore, we suggest that 
the pronounced increase in OTUs affiliated with Burkholderia-Para-
burkholderia is linked to the overall increase in copiotrophy at 35 �C. 
This genus grows on simple sugars (Coenye, 2014) and was shown to 
increase in abundance upon addition of simple sugars (Jenkins et al., 
2010; Goldfarb et al., 2011) and under conditions of elevated root 
exudation (Drigo et al., 2009) in environmental samples. Burkholder-
ia-Paraburkholderia thrives in a large range of environments including 
polar and alpine soils (Lipson, 2007; Schutte et al., 2009; Ciccazzo et al., 
2014). The ubiquity of Burkholderia-Paraburkholderia in various soil 
types is probably owed to the large variety of functions it performs such 
as N2 fixation, degradation of a large range of organic compounds 
including cellulose and lignin as well as interaction with plants (both 
beneficial and pathogenic; Lim et al., 2003; Compant et al., 2008; 
Schutte et al., 2009; �Stursov�a et al., 2012; Woo et al., 2014). 

Among the taxa diminishing with increasing temperature, in line 
with previous studies, OTUs within the phylum Bacteroidetes decreased 
both under moderate (15, 25 �C) and strong warming (35 �C; Ria-
h-Anglet et al., 2015; Oliverio et al., 2017). Bacteroidetes are ubiquitous 
in soil and have been associated with both oligotrophy and copiotrophy 
(Fierer et al., 2007; M€annist€o et al., 2016). Within this phylum, the 
genus Mucilaginibacter which comprised the most strongly decreasing 
OTUs is commonly found in cold environments (M€annist€o et al., 2010; 
Lee et al., 2011; Zheng et al., 2016) and the Mucilaginibacter species 
found in this study (M. pineti, M. ximonensis and M. koreensis) do not 
grow above 33 �C (Luo et al., 2009; Paiva et al., 2014; Park et al., 2014). 
Moreover, Mucilaginibacter is able to produce exopolysaccharides as 
cryoprotectants in frozen soils (Nikrad et al., 2016). Hence, adaptation 
to low temperatures might explain its sensitivity to high temperatures. 
The genus Cytophaga (Bacteroidetes), that also comprised OTUs which 
strongly decreased at 35 �C, is commonly found in Antarctic soils 
(Pearce et al., 2012) suggesting cold adaptation. Mucilaginibacter and 
Cytophaga play an important role in mineralizing organic matter, as they 
are able to degrade polysaccharides such as cellulose and chitin 
(Kirchman, 2002; Nissinen et al., 2012; �Stursov�a et al., 2012). OTUs 
affiliated with Planctomycetes also consistently decreased with 
increasing temperature. Planctomycetes have been associated with an 
oligotrophic lifestyle previously (Lauro et al., 2009; Ward, 2010). For 
instance, the genus Planctomyces was and indicator of soils low in C and 
N (Wojcik et al., 2018). Hence, their decrease might also contribute to 
the overall increase in copiotrophy at 35 �C. 

5. Conclusion 

Collectively, we showed that at short time scales only high temper-
atures (>25 �C) exert a significant effect on alpine soil microbial com-
munities. Obviously, a continuous treatment at 35 �C for one month is 
not a realistic simulation of climate change. However, this approach 
allowed us elicit the range of temperatures across which bacterial 
communities remain stable or react sensitively. Applying our treatment 

on a time scale similar to previous incubation studies (e. g. Barce-
nas-Moreno et al., 2009; Birgander et al., 2013; de Scally et al., 2016), 
we were able to link microbial activity and community structures and 
comparably embed our findings in the context of previous literature. A 
logical next step is to determine the role of duration and frequency with 
which a high temperature is applied to evaluate the sensitivity of the 
alpine soil microbiome to extreme heat events. At the community level, 
previous studies preliminarily indicate that microbial community 
structures react sensitively to extreme heat at scales ranging from less 
than one hour to a few days (Chaer et al., 2009; van der Voort et al., 
2016). In addition, it will be crucial to assess the resilience of the soil 
microbiome to single or repeated pulses of heat in order to understand 
climate change impacts on the functioning of alpine ecosystems. Here, 
we provide an important baseline for such follow-up studies, as we 
determine the temperature threshold above which the soil bacterial 
community is strongly compromised by direct temperature effects. For 
the first time, we link temperature profiles of microbial activity with 
high resolution taxonomical shifts across multiple alpine soils showing 
that high temperature favors heat-adapted, fast growing and stress 
resistant taxa. Thus, we contribute to a more mechanistic understanding 
of climate change responses of the alpine soil microbiome. 
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