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Abstract11

Several FIR satellite missions are planned for the next decade, with a special in-12

terest for the Arctic region. A theoretical study is performed to help about the design13

of a FIR radiometer, whose configuration in terms of channels number and frequencies14

is optimized based on information content analysis. The problem is cast in a context of15

vertical column experiments (1D) to determine the optimal configuration of a FIR ra-16

diometer to study the Arctic polar night. If only observations of the FIR radiometer were17

assimilated, the results show that for humidity, 90 % of the total information content18

is obtained with 4 bands whereas for temperature 10 bands are needed. When the FIR19

measurements are assimilated on top of those from the Advanced Infrared Sounder (AIRS),20

the former bring in additional information between the surface and 850 hPa and from21

550 hPa to 250 hPa for humidity. Moreover, between 400 hPa and 200 hPa, the FIR ra-22

diometer is better than AIRS at reducing the analysis error variance for humidity. This23

indicates the potential of FIR observations for improving water vapor analysis in the Arc-24

tic.25

1 Introduction26

Since the beginning of meteorological satellites, temperature profiling has been per-27

formed with sounders in the infrared (IR) (Wark & Hilleary, 1969). The state-of-the-art28

instruments that probe the mid-infrared (MIR) are the Infrared Atmospheric Sounding29

Interferometer (IASI) (Blumstein et al., 2004), the Atmospheric Infrared Sounder (AIRS)30

(Aumann et al., 2003) and the Cross-track Infrared Sounder (CrIS) (Bloom, 2001). Those31

instruments use the 15 µm CO2 absorption band to probe atmospheric temperature and32

the water vapor vibrational band at 6.3 µm to retrieve humidity profiles (Rizzi et al.,33

2002). This humidity profiling capability results from the strong spectral variations of34

the water vapor absorption in that band.35

Water vapor also exhibits an extended rotational absorption band as well as a con-36

tinuum in the far-infrared (FIR; 15 µm < λ < 100 µm). This absorption band is broader37

than the vibrational band, hence there is more energy in this region. Previous studies38

have pointed out the potential of FIR for atmospheric profiling, particularly in cold re-39

gions. First, a direct consequence of the temperature dependence of the Planck function40

in the radiative transfer equation, emission is shifted to the FIR as the temperature of41

the scene decreases, offering a greater capability for cold scenes (M. Mlynczak et al., 2007),42

in contrary to the traditional 6.3 µm band quickly loses energy as the scene gets colder43

(Susskind et al., 2003). Practically, more than half of the radiation is lost to space in the44

FIR in the polar regions (M. Mlynczak et al., 2007). Second, the water vapor rotational45

absorption band in the FIR has many absorption lines with larger optical depth than46

the MIR, which leads to an increased sensitivity to small water vapor variations (Harries47

et al., 2008). The increased sensitivity is especially important in the upper troposphere,48

where the water vapor concentration is scarce (Clough et al., 1992). Thus, the FIR re-49

gion can be valuable for profiling the atmosphere and particularly in the stratosphere50

and the upper troposphere (Shahabadi & Huang, 2014).51

Despite these acknowledged advantages of the FIR over the MIR for water vapor52

profiling, no direct spectrally resolved measurements of the atmospheric radiation have53

been made recently from space. The last measurements in the FIR, up to 25 µm, were54

made 40 years ago on two Russian Meteor spacecrafts and 45 years ago by the IRIS (In-55

frared Interferometer Spectrometer and Radiometer) instruments on the NASA Nimbus56

III and IV (M. G. Mlynczak et al., 2002), data that has been used to identify changes57

in spectral outgoing longwave radiation (?, ?). However at the time, the spectral and spa-58

tial resolutions of the observations, along with the large noise, prevented from getting59

much geophysical information out of the data. Since then, low noise liquid helium cooled60

bolometers operating in the far-IR have been developed, and used for instance in the Far-61

Infrared Spectrometer of the Troposphere (FIRST) instrument (M. G. Mlynczak et al.,62

–2–



manuscript submitted to ¡JGR-Atmospheres¿

2006). Such systems are however too delicate, massive and expensive to be but on a satel-63

lite. This, in combination with the intrinsic higher sensitivity of MIR sensors compared64

to FIR sensors, explains why no FIR satellite has been flying for decades now.65

Only with the recent advent of uncooled systems operating at room temperature66

that have space missions in the FIR seen a renewal of interest. The series of satellite mis-67

sions Climate Absolute Radiance and Refractivity Observatory (CLARREO) (Wielicki68

et al., 2013) is intended to measure spectrally-resolved Earth emission spectrum between69

5 - 50 µm with a spectral resolution of 0.5 cm-1 to determine small changes in the spec-70

tral outgoing radiation (infrared and reflected solar). The mission aims at detecting decadal71

changes in climate forcings, responses and feedbacks and to serve for reference intercal-72

ibration in space. It thus focuses on global or regional averages and their variations on73

annual timescales. As a consequence the noise-equivalent temperature difference (NETD),74

has the requirement to be smaller than 10 K in the FIR since averaged over a year it will75

be reduced to 0.01 K globally. The requirements on the absolute accuracy are on the con-76

trary much more stringent. ESA candidate mision, called FORUM (Far Infrared Out-77

going Radiation Understanding and Monitoring) (Palchetti et al., 2016) focuses on study-78

ing the forcings and the feedbacks of atmospheric water vapor and of ice clouds on the79

climate. The recently funded NASA PREFIRE (Polar Radiant Energy in the Far-InfraRed80

Experiment) CubeSat, to be launched in 2022, intends to measure in the 0-45 µm range81

to measure spatial and temporal variations in spectral fluxes on hourly to seasonal timescales82

(L’Ecuyer, 2019). Merrelli and Turner (2012) used the technical characteristics of CLARREO83

to compare two interferometers for remote sensing of temperature and humidity, with84

a spectral resolution of 0.5 cm-1, one measuring in the MIR and another measuring in85

the FIR even though CLARREO was not designed to measure temperature and water86

vapor. They showed that there is more information content in the FIR compared to the87

MIR when the noise is equal in both spectral regions. However, if the uncertainty of the88

actual CLARREO is used for the FIR region, the advantage of the FIR is lost (Shahabadi89

et al., 2015).90

Only a limited selection of channels among those in the water vapor absorption band91

of interferometers at high resolution is used in data assimilation (Fourrié & Thépaut, 2003).92

Supposedly, adjacent bands could thus be merged into larger bands to refine the remote93

sensing capability. The Arctic was selected since around 60 % of the outgoing longwave94

radiation is in the FIR region. Also, there is a need for precise water vapor measurements95

in the troposphere (Müller et al., 2016) and especially in the Arctic (Boullot et al., 2016)96

and the FIR upwelling spectrum contains a large amount of potential profiling informa-97

tion. The objective of the present study is to design an optimal FIR radiometer to study98

the Arctic polar night by examining different configurations, noise levels and the trade-99

off between spectral resolution and noise level. Thus, this study considers a radiometer100

in the Arctic region using different filters or a gratings to allow different bandwiths within101

a spectral region. As in Observing System Simulation Experiments (OSSEs), synthetic102

measurements are created for different configurations of the FIR radiometer. The radio-103

metric noise of the Far InfraRed Radiometer (FIRR) is used as a baseline to constrain104

the detector’s performance (Libois et al., 2016). The optimal configuration is selected105

with information content as a metric to lead to the best temperature and humidity anal-106

yses. The impact of FIR measurements is also evaluated in terms of their added value107

when assimilated on top of currently assimilated AIRS data. The experiments are done108

under the assumption that AIRS and the FIR radiometer are collocated and assimilated109

in a simple 1D assimilation system.110

The paper is organized as follows. Section 2 presents the information content frame-111

work, the characteristics of the instrument, and the context of the experiments. Section112

3 presents the results of the evaluation of different instrument configurations. Section113

4 compares the impact of measurements of the FIR radiometer with that of AIRS mea-114

surements. A discussion and conclusions are presented in section 5.115
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2 Methods116

This section first presents the characteristics of the FIR radiometer and the atmo-117

spheric conditions used in this study. Finally, we present the method used to evaluate118

the information content of measurements which is based on the reduction of analysis er-119

ror obtained in the context of data assimilation using a numerical weather forecast as120

an a priori background state.121

2.1 Instrument characteristics122

A synthetic spaceborne FIR radiometer is considered in this study. The goal is not123

to investigate a particular instrument, but to explore the potential of such a novel in-124

strument, in the framework of the prepartaion of the TICFIRE mission. Nevertheless,125

the characteristics of this radiometer are based on the FIRR instrument. The charac-126

teristics of the optics are fixed (field of view, spatial resolution, F-number, etc), only those127

of the detector are changed. The detector performance explore a realistic range, although128

the feasibility study for such performance is left to the industry. The two principal char-129

acteristics considered are its number of bands and its noise-equivalent radiance (NER).130

The bands are adjacent and fully cover the range of 15 - 100 µm. The transmittance is131

one in the bands and zero outside. The bandwidths are set in three different ways here-132

after referred as ’equi-energetic’, ’constant wavelength’ and ’constant wavenumber’. Equi-133

energetic means that each band receives the same amount of energy at the top of the at-134

mosphere (TOA), this is calculated for each atmospheric profile used. This implies that135

the spectral widths of the bands are not constant. Constant wavelength and constant136

wavenumber bands means that each bands has the same spectral width in microns or137

cm−1 respectively. The NER is varied through the experiments, but two specific NER138

will be highlighted, called baseline NER and target NER. The baseline NER is equal to139

0.01 Wm−2sr−1, according to the findings of Libois et al. (2016). Those detector char-140

acteristics are consistent with a microbolometer sensor coated with gold black for a in-141

tegration time of 1 s (Proulx et al., 2009) The other specific value of NER used, target142

NER, is equal to 0.002 Wm−2sr−1, which is the expected NER in a few years from now143

, expected from efforts by the industry, mainly on the electronics and on the analog to144

digital conversion. Also, band splitting is achievable with a grating or filters. It was cho-145

sen to use NER instead of NETD for the radiometric resolution in order to work at the146

sensor level. This allows to evaluate the gain of changing the radiometric resolution and147

the spectral width of the bands independently. NER remains constant independently of148

the instrument spectral configuration, while NETD would change. Since the NER is con-149

stant, this results in less energy per band when the bandwidth is reduced. It needs to150

be noted the correlation between radiometric and spectral resolutions, when the num-151

ber of bands increases, the signal-to-noise ratio decreases as the energy per band decreases.152

Figure 1 shows the NETD for a blackbody at 250 K for a constant NER of 0.01153

Wm−2sr−1 for an instrument with 10, 15, 20, 25 and 40 equi-energetic bands. The NETD154

is not constant for the bands of a configuration. This allows to compare this experiment155

with other studies using NETD. It shows that the NETD, for a configuration with 10156

bands, is comparable to the NETD of AIRS, below 0.5 K (Garand et al., 2007), and of157

MODIS, less than 0.35 K (Xiong et al., 2008).158

2.2 Atmospheric profiles159

The radiosonde profiles are from the Integrated Global Radiosonde Archive (IGRA)160

database (http://www.ncdc.noaa.gov/oa/climate/igra/) (Durre et al., 2006). Figure 2161

shows the locations of the eight stations where the different vertical profiles were taken.162

Those stations are the same as in Serreze et al. (2012) and were selected to represent the163

various atmospheric conditions in the Arctic. It needs to be noted that the Arctic re-164

gion was chosen, but those results would be similar for the Antarctic region. For each165

station, 6 profiles were selected randomly from the months of January or February of 2015166
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Figure 1. NETD for different configurations of equienergetic bands for a blackbody at 250 K

with a constant NER of 0.01 Wm−2sr−1. The vertical lines represent the widths of equi-energetic

bands.
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Figure 2. Locations of the eight Arctic stations. The letter codes are: JM- Jan Mayen; BN-

Bjornoya; SD- Scoresbysunde; DM- Danmarkshavn; BW- Barrow, AL- Alert; EU- Eureka; RB-

Resolute Bay.

or 2016 in order to sample Arctic winter conditions. The profiles were truncated at 20167

km altitude. Table 1 shows the vertical resolution of the atmospheric profiles selected.168

Figure 3 shows the averaged 48 temperature and humidity profiles selected with the red169

and blue lines respectively and the shaded area of the same color shows the correspond-170

ing standard deviation. The natural variability in the profiles seen through the standard171

deviation can be associated with different meteorological situations. The larger spread172

near the surface is expected since there is more variability in that region. Also, the peak173

seen at 4 km in the standard deviation is due to the averaged water vapor mixing ra-174

tio being almost equal to the standard deviation at that point.175
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Altitude interval (km) Vertical resolution (km)

0 - 0.1 0.01

0.1 - 1 0.025

1 - 3 0.1

3 - 5 0.2

5 - 8 0.5

8 - 12 0.5

12 - 20 2

Table 1. Vertical resolution of the atmospheric profiles from IGRA
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Figure 3. Temperature and humidity profiles averaged for the 48 radiosoundings at eight Arc-

tic stations shown with the red and blue lines respectively. The shaded area shows the standard

deviation associated with the variables.

2.3 Theoretical framework176

In this section, the theoretical framework used is explained. This study is based177

on linear statistical estimation theory in the context of numerical weather prediction (NWP)178

(Rodgers, 2000). The different notations, definitions, approximations and data used are179

described in this section (Lewis et al., 2006).180
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The atmospheric state is represented by a vector x and the satellite radiance mea-181

surements at different wavelengths at the TOA are represented by the vector y.182

The observation is related to the atmospheric state through the equation183

y = H(x) + εo, (1)

where H is the forward model linking the observation to the atmospheric profile184

and εo is the observation error. In this case, the state corresponds to atmospheric pro-185

files of temperature, T, and logarithm of specific humidity ln q defined on k vertical lev-186

els on which the model state is defined. The dimension of the model state x is thus 2k.187

The ozone and other trace gases are kept constant. The assimilation seeks to correct an188

a priori estimate of the state of the atmosphere, xb, also referred to as the background189

state, using the information contained in the observations. It takes into account the rel-190

ative accuracies of x and y to obtain a minimum variance estimate, xa, called the anal-191

ysis.192

A linearization of the forward model around the atmospheric profile, xb is done,193

which gives, assuming that the radiative-transfer equation is weakly nonlinear near the194

background state195

H(x) ∼= H(xb) + H(x− xb), (2)

where H(xb) is the background state in the observations space and H = ∂H(x)
∂x

∣∣∣∣
xb

196

is the linearized observation operator with respect to x evaluated at x = xb, referred197

to as the Jacobian.198

The analysis, xa, which represent the corrected atmospheric state after the obser-199

vations and the model are taken into consideration, is given by200

xa = xb + K(y−Hxb) (3)

201

with K = BHT (R+HBHT )−1 being the gain matrix. B is the background er-202

ror covariance matrix and R, the observation error covariance matrix (Rodgers, 2000).203

The superscript T and -1 denote respectively the transpose and inverse of a matrix.204

2.3.1 Jacobians205

For each band, the Jacobian indicates how temperature and humidity variations206

in each band impact the radiance measured at the TOA. The Jacobians were obtained207

by finite difference with the radiative-transfer model MODTRAN v 5.4 (Berk et al., 2005)208

by perturbing the background state xb, in this case a temperature and humidity profile.209

The Jacobians were computed for each band of the FIR radiometer and AIRS. A sub-210

set of 142 channels were used for AIRS. It is assumed that the FIR radiometer and AIRS211

are collocated on a pixel with the same spatial response and taht the lag between the212

instruments is negligible. More specifically, for the temperature Jacobians, HTi, at the213

level i, a perturbation of ± 0.5 K was done (Garand et al., 2001). Perturbations of 1 K214

have been deemed sufficiently small for this experiment. This gives the variation of ra-215

diance seen at the TOA for a variation of 1 K in the atmospheric profile at each atmo-216

spheric level. In the same manner, the humidity Jacobians in logarithm of specific hu-217

midity, s= ln q, at the level i, were obtained by perturbations of ± 0.05 q, where q is the218

specific humidity and s = ln(q). As shown with the following equation, in order to ob-219

tain a Jacobian with respect to a logarithm, the perturbations are done on the profile220

in q. Thus by multiplying the difference of perturbations by 10, this results in Jacobians221

with the units of Wm−2 sr−1 log(L L−1)−1.222
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Hs,i =
∂R

∂lnq
=

∂q

∂lnq

∂R

∂q
= q

∂R

∂q
(4)

2.3.2 Background error covariance matrix223

The matrix B is the background error covariance matrix associated with the back-224

ground state xb. Figure 4 represents the B matrix used for temperature (left) and hu-225

midity (right). The B matrices are the stationary components of the background term226

of the Environment Canada assimilation system (Buehner et al., 2015). Those matrices227

were evaluated for a latitude of 79◦ 59
′
20
′′
, which corresponds to Eureka, Canada for228

the month of February. The units used are K2 and log(L L−1)2 for temperature and hu-229

midity respectively. The cross-terms BTs and BsT are considered equal to zero, and thus230

only the components BTT and Bss of the B matrix are considered. Making this approx-231

imation allows to calculate the DFS and analysis error for temperature and humidity sep-232

arately. In this study, the matrices BTT and Bss are kept constant.233
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Figure 4. Background error covariances matrices B for temperature (left) and logarithm

specific humidity (right) at a latitude of 79◦ 59
′
20
′′

for the month of February

2.3.3 Observation error covariance matrix234

The matrix R is the observation error covariance matrix. Normally, the matrix R235

takes into consideration the measurement error, the forward-model error, the represen-236

tativeness error and the error associated with quality control to name a few (Bormann237

et al., 2010) but for this study, only the measurement error was considered. This approx-238

imation was taken to be consistent with previous studies in the FIR region such as Merrelli239

and Turner (2012), Shahabadi and Huang (2014) and Mertens (2002). They show that,240

in the thermal IR region, the main contribution to the observation error is the measure-241

ment error and also, the interchannel correlation error is small (Garand et al., 2007). The242

measurement error is assumed to be gaussian and unbiased, assumptions used especially243

in data assimilation (Rodgers, 2000). Therefore, the matrix R is assumed to be diag-244

onal with the NER values on the diagonal. The spectral NER for the instrument AIRS245

was taken from the AIRS website (https://airs.jpl.nasa.gov/index.html) version 5 L1B246

data. The NER for the synthetic instrument is assumed to be constant for each config-247

uration and each band since it comes from the sensor.248
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2.3.4 Information content249

The impact of measurements is estimated from the analysis error covariance and250

the degrees of freedom per signal (DFS). The analysis error, assumed here to be unbi-251

ased, is εa = xa − xt where xt is the true state of the atmosphere. So, A = 〈εaεTa 〉,252

with 〈...〉 being the statistical average, is the analysis error covariance matrix and can253

be shown to be254

A = (I−KH)B. (5)

The reduction of analysis error due to the assimilation of observations is measured255

by256

tr(AB−1) = N − tr(KH), (6)

where tr(KH) = tr(HK). The gain in information, or the DFS is defined as257

DFS = tr(HK). (7)

The DFS can then be viewed in two ways, in the observation space and in the model258

space. In the observation space, the DFS measures the independent degrees of freedom259

measured by the observations and take into account redundancy. In the model space,260

it measures the reduction of analysis error with respect to the background error.261

It is an evaluation technique based on the relative errors between the observations262

and the prior information (Purser & Huang, 1993). It has also been used to quantify the263

added value of a new set of observations by comparison with other types of measurements264

and also on top of measurements already assimilated (McNally et al., 2006; Lupu et al.,265

2011)266

Thus, the analysis error variance matrix A and the DFS depend on the background267

error covariance matrix B, the observation error covariance matrix R and the Jacobian268

matrix H. The DFS will be used as a metric for obtaining the optimal configuration of269

the FIR radiometer and to discuss the trade-off between spectral resolution and noise270

level. The analysis error variance matrix will be used to see the vertical impact when271

the FIR radiometer is assimilated. Those calculations for the DFS and analysis error vari-272

ance were done for the 48 atmospheric profiles individually, and are then averaged. The273

calculations for 48 atmospheric profiles show the added value on average and also its vari-274

ability for the different possible atmospheric situations in the Arctic. The standard de-275

viation spread for the DFS and the analysis error variance will be shown in figures 7 and276

10 respectively.277

3 Evaluation of configurations278

3.1 Optimization under constraints279

In this section, the DFS is used to discuss the trade-off between spectral resolu-280

tion and noise level.281

Figure 5 shows the total DFS for temperature of different configurations for a syn-282

thetic FIR radiometer with constant wavenumber configuration when the NER error level283

varies between 0.0003 and 0.02 Wm−2sr−1 and a spectral range of 15 to 100 µm. The284

total number of bands varies between 1 and 200 bands. The color represents the value285

of the DFS for this configuration. Hence, this figure shows that for a fixed NER, the DFS286

increases and then decreases as the number of bands increases. This figure can be use-287

ful when there are technological constraints for example. If the NER is imposed by the288

available technology, taking a horizontal line on the top panel of figure 5 highlights the289
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Figure 5. Top panel: The averaged total DFS is shown for variations of the NER level (y-

axis) and variations of the total number of bands for temperature of the constant wavenumber

bands configuration. The DFS for each configuration is shown with the colorbar. Bottom panel:

The number of bands that maximizes DFS as a function of the NER (blue dots) and the DFS

maximum as a function of the NER (purple line).

available spectral configurations. The maximum DFS is not with smaller bands (right290

side of the figure) but always with a configuration which has less than 50 bands. This291

is due to the constant NER. By having smaller bands, the amount of energy per band292

decreases and hence the signal-to-noise ratio decreases. This is also shown in the bot-293

tom panel, which shows with blue dots the number of bands of the configuration with294

the maximal DFS for a variation of the NER. This shows that having more bands is not295

always the best configuration, since the DFS is not increasing as the number of bands296

increases. The number of bands with the peak DFS gets larger as the NER decreases.297

Another interesting way to analyze this map is by having a constraint on the number298

of bands an instrument can have. A radiometer can be operated with a filter-wheel and,299

as the number of bands increases, the rate of repetition decreases and also the cost in-300

creases.301

Figure 6 is similar to figure 5 but for humidity, but was cut off at 100 bands to bet-302

ter see the shift in the DFS peak. It has a lot more variability in the DFS for an hor-303

izontal line compared to temperature. This variability is partly due to spectral features304

of transmittance. For humidity, the maximum DFS is always obtained with a configu-305

ration which has less than 55 bands.306

3.2 Maximisation of the total DFS307

In this section, the DFS is used to find an optimal configuration for the FIR ra-308

diometer considered in this study. Three different splitting of the bands are considered,309

equi-energetic, constant wavelength bands and constant wavenumber bands. The instru-310

ment will be split between 1 and 250 bands.311

Considering those three configurations, figure 7 shows the total DFS averaged over312

the 48 profiles for temperature and humidity. Two values of the NER were used for the313

level of error, namely 0.01 Wm−2sr−1 and 0.002 Wm−2sr−1. To show the variability, the314

standard deviation is shown with the shaded area. Note that several papers have inves-315

tigated the channel selection and information content of AIRS (e.g. Fourrié and Thépaut316
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Figure 6. Top panel: The averaged total DFS is shown for variations of the NER level (y-

axis) and variations of the total number of bands for humidity of the constant wavenumber

bands. The DFS for each configuration is shown with the colorbar. Bottom panel: The number

of bands that mazimizes DFS as a function of the NER (blue dots) and the DFS maximum as a

function of the NER (purple line).

(2003); Divakarla et al. (2006); Garand et al. (2007)). However, different B and R ma-317

trices were used, which prevents direct comparison with this previous work.318

For temperature, for the three cases, as the number of bands increases the total319

DFS decreases. This is due to the constant NER, which results in less energy when the320

bandwidth is reduced. For the configuration having constant wavelength bands, the peak321

in DFS is reached with more bands compared to the other configurations. The bands322

being too wide near 15 µm, there is not enough resolution to capture the variation in323

the transmittance in this part of the spectrum. Table 2 shows the maximum DFS for324

each configuration with the corresponding number of bands for both temperature and325

humidity for the target noise. When the NER is reduced, there is a large increase in the326

DFS as expected since it means that the measurements are more accurate. For exam-327

ple, there is an increase by a factor of 2.00 in the DFS for the constant wavenumber band328

configuration when the NER goes from 0.01 Wm−2sr−1 to 0.002 Wm−2sr−1. For the dif-329

ferent configurations, the standard deviation varies between 0.209 to 0.247 which is less330

than for AIRS which is equal to 0.513 for temperature. The highest DFS is with the con-331

stant wavenumber band configuration with 22 bands for the NER level of 0.002 Wm−2sr−1.332

This is the configuration that will be used for temperature for the remainder of this study.333

The individual DFS of the optimal configuration of the 22 constant wavenumber bands334

is 20 % smaller than AIRS. However, when those bands are assimilated on top of AIRS,335

(table 2), the value of the DFS increases by 13.2 % compared to when AIRS is assim-336

ilated alone. This means that even after the information in the thermal IR is assimilated,337

there is still value in assimilating data in the FIR.338

For humidity, the highest DFS is also with the constant wavenumber bands con-339

figuration with now 7 bands and a total DFS of 3.594 for the NER error of 0.002 Wm−2sr−1.340

For the remainder of the study, this configuration will be considered as the optimal configuration .341

Similarly to temperature, there is more variability for the constant wavelength config-342

uration. For humidity, the standard deviation is larger compared to temperature, i.e. it343

varies between 0.318 and 0.354 depending on the configuration while it is 0.666 for AIRS.344

Also, when compared individually to AIRS (table 2), the DFS for the optimal config-345

uration with 7 constant wavenumber bands is smaller than the DFS of AIRS by 14%.346
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Figure 7. The averaged total DFS as a function of the total number of bands for three config-

urations which are equi-energetic bands (blue line), constant bandwidths in terms of wavelength

(green line) and wavenumber (orange line) for temperature (left) and humidity (right). The

dashed lines are for a NER of 0.01 Wm−2sr−1 whereas the full lines are for the target NER of

0.002 Wm−2sr−1. The shaded area represent the standard deviation of the 48 atmospheric pro-

files which are shown for all configurations except for AIRS. The standard deviation of AIRS is

equal to 0.53 and 0.67 for temperature and humidity respectively. The purple line represents the

averaged total DFS of AIRS for the 48 atmospheric profiles.

When those 7 bands in the FIR are assimilated on top of AIRS (table 2), the DFS in-347

creases by 11.5%, compared to assimilating only AIRS, which shows that measurements348

in the FIR add information when assimilated on top of AIRS data.349

3.3 Selection of the bands with most information350

Considering a fixed number of bands for the FIR radiometer, following Rabier et351

al. (2002), we now evaluate the DFS sequentially. First, for each atmospheric profile, the352

DFS is calculated for each band of the configuration and the one that maximises the DFS353

is selected. It is shown as the first position in figure 8. The next band selected is the one354

that, when added to the previous one, adds the largest information content. This pro-355

cess is done until all the bands are selected. Each new band thus optimally increases the356

DFS. This type of calculation was also done for ice cloud properties for AIRS by Chang357

et al. (2017). This selection was done for each of the 48 atmospheric profiles and for both358

temperature and humidity. Thus, figure 8 shows the frequency each band is selected at359

each position for the optimal configuration of the FIR radiometer with 22 constant wavenum-360

ber bands for temperature. It shows that 50 % of the time, the first band selected cor-361

respond to the first band (dark orange) in the splitting with the bandwidth 15.02-15.62362

µm. In first and second position, the bands selected are always between 15.02 µm and363

20.58 µm. Also, in the last position, the last band (dark pink) with bandwidth 79.53-364

100 µm is selected 66.67 % of the times whereas the second to last band in the splitting365

(bandwith 66.03-79.53 µm) is selected 33.33 % of the time.366

Similarly for humidity, figure 9 shows the order of selection of the 7 constant wavenum-367

ber bands with respect to humidity through the atmospheric profiles. It shows that the368

first band selected is 58.3 % of the time the third band (mint green) which has bound-369

aries of 19.83 - 23.62 µm whereas the second band (yellow) is selected 22.92 % of the times.370

For the second band selected, 62.5 % of the time, it is the 5th band (dark blue) that is371

selected. The last band selected is always the first band (orange) which has boundaries372

between 15.02 - 17.09 µm.373
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Number of bands DFS Analysis error variance

Temperature

Constant wavenumber bands 22 4.399 12.64
Constant wavelength bands 138 3.996 -
Equi-energetic bands 10 4.294 -
AIRS - 5.488 10.58
Background error - - 19.62
AIRS + constant wavenumber bands 22 6.213 9.97

Humidity

Constant wavenumber bands 7 3.594 1.09
Constant wavelength bands 15 3.482 -
Equi-energetic bands 10 3.569 -
AIRS - 4.173 1.03
Background error - - 1.96
AIRS + constant wavenumber bands 4.714 0.95
Table 2. Total averaged DFS for a NER of 0.002 Wm−2sr−1 and analysis error variance. The

units for the analysis error variance is K2 and log(LL−1)2 for temperature and humidity respec-

tively
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Figure 8. Probability of each band to be selected at each position for the 22 constant

wavenumber bands with respect to temperature.

4 Analysis error374

The impact of the observations can be seen with the analysis error variance since375

it provides information about the vertical distribution. The DFS previously discussed376

gives information integrated through the profile. Equation 2.3 is used to obtain the anal-377

ysis error variance. To show the added value of the FIR radiometer when other types378

of instruments are assimilated, the instrument AIRS is considered.379

Figure 10 shows the analysis error variance profile for temperature and humidity380

when the optimal FIR radiometer and AIRS are assimilated. The dark green curve rep-381

resents the background error, the dark blue curve is the average over the 48 atmospheric382

profiles for the FIR radiometer whereas the shaded area represents the standard devi-383

ation associated with the variability obtained through the different profiles. The dark384
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Figure 9. Probability of each band to be selected at each position for the 7 constant

wavenumber bands with respect to humidity.

pink curve represents the averaged analysis error variance for AIRS whereas the peach385

curve shows when the FIR radiometer is assimilated with AIRS. For temperature, AIRS386

is better at reducing the error compared to the FIR radiometer except at 300 hPa. It387

is also at this height that the gain in assimilating the FIR radiometer on top of AIRS388

is seen. Also, the sum of the analysis error variance through the profile is shown in ta-389

ble 2, which allows to see the impact of the observations in the model space. Hence, as-390

similating the FIR radiometer after AIRS allows to reduces by 5.65 % the analysis er-391

ror variance. The main gain of the FIR radiometer is with respect to humidity. The FIR392

radiometer is better at reducing the error in the upper atmosphere, between 400 hPa and393

200 hPa, than AIRS. When the 7 bands of the FIR radiometer are assimilated on top394

of AIRS, there is a non negligible gain near the surface (between the surface and 850 hPa)395

and in the upper part of the atmosphere (between 400 hPa and 200 hPa). The gain near396

the surface is due to the FIR radiometer being sensitive to the temperature inversion layer.397

For the different profiles, there is some variability in the atmospheric conditions which398

is seen with the standard deviation, especially between the surface and 600 hPa which399

is expected. In the same way, with table 2, it shows that assimilating the FIR radiome-400

ter after AIRS allows to reduce by 12.84 % the analysis error variance for humidity. Mertens401

(2002) did a similar study on the ability of the FIR to improve water vapor retrievals.402

The conclusions are similar in the sense that both studies find that the main reduction403

in the analysis error variance is between 1000 hPa and 100 hPa and that there is a gain404

in using both the MIR and the FIR.405

To show the impact of each individual band on the analysis error variance profile,406

the humidity Jacobians of the FIR radiometer (left panels) and the analysis error vari-407

ance associated with each of these bands when assimilated sequentially (right panels)408

is shown in figure 11 for two specific atmospheric cases with (top panel) and without (bot-409

tom panel) a temperature inversion. The colors of the bands of the Jacobians are asso-410

ciated with the colorbar. The top left panel of figure 11 shows the signature of two ef-411

fects: the greenhouse effect and the presence of a temperature inversion layer. The neg-412

ative peak is due to the greenhouse effect of water vapor. Increasing the humidity tends413

to reduce emission of radiance by masking the lower warmer layers. The positive part414

near the surface is due to an inversion. Increasing humidity elevates the effective emmi-415

sion altitude, where the atmosphere is warmer due to the inversion (?, ?). Moreover, as416

the wavelength of the band increases, the peak’s height increases from around 600 hPa417
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Figure 10. Analysis error variance profile for temperature (left) and humidity (right) for the

optimized FIR radiometer. The green curve represents the background error B, the dark blue

curve the average on the 48 atmospheric profile whereas the shaded area represents its associated

standard deviation. The dark pink line is the analysis error variance of AIRS whereas the peach

line represents when the optimized FIR radiometer is assimilated after AIRS.

to 350 hPa. The top right panel of figure 11 shows, as in figure 10, the analysis error vari-418

ance for the background error, when all the bands of the FIR radiometer and AIRS are419

assimilated separetely which is represented by the dark green, blue and dark pink lines420

respectively. To show the impact on the analysis error of each band of the FIR radiome-421

ter, bands were sequentially assimilated and the analysis error variance was calculated422

after each new band of the FIR radiometer was assimilated. The order of assimilation423

of each band is the same as in section 3.3. It shows that the first band assimilated, the424

pale green one, reduces the error between 800 hPa and 300 hPa, which is where the Ja-425

cobian’s peak is. The second band, navy blue one, has a higher Jacobian’s peak (at around426

400 hPa) and it is mainly where the analysis is reduced, between 650 hPa and 200 hPa.427

The next two bands assimilated, yellow and purple lines respectively, are also shown in428

the figure. The reduction of the analysis error near the surface is mainly due to the yel-429

low band (17.1- 19.8 µm), which is interesting since it allows to restrain the uncertainty430

in the inversion layer. This illustrates the complementarity of these bands to obtain the431

best analysis over the whole vertical extent. Compared to AIRS (dark pink line), the FIR432

radiometer is better at reducing the error between 350 hPa and 250 hPa. To show the433

impact of the temperature inversion, the bottom panels of figure 11 shows the Jacobians434

and the analysis error variances for an atmospheric case without a temperature inver-435

sion. The left panel shows that the Jacobians are more spread out and sample the at-436

mosphere from near the surface up to 300 hPa. Also, compared to the other case, there437

is no positive peak in the Jacobians which is expected since it is due to a temperature438

inversion layer. For the analysis error variance (bottom right panel), with the Jacobians439

peak being lower, the analysis error variance is less reduced compared to the case with440

an inversion. Even though, the FIR radiometer reduces more the analysis error variance441

than AIRS between 350 hPa and 200 hPa. Also, near the surface, the FIR radiometer442

is better at reducing the analysis error variance when there is an inversion.443
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Figure 11. Left panels show the humidity Jacobians for the FIR radiometer associated with

two atmospheric cases, which are with (top panel) and without (bottom panel) a temperature

inversion. The different colors are the 7 associated bands of this configuration shown by the col-

orbar which is valid for both panels. The right panel show the analysis error variance for the

two cases. The curves from right to left are the background error, when the bands of the FIR

radiometer are assimilated one at the time from one band to four (light green, dark navy, yellow

and purple), when all the 7 bands are assimilated and AIRS is assimilated.

5 Conclusions444

The objective of the present study is to design an optimal FIR radiometer to study445

the Arctic polar night by examining different configurations, noise levels and the trade-446

off between spectral resolution and noise level. This was investigated through an infor-447

mation content analysis based on optimal estimation method. The optimal configura-448

tion for the synthetic FIR radiometer is with 22 constant wavenumber bands for tem-449

perature and 7 constant wavenumber bands for humidity. It was shown that too many450

bands with a large noise do not give enough information on the atmosphere. With a few451

bands, it was possible to get a DFS similar to AIRS when compared individually. Given452

that AIRS provides information also on both temperature and humidity, the impact of453

assimilating FIR measurements on top of AIRS data was evaluated by the reduction in454

analysis error variance. With respect to temperature, there is a small impact in assim-455

ilating the FIR radiometer measurements over AIRS between 400 and 250 hPa. On the456

contrary, for humidity, there is a non negligible gain near the surface (between the sur-457

face and 850 hPa) and in the upper part of the atmosphere (between 400 hPa and 200458
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hPa). Something else that is worth noting is that between 400 hPa and 200 hPa, taken459

individually, the FIR radiometer is better at reducing the humidity analysis error vari-460

ance than AIRS.461

Measurements in the FIR are unlikely to be assimilated in the next few years in462

NWP systems, however the results shown in this paper highlight the potential of this463

new type of observations which may become available in the next decade. It is non neg-464

ligible to get results similar to AIRS in reducing the analysis error for humidity with only465

7 bands compared to a subset of 142 bands from AIRS. FIR measurements could be used466

in regions where there is still large uncertainties in water vapor retrieval or assimilation.467

It was shown to be useful for retrieval of water vapor in the 400 hPa to 200 hPa region468

for the Arctic, but FIR radiometry can be useful in other regions as well.469

The results presented here, are based on a 1D assimilation of two collocated instru-470

ments. Another interesting aspect of this study is the method, which facillitates test-471

ing rapidly multiple configurations of an instrument. Also, it allowed to compare the rel-472

ative impact of measurements in the FIR and the MIR. However, there are limitations473

to this approach that need to be kept in mind. Because a satellite does provides mea-474

surements over the whole globe, it would ibe mportant to examine the impact one could475

expect in other regions such as the Tropics for instance. Finally, complex Observing Sim-476

ulated Systems Experiments (OSSEs) would be needed to evaluate the global impact in477

a context including all observations currently assimilated.478
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