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A prominent hypothesis holds that by speaking to infants in infant-directed speech (IDS) as
opposed to adult-directed speech (ADS), parents help them learn phonetic categories. Specif-
ically, two characteristics of IDS have been claimed to facilitate learning: hyperarticulation,
which makes the categories more separable and variability, which makes the generalization
more robust. Here, we test the separability and robustness of vowel category learning on
acoustic representations of speech uttered by Japanese adults in either ADS, IDS (addressed
to 18-24 month olds) or read speech (RS). Separability is determined by means of a distance
measure computed between the five short vowel categories of Japanese, while robustness is
assessed by testing the ability of six different machine learning algorithms trained to classify
vowels to generalize on stimuli spoken by a novel speaker in ADS. Using two different speech
representations, we find that hyperarticulated speech, in the case of RS, can yield better separa-
bility, and that increased between-speaker variability in ADS, can yield, for some algorithms,
more robust categories. However, these conclusions do not apply to IDS, which turned out to
yield neither more separable nor more robust categories compared to ADS inputs. We discuss
the usefulness of machine learning algorithms run on real data to test hypotheses about the
functional role of IDS.

Keywords: phonetic learning, speech variability, hyperarticulation, infant-directed speech,
adult-directed speech, read speech

Introduction

The way in which infants spontaneously build their pho-
netic categories from noisy and variable speech input is still
a scientific puzzle. A popular, although controversial, hy-
pothesis is that this daunting task is made easier by the fact
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that parents speak to their children using a special register,
called infant-directed speech (IDS). While the characteris-
tics of IDS at the lexical and syntactic levels are, arguably,
of a facilitatory nature (e.g. Ferguson, 1978), there is still
no agreement regarding the helpfulness of IDS for phonetic
category learning. One reason for the controversy may be
that the phonetic characteristics of IDS are complicated and
have been associated to two, somewhat antagonistic, claims.

The first claim is that IDS is a form of hyperarticulated
speech, whereby the phonetic targets are exaggerated com-
pared to adult-directed speech (although some adult-directed
registers also show hyperarticulation characteristics – e.g.
read speech). For instance, Kuhl et al. (1997) reported in-
creased phonetic distance between the corner vowels (/i/,
/a/, /u/) in IDS, in three languages. All other things equal,
such expansion of the phonetic space should provide a fa-
cilitating effect on learning (see Liu, Kuhl, & Tsao, 2003;
Hartman, Ratner, & Newman, 2017; Kalashnikova & Burn-
ham, 2018 for studies showing positive correlations between
IDS vowel space measures and language outcome), by mak-
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ing the category means more distant from one another, re-
sulting in better category separability. Although the vowel
expansion effect has been replicated in other studies (e.g.
Andruski, Kuhl, & Hayashi, 1999; D. Burnham, Kitamura, &
Vollmer-Conna, 2002; Liu et al., 2003, but see e.g. Englund
& Behne, 2006; Dodane & Al-Tamimi, 2007; Benders, 2013
for a different account), it may not apply to the non-corner
vowels (McMurray, Kovack-Lesh, Goodwin, & McEchron,
2013; Cristia & Seidl, 2014), limiting the generality of the
putative facilitatory effect.

The second claim is that IDS phonetic categories are more
variable than adult-directed speech – ADS (e.g. Kuhl et
al., 1997; de Boer & Kuhl, 2003; McMurray et al., 2013;
Miyazawa, Shinya, Martin, Kikuchi, & Mazuka, 2017). This
effect is antagonistic to hyperarticulation: While hyperarticu-
lation affects the means of the phonetic categories and makes
them more separable, variability affects their standard devi-
ation and makes them more overlapping, hence, less separa-
ble.

How do these two effects balance out in practice? One
way to test this is to use a measure that combine means and
standard deviations (Miyazawa et al., 2017) or measure cat-
egory discriminability (McMurray et al., 2013; Martin et al.,
2015; Guevara-Rukoz et al., 2018). Both types of studies
have concluded that the increase in variability for IDS is
stronger than the effect of expansion, resulting in a null or
slightly negative effect on separability.

However, while recognizing that variability may be detri-
mental to some aspects of learning (separability), some au-
thors have pointed out that increased phonetic variability
could help other learning aspects, such as building more ro-
bust phonetic categories.

Mothers addressing infants also increase the va-
riety of exemplars they use, behaving in a way
that makes mothers resemble many different
talkers, a feature shown to assist category learn-
ing in second-language learners. Kuhl (2000), p.
11855.

Considering the counteracting roles of hyperarticulation
and variability on phonetic category realization and learning,
we aim to investigate here the separability of phonetic cate-
gories and the robustness of phonetic category learning, by
taking into account the effect of these two phenomena.

Experimental evidence on the impact of variability on ro-
bust category learning

Could it be that the detrimental effect of variability for cat-
egory separability is compensated by increased robustness,
once the categories are learned? We review here the adult and
infant experimental literature for proof of the impact of vari-
ability on robustness in phonetic learning. Solid evidence ex-
ists in the learning of non-native phonemic contrasts in adults

(e.g. /r/-/l/ for Japanese adult learners of English) that pho-
netic variability during training yields ‘robust category for-
mation’ (Lively, Logan, & Pisoni, 1993). This is illustrated
by the fact that when trained with multiple speakers, partic-
ipants can generalize the learned contrast to novel words or
novel speakers, but not when trained with a single speaker. In
this latter case, even though the participants did improve on
the training examples, learning failed to generalize to novel
speakers. The effectiveness of high variability for phonetic
training has been replicated in several studies and is now de-
ployed in practical applications (see a review in Barriuso &
Hayes-Harb, 2018). Note, though, that there are at least two
differences between these experimental results in adults and
the learning situation of infants in their ecological setup.

The first difference is that high-variability studies have fo-
cused on between-speaker variability, whereas in the case of
IDS, we are dealing with within-speaker variability. These
two types of variability could yield different patterns of gen-
eralization, although to own knowledge, no adult study has
addressed specifically this point.

The second difference is that the aforementioned adult
studies trained participants with explicit label categories that
were associated to the speech sounds, and they received feed-
back for their incorrect response, a situation called super-
vised learning. In the case of infants instead, it has been
claimed that they learn the categories spontaneously, with
weaker or no supervision (unsupervised or self-supervised
statistical learning, e.g. Kuhl, 2000; Romberg & Saffran,
2010, or using word-level knowledge, e.g. Yeung & Werker,
2009; Feldman, Myers, White, Griffiths, & Morgan, 2011).
It could be that the effect of variability differs between the
former and the latter two types of learning conditions.

Few of the experimental paradigms employed with infants
can be compared to those used with adults. Conditioned
Head Turning (Kuhl, 1979) trains infants to respond specifi-
cally to one class of sounds by turning their head towards it
and ignoring the another one. Feedback is provided during
the training phase. With this paradigm, Kuhl showed that
training a vowel discrimination with stimuli of one speaker
can generalize to a different speaker, showing a form of ro-
bust response despite low variability input. We are not aware
of a study looking at the effect of variability during training
with this paradigm. In the Switch paradigm (Werker, Cohen,
Lloyd, Casasola, & Stager, 1998), infants are habituated to
the pairing between a word and the image of an object, and
then tested on their ‘surprise’ reaction to a mismatch between
the word and the image. Assuming the images count as a
sort of ‘label’, this would be similar to supervised training,
but without any feedback during training. Rost and McMur-
ray (2009) found that when a single speaker was used dur-
ing training, infants fail to distinguish between the minimal
pairs associated with pictures. Training with a single speaker
failed to induce a minimal pair discrimination but training
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with multiple speakers succeeded (see also Rost & McMur-
ray, 2010). Other studies showed similar positive effect of
variability for the visual referent of words, rather than its
phonetic form (e.g. Perry, Samuelson, Malloy, & Schiffer,
2010; Gentner & Namy, 1999). In experiments with less su-
pervision, the evidence for a positive effect of phonetic vari-
ability is scarcer. For instance, Houston and Jusczyk (2000)
used an attention paradigm whereby infants were familiar-
ized with words in isolation and presented passages contain-
ing or not these word. They found that 7.5 month-olds would
generalize to a novel speaker only if the speaker was of the
same gender as the one whose speech was used in the fa-
miliarization step, suggesting initial limits to generalization
across speakers in early learners. Yet, Houston (2000) found
that increasing the variability of speakers during training did
facilitate the generalization to novel speakers, consistent with
the outcomes of adult high-variability experiments.

To summarize, the experimental evidence regarding the
effect of increased variability on phonetic learning is incon-
clusive, since overall, the strongest evidence of a beneficial
effect comes from adult studies with between speaker vari-
ability, supervision and feedback during learning. When con-
ditions become closer what infants may experience (within
speaker variability, weak or no supervision during learning),
the evidence that variability helps becomes scarcer or not
available. More generally, while experimental studies in in-
fants and adults are useful in that they point to potential
learning effects, the applicability of such effects to real life
is limited by the necessarily simplified training regime used
during the experiment. Here, we suggest that additional ev-
idence can be obtained through a computational modelling
approach by asking a slightly different question: does in-
creased variability in IDS help or hinder phonetic category
learning for a particular algorithm? We intend to address the
inconclusiveness of the current state of knowledge by consid-
ering both supervised and unsupervised learning models and
by separating between within-speaker and between-speaker
variability. To the extent that the algorithm is a good model
of the infant learner, the results can inform what could hap-
pen in infants confronted with similar inputs. Based on the
findings of the aforementioned studies we would expect an
increased generalizability for supervised models as well as a
positive effect of inter-speaker variability on robustness.

Computational studies of the impact of IDS on phonetic
learning

Although there is a fairly substantial amount of literature
devoted to the computational modelling of phonetic learning
(de Boer & Kuhl, 2003; Kirchhoff & Schimmel, 2005; Coen,
2006; Vallabha, McClelland, Pons, Werker, & Amano, 2007;
Feldman, Griffiths, & Morgan, 2009; Miyazawa, Kikuchi,
& Mazuka, 2010; Toscano & McMurray, 2010; Adriaans &
Swingley, 2012; Feldman, Griffiths, Goldwater, & Morgan,

2013; Martin, Peperkamp, & Dupoux, 2013; McMurray et
al., 2013; Lake, Lee, Glass, & Tenenbaum, 2014; Eaves,
Feldman, Griffiths, & Shafto, 2016), only a handful of them
have looked at the impact of IDS specifically (de Boer &
Kuhl, 2003; Kirchhoff & Schimmel, 2005; Vallabha et al.,
2007; Adriaans & Swingley, 2012; McMurray et al., 2013;
Eaves et al., 2016).

Kirchhoff and Schimmel (2005) trained an automatic
HMM-based word recognition model, using Gaussian mix-
ture components, on IDS and ADS. While no information
was given on the age of the infants to which the IDS is ad-
dressed, the data contained the same words and was recorded
at the same institute as the data used in de Boer & Kuhl,
2003, suggesting they were part of the same dataset (thus, 2-
5-month-old infants). They employed Mel Frequency Spec-
tral Coefficients, extracted using a 25 ms window, from sev-
eral English minimal pair words, and obtained better within-
register recognition results for ADS than for IDS, consis-
tent with a negative effect of increased variability in IDS on
the separability between categories (see a similar result in
McMurray et al., 2013, obtained with a different learning al-
gorithm – logistic regression and different features – the val-
ues of the first three formants, on speech addressed to 9-13-
month-olds). They also found worse performance when the
registers were crossed during training and test. Even though
the authors do not present the results in this light, this is ac-
tually evidence against the helpfulness of IDS, as the learner
is worse off in ADS processing if it was trained in IDS than
in ADS. Although both previously mentioned studies com-
pare ADS and IDS learning, they used supervised learning
algorithms which, as pointed out above, may not be the best
model of the infant learner.

Adriaans and Swingley (2012) employed an unsupervised
learning algorithm (based on Expectation Maximization –
EM, with a fixed number of Gaussians) on the values of the
first two formants of vowels in IDS, and found that the vow-
els that had acoustic focus (higher pitch, duration or pitch
change) yielded better learning than the ones that did not. In
this case, data from one mother in a longitudinal study was
employed (age of infant between 8 and 14 months). Vallabha
et al. (2007) investigated phonetic learning in English and
Japanese IDS (addressed to 12-month-old infants), by using
two types of algorithms and by taking in input the values of
the first two formants and the vowel duration. Both the EM-
based learning algorithm, as well as the completely unsuper-
vised one (having no knowledge of the number of phonetic
categories it is supposed to learn), similar to Self Organizing
Maps, were successful in learning the four categories consid-
ered in each of the two investigated languages, although with
different performances. While these studies employed mod-
els which are more plausible from the point of view of the in-
fant learner than those examined by Kirchhoff and Schimmel
(2005) and McMurray et al. (2013), neither of them com-
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pared IDS to ADS.
de Boer and Kuhl (2003) used the same unsupervised

learning algorithm as Adriaans and Swingley (2012), EM,
considering in input the values of the first two formants. The
studied IDS data was the one analyzed by Kuhl et al., 1997,
containing speech addressed to 2-5-month-old infants. They
found that the means of Gaussians trained with IDS speech
corresponded more closely to the three corner vowels than
Gaussians fitted with ADS. This suggests that IDS provides a
better model to learn ADS categories than ADS itself, consis-
tent with the report of exaggerated means in IDS. However,
no quantitative analysis of how the IDS-trained Gaussians
would actually perform on ADS data was performed.

Eaves et al. (2016) formulated an explicit model of ‘teach-
ing’, i.e. constructing a training sample optimally suited to
yield good learning of the ADS categories through an un-
supervised learning algorithm (Dirichlet Process Gaussian
Mixture Model), based on a parametrization consisting of the
values of the first three formants. They noted that the opti-
mal training sample has similar properties to IDS, as reported
in the literature (corner vowel hyperarticulation, some non-
corner vowel hypoarticulation, increased variability). The
study considered both supervised and unsupervised mod-
els, tested the generalization to (generated) ADS data, and
compared performance obtained on this ADS data with that
obtained on their IDS-like distribution. Yet, no quantita-
tive comparisons were made with actual IDS data, the study
being conducted with reconstructed, idealized, distributions
rather than raw data.

Here again the evidence in favor of the usefulness of IDS
for phonetic learning is somewhat mixed, and does not al-
ways match the conditions likely to apply to the learning in-
fant. It should also be noted that none of the previous studies
have really tested the robustness of the phonetic categories,
defined as the ability of the system to generalize to a novel,
untrained, speaker. We intend to fill this gap, by testing the
generalization to novel ADS speakers on actual audio data.

Our approach is presented in Fig. 1. The two axes repre-
sent the two main claims regarding the effect of IDS on pho-
netic learning. The vertical axis represents the claim that hy-
perarticulated speech yields better separation than standard
speech. We test this in Experiment 1 by measuring sepa-
rability in ADS (which is not hyperarticulated), on the one
hand, and IDS and read speech (RS) (which, supposedly,
are), on the other. The horizontal axis represents the claim
that high variability yields better generalization. We first test
this claim for between-speaker variability, in Experiment 2,
by manipulating the number of speakers during the learning
phase. Then, in Experiment 3, we compare the generaliza-
tion in ADS and RS (which are considered to have low vari-
ability) versus IDS (which has, presumably, high variability).
In the following section, we detail and motivate the design
choices we made in our computational modelling study.

Figure 1. Hypothesis space tested in this study. ADS and
RS inputs are assumed to have low acoustic variability, IDS
and ADS multi (multi-speaker ADS ) inputs high variability.
RS and IDS are assumed to be hyperarticuled, but not ADS .
Experiment 1 tests the hypothesis that more hyperarticulation
yields better category separation. Experiment 2 and 3 test the
hypothesis that more variability yields better generalization.
* The variability in ADS multi is between-speaker, in IDS , it
is within-speaker.

Design choices for the present study

Any computational approach to learning has to specify
two key components of the model. The first one is the data
used to train the model, and the second one is the learning
algorithms used for modelling.

Regarding the data, we use a large and carefully anno-
tated dataset of speech, the RIKEN Mother-Infant Conversa-
tion corpus (Mazuka, Igarashi, & Nishikawa, 2006), where
the same parents have been recorded in three speech regis-
ters: ADS (talking to an experimenter), IDS (playing with
or reading a book to their 18-24-month-old toddlers) and
read speech (reading a text; RS). The reason we selected
this corpus is that it contains high-quality audio recordings of
spontaneous infant-directed speech which are entirely man-
ually annotated at the segmental level. In addition, the cor-
pus includes recordings also of ADS and RS from the same
mothers, which was crucial for the purpose of the present
study – to examine the effect of hyperarticulation and vari-
ability on the learnability of phonetic categories. To our
knowledge, this is the only dataset that allows a direct com-
parison among IDS, ADS, and RS by the same speakers.
A series of studies have already established that Japanese
IDS presents the main characteristics of IDS documented in
various languages (Ferguson, 1964): shorter sentences, re-
peated words, and exaggerated intonation (e.g. Fernald et al.,
1989; Andruski et al., 1999; Amano, Nakatani, & Kondo,
2006), while exhibiting also language-specific properties,
such as different vocabulary structure (Fernald & Morikawa,
1993). The IDS characteristics shared with other languages
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were found also for the age range (18-24 months) present in
the RIKEN corpus, in particular that IDS has higher pitch
(Igarashi, Nishikawa, Tanaka, & Mazuka, 2013), shorter ut-
terances (Martin, Igarashi, Jincho, & Mazuka, 2016), and an
expanded vowel space (Miyazawa et al., 2017) compared to
ADS. We focus here on the five short vowels of Japanese,
which enables comparison with other computational mod-
elling work on phonetic learning (e.g. Vallabha et al., 2007;
McMurray, Aslin, & Toscano, 2009, among others). More-
over, as evidence from other languages shows no change in
the size of the mother’s vowel space with the age of the ad-
dressee (and, this, for a larger age range, overlapping the one
present in the RIKEN corpus – Liu, Tsao, & Kuhl, 2009;
E. Burnham et al., 2015), we would expect similar findings
also for different age ranges.

Regarding the algorithm, there is a wide variety of views
regarding how infants achieve phonetic learning, and each of
these views can be implemented in a variety of ways, yield-
ing different algorithms. Computational studies have typi-
cally used a narrow range of such algorithms, making it dif-
ficult to know whether the results are general or specific to
the chosen algorithms. Here, our strategy was to (1) cover
some of the most popular algorithms used in previous stud-
ies (for comparability), and (2), organize them systematically
in terms of their basic assumptions (for interpretability). We
sorted the algorithms according to two dimensions.

The first one regards the amount of innate constraints or
inductive biases that the learning model brings to the task.
Many studies have used parametric algorithms, which as-
sume that the underlying phonetic categories have particu-
lar shapes, typically, Gaussian distributions over the input
dimensions (see de Boer & Kuhl, 2003; Vallabha et al.,
2007; McMurray et al., 2009). Other studies have used non-
parametric algorithms, which make no such assumptions and
can accommodate categories of different shapes (such as the
self organizing maps of Kohonen, 1988, as in Gauthier, Shi,
& Xu, 2007 or in Vallabha et al., 2007).

The second dimension relates to the amount of top-down
information available to infants. At one extreme, supervised
models assume that the learner is presented for each speech
instance with a category label. This is the case for many
second language learning paradigms where adults are taught
to label or discriminate non-native speech sounds (Lively et
al., 1993). We consider this a control condition, as it is
highly implausible that infants have access to such system-
atic information. At the other extreme, unsupervised algo-
rithms assume that the learner has no top-down information
at all: just the speech input. This hypothesis has been pro-
posed under the name of “distributional learning”, and has
been tested both in infants with artificial categories (Maye,
Werker, & Gerken, 2002) and in models with more or less
natural speech inputs (Vallabha et al., 2007; McMurray et al.,
2009). In between these two cases, there is a continuum of al-

gorithms that use varying amount of top-down information in
the shape of already learned words (Jansen & Niyogi, 2007;
Thiolliere, Dunbar, Synnaeve, Versteegh, & Dupoux, 2015)
or algorithms performing joint word and category learning
(Feldman et al., 2009). Here, we chose a class of algo-
rithms which is basically unsupervised, but uses top-down
knowledge to inform the number of speech categories to be
found (see Fourtassi, Schatz, Varadarajan, & Dupoux, 2014
for a mechanism for finding such numbers without assuming
perfect word segmentation nor perfect word categorization).
Such class of algorithm were used in previous computational
studies (de Boer & Kuhl, 2003; Adriaans & Swingley, 2012).

These two dimensions are crossed in a factorial de-
sign, resulting in six different machine learning algorithms
(three parametric: Naive Bayes, Expectation Maximization,
Dirichlet Process Gaussian Mixture Model, and three non-
parametric: Nearest Neighbour, Hierarchical Clustering, Self
Organizing Maps; two supervised: Naive Bayes, Nearest
Neighbour, two partially unsupervised: Expectation Max-
imization, Hierarchical Clustering, and two unsupervised:
Dirichlet Process Gaussian Mixture Model, Self Organizing
Maps), as displayed in Table 1. Since Expectation Max-
imization and Dirichlet Process Gaussian Mixture Model
have been previously employed for phonetic learning mod-
elling, we made use of them in this study. Moreover, we
chose the supervised algorithm of the same class (the under-
lying probabilistic model being as in the other two, a mix-
ture of Gaussian) most similar to them, Naive Bayes. Sim-
ilarly, Self Organizing Maps have been employed in mod-
elling studies and we chose for the other two non-parametric
models the simplest algorithms that could represent this par-
ticular crossing of factors. Thus, Nearest Neighbour and Hi-
erarchical Clustering, two algorithms based on the distance
between points, with no underlying assumption about the
shape of the categories, were chosen.

Finally, for computational modelling, it is important to
note that the input (the type of information taken to repre-
sent each input token) to the algorithm may matter almost
as much as the algorithm itself. We run our six algorithms
on two commonly used input representations: high-level
language-specific parameters (the values of the first two for-
mants, as in Coen, 2006; Vallabha et al., 2007; McMurray et
al., 2009; Adriaans & Swingley, 2012) and low-level acous-
tic features derived from spectrograms and used in speech
recognition (Mel Filter Cepstrum Coeficients – MFCC, as
in de Boer & Kuhl, 2003; Kirchhoff & Schimmel, 2005;
Miyazawa et al., 2010; Martin et al., 2016; Guevara-Rukoz
et al., 2018).

To sum up, we ran six learning algorithm (two levels of
inductive biases, three levels of supervision) crossed by two
input representations (formants and MFCCs), on the short
Japanese vowels spoken in three registers (ADS, IDS, and
RS). In Experiment 1, we verify that our stimuli have similar
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Table 1
Summary properties of the 6 algorithms in this study. 1 de Boer and Kuhl (2003); Adriaans and Swingley (2012); Eaves et
al. (2016). 2 Feldman et al. (2009); Eaves et al. (2016); close variants were used in Vallabha et al. (2007); Toscano and
McMurray (2010); Lake et al. (2014) 3 Coen (2006); Vallabha et al. (2007); Miyazawa et al. (2010)

Known Known no. of Type of Model
Type of Supervision labels? categories? Gaussian Non-Gaussian
Supervised yes yes Naive Bayes (NB) Nearest Neighbour (NN)
Partially Unsupervised no yes Expectation Maximization (EM)1 Hierarchical Clustering (HC)
Unsupervised no no Dirichlet Process Gaussian Mix-

ture Model (DPGMM)2
Self Organizing Maps (SOM)3

characteristics regarding hyperarticulation and variability to
those described previously for IDS, ADS and RS, as well as
the effect of these two phenomena on the phonetic category
separability. That is, we predict that IDS should both be more
hyperarticulated and more variable than ADS, whereas RS
should be more hyperarticulated, but probably less variable
than ADS. With respect to separability, taking into account
previous work, we expect a small negative or no effect on
IDS, compared to ADS. In Experiment 2 we investigate the
claim that variability can help generalization by manipulat-
ing the number of speakers present in the training data. We
train our six algorithms on two speech representations, using
ADS data, and we test the generalizing to novel ADS speak-
ers. Based on the findings of previous studies, one would
expect that training on data from multiple speakers would
give a better generalization than training on a single speaker
only. In Experiment 3, we test how each speech register, at
training time, helps generalizing to novel ADS speakers, at
test time. If IDS variability somehow mimics speaker vari-
ability and if this helps generalization, we expect IDS train-
ing to yield better performance than ADS training. The pre-
dictions regarding RS are less straightforward. On the one
hand, the higher degree of hyperarticulation would suggest
that RS training will yield good category learning. On the
other hand, if variability helps robustness, we predict less
robust categories after RS training, to the extent that RS is
indeed less variable than ADS.

Experiment 1

In this experiment, we conduct two sets of analyses. The
first set investigates the two properties attributed to IDS cate-
gories, namely hyperarticulation and variability. Based on
past work (Miyazawa et al., 2017), we expect IDS to be
both hyperarticulated and more variable than ADS. RS, in
contrast, should be hyperarticulated, but less variable than
ADS. Compared to the analysis conducted in Miyazawa et
al. (2017), we employ two new metrics, relying on F1-F2
measures and low-level spectral features, respectively. We
operationalize hyperarticulation as the average distance be-
tween category centers, and variability as the average dis-
tance within category. Even though the speech corpus is the

same as in the Miyazawa et al. (2017) study, it is important
to check that our particular selection of stimuli shows the
expected characteristics.

The second set of analyses tests the effect of register on
the separability of vowel categories. Separability, or its con-
verse – category overlap, is a function of both hyperarticula-
tion (helpful) and variability (detrimental). Miyazawa et al.
(2017) used an inter-class distance, which assumes a para-
metric shape to the categories, to measure separability, while
Martin et al. (2015) used the machine ABX discrimination
score, which is non-parametric. Both found that IDS was
less separable than ADS. Here, we adopt the method em-
ployed by Miyazawa et al. (2017), computing the same dis-
tance between vowel classes. Based on the previous studies,
we expect that IDS vowels to be harder to separate than ADS
vowels, with RS vowels being the most separable.

Methods

Dataset. The data used in this study belongs to the
RIKEN Mother-Infant Conversation corpus (Mazuka et al.,
2006). The corpus consists of speech uttered by 22 Japanese
mothers to their 18-24 month-old toddlers, while interact-
ing with them either through the use of toys or by reading
a book. The same mothers have been recorded also talking
to an adult experimenter, about topics related to child rear-
ing. The resulting datasets contain over 11 hours of infant
directed speech and around 3 hours of adult-directed speech.
Besides the IDS and ADS recordings, we also considered a
third dataset, comprising read speech. Twenty out of the total
of 22 mothers in the RIKEN corpus were recorded reading
a set of sentences having the same phoneme distribution as
Japanese ADS. The recordings contained in this corpus can
be seen as a more formal and carefully pronounced speech
register, further called RS (read speech) in this paper. All
three datasets have been fully transcribed and annotated at
the segmental level.

We computed the number of occurrences of each of the
five Japanese short vowels (/a/, /e/, /i/, /o/, /W/), for each
speaker in our three datasets. Then, we considered only the
speakers which had, for each of the five vowel categories
and across the three registers, at least 100 vowel instances,
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resulting in 15 speakers. For these speakers, we randomly
selected, from each register and vowel category, a number
of examples equal to the minimum number of examples in
any vowel class (107). Thus, our final dataset had, for each
register and speaker, 5×107 vowel instances, totaling 24,075
vowel tokens.

As high-level representations, we used the first two for-
mants (F1 and F2) values of each vowel, obtained using
Praat (Boersma, 2002), a software for phonetic analyses. The
first five formants were extracted, considering as maximum
value for the formant search range 5500 Hz and applying
pre-emphasis to frequencies above 50 Hz. The values of the
first two formants extracted from the center of each 25 ms
analysis frame (with a 10 ms frame shift) were employed.
Thus, for each frame we had a feature vector composed of
two values.

Additionally, low-level audio representations (Mel Fre-
quency Cepstral Coefficients – MFCCs) were extracted from
each vowel. They were computed as follows. Fist, a short
term power spectrum was computed every 10 ms over a win-
dow of 25 ms (modelling the frequency decomposition in the
cochlea). The different frequencies were then averaged over
a mel scale (corresponding to the auditory critical bands),
and a logarithmic compression was applied (reducing the
dynamic range). The resulting log spectrum was converted
back into the time domain via a discrete cosine transform,
and only the first 12 coefficients (plus the signal energy)
were retained. Up to and including the log compression,
these steps are similar to those used in models of auditory
processing. The discrete cosine transform is a technique to
make the different components statistically independent, and
is similar to running a principal component analysis over the
log spectrum. We employed the Python package spectral1 for
the extraction of the MFCC features.

Analysis. In order to determine the hyperarticulation
and variability measures, we represent each vowel by the fea-
ture values (two formants or thirteen MFCCs) extracted from
the central frame of the vowel. For calculating the hyperar-
ticulation, we define the category center as being its centroid
(the vowel closest, on average, to all the other vowels of that
category) and the average Euclidean distance between cate-
gory centers is reported. Variability is computed as the av-
erage Euclidean distance between all vowel pairs from the
same category.

To compute separability, we calculated the normalized
Euclidean distance between each vowel class pair, for each
register and speaker separately, employing the same mea-
sure as in Miyazawa et al. (2017). The distance between two
vowel classes i and j is defined in Equation 1, where K rep-
resents the size of the feature vector, µik the mean and σik the
standard deviation of the kth element of the feature vector
for the class i. It represents the distance between the means
of the classes, normalized by their standard deviation. Thus,

for equal mean values, a lower standard deviation would re-
turn a higher distance. Similarly to the hyperarticulation and
variability measures, the distance used for determining sep-
arability was computed on the features extracted from the
central frame belonging to the selected vowels.

Di j =

√√
K
∑K

k=1(µik − µ jk)2∑K
k=1 σ

2
ik +
∑K

k=1 σ
2
jk

(1)

For each of these measures, ANOVAs and paired two-
tailed t-tests were applied to the per-speaker results in order
to check the statistical significance of the differences between
registers.

Results and discussion

We illustrate in Fig. 2 the results for hyperarticulation
and variability (see Fig. I of the Supplementary Mate-
rials for a more detailed illustration, showing individual
speaker values). A two-way ANOVA, with distance as
dependent variable, register as independent variable, and
speaker as random variable was run, separately, for each
type of distance (between-category for hyperarticulation and
within-category for variability). For the formant features,
it showed significant register effects for both variability
[F(2, 42) = 17.37, p = 3.2e−6, η2 = .453] and hyperarticu-
lation [F(2, 42) = 10.57, p = 1.9e−4, η2 = .335]. Analysing
hyperarticulation with t-tests revealed a similar pattern to the
one reported by Miyazawa et al. (2017): more hyperarticula-
tion for RS than for ADS (t = −6.01, d f = 14, p = 3.2e−5),
for IDS than for ADS (t = −3.40, d f = 14, p = .004), as
well as for RS than for IDS (t = −2.51, d f = 14, p = .025).
We then investigated the hypearticulation of the three cor-
ner vowels (defined as the average of the /a/-/i/, /a/-/W/ and
/i/-/W/ distances) observing, also in this case, a larger dis-
tance between these categories in IDS than in ADS (t =

−4.14, d f = 14, p = .001). However the hyperarticula-
tion effect observed for the corner vowel categories was not
more enhanced, compared to the overall hyperarticulation
(t = 1.99, d f = 14, p = .066). In terms of variability, our re-
sults further replicate the findings of Miyazawa et al. (2017):
a high variability for IDS, followed by ADS (ADS-IDS:
t = −4.22, d f = 14, p = 8.6e−4) and the lowest variability
for RS (ADS-RS: t = 2.37, d f = 14, p = .033, IDS-RS: t =

7.33, d f = 14, p = 3.7e−6). We then examined whether the
age of the infant has an effect on the hyperarticulation or vari-
ability present in IDS. For this, we fitted two linear regression
models, with the infant’s age (in days) as continuous inde-
pendent variable. None of the ANOVA analyses performed
on the models showed a significant effect of age on our vari-
ables of interest ([F(1, 13) = 1.14, p = .305, η2 = .081] for
hyperarticulation and [F(1, 13) = 2.37, p = .148, η2 = .154]
for variability).

1https://github.com/mwv/spectral
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(a) Formants (b) MFCCs

Figure 2. Between-category distance (Hyperarticulation) versus Within-category distance (Variability), averaged across the
five Japanese vowels and across speakers, for formant features (a) and MFCCs (b). Displayed are the p-values of uncorrected
paired t-tests (*: p < .05, **: p < .01, ***: p < .001).

For MFCCs, the ANOVA revealed significant register ef-
fects for both variability [F(2, 42) = 96.16, p < 2e−16, η2 =

.821] and hyperarticulation [F(2, 42) = 6.34, p = .004, η2 =

.232]. Post-hoc t-tests revealed a similar pattern to the one
obtained with formant features: more hyperarticulation for
RS than for ADS (t = −5.89, d f = 14, p = 3.9e−5) and
for IDS than for ADS, but no difference between IDS and
RS (t = −1.76, d f = 14, p = .1). Although the ADS-
IDS contrast was found to be only marginally significant
(t = −1.95, d f = 14, p = .071), no previous study that
found hyperarticulation in IDS looked at the entire speech
spectrum. It might be that the phonetic enhancement is lim-
ited to or more pronounced in the lower part of the spec-
trum, where the first two formants are found. When look-
ing at the average distance between the three corner vowel,
we see no difference in hyperarticulation between ADS and
IDS (t = −1.44, d f = 14, p = .172) and no difference be-
tween the hypearticulation of all the vowels versus that of
the corner vowels (t = −0.36, d f = 14, p = .724). Also
for variability, the results are similar to the ones attained
with formants: the highest variability for IDS, followed by
ADS and then RS (t = −2.8, d f = 14, p = .014 for ADS-
IDS, t = −9.82, d f = 14, p = 1.2e−7 for ADS-RS and
t = 14.43, d f = 14, p = 8.5e−10 for IDS-RS). Repeat-
ing the same analyses as for formant features, revealed no
significant effect of the infant’s age on either hyperarticula-
tion ([F(1, 13) = 0.74, p = .406, η2 = .054]) or variability
([F(1, 13) = 0.47, p = .504, η2 = .035]).

Turning now to the results obtained for separability, a
two-way ANOVA analysis, with the normalized Euclidean
distance as dependent variable and register as independent
variable, showed a significant effect of register [F(2, 42) =

13.55, p = 2.9e−5, η2 = .392], for formant features. The best
separability was obtained with the RS dataset, followed by

ADS and IDS. Post-hoc t-tests showed that the difference in
separability between ADS and IDS was not significant (t =

−0.38, d f = 14, p = .71), whereas the difference between RS
and ADS was significant (t = −3.75, d f = 14, p = .002) (the
IDS-RS difference was significant: t = −5.63, d f = 14, p =

6.2e−5). An identical ANOVA analysis revealed a significant
effect of register [F(2, 42) = 168.7, p < 2e−16, η2 = .889]
also when spectral representations were employed. Similarly
to the formant feature set, the best separability was reached
with the RS dataset, followed by ADS and IDS (ADS-IDS:
t = 0.07, d f = 14, p = .94, ADS-RS: t = −16.32, d f =

14, p = 1.7e−10, IDS-RS: t = −13.18, d f = 14, p = 2.8e−9).
No effect of infant’s age on separability was observed for
either formants ([F(1, 13) = 0.47, p = .147, η2 = .155]) or
MFCCs ([F(1, 13) = 0.47, p = .368, η2 = .063]). Fig. 3
shows the results obtained for separability, employing the
two feature sets.

These findings are in line with those one would expect
based on the results for within- and between-category dis-
tance: RS, being both hyperarticulated and not very vari-
able, yields the best separability results. IDS tends to be
hyperarticulated, but also more variable, with no overall pos-
itive effect on separability (an ANOVA restricted to ADS and
IDS revealed no effect of register: [F(1, 28) = 0.13, p =

0.72, η2 = .005] for formants and [F(1, 28) = 0.006, p =

0.94, η2 = .0002] for MFCCs), results which are congruent
with those of Miyazawa et al. (2017). The counteracting ef-
fects of hyperarticulation and variability for IDS compared
to ADS and the net lack of positive effect on separability is
also similar to Guevara-Rukoz et al. (2018), despite a very
different analysis method. Overall, RS comes across as an
unequivocal case of clear speech, with both hyperarticula-
tion and reduced variability, giving a much better separability
than the other two registers. IDS, on the other hand, does not
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(a) Formants (b) MFCCs

Figure 3. Normalized Euclidean distance (within-speaker separability) for the five Japanese short vowels, assessed in three
registers (ADS, IDS, RS), for formant features (a) and MFCCs (b). The computed distance is averaged across all vowel pairs
of a speaker. Displayed are the p-values of uncorrected paired t-tests (*: p < .05, **: p < .01, ***: p < .001).

qualify as clear speech, at least as far as learning of phonetic
categories is concerned.

Experiment 2

In this experiment, we test the role of between-speaker
variability on the learning of phonetic categories and its gen-
eralization to a new speaker in ADS. For this, we train each
of the algorithms to categorize the five Japanese vowels on a
subset of the tokens (the training set) and compute the clas-
sification error rate on a different subset (the held out test
set). We consider two conditions: in the mono-speaker con-
dition the ‘infant’ is trained with a single ‘parent’, while in
the multi-speaker case, the training is done with a large ‘fam-
ily’ of 14 speakers. In both case, the amount of exposure
(number of vowel tokens) is kept the same. If robustness is
helped by variability, one should obtain better generalization
in a large, rather than in a small ‘family setting’. In both
conditions, the testing is always done on a novel speaker.

Methods

Learning algorithms. Six different learning algorithms
were employed in this study: Naive Bayes (NB), Near-
est Neighbour (NN), Expectation Maximization clustering
(EM), Hierarchical Clustering (HC), Dirichlet Process Gaus-
sian Mixture Model (DPGMM), and Self Organizing Maps
(SOM). The first two are supervised (assuming that the cat-
egory labels are available during training), the last two are
unsupervised (no information besides the speech represen-
tation) and the middle two we call partially unsupervised,
as the only supervision comes from knowing the number
of phonetic categories. Half of these algorithms (NB, EM,
DPGMM) assume that categories are Gaussian, half do not.
For the first five algorithms we used the implementation of-

fered by the scikit-learn machine learning library (Pedregosa
et al., 2011), while the last algorithm was part of the SOM-
brero package (Villa-Vialaneix et al., 2018).

The NB algorithm is a probabilistic parametric supervised
classifier which assumes that each input feature is indepen-
dent from one another and follows a different Gaussian dis-
tribution given a class value. In other words, the categories
are assumed to be Gaussians with a diagonal covariance ma-
trix, whose optimal parameters are estimated by the classifier
during training. At test time, the posterior probability of each
class is computed by decomposing it using Bayes’ formula
and predicting the class label having the highest probability.

The NN classifier is an instance-based non-parametric su-
pervised learning method. It does not assume that the cate-
gories have any particular shape. Instead of deriving statis-
tics from the training example, it stores each training exam-
ple (with their class label) and uses them directly at predic-
tion time. At test time, the algorithm computes the Euclidean
distance between the given instance and the instances stored
during training, and assigns to the new instance the same
class as its closest training instance.

The EM algorithm employs an unsupervised parametric
learning paradigm. It makes the same assumptions about the
shape of the categories as NB, but does not use any class
label at training time. It tries to fit n Gaussian distributions to
the training data, by means of the Expectation Maximization
algorithm, where n is the expected number of categories. At
test time, the algorithm will return the probability of each in-
stance of belonging to each of the clusters. The system was
given the number of vowel classes, five, and it was run for a
maximum of 100 iterations, with a convergence threshold of
1E − 3 and using full covariance matrices.

HC is an unsupervised non-parametric method which
builds a hierarchy of clusters. We employ here the ‘bottom-
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up’ approach, also called agglomerative clustering, in which
each observation starts in its own cluster. Then, moving up
in the hierarchy, new clusters are created by merging exist-
ing ones, such that the sum of squared differences within
the clusters is minimized. Since this method creates a tree-
structure based on the training data, in order to be able to
predict cluster labels for unseen data, we use the predicted
labels on the training set to train a nearest neighbour classi-
fier. Thus, for each test instance, the classifier will return the
cluster label of the closest (in terms of Euclidean distance)
training observation. The number of clusters, five, was given
as a parameter to the model.

DPGMM is an unsupervised Bayesian learning method. It
represents an extension of Gaussian Mixture Model used in
the EM algorithm, as it allows an infinite number of compo-
nents, while being able to automatically determine the num-
ber of clusters from the data. Here, we limit the number of
components to 37, with each component using a full covari-
ance matrix. The number 37 was chosen as it represents the
maximum number of vowels (excluding long and nasal vow-
els) that can be produced by the vocal apparatus, as illus-
trated by the IPA vowel chart (IPA Chart, 2015) and includ-
ing the diacritic vowels. The model was run for a maximum
of 2000 iterations, with a convergence threshold of 1E − 3.
The hyperparameters were set to their default values, since it
has been previously shown that they have a reduced effect on
phoneme class learning (Chen, Leung, Xie, Ma, & Li, 2015).

The SOM algorithm is an unsupervised non-parametric
method based on artificial neural networks, that uses com-
petitive learning to map the input space into a lower dimen-
sional representation. This representation has the property
that more similar observations are mapped closer together
than less similar observations. We used a 6 × 6 grid (giv-
ing 36 nodes, similar to the number of components used for
DPGMM, 37) with a square topology. The algorithm was
run for a maximum of 500 iterations, employing a Gaussian
neighbourhood with a Euclidean distance and a hard affecta-
tion.

Analysis. To compute generalization, all six learning al-
gorithms were run using the same experimental setting: The
sampled vowel instances, for each register and speaker, were
randomly split into a train and a test set, respectively, with
the train set containing 87 instances of each vowel and the
test set the remaining 20 instances. The models were trained
and tested separately for each of the 3 registers and 15 speak-
ers. The training and test sets were used in a mismatched
condition (e.g. testing on one speaker while having trained
on another speaker). In the mono-speaker case, 210 tests
(14 train speakers x 15 test speakers) were run using ADS
data, averaged within speaker and then the average across the
speakers reported. For the multi-speaker case, a train set was
created for each speaker, containing randomly sampled vow-
els from the mono-speaker condition train sets of all the other

14 speaker, except the one on which we tested. The distribu-
tion of speakers was uniform, while keeping the amount of
training instances constant (87 instances x 5 vowels). Thus,
we tested on one ADS speaker, while having trained on a set
containing vowels from the remaining 14 speakers and we
computed the average across the 15 speakers.

The same feature vectors were used to represent each
speech frame as in the previous experiment (F1/F2 values
or 13 MFCCs). Differently from the analysis in Experi-
ment 1, which considered only the central frame of each
vowel to compute hyperarticulation, variability and separa-
bility, we use here all the frames of a vowel. For example, if
a vowel has a length of 15 frames, the machine learning al-
gorithms will classify each of the 15 frames individually. As
the classifiers take a frame-based decision, returning class-
probabilities (or binary 0/1 decision values, in the case of
NN, HC and SOM) for each frame, and wanting to perform
per-phoneme evaluations, we summed the class probabilities
across all frames belonging to a vowel instance and the class
having the highest sum was considered to be the predicted
one. For the evaluation of the unsupervised algorithms (EM,
HC, DPGMM and SOM), the obtained clusters were first
mapped to the five phoneme classes, by minimizing the clas-
sification error on the training set, and then the same evalua-
tion as for supervised methods was applied. The results were
evaluated using the F-score, a standard evaluation measure
for classification tasks. It represents the harmonic mean of
precision (the proportion of correctly classified instances out
of the total number of instances classified as belonging to
that class) and recall (the proportion of correctly classified
instances out of the total number of instances belonging to
that class). It takes values between zero and one, the lat-
ter value representing a perfect classification. Because the
unsupervised algorithms (DPGMM and SOM) may classify
vowels into a sixth class (containing all instances not being
assigned to one of the five gold classes), we use the micro-
averaged F-score, which computes the true positives, false
positives and false negatives over the entire five classes. Each
speaker contributed one data point to the statistical analyses,
the classification F-score obtained for the test set correspond-
ing to that speaker.
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Results and discussion

The results obtained are illustrated in Fig. 4.2 We investi-
gated the role of number of speakers in the train set condition,
the type of feature used, the supervision type and the induc-
tive bias of the models, by fitting a linear model with these
factors as independent variables and the classification F-
score as the dependent variable. A subsequent ANOVA anal-
ysis revealed significant main effects of the following predic-
tors: supervision type [F(2, 336) = 288.6, p < 2.2e−16, η2 =

.432], inductive bias [F(1, 336) = 65.4, p = 1.1e−14, η2 =

.049] and feature type [F(1, 336) = 146.7, p < 2.2e−16, η2 =

.110], as well as significant interactions between supervision
type and feature type [F(2, 336) = 75.3, p < 2.2e−16, η2 =

.113] and between supervision type, inductive bias and fea-
ture type [F(2, 336) = 23.1, p = 4.1e−10, η2 = .034]. The
two-way interaction between number of speakers and super-
vision type [F(2, 336) = 2.3, p = .099, η2 = .003], as well as
between number of speakers and inductive bias [F(2, 336) =

3.4, p = .067, η2 = .003], were found marginally significant.
The analysis shows that increasing the number of speak-

ers present in the training set has little or no effect on the
overall generalizability. For formant features, the effect is
not uniform across classes of algorithms, partially unsuper-
vised algorithms being helped by an increased number of
speakers in the train set (a post-hoc t-test showed a signif-
icant effect for both EM: t = −3.59, d f = 14, p = .003,
and HC: t = −2.44, d f = 14, p = .029), and little change
for the other classes of algorithms. For MFCCs, the direc-
tion of the effect depends on the class of algorithms, a pos-
itive one for supervised algorithms (only NB reached sig-
nificance, t = −9.72, d f = 14, p = 1.3e−7), and a nega-
tive one for unsupervised algorithms (only SOM significant,
t = 2.43, d f = 14, p = .029).

This result is interesting. It shows that the idea that high
variability is beneficial to induce robust learning is not log-
ically warranted. Only when the number of phonetic cate-
gories is known (supervised and partially unsupervised algo-
rithms) does a higher number of speakers bring a small sig-
nificant improvement in the learning performance. In con-
trast, when the learning algorithm is completely unsuper-
vised, high variability has either no effect or a detrimental
one. The net result of speaker variability is therefore depen-
dant on the learning strategy employed by infants. A pure
bottom-up infant would be hurt by high variability, but an
infant relying on some sort of lexical feedback might gain
some benefit from it (to the extent that the high variability
does not, itself, impede lexical learning).

Experiment 3

In this experiment, we test whether exposure to the pho-
netic variability of IDS could help build more robust cate-
gories, that generalize to a new speaker in ADS.3 We com-

Figure 4. Within-register generalization to novel ADS speak-
ers for the classification of the five Japanese short vowels
by six learning algorithms, trained with ADS data from one
speaker (mono) or 14 speakers (multi), on formant features
and MFCCs. The scores represent average F-scores cross-
validated on a held out test set of one novel speaker. Dis-
played next to each point are the p-values of uncorrected
paired t-tests (*: p < .05, **: p < .01, ***: p < .001). The
grey line represents the equal-performance line. Note that
the points corresponding to NN, for the two feature types,
are overlapping.

pare this to a putative infant who would be trained on ADS
or RS. If robustness is helped by IDS variability, one should
obtain better generalization when training on this register,
than with ADS or RS data. The tests are conducted on
each speaker separately, resulting in a generalization score
for each speaker.

Methods

The same format of train and test sets were used as in
the mono-speaker condition of Experiment 2. Separate train
sets were created for each register and speaker, while the test
sets were identical as in the previous experiment (ADS data).
Then, for each register, 210 tests were run, within-speaker
average classification performance computed and the aver-
age across the 15 speakers presented. The same evaluation

2We report here the results obtained when running each algo-
rithm once, with a more detailed analysis included in the Supple-
mentary Materials, Section S2. While three of the employed models
(EM, DPGMM, SOM) are stochastic, the deviation across 100 runs
was low (in the majority of cases, it was lower than 0.005, with
a maximum obtained deviation of 0.016 for the DPGMM MFCC
multi case). An analysis of the results taking into account all 100
runs is presented in the same section of the Supplementary Materi-
als.

3For an experiment testing the generalizability to a novel IDS
speaker, the reader is invited to see Section S4 of the Supplementary
Materials.
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was performed as previously.

Results and discussion

Fig. 5 illustrates the detailed findings, with the ADS-IDS
comparison in the left panel and the ADS-RS comparison
in the right panel.4 The interaction between register, the
characteristics of the learning algorithms (type of supervi-
sion and inductive bias) and the feature type were analyzed
by fitting a linear model with F-score as the response variable
and the previously mentioned variables as predictors. An
ANOVA analysis of the model fitted with the ADS-IDS data
revealed significant main effects of all the predictors: regis-
ter [F(1, 336) = 17.2, p = 4.2e−5, η2 = .011], supervision
type [F(2, 336) = 376.5, p < 2.2e−16, η2 = .467], inductive
bias [F(1, 336) = 81.5, p < 2.2e−16, η2 = .051] and feature
type [F(1, 336) = 192.4, p < 2.2e−16, η2 = .119], as well as
significant interactions between register and supervision type
[F(2, 336) = 4.6, p = .011, η2 = .006], between supervision
type and feature type [F(2, 336) = 90.8, p < 2.2e−16, η2 =

.113] and between supervision type, inductive bias and fea-
ture type [F(2, 336) = 11.9, p = 9.7e−6, η2 = .015]. The
four-way interaction of the predictors was found marginally
significant [F(2, 336) = 2.9, p = .054, η2 = .004].

Running the same analysis on the ADS-RS data, showed
similar results to the ADS-IDS comparison: a significant
main effects of all the predictors, register [F(1, 336) =

14.2, p = 2.0e−4, η2 = .012], supervision type [F(2, 336) =

277.8, p < 2.2e−16, η2 = .458], inductive bias [F(1, 336) =

35.3, p = 7.1e−9, η2 = .029] and feature type [F(1, 336) =

113.0, p < 2.2e−16, η2 = .093], as well as significant inter-
actions between register and supervision type [F(2, 336) =

5.0, p = .007, η2 = .008], between supervision type and fea-
ture type [F(2, 336) = 50.4, p < 2.2e−16, η2 = .083], be-
tween inductive bias and feature type [F(1, 336) = 5.7, p =

.018, η2 = .005]. and between supervision type, inductive
bias and feature type [F(2, 336) = 15.4, p = 3.9e−7, η2 =

.025].
The previous analyses show that the higher variability

present in IDS does not make it good for generalization. We
can actually see that in a majority of cases, IDS trained mod-
els are worse than ADS trained models. In fact, RS, which
is less variable than ADS, manages to yield better gener-
alization than ADS itself, both in the case of formant fea-
tures (for two of the six algorithms) as well as in the case
of spectral representation (for four of the six algorithms). In
other words, RS is not only a typical case of hyperarticulated
speech, but it can also help learning (despite its lack of vari-
ability).

General discussion

Compared to ADS, IDS has been claimed to be simultane-
ously hyperarticulated (the target categories are farther apart
from one another, e.g. Kuhl et al., 1997; D. Burnham et al.,

2002) and more variable (the tokens of a single category are
more distinct from one another, e.g. Kirchhoff & Schimmel,
2005; McMurray et al., 2013; Cristia & Seidl, 2014). These
two properties, in turn, have been claimed to help phonetic
learning for the following reasons: Hyperarticulation makes
the categories more separable, hence more easily learnable
(Kuhl et al., 1997). Variability helps to build more robust
categories, presumably by providing more extreme exam-
ples making the categories more distinguishable (Eaves et
al., 2016) and enabling to generalize better to novel speakers
(Kuhl, 2000). Putting these two properties together would,
therefore, attribute to IDS an overall facilitatory effect for
robust phonetic category learning. In this paper, we set out
testing each of these premises separately, and then exploring
their overall predicted effect on category robustness, which
we operationalized through the ability of machine learning
algorithms to generalize to a novel ADS speaker. We com-
pared the learning performance obtained using ADS and IDS
data, with that obtained with RS, a register displaying an in-
creased hyperarticulation, similar to IDS, and a lower vari-
ability, such as ADS. By using a register with these charac-
teristics, we attempted to better untangle the effects of hyper-
articulation and variability on phonetic learning.

In Experiment 1, we first found in our dataset modest
evidence of hyperarticulation in IDS compared to ADS (as
measured with a between-category distance), with this effect
reaching significance only for the formant representation, but
not for MFCCs. Using the same metric, we found a stronger
effect for RS which was significantly hyperarticulated when
compared to standard ADS, in both formant and MFCC rep-
resentations. Second, we observed, as expected, that IDS is
more variable than ADS, which is itself more variable than
RS (all contrasts significant for both representations). Third,
when we measured separability, we saw that the two oppo-
site effects of hyperarticulation and higher variability coun-
teracted each other, resulting in a null effect, with IDS not
being more separable than ADS.

This is consistent with previous findings on the same
dataset, but using different metrics (Martin et al., 2015;
Miyazawa et al., 2017; Guevara-Rukoz et al., 2018). Unsur-
prisingly, we found that separability was strongest for RS,
which is both hyperarticulated and less variable. As the hy-
perarticulation phenomenon does not affect all vowel cate-
gories equally (Cristia & Seidl, 2014), a larger effect on the
corner vowels might suggest a learning mechanism similar
to the one proposed by Adriaans and Swingley (2017), by
which the IDS hypearticulated tokens support infants’ cate-
gorical learning. Employing the formant feature set, we have
indeed noticed significantly larger distances between the

4The standard deviation across the 100 runs of the three stochas-
tic models was very low (< 0.005 in all cases). An analysis of the
results taking into account all 100 runs and other detailed results are
presented in the Supplementary Materials, Section S3.
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(a) ADS vs. IDS comparison (b) ADS vs. RS comparison

Figure 5. Generalization to novel ADS speakers for the classification of the five Japanese short vowels by six learning algo-
rithms, in either ADS, IDS or RS. Comparisons between ADS and IDS (a) and between ADS and RS (b) respectively, are
illustrated when formants or MFCC features were used. The scores represent average F-scores cross-validated on a held out
test set of one novel speaker. Displayed next to each point are the p-values of uncorrected paired t-tests (*: p < .05, **:
p < .01, ***: p < .001). The grey line represents the equal-performance line.

point vowels. It remains to be seen whether the marginal ad-
vantage observed for these vowel classes over all the classes
is exploited by infants and whether it has an impact on the
whole learning process. Further experimental studies would
be required to test such hypotheses.

In Experiment 2, we directly tested the claim that inter-
speaker variability during learning can be beneficial for cat-
egory robustness. Specifically, we manipulated the num-
ber of speakers in the training set, reasoning that, all other
things equal, more speakers during training should yield
more speaker-robust categories. This was done by means
of six machine learning algorithms covering a large range
of possible theories of category learning (from supervised
to unsupervised, with Gaussian categories or not). Robust-
ness was measured by generalization to a novel speaker.
We found that although some supervised or partially unsu-
pervised learning algorithm benefit from increased speaker
variability, fully unsupervised algorithms can be impaired by
such variability. Taking into account the fact that, at least ini-
tially, the infant’s learning algorithms may be unsupervised,
it should therefore not be expected that variability is system-
atically beneficial.

Our results show similar trends to those found in the liter-
ature with regard to inter-speaker variability. Even if the dif-
ferences were not significant for all models, the supervised
and partially unsupervised approaches showed a more robust
generalization to a novel speaker when trained on data com-
ing from multiple speakers, mirroring the findings of adult
(Lively et al., 1993) and infant experimental studies (e.g.

Rost & McMurray, 2009; Houston, 2000). Since all the
speech materials used in this study represent recordings of
mothers interacting with their infant, the results in support of
multi-speaker training are also consistent with those obtained
for younger infants in Houston and Jusczyk (2000). These
studies, including ours, stand in contrast to the conclusions
of Kuhl (1979), that low-variability training is sufficient for
robust generalization. However, the age of the infants con-
sidered in those studies differed, with Kuhl (1979) testing
6-months olds, while the age range in the rest of the studies
varied between 7.5 and 15 months. Since different outcomes
were obtained with younger infants, it would be appropriate
to extend our analyses also to speech addressed to younger
infants. Regarding the type of variability, among the exper-
imental studies investigating learning in infants, only Rost
and McMurray (2010) has compared both types of varia-
tion sources considered here. Similar findings were reported,
with intra-speaker variability not helping generalization and
inter-speaker variability giving a better generalization (but
see Trainor & Desjardins, 2002 for a study showing that
intra-speaker variation of another acoustic parameter, pitch
range, may help vowel acquisition).

In Experiment 3, we turned to measuring category robust-
ness in different conditions of intra-speaker variability. Our
results show that despite being more variable than the other
two registers, IDS yields consistently worse, not better, gen-
eralization than ADS. This means that the type of within-
speaker variability exhibited in the IDS register does not rep-
resent a good preparation for the between-speaker variability
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exhibited in the generalization tests. However, and somewhat
surprisingly, we found that RS can be a good preparation
for ADS categories despite being less variable. This could
point to a possible useful role of book reading in language
learning (actually documented in vocabulary development,
see Dickinson et al., 2018).

The analysis of our generalization results showed impor-
tant effects of the model (both supervision type and induc-
tive bias), of the feature types employed, as well as of their
interactions (supervision–feature and supervision–feature–
inductive bias). This has implications for future compu-
tational modelling studies comparing inter-register perfor-
mance, and also for a better understanding of the outcomes
of previous works. Future modelling experiments may take
into account the observations made here, such as the impor-
tance of input features. Although register differences were
not affected by feature type, the latter did interact signifi-
cantly with both supervision type and inductive bias. Re-
garding the previous literature, for instance McMurray et al.
(2013) and de Boer and Kuhl (2003) used the same type of
representations (formants) and obtained very different con-
clusions – an ADS gain in the former (supervised learning,
speech addressed to 9-13-month-olds) and an IDS advantage
in the latter (partially unsupervised, speech addressed to 2-
5-month-olds). Our results are more in line with the former,
although the interaction goes in the direction of the latter (ex-
cept that, in our case, the partially unsupervised algorithms
showed, on average, no difference between ADS and IDS).
They are consistent also with other studies employing super-
vised approaches (Kirchhoff & Schimmel, 2005), indicating
and ADS advantage for generalization. Lastly, our results do
not reflect those of Eaves et al. (2016), since our DPGMM
model employing formant features returned a better perfor-
mance in ADS than in IDS. However, one must note the con-
trasting goals of the two studies (“teaching” vs. learning) and
the subsequent, dissimilar, evaluations (more on this later).

Although we did not find an overall learning advantage
for IDS as opposed to ADS, our experiments revealed in-
triguing patterns when considering the effect of supervision.
Supervised models gave overall better results than partially
unsupervised models, but this effect was larger in ADS than
in IDS. The smaller supervision advantage in IDS might in-
dicate some kind of cognitive advantage – while less could
be learned overall, more could be learned without access to
the labels. This hypothesis, however, is not supported by the
differences between partially unsupervised and unsupervised
models. Here again partially unsupervised models fare gen-
erally better than unsupervised models, but the difference is
stronger in IDS than ADS. This finding may suggest that IDS
might be detrimental when trying to infer categories (includ-
ing their number) directly from the speech signal. Therefore,
the final decision on whether IDS is really worse than ADS
(unsupervised case) or just as good (partially unsupervised

case) may hinge on the availability of other linguistic levels
which could provide additional information (Feldman et al.,
2009), including the number of phonetic categories of the
language (Fourtassi et al., 2014).

In brief, while some of the claims regarding the facilita-
tory effects of hyperarticulation and variability hold for cer-
tain combination of algorithms, register and input represen-
tation, the particular mixture of acoustic properties present
in IDS addressed to 18-24-month-olds does not, generally,
result in a net facilitatory effect as regards phonetic category
learning (for a similar account for consonants, see Ludusan,
Jorschick, & Mazuka, 2019). If anything, IDS tends to have a
small detrimental effect across most algorithms. This seems
to contradict the idea that the primary function of IDS is to
boost language learnability. More analyses are needed to
confirm these results on speech addressed to younger infants.

However, our findings do not contradict some of the
evidence that hyperarticulation helps language learnability,
based on positive correlations between vowel space measures
and later language outcome Liu et al. (2003); Hartman et al.
(2017); Kalashnikova and Burnham (2018). Indeed, RS, a
register exhibiting a high degree of hyperarticulation, gives
the best separability and generalizability in our experiments.
We found, though, that variability can counteract the bene-
ficiary effect of hyperarticulation. Thus, it would be impor-
tant that future studies measure both hyperarticulation and
variability, in order to be able to disentangle their effects on
language outcomes in infants.

In addition, the conclusion that IDS does not help learning
might be moderated by the following four considerations.

First, our study is limited by the characteristics of the cor-
pus that we used. Japanese is only one of the many languages
in which an IDS register has been documented, and it could
be that the acoustic characteristics of IDS and their impact
on learnability is language dependent. For instance, English
has more vowels than Japanese and some of them display
hypoarticulation instead of hyperaticulation (McMurray et
al., 2013; Cristia & Seidl, 2014). Although this particu-
lar phenomenon would seem unlikely to boost learnability
for English IDS, the point remains that the present study
should be extended to more languages. Another property of
our dataset is that it contains IDS addressed to infants be-
tween 18 and 24 months of age, who already have knowledge
about the phonetic categories of their native language. While
some IDS properties seem to undergo age-related changes
(e.g. pitch: Stern, Spieker, Barnett, & MacKain, 1983; Ki-
tamura & Burnham, 2003), evidence exists suggesting that
vowel pronunciation by caregivers is not modulated by the
age of the infant. Longitudinal studies overlapping with the
age range of the infants addressed in our study have shown
that neither Mandarin (Liu et al., 2009) nor American moth-
ers (E. Burnham et al., 2015) modify the size of their vowel
space with the age of the addressee. These results are consis-
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tent with the analyses carried out in Experiment 1, showing
no age effect on our measures of hyperarticulation, variabil-
ity and separability. However, it might be that the infants’
age could have an effect on the variability and on the de-
gree of category separability in IDS, with speech addressed
to younger infants exhibiting different characteristics. Fur-
ther experimental work is needed to establish such effects.
Moreover, although no change in the vowel space of speech
addressed to infants was observed, other IDS features that
might not be entirely independent from vowel hyperarticu-
lation might be adjusted as infants grow older. These could
have influences on the acoustic realization of IDS and the
usefulness of these properties for early language acquisition.
Therefore, extending our study to new languages and dif-
ferent age groups, especially younger infants, would only
help to better establish the generalization of our present find-
ings. In order for this to be done, however, comparable high-
quality audio and carefully annotated speech corpora as the
RIKEN corpus should be created in other languages and for
younger age groups.

Second, IDS affects the whole hierarchy of linguistic
structures. Even admitting that IDS has a null or detrimental
effect on phonetic category learning, this register could have
a positive effect at some other levels (lexical, prosodic, syn-
tactic, semantic), resulting in an overall positive effect on lan-
guage learnability. To have a fuller assessment of the learn-
ability impact of IDS, it is therefore important to extend the
present work to the entire language learning problem. For
this, though, computational algorithms able to learn these
higher levels of linguistic structures from raw speech should
be developed and tested (see Ludusan, Mazuka, Bernard,
Cristia, & Dupoux, 2017; Bernard et al., 2020, for some
preliminary results on the lexical level and Ludusan, Cristia,
Martin, Mazuka, & Dupoux, 2016 for the prosodic level).

Third, Eaves et al. (2016) found that, under certain cir-
cumstances, a high variability training set can improve un-
supervised learning algorithms. This indicates that the detri-
mental effect of variability that we found in Experiment 3
for unsupervised learning is not a mathematical necessity.
Note, though, that Eaves et al. (2016) constructed this high
variability training set using strong informational coupling
between teacher and learner: in this setting, the teacher mon-
itors the effect of input stimuli on the learner’s performance,
and adjusts the stimuli accordingly. Even though we found
that parental IDS stimuli do not help generic learning algo-
rithms, it could be that each infant has a slightly different
learning algorithm – with different weighting of the input di-
mensions, learning speed, random seed (for stochastic algo-
rithms), etc., for which their parent would provide uniquely
tuned IDS stimuli. In other words, parent A could output a
specific IDS uniquely tuned for infant A but not for infant B.
More research is needed to study this hypothesis, including
computational models that estimate the amount and nature

of monitoring feedback needed to yield an optimal “teach-
ing” regime and checking this against real data. Incidentally,
there is some evidence that parents do modulate their IDS
characteristics as a function of the child’s linguistic matu-
rity (Newport, Gleitman, & Gleitman, 1977), or based on
their feedback (Smith & Trainor, 2008; Lam & Kitamura,
2012) or on their speech perception and processing abilities
(Kalashnikova, Goswami, & Burnham, 2018), but that the
correlations with measures of child language are not very
strong, suggesting some limits on parent’s abilities to use this
fine-grained monitoring feedback (Newport et al., 1977).

Fourth, even an overall detrimental effect on learnabil-
ity would not be in contradiction with the fact that infants
do pay more attention to IDS than ADS (Cooper & Aslin,
1994; Fernald, 1985; Werker, Pegg, & McLeod, 1994), and
that language learning is predicted by the amount of IDS
in the environment (Huttenlocher, Waterfall, Vasilyeva, Ve-
vea, & Hedges, 2010; Weisleder & Fernald, 2013). Indeed,
IDS has emotional and social qualities (Trainor, Austin, &
Desjardins, 2000) which may facilitate learning through in-
creased attention and social motivation (Thiessen, Hill, &
Saffran, 2005; Singh, Morgan, & Best, 2002), over and be-
yond information content and learnability considerations. To
take this into account, computational models would have to
be equipped with attentional or social filters, instead of as-
suming that they give equal weight to all input stimuli. This
also raises the intriguing possible existence of optimal child-
friendly registers combining the learnability benefits of RS
and the emotional/attentional benefits of IDS.

To conclude, our study illustrates the general point made
in Dupoux (2018) about the importance of computational
models run on realistic data, instead of idealized or model-
reconstructed data, for shedding light onto unresolved ques-
tions concerning infant language development. Such com-
putational studies are a useful complement to experimental
studies as they can ascertain the functional role of laboratory
measured variables or mechanisms from a learnability point
of view. Vice versa, such models can also suggest new exper-
iments. For instance, we found that speaker variability can
impair certain learning algorithms (supervised algorithms)
but help other ones (unsupervised algorithms). This makes
the prediction that as infants develop and become more able
to exploit top-down information, speaker variability should
have a progressively facilitatory effect. Another prediction
is that the read speech register should be much more potent
than informal registers like IDS or ADS to trigger phonetic
learning in infants. All these predictions can, then, be in-
vestigated by means of experimental or observational infant
studies.
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