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Abstract: Aerobiology is a growing research area that covers the study of aerosols with a biological
origin from the air that surrounds us to space through the different atmospheric layers. Bioaerosols
have captured a growing importance in atmospheric process-related fields such as meteorology and
atmospheric chemistry. The potential dissemination of pathogens and allergens through the air
has raised public health concern and has highlighted the need for a better prediction of airborne
microbial composition and dynamics. In this review, we focused on the sources and processes
that most likely determine microbial community composition and dynamics in the air that directly
surrounds us, the planetary boundary layer. Planetary boundary layer microbial communities are
a mix of microbial cells that likely originate mainly from local source ecosystems (as opposed to
distant sources). The adverse atmospheric conditions (i.e., UV radiation, desiccation, presence of
radicals, etc.) might influence microbial survival and lead to the physical selection of the most
resistant cells during aerosolization and/or aerial transport. Future work should further investigate
how atmospheric chemicals and physics influence microbial survival and adaptation in order to be
able to model the composition of planetary boundary layer microbial communities based on the
surrounding landscapes and meteorology.

Keywords: airborne microorganisms; atmospheric microbial communities; aerosolisation; bioaerosols;
biosphere-atmosphere interactions; long-range transport; aerial transport

1. Introduction

Aerobiology is a growing research area that covers the study of aerosols of a biological origin
(i.e., bioaerosols) suspended in the atmosphere, from the air that directly surrounds us (both indoors
and outdoors) to space by going through the different atmospheric layers (Figure 1). Bioaerosols
include plant debris, pollen, microorganisms (bacteria, fungi, viruses, protozoans, etc.) as well as
biological secretions [1,2] which are mainly emitted by natural (forests, oceans, deserts, etc.) and
urbanized Earth surfaces (agricultural fields, waste water treatment plants, cities, etc.) at different
emission rates [3,4]. Airborne microorganisms, especially bacteria, archaea, and fungi, are of particular
interest as they represent living and potentially metabolically active cells light enough to be lifted
high in the atmosphere by upward airflow [5–7]. During extreme meteorological events such as
volcano eruptions and dust storms, sand-dust associated microorganisms can be ejected tens of
kilometers high in the atmosphere before landing back on the Earth’s surface thousands of kilometers
away [8,9]. Microorganisms from the Bacillus and Micrococcus genera are commonly recovered from
the stratosphere [6,10,11]. Research on the “high life” [5] intends to evaluate the global dispersion
of microorganisms around our planet as well as establish the upper limit of the biosphere boundary
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and infer the probability of life in the universe [12,13]. Other interests are driving investigations
of microorganisms in the lowest atmospheric layer, the troposphere, that surrounds the Earth’s
surface. The role of airborne microorganisms in meteorological processes such as cloud formation
and precipitation [14–17], atmospheric chemistry [14,18–21], and air quality [9,22–24] are currently
motivating multidisciplinary investigations on microbial communities in the troposphere. The capacity
of microorganisms to be transported through the air has raised concern about the role airborne
microorganisms might play in public health with the potential dissemination of plant and human
pathogens as well as allergens [9,25]. The importance of airborne micro-organisms should motivate
the inclusion of a biological component into the existing and future observing infrastructure of the
earth atmosphere.
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Figure 1. The different biological niches investigated in aeromicrobiology. These different niches might
exchange microorganisms and represent different physico-chemical conditions for airborne microorganisms.

Subject to gravity, aerosols (or particulate matter) as well as bioaerosols become concentrated in
the lower part of the troposphere that is called the planetary boundary layer (Figure 1). Microbial
concentrations thus usually show a vertical stratification from the bottom to the top of the troposphere
with average estimated bacterial concentrations of 9 × 102

− 2 × 107 cells/m3 in the planetary
boundary layer (based on six qPCR-based studies: [26–31] and 4 × 101 – 8 × 104 cells/m3 in the highest
part of the troposphere called the free-troposphere (based on three qPCR-based studies [32–34]).
Yet, microbial concentration estimations vary between investigations, which are based on different
sampling strategies. Heterogeneity of methodology in aeromicrobiology is a current issue that will be
discussed in a subsequent section. The troposphere is the most dynamic layer in terms of chemistry
and physics of aerosols and harbors complex chemical reactions and meteorological phenomena
that lead to the coexistence of a gas phase, liquid phases (i.e., cloud, rain, and fog water) and solid
phases (i.e., microscopic particulate matter, sand dust) (Figure 1). The various atmospheric phases
represent multiple biological niches that might harbor different microbial communities (Figure 2) and
different microbial concentrations that might be due to significant differences in physico-chemical
characteristics that constrain either microbial life within the niches or the destruction of specific
members from their source. Liquid-phase associated microbial communities (i.e., associated to
cloud, rain, and fog water) might be particularly different from the microbial communities of the
dry phase of the troposphere [35] (Figure 2). Reviews and field investigations that are specifically
related to cloud-associated microorganisms can be found in [14,36–39]. This review aims to synthesize
knowledge and gaps of knowledge regarding microbial communities in the dry phase of the troposphere
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(i.e., gas and solid phases). Available data allow for assumptions regarding what controls microbial
communities in the troposphere, especially the planetary boundary layer.
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Figure 2. Distribution of the samples coming from different phases of the atmosphere (cloud water,
rain, fog, planetary boundary layer, and free troposphere particulate matter) based on the bacterial
community structure. Public 16S rRNA gene sequencing based datasets were downloaded on
public databases (Table S1 in Supplementary Data). Reads were filtered based on quality using
FASTX-Toolkit then PANDAseq [40] was used to assemble the read 1 and read 2 using the RDP
algorithm (Ramer–Douglas–Peucker algorithm). The resulting sequences were annotated at the genus
level by RDP Classifier [41] using the RDP 16srrna database and an assignment confidence cutoff of 0.6.
The PCo (Principal coordinates) analysis (components 1 and 2 in (a), components 2 and 3 in (b)) of the
Bray–Curtis dissimilarity matrix is based on the relative abundances of the different bacterial genera.

2. Microbial Cell Dynamics in the Troposphere

While airborne microbial concentrations have been repeatedly measured in the lower troposphere
around our planet using culture-dependent and molecular analyses [27–31,42–44], cell concentrations
in the upper troposphere and stratosphere remain unknown. In-flight collection of microorganisms
in the upper troposphere and stratosphere remains expensive and an engineering challenge which,
due to the likely very low cell concentrations in the stratosphere, suffers from aircraft-associated
contamination [6,7,13]. It is likely that airborne microbial concentrations tend to decrease from the lower
troposphere up to the upper troposphere [45] (up to fifteen kilometers) and the stratosphere [32,46]
although the rate of decline is unknown. The vertical gradient in microbial concentration suggests
that microbial cell fluxes might be upward in the atmosphere. Downward microbial cell flow coming
from the stratosphere and the high troposphere might be quantitatively minor (Figure 3) and thus
have little impact on airborne microbial concentrations and the composition of the low troposphere.
Exceptions to the rule might occur during extreme meteorological events such as volcano eruptions,
hurricanes, and sand dust storms. In the latter case, microorganisms associated to large particulate
matter, such as macroscopic sand dust, could be lifted high in the troposphere, travel along global air
masses over thousands of kilometers then settle back to the Earth’s surface due to gravity, precipitation,
and atmospheric circulation [9,12,13,47]. The downward flow of large diameter-particles and their
associated microorganisms that have been transported through the upper troposphere might disturb
the structure of airborne microbial communities of the downwind area both quantitatively, with an
increase in microbial concentration, and qualitatively, with a change in microbial composition and size
distribution [9,31,47–51]. Airborne microbial cells exist mainly as aggregates or attached to particulate
matter (size range from less than one nanometer up to hundreds of micrometers like sand dust),
while airborne fungi exist mainly as single spores [52]. Microbial cells entering freely in the atmosphere
can attach to existing particulate matter or other microbial cells [53]. Conversely, particle-attached
microbial cells can detach from their support in the air. Based on a compilation of data from more than
one hundred investigations, Clauss et al. [52] determined that 15% of cultivable airborne bacterial cells
were on particles <2.1 µm (size) and 25% on particles >7.2 µm, and that cultivable airborne fungal
spores and cells were mainly distributed on particles between 1 and 3.2 µm (median-based values) on
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average in outdoor air. The size distribution was shown to depend on the aerosolization processes (sea
spray, bubble-bursting in whitecaps, blasting and splashing raindrops, etc., [54–56]) and meteorological
conditions at the time of aerosolization such as air relative humidity [52]. Particulate matter and
bioaerosols in the planetary boundary layer, the lower part of the troposphere (Figure 1), are moved to
the rhythm of the air masses that are subject to mechanical and thermal convective turbulence partly
controlled by the ground roughness and the Earth’s surface heat [57]. As a consequence, the planetary
boundary layer’s height changes according to location and even time of day throughout the year.
In contrast, the free troposphere (above the planetary boundary layer) tends to be vertically stable and
driven horizontally by geostrophic wind. Aerosolized microbial cells generally enter the planetary
boundary layer from which a yet unknown quantity might be transferred to the free troposphere
that might depend on the meteorological conditions and global air circulation. Within the planetary
boundary layer, airborne microorganisms might have a residence time of a few days before returning
to the Earth’s surface due to gravity or precipitation (model assuming that microbial cells behave
like non biological aerosols, [58]). In the free troposphere, their residence time might be several days
during which they might be transported over long distances [12]. Despite an obvious continuum of
the troposphere and because of differences in aerosol dynamics, chemical composition, and physical
conditions, investigations on the vertical distribution of airborne microbial communities showed
different microbial communities in the planetary boundary layer and free troposphere [32,46] and
suggested that some microbial taxa might be filtered out during vertical transport [46]. Due to their size,
the largest and densest airborne microbial cells might be less prone to reaching the free troposphere
than lighter cells. This hypothesis was supported by the observed increase in the ratio between bacteria
and fungi at a remote mountain site in Austria (3106 m above sea level, [46]). Another explanation
could be that microbial cells floating in the free troposphere have more time to undergo selection and
adaptation to the abiotic conditions as compared to those in the planetary boundary layer, so that only
the microorganisms that are the most resistant to the harsh tropospheric conditions (UV radiation,
cold temperature, radicals, etc.) survive (physical selection and microbial adaptation will be discussed
in the following sections). Thermophilic strains with high resistance towards extreme conditions,
which are often identified in heavy dust events, were shown to be ubiquitous and significantly increased
in relative abundance in the free troposphere as compared to the planetary boundary layer at a remote
mountain site in Austria (3106 m above sea level, [46]).
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3. Structuring Factors of Microbial Communities in the Planetary Boundary Layer

3.1. Surfaces, Aerosolization, Local Versus Distant Sources

Airborne microorganisms originate mainly from both natural (forests, oceans, deserts, etc.) and
urbanized surfaces (agricultural fields, waste water treatment plants, cities, etc.). Burrows et al. [3,4]
constrained a general atmospheric circulation model using data from the literature and estimated
that 1024 bacteria are emitted into the atmosphere each year at a global scale. Observations of the
microbial diversity in the planetary boundary layer showed that airborne microorganisms from one air
sample might come from many different ecosystems (plants, soil, ocean, etc.) that might explain the
observed large taxonomic diversity of airborne microbial communities. Aerosolization from Earth
surfaces depends mainly on the landscapes (forest, grassland, ocean, etc.) as well as the current
meteorological conditions [59]. Oceanic surfaces were shown to emit less than terrestrial surfaces [4].
Among terrestrial surfaces, grasslands might be the most effective emitters of microorganisms, while ice
potentially emits 100 times fewer microbial cells [4]. Only a few studies investigated the selective
propriety of aerosolization mechanisms, yet aerosolization might be the first critical process controlling
which microorganisms are present in the air [60,61]. In acting as a filtering process, aerosolization
might mediate the ratio between bacterial and fungal cells observed in the air as well as influence the
ratio between the different populations within these kingdoms. Microscopic and molecular biology
analyses showed that bacterial cells are generally in higher concentration compared to fungal cells
(i.e., hyphal fragments) and spores in the planetary boundary layer [32,44,46,48,62,63]. Small-sized
cells, such as bacterial cells that are usually 10 times smaller in size than fungal cells, might be
preferentially aerosolized. Womack et al. [64] observed that the Amazonian forest air was more
loaded in Ascomycota than Basidiomycota fungi. They suggested that Ascomycota fungi might be
preferentially aerosolized because of their single-celled and filamentous vegetative growth forms
that are much lighter than Basidiomycota spores. Low wind speed might be more effective in lifting
light cells and light particulate matter while strong wind speed might also lift macroscopic dust and
associated microorganisms. Aerosolization could also depend on the physiological properties of the
cell membrane. Specific bacterial taxa (e.g., Actinobacteria and some Gammaproteobacteria) and
lipid-enveloped viruses have been proposed to be preferentially aerosolized from oceans as a result
of hydrophobic properties of their cell envelope [60]. At a given site, aerosolization specificity (both
passive and active) might depend on the current meteorology and surface conditioning (vegetation
height, presence of a snow cover, soil composition, etc.) (see [59,64–66], and [67] for fungi). On-site
studies showed that the ratio between fungal fragments (hyphae fragments) and spores from soil
might be of one, and tightly dependent on meteorological conditions (wind speed and direction)
as well as fungal species [68]. Wind turbulence, blasting, and splashing raindrops might mediate
the introduction of microbial cells into the air. Over oceanic surfaces specifically, sea spray and
bubble-bursting in whitecaps (foam crest over the waves) and breaking waves are critical processes
affecting the emission of microbial cells to the atmosphere [54–56]. It is not yet clear in which
conditions rain droplets contribute either to aerosolization or washout of microbial cells from the
air [69], but surface temperature, composition, and relative humidity as well as rain intensity seem
to play important roles. Recent data showed that, of the meteorological factors, wind, temperature,
and relative humidity are particularly important in establishing the planetary boundary layer microbial
community composition [27,59,70] (Figure 3). They can mediate the different inputs of microbial cells
from the different surrounding surfaces (for example with a change in wind direction), and their role
would be even more important if the surrounding landscapes showed a high diversity (high richness
and low evenness) in ecosystems [59]. Sites characterized by strong changes in meteorological
conditions over time would show an even larger temporal variability in the composition of planetary
boundary layer microbial communities [59]. Meteorology is also responsible for the transformation
of the surface conditioning (vegetation height, presence of a snow cover, etc.) throughout the
year. A change in the surface conditioning might lead to a change in the Earth’s surface microbial
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communities and thus a change in the diversity of the aerosolized microbial cells observed throughout
the seasons [42,71–74]. Large and visible particles such as sand dust have provided evidence for
long-range transport of aerosols (i.e., transport over hundreds of kilometers) including bioaerosols.
The aerial long-range transport of microorganisms was particularly studied during dust storm events
originating from Asian and African deserts [8,9,12,31,47,49,50,75–85]. Powerful natural events like
dust storms, hurricanes, volcano eruptions, and forest fires can lift microorganisms up into the high
troposphere and stratosphere, and lead to the aerial transport of microorganisms far away from their
source environments [9]. Some studies observed a complete change of the tropospheric microbial
community abundance and structure of the downwind sites [31,47–51,86]. Dust-associated microbial
communities seem to be taxonomically different from the ones of the troposphere (culture-based
approach) and in higher concentration (up to 10 times higher, see [31,47,48,51]). Under milder weather,
wind speed might mediate the inputs of microbial cells coming from distant sources. Collected airborne
microbial communities might be a mix of microbes originating from local sources and distant sources
whose relative contribution might depend on the global meteorological characteristics (i.e., influence
of the free-troposphere, high wind speed) and the geographical site (i.e., altitude from sea level,
surface conditioning). Recent investigations [59,73] including a global-scale investigation [59] strongly
suggested that proximity has likely a larger impact and that local sources (e.g., surrounding landscapes)
are the main contributors to the airborne microbial community composition (Figure 3). During aerial
transport, airborne microorganisms would be deposited through precipitation and gravitational
settling. The modeled residence time of airborne microbial cells defined as a round and free aerosol of
1 µm of diameter was estimated to be 3.4 days on average [3]. Still, free airborne microbial cells of
1 µm might represent a small fraction (<15%, see [52]) of the planetary boundary layer microorganisms
that undergo the physical selection that might occur during aerial transport (as discussed below).

3.2. Physical and Chemical Conditions that Might Constrain Microbial Life in the Planetary Boundary Layer

Metagenomic investigations of the complex microbial communities of many ecosystems have
provided evidence that microorganism functional signatures reflect the abiotic conditions of their
environment [87–90]. In the planetary boundary layer, like in any atmospheric layer, physical conditions
and a variety of chemical substances interacting with airborne microorganisms might have an effect on
them. Specifically, UV radiation, temperature shocks, desiccation, as well as the presence of free radicals
might constrain microbial life in the dry phase of the planetary boundary layer. These conditions
might be controlling factors in leading to the survival and/or development of microbial taxa with
specific resistance mechanisms and/or functions in the atmosphere. On the one hand, the physical and
chemical conditions might cause the death of non-resistant cells, a process we consider as a physical
selection. Surviving resistant cells might develop if they are active and growing while undergoing a
microbial adaptation (i.e., genetic changes in the genome in response to the physical and chemical
conditions) to the atmospheric environment.

3.2.1. Physical and Chemical Conditions Characterizing the Atmosphere

The highly energetic wavelengths of UV radiation (UV-C ~190–290 nm and UV-B ~290–320 nm)
might be responsible for direct DNA damage that could be lethal. Longer wavelengths (UV-A
~320–400 nm and visible light ~400–800 nm) contribute to intra-cellular reactive oxygen species
(ROS) production that can cause subsequent oxidative damage to DNA, RNA, lipids, and proteins,
altering microbial metabolism and survival [91,92]. Data on the impact of UV radiation on airborne
microorganisms come mainly from investigations using high UV levels such as those found in the
upper troposphere or stratosphere [5,93–96], and might not apply to the planetary boundary layer.
The stratosphere supports by far the highest levels of UV radiation found on Earth, as levels increase
by around 11% with every 1000 m in altitude (WHO). Smith et al. [94] showed that UV radiation
was the most biocidal factor in the low stratosphere and could kill up to 99.9% of Bacillus subtilis
spores after 96 h. However, the authors pointed out that spore resistance might be dependent on
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the environment that the cells germinated [97–99], and consequently, UV resistance might have
been higher if the spores were directly isolated from the stratosphere and not germinated in culture
media as was done in the study. Microbial strains isolated from the upper troposphere and lower
stratosphere exhibited a higher resistance to UV radiation as compared to those from the planetary
boundary layer [95]. Some Deinococcus and Streptomyces strains showed an extreme UV resistance and
tended to form aggregates in culture medium. These aggregates were suggested to be a protection
mechanism [95]. With the exception of sporulation and cell aggregation, no other protective mechanisms
against UV radiation have been observed in airborne microbial communities. Although UV radiation
levels can be extremely high and destructive in the upper atmosphere, it may not be the case in the
planetary boundary layer. Moreover, UV levels perceived by planetary boundary layer microorganisms
might differ depending on geography (for example the tropics harbor higher UV levels) and surface
conditioning (i.e., surface reflectance) [100].

In the same way, air temperature is highly dependent on the latitude and longitude at a given
altitude, and decreases by 0.6 to 1 ◦C for every 100 m increase of altitude. Within the planetary
boundary layer, upward aerial transport of microorganisms with high-speed winds could occur
rapidly and airborne microorganisms might suffer large temperature shocks. Airborne microorganisms
present in an air parcel transported from the surface to a 1 km altitude can undergo a temperature
decrease of 5 to 10 ◦C and a substantial increase in relative humidity [57]. Cold temperatures and
freeze-thaw cycles generally occur at high latitudes and high altitudes. In other ecosystems, they have
been shown to slow down microbial metabolism, decrease membrane fluidity, and influence protein
refolding. Freeze-thaw cycles could additionally lead to mechanical stress that might damage the
cell membrane [101–103]. Freeze-thaw cycles were shown to alter the survival of microbial strains
following UV radiation, H2O2 exposure, and osmotic shock when these factors were tested individually
on strains isolated from clouds belonging to Pseudomonas, Sphingomonas, Arthrobacter, and the yeast
Dioszegia [104]. To date, the role that temperature shocks and freeze-thaw cycles might play on
microorganisms in the planetary boundary layer remains largely unexplored. Their impact might
be closely related to air relative humidity (RH). A large range of RH values could be found within
the planetary boundary layer depending on latitude, altitude, and time of day. Investigations on the
survival of aerosolized microorganisms under different RH showed different results depending on the
species [105,106]. While the survival of airborne Flavobacterium was not affected by RH ranging from
25 to 99% at 24 ◦C [105], mid-range RH negatively impacted mycoplasma survival, but not RH values
outside of this range [106]. Desiccation, like radiation, tends to induce DNA damage [107,108]. In the
environment, desiccation resistance is generally associated to ionizing radiation resistance [107,109–112],
yet the nature of the underlying mechanisms remains unknown. Changes in RH are linked to
evaporation/condensation cycles of water vapor. In a water droplet, evaporation can concentrate
metabolites in the near environment of the cells by up to 1000 times [104]. Evaporation/condensation
cycles induce osmotic changes, leading to water fluxes between the intracellular and extracellular
compartment of the cell to maintain osmolarity. These water fluxes can provoke cell damage,
increase the concentration of metabolites in cells, and increase the concentration of compounds like
radicals and metals around the cell [113,114]. Alsved et al. [115] showed that during evaporation,
Pseudomonas syringae survival was enhanced when the relative humidity rapidly reached the level
where salts become solid. Hence, small and salty liquid droplets were suggested as a more suitable
environment when exposed to evaporation than large and slightly salty liquid droplets [115]. Still,
the effect of evaporation/condensation cycles on airborne microbial communities and the mechanisms
they use to protect themselves remain largely unknown.

The potential impact of the oxidizing nature of the atmosphere that is characterized by an
enhanced presence of radicals (OH, O2

−), nitrate radicals, and OH precursors such as hydrogen
peroxide (H2O2) [57,116] on airborne microorganisms has been mainly investigated in cloud water.
Joly et al. [104] tested the effect of different concentrations of hydrogen peroxide on the survival of
different microbial strains isolated from cloud water. They showed that the 50% lethal concentration of
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H2O2 was different among the strains, and 10 times higher than the typical concentration found in puy
de Dôme (France) cloud water. Increases in ROS could occur during other environmental stresses like
UV radiation as discussed above.

3.2.2. Effects of Atmospheric Conditions on Microbial Life during Aerosolization and Aerial Transport

The atmospheric physical and chemical conditions described above might impact microorganisms
during aerosolization and aerial transport. Laboratory studies on E. coli showed that up to half, and even
99%, depending on the aerosolization mechanism and intensity, of the aerosolized bacterial cells suffered
from cell membrane damage after 10 min of aerosolization [117], which might lead to subsequent death.
Another study showed that the viability of Pseudomonas fluorescens bacteria decreased by over 50% after
90 min of continuous aerosolization [118]. The sublethal damages occurring during aerosolization were
associated to a differential gene expression of respiratory, cold-shock, metabolism, and more generally
stress-response genes [117–121]. Aerosolization in small and salty liquid droplets that dry rapidly was
shown to induce a higher survival rate of Pseudomonas syringae [115]. Since these kinds of liquid droplets
are mainly formed from liquid environments like oceans, aerosolization from oceans might promote
the survival of cells as compared to dry environments like soil [115]. Airborne microbial communities
might be a subsample of the surface microbial communities that underwent a selective process during
both aerosolization and aerial transport. Microorganisms harboring specific physical characteristics
(spore, membrane characteristics, aggregation of cells, etc.) and/or genetic and enzymatic microbial
properties (efficient DNA repair mechanisms, etc.) might be more likely to survive the conditions
(UV radiation, desiccation, etc.) encountered post aerosolization. While microbial cells able to resist
to these conditions have been observed in the air, the question about whether these resistant cells
represent the majority of the airborne microbial community remains. Little is known about the survival
mechanisms of both airborne bacterial and fungal cells and the ratio between resistant and sensitive
cells in the air. Survival mechanisms such as dormancy, sporulation, aggregation among cells, or with
particulate matter as well as specific microbial resistance to the extreme conditions encountered in the
atmosphere are relatively common in the environment [104]. Fungal spores have evolved to survive
and disseminate through the planetary boundary layer and are known to be particularly resistant to
atmospheric conditions and especially to desiccation, UV radiation, and oxidative stress [122]. Yet,
their resistance might have been selected for on Earth surfaces before being aerosolized. A recent
comparative metagenomic study showed that fungi were more dominant relative to bacteria in air
compared to the other planetary bound ecosystems (soil, ocean, etc.) (Tignat-Perrier et al., in revision).
This suggests a selective process for fungi during aerosolization and/or aerial transport and that fungi
might likely survive aerosolization and/or aerial transport better than bacteria due to their innate
resistance to stressful physical conditions (UV radiation, desiccation, etc.). Survival of airborne cells
might be more likely the result of an innate resistance (like fungal spores) than a resistance acquired
while aerially transported. Available data support the hypothesis that planetary boundary layer
microbial communities undergo a physical selection rather than genetic changes that allow a better
survival and/or development once in the air. Moreover, microbial cells might face constantly changing
conditions during aerial transport (changes in temperature, UV radiation, condensation/evaporation of
water, etc.) that could prevent their adaptation. In the ocean, a faster evolution of microorganisms
than their dispersal by ocean currents has been suggested in the Atlantic and Pacific oceans (oceanic
surface current speed around 0.05 m/s, [123,124]). However, air currents could be 100 even 1000 times
faster than surface oceanic currents. Inputs of new cells through aerosolization from Earth surfaces are
significant and continuous in the planetary boundary layer.

4. Potential Impacts of Airborne Microbial Activity on Atmospheric Chemistry

If surviving microbial cells (both resistant and protected cells in particulate matter) remain
active and even undergo a microbial adaptation to the physical and chemical conditions of the
atmosphere while airborne, they might impact the atmospheric chemistry [18,19]. Planetary boundary
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layer microbial activity is expected to be quantitatively the most important within the atmosphere,
as bioaerosols are mainly concentrated in this layer. Yet, atmospheric physical conditions such
as UV radiation and desiccation might significantly affect the metabolic potential of the living
microbial cells. UV radiation has been shown to be a critical factor restraining microbial activity
of the oceanic surface bacterioplankton [125–130]. Irradiance affects bacterioplankton the most in
spring and summer [129] and microbial activity was shown to be suppressed by up to 40% in the
top five meters of the water column in near shore waters [126]. Airborne microbial activity might
have a greater impact at night during which UV radiation does not reach the Earth’s surface and
air relative humidity is typically higher when compared with daytime. Airborne microbial activity
laboratory investigations have mainly been carried out on microorganisms isolated from cloud water
and showed that microorganisms can degrade typical carboxylic compounds found in the air [18,20,36]
(formate, acetate, formaldehyde, etc., [62]) as well as influence the oxidative capacity of clouds through
the reduction of oxidants like H2O2 [21]. Using a liquid medium mimicking the composition of
cloud water and a temperature of 5 ◦C (average temperature of low-altitude clouds), biological
activity was shown to drive the oxidation of carbonaceous compounds during the night (90 to 99%),
while contributing 2 to 37% of the reactivity during the day alongside radical reactions mediated by
photochemistry [20]. rRNA-based studies identified the taxonomy of the potentially active microbial
taxa in the dry troposphere and cloud water [62,131,132]. Epiphytic, parasitic and endosymbiont
bacterial taxa (i.e., Sphingomonas, Methylobacterium, Acidiphilium, Pseudomonas, and Comamonas) have
been suggested as the most active organisms due to their physiological properties (resistance to
temperature and humidity shifts, high levels of UV radiation, etc.) compatible with their maintenance
in the dry troposphere and clouds [38,131]. The same was observed for fungi with plant pathogens
and saprophytic taxa (Pleosporales, Magnaporthales, Xylariales, Conioscyphales, etc.) potentially showing
the highest activities [38,131]. Airborne microbial growth and reproduction have been suggested
in cloud water [62,133]. Sattler et al. [133] suggested that bacterial division in cloud water might
range from 3.6 to 19.5 days (production measurement at 0 ◦C), which was comparable to those of
phytoplankton in the ocean, i.e., about a week [134]. Temperature in the planetary boundary layer
might be higher than 0 ◦C and consequently, the microbial replication time might be less than 4 days.
Residence time in the air might be a critical factor for planetary boundary layer microorganisms
to divide, as microbial replication time might be on the same order as residence time. Most of the
studies evaluating the metabolic potential of airborne microbial communities are based on cultivable
microorganisms, and the conditions (physical and chemical) in which these experiments are carried out
are far from those found in the atmosphere. Moreover, airborne microbial activity-related investigations
have been mainly carried out on microorganisms isolated from cloud water where chemical species are
in solution. Although a high diversity in functional genes has been revealed from planetary boundary
layer microbial metagenomes [135,136], (Tignat-Perrier et al., in revision), the significance of planetary
boundary layer microbial activity on atmospheric chemistry remains unknown.

5. Conclusions

The current development of culture-independent investigations in aeromicrobiology is
producing valuable knowledge regarding the microbial ecology of airborne microbial communities.
Yet heterogeneity in methodology (see [137–140] for recent methodology development and methodology
comparison in aeromicrobiology) remains a major issue that needs to be considered when making
comparisons between investigations. The different sampling strategies, especially the sample collection
duration (a few hours, 24 h, one consecutive week, etc.), principle of collection (i.e., filtration, impaction,
impingement in liquid), and size cut-offs (PM2.5, PM10, etc.) can lead to different interpretations.
The principle of collection is associated to different DNA extraction methods, which both might result
in a DNA recovery of different quality and yield that would subsequently affect sequencing outputs.
Most available data strongly support the significant contribution of local sources (i.e., surrounding
landscapes) and meteorology in the composition of planetary boundary layer microbial communities
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while still recent observations suggest randomization [141]. Physical selection of microorganisms is
likely going on during aerosolization and aerial transport, and might contribute in selecting specific
microorganisms from the underlying planetary bound ecosystems. Thus, planetary boundary layer
microbial communities might not be the sum of the microbial communities of the different surrounding
sources (soil, plants, etc.), but selected microorganisms that are more resistant to atmospheric conditions
(desiccation, UV radiation, etc.), more aerosolized (due to membrane properties for example), and/or
protected in atmospheric particulate matter. A better understanding of the physical selection (i.e.,
how atmospheric chemicals and physics influence microbial survival depending on microbial taxon and
microbial distribution size) occurring during aerosolization and aerial transport is needed to be able to
model the composition of planetary boundary layer microbial communities based on the surrounding
landscapes and meteorological conditions. Although the activity of microorganisms of airborne origin
has been shown on culture medium, airborne microbial activity should be evaluated in situ, i.e., in the
field or under more controlled settings such as in atmospheric chambers. In situ activity, growth and
microbial adaptation of airborne microorganisms might occur but to date no available data support
them. Complex microbial communities (and not individual strains) should be investigated under
controlled environmental conditions in atmospheric chambers that can mimic atmospheric conditions.
These investigations might help detect if microbial communities are active, grow, and even undergo an
adaption while airborne. Meta-omic investigations, especially metatranscriptomics and metaproteomics
are currently very limited approaches (one study exists to date on cloud metatranscriptomics, see [37])
in aeromicrobiology due to the low biomass represented by airborne microorganisms and the sensitivity
of sequencing technologies. Yet, these approaches might be useful for evaluating airborne microbial
activity and should be further developed.
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