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Abstract

In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root and
we compute its multiplicity structure. More precisely, given a polynomial system f = (f1, . . . , fN ) ∈ C[x1, . . . , xn]

N ,
we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions,
to a small deformation of f such that this deformed system has an exact singular root. The iteration simultaneously
converges to the coordinates of the singular root and the coefficients of the so-called inverse system that describes
the multiplicity structure at the root. We use α-theory test to certify the quadratic convergence, and to give
bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of
the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its
strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical
experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations
and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.

1. Introduction

Local numerical methods such as Newton iterations have proved their efficiency to approximate and certify the
existence of simple roots. However, for multiple roots they dramatically fail to provide fast numerical convergence
and certification. The motivation for this work is to find a method with fast convergence to an exact singular point
and its multiplicity structure for a small perturbation of the input polynomials, and to give numerical tests that
can certify it. The knowledge of the multiplicity structure together with a high precision numerical approximation
of a singular solution can be valuable information in many problems.

In [29] a method called later integration method is devised to compute the so-called inverse system or multiplicity
structure at a multiple root. It is used in [26] to compute an approximation of the inverse system, given an
approximation of that root and to obtain a perturbed system that satisfies the duality property. However, this
method did not give a way to improve the accuracy of the initial approximation of the root and the corresponding
inverse system. In [16] a new one-step deflation method is presented that gives an overdetermined polynomial
system in the coordinates of the roots and the corresponding inverse system, serving as a starting point for the
present paper. However, for certification, [16] refers to the symbolic-numeric method in [1] that only works if the
input system is given exactly with rational coefficients and have a multiple root with the prescribed multiplicity
structure.

In the present paper we give a solution for the following problem:

Problem 1.1. Given a polynomial system f = (f1, . . . , fN) ∈ C[x]N and a point ξ ∈ Cn, deduce an iterative
method that converges quadratically to the triple (ξ∗, µ∗, ǫ∗) such that ξ∗ ∈ Cn, µ∗ defines the coefficients of a basis
Λ∗ = {Λ∗

1, . . . ,Λ
∗
r} ⊂ C[dξ∗ ] dual to the set Bξ∗ = {(x− ξ∗)β1 , . . . , (x − ξ∗)βr} ⊂ C[x] and ǫ∗ defines a perturbed

polynomial system fǫ∗ := f + ǫ∗Bξ∗ with the property that ξ∗ is an exact multiple root of fǫ∗ with inverse system
Λ∗. Furthermore, certify this property and give an upper bound on the size of the perturbation ‖ǫ∗‖.

The difficulty in solving Problem 1.1 is that known polynomial systems defining the coordinates of the roots and
the inverse system are overdetermined, and we need a square subsystem of it in the Newton iterations to guarantee
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the existence of a root together with the quadratic convergence. Thus, roots of this square subsystem may not be
exact roots of the complete polynomial system, and we cannot certify numerically that they are approximations of
a root of the complete system. This is the reason why we introduce the variables ǫ that allow perturbation of the
input system. One of the goals of the present paper is to understand what kind of perturbations are needed and to
bound their magnitude.

Certifying the correctness of the multiplicity structure that the numerical iterations converge to poses a more
significant challenge: the set of parameter values describing an affine point with multiplicity r forms a projective
variety called the punctual Hilbert scheme. The goal is to certify that we converge to a point on this variety.
We study an affine subset of the punctual Hilbert scheme and give a new description using multilinear quadratic
equations that have a triangular structure. These equations appear in our deflated polynomial system, have integer
coefficients, and have to be satisfied exactly without perturbation, otherwise the solution does not define a proper
inverse system, closed under derivation. Fortunately, the structure allowed us to define a rational parametrization
of a strata of the punctual Hilbert scheme, called the regular strata. In turn, this rational parametrization allows
certification when converging to a point on this regular strata.

Our method comprises three parts: first, we apply the Integration Method (Algorithm 1) with input f and ξ to
compute an approximation of the multiplicity structure, second, an analysis and certification part (see Section 6
and Algorithm 2), and third, a numerical iteration part converging to the exact multiple root with its multiplicity
structure for an explicit perturbation of the input system (see Section 5).

This paper is an extended version of the paper [28]. The present version contains a new result, presented in
Subsection 5.2, on how the updates of our Newton iteration can be evaluated efficiently from the previous iterates,
without resorting to the symbolic expression of the dual basis in terms of parameters. Furthermore, we give a
more detailed explanation of our examples and numerical experimentation in Section 7. Moreover, in the present
version we included all proofs that were left aside in the proceedings version (Proofs of Propositions 2.3, 4.4 and
4.4; Lemma 2.5; Theorems 2.8, 3.3, 5.1 and 6.1).

Related Work

There are many works in the literature studying the certification of isolated singular roots of polynomial systems.
One approach is to give separation bounds for isolated roots, i.e. a bound that guarantees that there is exactly one
root within a neighborhood of a given point. Worst case separation bounds for square polynomial systems with
support in given polytopes and rational coefficients are presented in [10]. In the presence of singular roots, turned
into root clusters after perturbations, these separation bounds separate the clusters from each other and bound the
cluster size. [34, 35, 11] give separation bounds and numerical algorithms to compute clusters of zeroes of univariate
polynomials. [8] extends α-theory and gives separation bounds for simple double zeroes of polynomial systems, [12]
extend these results to zeroes of embedding dimension one.

Another approach, called deflation, comprises of transforming the singular root into a regular root of a new
system and to apply certification techniques on the new system. [19] uses a square deflated system to prove the
existence of singular solutions. [21] devises a deflation technique that adds new variables to the systems for isolated
singular roots that accelerates Newton’s method and [22] modifies this to compute the multiplicity structure. [30]
computes error bounds that guarantee the existence of a simple double root within that error bound from the input,
[23, 24] generalizes [30] to the breadth one case and give an algorithm to compute such error bound. [25] gives verified
error bounds for isolated and some non-isolated singular roots using higher order deflations. [7, 32, 36, 33, 6, 15]
give deflation techniques based on numerical linear algebra on the Macaulay matrices that compute the coefficients
of the inverse system, with improvements using the closedness property of the dual space. [13, 14] give a new
deflation method that does not introduce new variables and extends α-theory to general isolated multiple roots
for the certification to a simple root of a subsystem of the overdetermined deflated system. In [16] a new deflated
system is presented, its simple roots correspond to the isolated singular points with their multiplicity structure. A
somewhat different approach is given in [1], where they use a symbolic-numeric certification techniques that certify
that polynomial systems with rational coefficients have exact isolated singular roots. More recently, [20] design a
square Newton iteration and provide separation bounds for roots when the deflation method of [21] terminates in
one iteration, and give bounds for the size of the clusters.

The certification approach that we propose is based on an algebraic analysis of some strata of the punctual
Hilbert scheme. Some of its geometric properties have been investigated long time ago, for instance in [4, 18, 5] or
more recently in the plane [2]. However, as far as we know, the effective description that we use and the rational
parametrization of the regular strata that we compute have not been developed previously.

The paper is structured as follows. In the next Section we recall the main definitions and algorithms regarding
isolated multiple points. In Section 3 we define the punctual Hilbert Scheme and in Section 4 we show that it
admits a rational parametrization for its regular part, which can be obtained algorithmically. Then in Sections 5
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and 6 we describe the construction and the certification of a Newton procedure for computing a multiple point to
high accuracy. Finally in Section 7 we develop some examples and benchmarks of the proposed approach.

2. Preliminaries

Let f := (f1, . . . , fN ) ∈ C[x]N with x = (x1, . . . , xn). Let ξ = (ξ1, . . . , ξn) ∈ Cn be an isolated multiple root of
f . Let I = 〈f1, . . . , fN 〉, mξ be the maximal ideal at ξ and Q be the primary component of I at ξ so that

√
Q = mξ.

The shifted monomials at ξ will be denoted for α = (α1, . . . , αn) ∈ Nn by

xα
ξ := (x1 − ξ1)

α1 · · · (x1 − ξn)
αn .

2.1. Duality and differential polynomials
Consider the ring of power series C[[dξ]] := C[[d1,ξ, . . . , dn,ξ]] and we denote dβ

ξ := dβ1

1,ξ · · · dβn

n,ξ, with β =

(β1, . . . , βn) ∈ Nn. We identify C[[dξ]] with the dual space C[x]∗ by considering the action of dβ
ξ on polynomials as

derivations and evaluations at ξ, defined as

〈dβ
ξ | p〉ξ := dβ

ξ (p) = ∂β(p)
∣

∣

ξ
=

∂|β|p

∂xβ1

1 · · ·∂xβn
n

(ξ) for p ∈ C[x]. (1)

More generally, for Λ =
∑

α Λα dα
ξ ∈ C[[dξ]] and p ∈ C[x], we denote 〈Λ|p〉ξ := Λ(dξ)(p) =

∑

α Λα ∂α(p)
∣

∣

ξ
.

Hereafter, we reserve the notation d and di for the dual variables while ∂ and ∂xi
for derivation. We indicate the

evaluation at ξ ∈ Cn by writing di,ξ and dξ, and for ξ = 0 it will be denoted by d. The derivation with respect to
the variable di,ξ in C[[dξ]] is denoted ∂di,ξ

(i = 1, . . . , n). Observe that

1

β!
dβ
ξ ((x − ξ)α) =

{

1 if α = β,

0 otherwise,

where β! = β1! · · ·βn!.
For p ∈ C[x] and Λ ∈ C[[dξ]] = C[x]∗, let p ⋆ Λ : q 7→ Λ(p q). We check that p = (xi − ξi) acts as a derivation

on C[[dξ]]: (xi − ξi) ⋆ dβ
ξ = ∂di,ξ

(dβ
ξ ) = βid

β−ei

ξ . Throughout the paper we use the notation e1, . . . , en for the
standard basis of Cn or for a canonical basis of any vector space V of dimension n. We will also use integrals of
polynomials in C[[dξ]] as follows: for Λ ∈ C[[dξ]] and k = 1, . . . , n, ∫

k

Λ denotes the polynomial Λ∗ ∈ C[[dξ]] such

that ∂dk,ξ
(Λ∗) = Λ and Λ∗ has no constant term. We introduce the following shorthand notation

∫
k

Λ := ∫
k

Λ(d1,ξ, . . . , dk,ξ, 0, . . . , 0). (2)

For an ideal I ⊂ C[x], let I⊥ = {Λ ∈ C[[dξ]] | ∀p ∈ I,Λ(p) = 0}. The vector space I⊥ is naturally identified with
the dual space of C[x]/I. We check that I⊥ is a vector subspace of C[[dξ]] which is closed under the derivations
∂di,ξ

for i = 1, . . . , n.

Lemma 2.1. If Q is a mξ-primary isolated component of I, then Q⊥ = I⊥ ∩ C[dξ].

This lemma shows that to compute Q⊥, it suffices to compute all polynomials of C[dξ] which are in I⊥. Let us
denote this set D = I⊥∩C[dξ]. It is a vector space stable under the derivations ∂di,ξ

. Its dimension is the dimension

of Q⊥ or C[x]/Q, that is the multiplicity of ξ, denoted rξ(I), or simply r if ξ and I is clear from the context.

For an element Λ(dξ) ∈ C[dξ] we define the degree or order ord(Λ) to be the maximal |β| s.t. dβ
ξ appears in

Λ(dξ) with non-zero coefficient.
For t ∈ N, let Dt be the elements of D of order ≤ t. As D is of dimension r, there exists a smallest t ≥ 0 s.t.

Dt+1 = Dt. Let us call this smallest t, the nil-index of D and denote it by δξ(I), or simply by δ. As D is stable by
the derivations ∂di,ξ

, we easily check that for t ≥ δξ(I), Dt = D and that δξ(I) is the maximal degree of elements
of D.

Let B = {xβ1

ξ , . . . ,xβr

ξ } be a basis of C[x]/Q. We can identify the elements of C[x]/Q with the elements of
the vector space spanC(B). We define the normal form N(p) of a polynomial p in C[x] as the unique element b of
spanC(B) such that p− b ∈ Q. Hereafter, we are going to identify the elements of C[x]/Q with their normal form
in spanC(B). For α ∈ Nn, we will write the normal form of xα

ξ as

N(xα
ξ ) =

r
∑

i=1

µβi,α xβi

ξ . (3)
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2.2. The multiplicity structure

We start this subsection by recalling the definition of graded primal-dual pairs of bases for the space C[x]/Q and
its dual. The following lemma defines the same dual space as in e.g. [7, 6, 24], but we emphasize on a primal-dual
basis pair to obtain a concrete isomorphism between the factor ring and the dual space.

Lemma 2.2 (Graded primal-dual basis pair). Let f , I, ξ, Q, D, r = rξ(I) and δ = δξ(I) be as above. Then there
exists a primal-dual basis pair (B,Λ) of the local ring C[x]/Q with the following properties:

1. The primal basis of the local ring C[x]/Q has the form

B :=
{

xβ1

ξ ,xβ2

ξ , . . . ,xβr

ξ

}

. (4)

We can assume that β1 = 0 and that the ordering of the elements in B by increasing degree. Define the set of
exponents in B as E := {β1, . . . , βr} ⊂ Nn.

2. The unique dual basis Λ = {Λ1,Λ2, . . ., Λr} of D ⊂ C[dξ] dual to B has the form

Λi =
1

βi!
dβi

ξ +
∑

|α|≤|βi|
α 6∈E

µβi,α

1

β!
dα
ξ .

3. We have 0 = ord(Λ1) ≤ · · · ≤ ord(Λr), and for all 0 ≤ t ≤ δ we have Dt = span {Λj : ord(Λj) ≤ t} , where
Dt denotes the elements of D of order ≤ t, as above.

A graded primal-dual basis pair (B,Λ) of D as described in Lemma 2.2 can be obtained from any basis Λ̃ of
D by first choosing pivot elements that are the leading monomials with respect to a graded monomial ordering on
C[d], these leading monomials define B, then transforming the coefficient matrix of Λ̃ into row echelon form using
the pivot leading coefficients, defining Λ.

A monomial set B is called a graded primal basis of f at ξ if there exists Λ ⊂ C[dξ] such that (B,Λ) is a graded
primal-dual basis pair and Λ is complete for f at ξ.

Next we describe the so-called integration method introduced in [29, 26] that computes a graded pair of primal-
dual bases as in Lemma 2.2 if the root ξ is given. The integration method performs the computation of a basis
order by order. We need the following proposition, a new version of [29, Theorem 4.2]:

Proposition 2.3. Let Λ1, . . . ,Λs ∈ C[dξ] and assume that ord(Λi) ≤ t for some t ∈ N. Suppose that the subspace
D := span(Λ1, . . . ,Λs) ⊂ C[dξ] is closed under derivation. Then ∆ ∈ C[dξ] with no constant term satisfies
∂dk

(∆) ∈ D for all k = 1, . . . , n if and only if ∆ is of the form

∆ =

s
∑

i=1

n
∑

k=1

νki ∫
k

Λi (5)

for some νki ∈ C satisfying

s
∑

i=1

νki ∂dl
(Λi)− νli∂dk

(Λi) = 0 for 1 ≤ k < l ≤ n. (6)

Furthermore, (5) and (6) implies that

∂dk
(∆) =

s
∑

i=1

νki Λi for k = 1, . . . , n. (7)

Proof. Suppose Λ ∈ C[d] with no constant term satisfies ∂dk
(Λ) ∈ D for all k = 1, . . . , n. To prove (5), we can

proceed exactly as in the proof of [29, Theorem 4.2]: we write ∆ uniquely as

∆ = ∆1(d1, . . . , dn) + ∆2(d2, . . . , dn) + · · · ,+∆n(dn)

with ∆i ∈ C[di, . . . , dn] \ C[di+1, . . . , dn]. Then ∫
i

∂di
∆i = ∆i. Then we prove that by induction on k that if

σk := ∆1 + · · ·+∆k then

∆k =

s
∑

j=1

νkj ∫
k

Λj − (σk−1 − σk−1|dk=0)
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and

σk = ∆k + σk−1 =

s
∑

j=1

νkj ∫
k

Λj + σk−1|dk=0

=

s
∑

j=1

νkj ∫
k

Λj +

s
∑

j=1

νk−1
j ∫

k

Λj|dk=0 + · · ·+
s

∑

j=1

ν1j ∫
k

Λj|dk=0,···d2=0.

Conversely, suppose that Λ ∈ C[d] with no constant term is of the form (5) satisfying (6). Define ∆̄1 = σ̄1 :=
∑s

j=1 ν
1
j ∫
1

Λj and for k = 2, . . . n define

∆̄k :=

s
∑

j=1

νkj ∫
k

Λj − (σk−1 − σk−1|dk=0)

and σ̄k := ∆̄1+ · · ·+∆̄k. Then in the proof of [29, Theorem 4.2] it is shown that ∆̄k ∈ C[dk, . . . , dn]\C[dk+1, . . . , dn]
and

σ̄k =

s
∑

j=1

νkj ∫
k

Λj +

s
∑

j=1

νk−1
j ∫

k

Λj |dk=0 + · · ·+
s

∑

j=1

ν1j∫
k

Λj |dk=0,···d2=0

so we get that ∂dk
(Λ) = ∂dk

(σ̄k) =
∑s

j=1 ν
k
j Λj ∈ Dt as claimed.

Let Q be a mξ-primary ideal. Proposition 2.3 implies that if Λ = {Λ1, . . . ,Λr} ⊂ C[dξ] with Λ1 = 1ξ is a basis

of Q⊥, dual to the basis B = {xβ1

ξ , . . . ,xβr

ξ } ⊂ C[x] of C[x]/Q with ord(Λi) = |βi|, then there exist νki,j ∈ C such
that

∂dk
(Λi) =

∑

|βj|<|βi|

νki,j Λj .

Therefore, the matrix Mk of the multiplication map Mk by xk − ξk in the basis B of C[x]/Q is

Mk = [νkj,i]
T
1≤i,j≤r = [µβi,βj+ek

]1≤i,j≤r

using the notation (3) and the convention that νki,j = µβi,βj+ek
= 0 if |βi| ≥ |βj |. Consequently,

νki,j = µβi,βj+ek i, j,= 1, . . . , r, k = 1, . . . , n,

and we have

Λi =
∑

|βj |<|βi|

n
∑

k=1

µβi,βj+ek
∫
k

Λj

where µβi,βj+ek
is the coefficient of xβi

ξ in the normal form of x
βj+ek

ξ in the basis B of C[x]/Q.
Next we give a result that allows to simplify the linear systems involved in the integration method. We first

need a definition:

Definition 2.4. Let E ⊂ Nn be a set of exponents. We say that E is closed under division if β = (β1, . . . , βn) ∈ E
implies that β − ek ∈ E as long as βk > 0 for all k = 1, . . . , n. We also call the corresponding primal basis
B = {xβ1

ξ , . . . ,xβr

ξ } closed under division.

The following lemma provides a simple characterization of dual bases of inverse systems closed under derivation,
that we will use in the integration algorithm.

Lemma 2.5. Let B = {xβ1

ξ , . . . ,xβr

ξ } ⊂ C[x] be closed under division and ordered by degree. Let Λ = {Λ1, . . . ,Λr} ⊂
C[dξ] be a linearly independent set such that

Λi =
∑

|βj|<|βi|

n
∑

k=1

µβi,βj+ek
∫
k

Λj. (8)

Then D = span{Λ1, . . . ,Λr} is closed under derivation iff for all i, s = 1, . . . , r, |βs| < |βi| and k 6= l ∈ {1, . . . , n}
we have

∑

j:|βs|<|βj|<|βi|

µβi,βj+ek
µβj ,βs+el

− µβi,βj+el
µβj ,βs+ek

= 0. (9)
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Furthermore, (B,Λ) is a graded primal-dual basis pair iff they satisfy (9) and

µβi,βj+ek
=

{

1 for βi = βj + ek

0 for βj + ek ∈ E, βi 6= βj + ek,
(10)

Proof. Assume Λ = {Λ1, . . . ,Λr} is linearly independent and D = span(Λ) is closed under derivation. For t ∈
{0, . . . , δ} denote by {Λ1, . . . ,Λrt} = Λ ∩ C[dξ]t and Dt = span(Λ1, . . . ,Λrt). Then by Proposition 2.3, Λ satisfy
equations (7) for t = 0, . . . , δ and for j = 1, . . . , r, k = 1, . . . , n, we have ∂dk

(Λj) =
∑

|βs|<|βj|
µβj,βs+ek

Λs.

Substituting this to (6) we get for i = 1, . . . , r

∑

|βj|<|βi|

µβi,βj+ek

∑

|βs|<|βj|

µβj ,βs+el
Λs

−µβi,βj+el

∑

|βs|<|βj|

µβj ,βs+ek
Λs = 0. (11)

Then using linear independence and collecting the coefficients of Λs we get (9).
Conversely, assume that (9) is satisfied. Then (11) is also satisfied. We use induction on t to prove that Dt is closed
under derivation. For t = 0 there is nothing to prove. Assume Dt−1 is closed under derivation. Then by Proposition
2.3 if |βj | < t then ∂dk

(Λj) =
∑

|βs|<|βj|
µβj ,βs+ek

Λs for k = 1, . . . , n. Thus for |βi| = t, (11) implies that

∑

|βj|<|βi|

µβi,βj+ek
∂dl

(Λj)− µβi,βj+el
∂dk

(Λj) = 0.

Again, by Proposition 2.3 we get that Dt is closed under derivation.
Next, assume first that (B,Λ) is a graded primal-dual basis pair. This means that for i = 1, . . . , r and for l such
that |βl| ≤ |βi|

δi,l = Λi

(

xβl

ξ

)

=

n
∑

k=1

∑

|βj|<|βi|

µβi,βj+ek
∫
k

Λj

(

xβl

ξ

)

=

n
∑

k=1

∑

|βj|<|βi|

µβi,βj+ek
coeff(

dβl

βl!
, ∫
k

Λj)

Fix k to be the index of the last non-zero entry of βl. For all other k’s d
βl becomes zero when we substitute 0 into

dk+1, . . . , dn in ∫
k

Λj. Thus,

Λi

(

xβl

ξ

)

=
∑

|βj|<|βi|

µβi,βj+ek
coeff(

dβl

βl!
, ∫
k

Λj)

=
∑

|βj|<|βi|

µβi,βj+ek
coeff(

dβl−ek

(βl − ek)!
,Λj).

Since E is closed under division, βl−ek = βm ∈ E for some m < l. By duality, we have that coeff( d
βm

(βm)! ,Λj) = δm,j,
so

Λi

(

xβl

ξ

)

= µβi,βm+ek = µβi,βl
.

To satisfy Λi

(

xβl

ξ

)

= δi,l we must have

µβi,βm+ek
=

{

1 if βi = βm + ek

0 if βm + ek = βl ∈ E but i 6= l.

Conversely, by induction on t = |βi| we have that deg(Λi) ≤ |βi|. Then Λi

(

xβl

ξ

)

= 0 when |βl| > |βi|. For

|βl| ≤ |βi|, Equations (10) imply that the coefficient of d
βl

βl!
in Λi is 0 if i 6= l and 1 if i = l. Therefore (B,Λ) is a

graded primal-dual basis pair.

6



To compute the inverse system D of f at a point ξ, we will consider the additional systems of equations in ξ and
µ = {µβi,α}:

Λi(fj) = 0 for 1 ≤ i ≤ r, 1 ≤ j ≤ N. (12)

Throughout the paper we use the following notation:

Notation 2.6. Let f1, . . . , fN ∈ C[x], ξ ∈ Cn and fix t ∈ N. Let Bt−1 = {xβ1

ξ , . . . , x
βrt−1

ξ } ⊂ C[xξ]t−1 be closed
under division and Λt−1 = {Λ1, . . . ,Λrt−1} ⊂ C[dξ]t−1 dual to Bt−1 with

∂dk
(Λj) =

∑

|βs|<|βj|

µβj ,βs+ek
Λs j = 1, . . . , rt−1, k = 1, . . . , n.

Consider the following homogeneous linear system of equations in the variables {νkj : j = 1, . . . , rt−1, k = 1, . . . , n}:
∑

j:|βs|<|βj|<t

ν
k
j µβj ,βs+el

− ν
l
j µβj ,βs+ek

= 0, 1 ≤ k < l ≤ n (13)

ν
k
j = 0 if βj + ek = βl for some 1 ≤ l ≤ rt−1 (14)
(

rt−1
∑

j=1

n
∑

k=1

ν
k
j ∫
k

Λj

)

(fl) = 0 l = 1, . . . , N. (15)

We will denote by Ht the coefficient matrix of the equations in (13) and (14) and by Kt the coefficient matrix of
the equations in (13)-(15).

By Proposition 2.3 and Lemma 2.5, if Kt ν = 0 where ν = [νkj : j = 1, . . . , s, k = 1, . . . , n], then Λ =
∑s

j=1

∑n
k=1 ν

k
j ∫
k

Λj ∈ (f)⊥ ∩ C[dξ]t = Dt. The main loop of the integration method described in Algorithm 1

consists of computing the new basis elements in Dt and the new basis monomials in Bt of degree t from the
primal-dual basis pair (Bt−1,Λt−1) in degree t− 1.

Algorithm 1 produces incrementally a basis of D, similarly to Macaulay’s method. The algorithmic advantage
is the smaller matrix size in O(r n2 +N) instead of N

(

n+δ−1
δ

)

, where δ is the maximal degree (depth) in the dual,
cf. [26, 16].

Algorithm 1 Integration Method - Iteration t

Input: t > 0, f = (f1, . . . , fN) ∈ C[x]N , ξ ∈ Cn, Bt−1 = {xβ1

ξ , . . . ,x
βrt−1

ξ } ⊂ C[x] closed under division and
Λt−1 = {Λ1, . . . ,Λrt−1} ⊂ C[dξ] a basis for Dt−1 dual to Bt−1, of the form (8).

Output: Either “Dt = Dt−1” or Bt = {xβ1

ξ , . . . ,x
βrt

ξ } for some rt > rt−1 closed under division and
Λt = {Λ1, . . . ,Λrt} with Λi of the form (8), satisfying (9), (10) and (12).

(1) Set up the coefficient matrix Kt of the homogeneous linear system (13)-(15) in Notation 2.6 in the variables

{νkj }j=1,...,rt−1, k=1,...,n associated to an element of the form Λ =
∑rt−1

j=1

∑n
k=1 ν

k
j ∫
k

Λj. Let ht := dimkerKt.

(2) If ht = 0 then return “Dt = Dt−1”. If ht > 0 define rt := rt−1 + ht. Perform a triangulation of Kt by row
reductions with row permutations and column pivoting so that the non-pivoting columns correspond to exponents

βrt−1+1, . . . , βrt with strict divisors in Bt−1. Let Bt = Bt−1 ∪ {xβrt−1+1

ξ , . . . ,x
βrt

ξ }.
(3) Compute a basis Λrt−1+1, . . . ,Λrt ∈ C[dξ] of kerKt from the triangular reduction of Kt by setting the
coefficients of the non-pivoting columns to 0 or 1. This yields a basis Λt = Λt−1 ∪ {Λrt−1+1, . . . ,Λrt} dual to Bt.
The coefficients νki,j of Λi are µβi,βj+ek

in (8) so that Eq. (12) are satisfied. Eq. (10) are satisfied, since Λt is dual
to Bt.

The full Integration Method consists of taking Λ1 := 1ξ for t = 0, a basis of D0 and then iterating algorithm
Integration Method - Iteration t until we find a value of t when Dt = Dt−1. This implies that the order
δ = δξ(f) = t− 1. This leads to the following definition.

Definition 2.7. We say that Λ ⊂ C[dξ] is complete for f at ξ if for δ := ord(Λ) we have kerKδ+1 = {0}. Here the
linear system Kt is as in (13)-(15).
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Notice that the full Integration Method constructs a graded primal-dual basis pair (B,Λ). The basis
Λ ⊂ (f)⊥ spans a space stable by derivation and is complete for f , so that we have span(Λ) = (f)⊥ ∩ C[dξ] = Q⊥

where Q is the primary component of (f) at ξ.
To guarantee that Bt is closed under division, one could choose a graded monomial ordering ≺ of C[dξ] and

compute an auto-reduced basis of kerKt such that the initial terms for ≺ are dβi

ξ . The set Bt constructed in
this way would be closed under division, since Dt is stable under derivation. In the approach we use in practice,
we choose the column pivot taking into account the numerical values of the coefficients and not according to a
monomial ordering and we check a posteriori that the set of exponents is closed under division (See Example 7.1).

The main property that we will use for the certification of multiplicities is given in the next theorem.

Theorem 2.8. If ξ∗ is an isolated solution of the system f(x) = 0 and B is a graded primal basis at ξ∗ closed
under division, then the system F (ξ, µ) = 0 of all equations (9), (10) and (12) admits (ξ∗, µ∗) as an isolated simple
root, where µ∗ defines the basis Λ∗ of the inverse system of (f) at ξ dual to B, due to (8).

Proof. This is a direct consequence of [16, Theorem 4.11], since the system of equations (9)-(12) is equivalent to the
system (14) in [16, Theorem 4.11]. The equations (9) express the commutation of the transposed of the parametric
operator of multiplication in B, which are the same as the equations of commutation of the operators. By Lemma
2.5, the equations (10) are equivalent to the fact that (B,Λ∗) is a graded primal-dual basis pair. Finally, the
equations (12) are the same as N (fi) = 0, i = 1, . . . , s where N is the parametric normal form defined in [16][see
Definition 4.7 and following remark]. Therefore the two systems are equivalent. By [16, Theorem 4.11], they define
the simple isolated solution (ξ∗, µ∗), where µ∗ defines the basis Λ∗ dual to B due to (8).

3. Punctual Hilbert scheme

The results in Sections 3 and 4 do not depend on the point ξ ∈ Cn, so to simplify the notation, we assume in
these sections that ξ = 0. Let m = (x1, . . . , xn) be the maximal ideal defining ξ = 0 ∈ Cn. Let C[d] be the space
of polynomials in the variables d = (d1, . . . , dn) and C[d]t ⊂ C[d] the subspace of polynomials in d of degree ≤ t.

For a vector space V , let Gr(V ) be the projective variety of the r dimensional linear subspaces of V , also
known as the Grassmannian of r-spaces of V . The points in Gr(V ) are the projective points of P(∧rV ) of the form
v = v1 ∧ · · · ∧ vr for vi ∈ V . Fixing a basis e1, . . . , es of V , the Plücker coordinates of v are the coefficients of
∆i1,...,ir (v) of v =

∑

i1<···<ir
∆i1,...,ir (v) ei1 ∧ · · · ∧ eir . When V = C[d]r−1, a natural basis is the dual monomial

basis (d
α

α! )|α|<r. The Plücker coordinates of an element v ∈ Gr(C[d]r−1) for this basis are denoted ∆α1,...,αr
(v)

where αi ∈ Nn, |αi| < r.
If Λ = {Λ1, . . . ,Λr} is a basis of a r-dimensional space D in C[d]r−1 with Λi =

∑

|α|<r µi,α
d

α

α! , the Plücker

coordinates of D are, up to a scalar, of the form ∆α1,...,αr
= det

[

µi,αj

]

1≤i,j≤r
. In particular, a monomial set

B = {xβ1 , . . . ,xβr} ⊂ C[x]r−1 has a dual basis in D iff ∆β1,...,βr
(D) 6= 0. If (B = {xβi}ri=1,Λ = {Λi}ri=1) is

a graded primal-dual basis pair, then µi,βj
= δi,j . To keep our notation consistent with the previous sections,

the coordinates of Λi ∈ Λ when Λ is dual to B will be denoted by µβi,α instead of µi,α. By properties of the
determinant, the Plücker coordinates of D are such that

µβi,α =
∆β1,...,βi−1,α,βi+1,...,βr

∆β1,...,βr

i = 1, . . . , r. (16)

If D is the dual of an ideal Q = D⊥ ⊂ C[x] and B = {xβ1 , . . . ,xβr} is a basis of C[x]/Q so that ∆β1,...,βr
(D) 6= 0,

the normal form of xα ∈ C[x]r−1 modulo Q = D⊥ in the basis B is

N(xα) =

r
∑

j=1

µβj,α xβj =

r
∑

j=1

∆β1,...,βj−1,α,βj+1,...,βr

∆β1,...,βr

xβj .

(if deg(xα) ≥ r, then N(xα) = 0).

Definition 3.1. Let Hr ⊂ Gr(C[d]r−1) be the set of linear spaces D of dimension r in C[d]r−1 which are stable
by the derivations ∂di

with respect to the variables d (i.e. ∂di
D ⊂ D for i = 1, . . . , n). We called Hr the punctual

Hilbert scheme of points of multiplicity r.

If D ⊂ C[d] is stable by the derivations ∂di
, then by duality I = D⊥ ⊂ C[x] is a vector space of C[x] stable by

multiplication by xi, i.e. an ideal of C[x].
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Proposition 3.2. D ∈ Hr iff D⊥ = Q is an m-primary ideal such that dimC[x]/Q = r.

Proof. Let D ∈ Hr. We prove that D⊥ = Q is an m-primary ideal. As D is stable by derivation, Q = D⊥ is an
ideal of C[x]. This also implies that 1 ∈ D, so that Q ⊂ m. As dimD = dimC[x]/Q = r, δ = ord(D) is finite and
m

δ+1 ⊂ D⊥ = Q. Therefore, Q is m-primary, which shows the first implication.
Conversely, let Q be a m-primary ideal such that dimC[x]/Q = r. Then by Lemma 2.1, D = Q⊥ ⊂ C[d]t is stable

by derivation and of dimension r = dimC[x]/Q. Thus D ∈ Hr. This concludes the proof of the proposition.

For D ∈ Hr, for t ≥ 0 we denote by Dt the vector space of elements of D of order ≤ t. We verify that
D⊥

t = D⊥ +m
t+1. The next theorem follows from Proposition 2.3 and Lemma 2.5.

Theorem 3.3. For B ⊂ C[x] closed under division such that |B| = r and δ = deg(B), the following points are
equivalent:

1. D ∈ Hr and Bt is a basis of C[x]/(D⊥ +m
t+1) for t = 1, . . . , δ.

2. The dual basis Λ = {Λ1, . . . ,Λr} of B satisfies Λ1 = 1 and the equations (8), (9) and (10).

Proof. (1) ⇒ (2) Assume that D ∈ Hr and that Bt is a basis of C[x]/(D⊥ + m
t+1). Let Λt = {Λ1, . . . ,Λrt} be a

basis of Dt dual to Bt with rt = |Bt|. Then, for j = rt−1 + 1, . . . , rt, Λj ∈ Dt is such that

∂dk
(Λj) =

rt−1
∑

j=1

νi,kΛi

for t = 1, . . . , o. By Proposition 2.3, Equations (8) and (9) are satisfied. As Bt is dual to Λ1, . . . ,Λrt , Equation (10)
are satisfied.

(2) ⇒ (1) Let Λi ∈ C[d]r−1 for i = 1, . . . , r be elements of C[d]r−1 dual to B, which satisfies Equations
(8), (9) and (10). By induction on t = 0, . . . , δ = deg(B), we prove that if Λt = {Λ1, . . . ,Λrt} is dual to Bt, then
Λ1, . . . ,Λrt ∈ C[d]t. The property is true for t = 0 since Λ1 = 1. If it is true for t−1, for Λj with j = rt−1+1, . . . , rt
we have by (8), (9) and Proposition 2.3, that ∂dk

(Λj) =
∑rt−1

j=1 νi,kΛi, k = 1, . . . , n. Thus Λj ∈ C[d]t. This shows
that Dt is stable by derivation where Dt ⊂ C[d]t is the vector space spanned Λ1, . . . ,Λrt ∈ C[d]t. Let D = Dδ.
Since, by (10), Bt is dual to Λ1, . . . ,Λrt ∈ C[d]t, we see that D ∩ C[d]t = Dt. By Proposition 3.2, Q = D⊥ is a
m-primary ideal such that dimC[x]/Q = dimD = |B| = r. Moreover, since Bt is dual to the basis {Λ1, . . . ,Λrt} of
Dt, Bt is a basis C[x]/(D⊥ +m

t+1). This proves the reverse inclusion.

For a sequence h = (h0, h1, . . . , hδ) ∈ Nδ+1
+ and 0 ≤ t ≤ δ, let ht = (h0, . . . , ht), rt =

∑t
i=0 hi. For r ≥ 1 we

denote by Sr the set of sequences h of some length δ < r with hi 6= 0, h0 = 1 and rδ = r. For h ∈ Sr, we consider
the following subvarieties of Hrt :

Hht
= {D ∈ Hrt | dimDi = dimD ∩ C[d]i ≤ ri, i = 0, . . . , t}.

These are projective varieties in Hrt defined by rank conditions on the linear spaces D ∩ C[d]i for D ∈ Hrt , that
can be expressed in terms of homogeneous polynomials in the Plücker coordinates of D. In particular, the varieties
Hh := Hhδ

are projective subvarieties of Hr. They may not be irreducible or irreducible components of Hr, but
we have Hr = ∪h∈SrHh.

We will study a particular component of Hh, that we call the regular component of Hh, denoted H
reg
h

. It is
characterized as follows. Let H

reg
h0

= {〈1〉} = {C[d]0} = G1(C[d]0) and assume that H
reg
ht−1

has been defined as an
irreducible component of Hht−1 . Let

Wt = {(Dt−1, Et) | Dt−1 ∈ Hht−1 , Et ∈ Grt(C[d]t),Dt−1 ⊂ Et, ∀i ∂di
Et ⊂ Dt−1}

The constraints Dt−1 ⊂ Et and ∂di
Et ⊂ Dt−1 for i = 1, . . . , n define a linear system of equations in the Plücker

coordinates of Et (see e.g. [9]), corresponding to the equations (5), (6). By construction, the projection of Wt ⊂
Hht−1 × Grt(C[d]t) on the second factor Grt(C[d]t) is π2(Wt) = Hht

and the projection on the first factor is
π1(Wt) = Hht−1 .

There exists a dense subset Ut−1 of the irreducible variety H
reg
ht−1

(with Ut−1 = H
reg
ht−1

) such that the rank

of the linear system corresponding to (5) and (6) defining Et is maximal. Since π−1
1 (Dt−1) is irreducible (in fact

linear) of fixed dimension for Dt−1 ∈ Ut−1 ⊂ H
reg
ht−1

, there is a unique irreducible component Wt,reg of Wt such that

π1(Wt,reg) = H
reg
ht−1

(see eg. [31][Theorem 1.26]). We define H
reg
ht

= π2(Wt,reg). It is an irreducible component

of Hht
, since otherwise Wt,reg = π−1

2 (H reg
ht

) would not be a component of Wt but strictly included in one of the
irreducible components of Wt.
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Definition 3.4. Let πt : Hht
→ Hht−1 , D 7→ D∩C[d]t−1 be the projection in degree t−1. We define by induction

on t, H
reg
h0

= {〈1〉} and H
reg
ht

is the irreducible component π−1
t (H reg

ht−1
) of Hht

for t = 1, . . . , δ.

4. Rational parametrization

Let B = {xβ1 , . . . ,xβr} ⊂ C[x]r−1 be a monomial set. In this section we assume that B is closed under division
and its monomials are ordered by increasing degree. For t ∈ N, we denote by Bt = B ∩ C[x]t, by B[t] the subset of
its monomials of degree t. Let ht = |B[t]|, rt =

∑

0≤i≤t ht = |Bt| and δ = deg(B).
Let

HB := {D ∈ Hr | Bt is a basis of C[x]/(D⊥ +m
t+1), t = 0, . . . , δ}.

By Theorem 3.3, HB is the set of linear spaces D ∈ Hr such that Dt = D ∩C[d]t satisfy Equations (8) and (9). It
is the open subset of D ∈ Hh such that ∆Bt

(Dt) 6= 0 for t = 1, . . . , δ, where ∆Bt
:= ∆β1,...,βrt

denotes the Plücker
coordinate for Grt(C[d]t) corresponding to the monomials in Bt.

Since for D ∈ HB we have ∆B(D) 6= 0, we can define the affine coordinates of HB using the coordinates of the
elements of the basis Λ = {Λ1, . . . ,Λr} dual to B:

{

µβj ,α =
∆β1,...,βj−1,α,βj+1,...,βr

∆B

: j = 1, . . . , r, |α| < r

}

.

The following lemma shows that the values of the coordinates {µβi,βj+ek
: i, j = 1, . . . r, |βj | < |βi|, k = 1, . . . , n}

uniquely define Λ.

Lemma 4.1. Let B = {xβ1 , . . . ,xβrt } closed under division, D ∈ HB and Λ = {Λ1, . . . ,Λr} be the unique basis of
D dual to B with Λi =

∑

|α|≤|βi|
µβi,α

d
α

α! for i = 1, . . . , r. Then Λ1 = 1 and for i = 2, . . . , r

Λi =
∑

|βj|<|βi|

n
∑

k=1

µβi,βj+ek
∫
k

Λj.

Thus, µβi,α is a polynomial function of {µβs,βj+ek
: |βs| ≤ |βi|, |βj | < |βs|, k = 1, . . . , n} for i = 1, . . . , r, |α| < |βi|.

Proof. SinceD is closed under derivation, by Proposition 2.3 there exist ci,s,k ∈ C such that ∂dk
(Λi) =

∑

|βs|<|βi|
ci,s,kΛs.

Then
µβi,βj+ek

= Λi(x
βj+ek) = ∂dk(Λi)(x

βj ) =
∑

|βs|<|βi|

ci,s,kΛs(x
βj ) = ci,j,k.

The second claim follows from obtaining the coefficients in Λ recursively from Λ1 = 1 and

Λi =
∑

|βj|<|βi|

n
∑

k=1

µβi,βj+ek
∫
k

Λj for i = 2, . . . , r.

We define µ := {µβi,βj+ek
}i,j=1,...r,|βj|<|βi|,k=1,...,n, µt := {µβi,βj+ek

∈ µ : |βi| ≤ t} ⊂ µ and µ[t] := {µβi,βj+ek
∈

µ : |βj | = t} ⊂ µt. The next definition uses the fact that Equations (13) and (14) are linear in νkj with coefficients
depending on µt−1:

Definition 4.2. Given Dt−1 ∈ HBt−1 with a unique basis Λt−1 = {Λ1, . . . ,Λrt−1} with Λi =
∑

|α|<t µβi,α
d

α

α! for

j = 1, . . . , rt−1 that is dual to Bt−1, uniquely determined by µt−1 = {µβi,βj+ek
: |βi| ≤ t− 1, |βj | < |βi|} as above.

Recall from Notation 2.6 that Ht is the coefficient matrix of the homogeneous linear system (13) and (14) in the
variables {νkj : j = 1, . . . , rt−1, k = 1, . . . , n}. To emphasize the dependence of its coefficients on Dt−1 or µt−1 we
use the notation Ht(Dt−1) or Ht(µt−1). For D ∈ H

reg
h

in an open subset, the rank ρt of Ht(Dt−1) is maximal.

The next definition describes a property of a monomial set B such that it will allow us to give a rational
parametrization of HB.

Definition 4.3. For t = 1, . . . , δ = deg(B) we say that Dt ∈ Grt(C[d]t) is regular for Bt if,

• dim(Dt) = rt = |Bt|,

• rankHt(Dt−1) = ρt the generic rank of Ht on H
reg
ht

,
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• ∆B[t]
(D[t]) 6= 0 where ∆B[t]

(D[t]) is the Plücker coordinate of D[t] ∈ Ght
(C[d]r) corresponding to the monomials

in B[t].

Let Ut := {Dt ∈ H
reg
ht

: Dt is regular for Bt}. Then Ut is either an open dense subset of the irreducible variety

H
reg
ht

or empty if ∆B[t]
(D[t]) = 0 for all D ∈ H

reg
ht

. We say that B is a regular basis if Ut = H
reg
ht

(or Ut 6= ∅) for
t = 1, . . . , δ.

We denote by γ[t] = dimGht
(kerHt(Dt−1)) for Dt−1 ∈ Ut−1 and γ =

∑δ
t=0 γ[t].

If the basis B is regular and closed under division, then H
reg
h

can be parametrized by rational functions of free
parameters µ. We present hereafter Algorithm 2 to compute such a parametrization iteratively.

Algorithm 2 Rational Parametrization - Iteration t

Input: t > 0, Bt = {xβ1 , . . . ,xβrt} ⊂ C[x]t closed under division and regular, µt−1 ⊂ µt−1 and
Φt−1 : µt−1 7→

(

qβj ,α(µt−1)
)

|βj|≤t−1,|α|<r
with qβj,α ∈ Q(µt−1) parametrizing a dense subset of H

reg
ht−1

.

Output: µt ⊂ µt and Φt : µt 7→
(

qβj ,α

)

|βj|≤t,|α|<r
, qβj,α∈Q(µt) extending Φt−1 and parametrizing a dense subset

of H
reg
ht

.

(1) Let Ht be as in Notation 2.6, ν = [νkj : j = 1, . . . , rt−1, k = 1, . . . , n]T . Decompose Ht(Φt−1(µt−1)) · ν = 0 as

[

A(µt−1) B(µt−1) C(µt−1)
]





ν′

ν′′

ν



 = 0, (17)

where ν′ is associated to a maximal set of independent columns of Ht(Φt−1(µt−1)), ν
′′ = {νkj : xβj+ek ∈ B[t]} and

ν refers to the rest of the columns. If no such decomposition exists, return “Bt is not regular”.
(2) For νkj ∈ ν′ express νkj = ϕk

j (ν, ν
′′) ∈ Q(µt−1)[ν, ν

′′]1 as the generic solution of the system
Ht(Φt−1(µt−1)) · ν = 0.
(3) For i = rt−1 + 1, . . . , rt do:

(3.1) Define µ[t],i :=
{

µβi,βj+ek
: νj,k ∈ ν

}

, µ′
[t],i = {µβi,βj+ek

: νkj ∈ ν′}, µ′′
[t],i = {µβi,βj+ek

: νkj ∈ ν′′}, and
µt := µt−1 ∪

⋃rt

i=rt−1+1
µ[t],i.

(3.2) For µβi,βj+ek
∈ µ′′

[t],i set qβi,βj+ek
= µβi,βj+ek

= 1 if βi = βj + ek and 0 otherwise.

(3.3) For µβi,βj+ek
∈ µ′

[t],i define

qβi,βj+ek
:= ϕk

j (µ[t],i, µ
′′
[t],i) ∈ Q(µt)

(3.4) For |α| < r and µβi,α 6∈ µt find qβi,α using Lemma 4.1.

Proposition 4.4. Let B = {xβ1 , . . . ,xβr} ⊂ C[x]r−1 be closed under division and assume that B is a regular basis.
There exist a subset µ ⊂ µ with |µ| = γ and rational functions qβj,α(µ) ∈ Q(µ) for j = 1, . . . , r and |α| < r, such
that the map Φ : Cγ → HB defined by

Φ : µ 7→
(

qβj,α(µ)
)

j=1,...,r,|α|<r

parametrizes a dense subset of H
reg
h

.

Proof. Let us define, by induction on t, parameters µt with |µt| =
∑t

i=1 γ[i], and a rational parametrization of a
basis Λ1(µt), . . . ,Λrt(µt) of a generic element of H

reg
Bt

. For t = 0, we define Λ1 = 1 and µ0 = ∅. Assume that there
exist µt−1 ⊂ µt−1 and a rational parametrization Λ1(µt−1), . . . ,Λrt−1(µt−1) of a basis dual to Bt−1 for a generic
element HBt−1 defined by the map

Φt−1 : µt−1 7→
(

qβj,α(µt−1)
)

|βj |≤t−1,|α|<r
.

This means that imΦt−1 = HBt−1 . Denote by
Dt−1(µt−1) ∈ Grt−1(Q(µt−1)[d]t−1) the space spanned by
{Λ1(µt−1), . . . ,Λrt−1(µt−1)} over the fraction field Q(µt−1).
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By Theorem 3.3 and Lemma 2.5, to define µt and to extendDt−1(µt−1) to Dt(µt), we need to find Λrt−1+1, . . . ,Λrt

of the form

Λi =

rt−1
∑

j=1

n
∑

k=1

µβi,βj+ek
∫
k

Λj(µt−1) i = rt−1 + 1, . . . , rt,

satisfying the system of equations (13) and (14), i.e. such that

Λi ∈ kerHt(µt−1) for i = rt−1 + 1, . . . , rt,

where Ht(µt−1) = Ht

(

Φt−1(µt−1)
)

and Equations (12) are satisfied. Since B is a regular basis, the kernel of
Ht(µt−1) over Q(µt−1) contains a subspace D[t] of dimension ht = |B[t]| with ∆B[t]

(D[t]) 6= 0. Therefore, the

systems Ht(µt−1) ν = 0 with ν = [νkj : j = 1, . . . , rt−1, k = 1, . . . , n]T can be decomposed as

[

A(µt−1) B(µt−1) C(µt−1)
]





ν′

ν′′

ν



 = 0, (18)

where ν′ is associated to a maximal set of independent columns of Ht(µt−1), ν
′′ = {νkj : xβj+ek ∈ B[t]} and ν is

associated to the remaining set of columns. Note that |ν| = dim(kerHt(µt−1)) − ht. Thus, ν′′ ∪ ν is the set of
free variables of the homogeneous system Ht(µt−1) ν = 0 and a general solution is such that the variables in ν′ are
linear functions of the variables in ν′′ and ν, with rational coefficients in µt−1.

We obtain the coefficients of Λrt−1+1, . . . ,Λrt that satisfy equations (13) and (14) and (12) from the general
solutions ofHt(µt−1) ν = 0 by further specializing the variables in ν′′ to 0’s and 1’s, according the duality conditions.
Define

µ[t],i :=
{

µβi,βj+ek
: νj,k ∈ ν

}

⊂ µ[t] .

Thus, the parameters in µ[t] are linear functions of µ[t],i with rational coefficients in µt−1. The denominator in
these coefficients is a factor of the numerator of a maximal non-zero minor of A(µt−1). Note that the rest of the
coefficients of Λi are polynomial functions of the parameters µt−1 ∪ µ[t] by Lemma 4.1. Define

µt := µt−1 ∪
rt
⋃

i=rt−1+1

µ[t],i.

Thus, we get a parametrization of the coefficients of Λrt−1+1(µt), . . . ,Λrt(µt) in terms of µt, which defines the degree
t part of the map Φt : µt 7→ (qβj ,α(µt))|βj |≤t,|α|<r. For Dt ∈ HBt

, the coefficients of its basis dual to Bt can be
parametrized by Φt for parameter values µt such that a maximal non-zero minor of A(µt−1) in Q(µt−1) does not
vanish.

Note that the number of new parameters introduced is

|µt \ µt−1| = (rt − rt−1) · |µ[t],i| = ht

(

dimkerHt(µt−1)− ht

)

which is equal to γ[t] = dimGht
(kerHt(µt−1)) = dimGht

(kerHt(Dt−1)) for Dt−1 generic in Ut−1 as claimed.
To prove that Φt parametrizes a dense subset of the projective variety H

reg
ht

, note that the image im(Φt) of Φt

is a subset of Hht
, the Zariski closure Vt of im(Φt) is an irreducible subvariety of Hht

. Furthermore, its projection
πt−1(Vt) ⊂ Hht−1 is the closure of the image of im(Φt−1) since if Dt = imΦt(µ

∗
t ) then Dt−1 = Dt ∩ C[d]t−1 =

Φt−1(µ
∗
t−1). By induction hypothesis,

πt−1(Vt) = imΦt−1 = H
reg
ht−1

.

Thus, Vt is the irreducible component of Hht
which projects onto H

reg
ht−1

, that is H
reg
ht

.

Definition 4.5. We denote by Ht(µ) a maximal square submatrix of A in (17) such that det(Ht(µt−1)) 6= 0.

The size of Ht(µ) is the size of ν′ in (17), that is the maximal number of independent columns in Ht(µt−1).
Given an element D = Λ1∧· · · ∧Λr ∈ Gr(C[d]r−1), in order to check that D is regular for B, it is sufficient to check
first that ∆B(D) 6= 0 and secondly that |Ht(µ)| 6= 0 for all t = 0, . . . , δ, where µ = (µβ,α) is the ratio of Plücker
coordinates of D defined by the formula (16).
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5. Newton’s iterations

In this section we describe the extraction of a square, deflated system that allows for a Newton’s method with
quadratic convergence. We assume that the sole input is the equations f = (f1, . . . , fN) ∈ C[x]N , an approximate
point ξ ∈ Cn and a tolerance ε > 0.

5.1. Extracting a square system

Using this input we first compute an approximate primal-dual pair (B, Λ) by applying the iterative Algorithm 1.
The rank and kernel vectors of the matrices Kt (see Algorithm 1) are computed numerically within tolerance ε,
using SVD. Note that here and in Section 6 we do not need to certify the SVD computation but we are only using
SVD to certify that some matrices are full rank by checking that the distance to the variety of singular matrices is
bigger than the perturbation of the matrix. Thus we need a weaker test, which relies only on a lower bound of the
smallest singular value.

The algorithm returns a basisB = {xβ1

ξ , . . . ,xβr

ξ } with exponent vectorsE = {β1, . . . , βr}, as well as approximate
values for the parameters µ = {µβi,βj+ek

: |βj | < |βi| ∈ E, k = 1, . . . , n}. These parameters will be used as a
starting point for Newton’s iteration. Note that, by looking at B, we can also deduce the multiplicity r, the maximal
order δ of dual differentials, the sequences rt = |Bt|, and ht = |B[t]| for t = 0, . . . , δ.

Let F be the deflated system with variables (x, µ) defined by the relations (8) and Equations (9), (10) and (12)
i.e.

F (x,µ)=































∑

|βs|<|βj|<|βi|

µβi,βj+ek
µβj ,βs+el

− µβi,βj+el
µβj ,βs+ek

=0 (a)

for all i = 1, . . . , r, |βs| < |βi|, k 6= l ∈ {1, . . . , n}

µβi,βj+ek
=

{

1 for βi = βj + ek

0 for βj + ek ∈ E, βi 6= βj + ek,
(b)

Λi(fj) = 0, i = 1, . . . , r, j = 1, . . . , N. (c)

Here Λ1 = 1x and Λi =
∑

|βj|<|βi|

∑n
k=1 µβi,βj+ek

∫
k

Λj ∈ C[µ][dx] denote dual elements with parametric coefficients

defined recursively. Also, if Λi =
∑

|α|≤|βi|
µβi,α

d
α
x

α! then

Λi(fj) =
∑

|α|≤|βi|

µβi,α

∂α(fj)(x)

α!
(19)

which is in C[x, µ] by Lemma 4.1. Note, however, that (a) and (b) are polynomials in C[µ], only (c) depends on x
and µ. Equations (b) define a simple substitution into some of the parameters µ. Hereafter, we explicitly substitute
them and eliminate this part (b) from the equations we consider and reducing the parameter vector µ.

By Theorem 2.8, if B is a graded primal basis for f at the root ξ∗ then the above overdetermined system has a
simple root at a point (ξ∗, µ∗).

To extract a square subsystem defining the simple root (ξ∗, µ∗) in order to certify the convergence, we choose
a maximal set of equations whose corresponding rows in the Jacobian are linearly independent. This is done by
extracting first a maximal set of equations in (a) with linearly independent rows in the Jacobian. For that purpose,
we use the rows associated to the maximal invertible matrix Ht (Definition 4.5) for each new basis element Λi ∈ D[t]

and t = 1, . . . , r. We denote by G0 the subsystem of (a) that correspond to rows of Ht.
We complete the system of independent equations G0 with equations from (c), using a numerical QR decompo-

sition on the transposed Jacobian matrix of G0 and (c) at the approximate root. Let us denote by F0 the resulting
square system, whose Jacobian, denoted by J0, is invertible.

For the remaining equations F1 of (c), not used to construct the square system F0, define Ω = {(i, j) : Λi(fj) ∈
F1}. We introduce new parameters ǫi,j for (i, j) ∈ Ω and we consider the perturbed system

fi,ǫ = fi −
∑

j|(i,j)∈Ω

ǫi,j x
βj

ξ .

The perturbed system is fǫ = f − ǫB, where ǫ is the N × r matrix with [ǫ]i,j = ǫi,j if (i, j) ∈ Ω and [ǫ]i,j = 0
otherwise. Denote by F (x, µ, ǫ) obtained from F (x, µ) by replacing Λj(fi) by Λj(fi,ǫ) for j = 1, . . . , r, i = 1, . . . , N .
Then the equations used to construct the square Jacobian J0 are unchanged. The remaining equations are of the
form

Λj(fi,ǫ) = Λj(fi)− ǫi,j = 0 (i, j) ∈ Ω.
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Therefore the Jacobian of the complete system F (x, µ, ǫ) is a square invertible matrix of the form

Jǫ :=

(

J0 0
J1 Id

)

where J1 is the Jacobian of the system F1 of polynomials Λj(fi) ∈ C[x, µ] with (i, j) ∈ Ω.
Since Jǫ is invertible, the square extended system F (x, µ, ǫ) has an isolated root (ξ∗, µ∗, ǫ∗) corresponding to the

isolated root (ξ∗, µ∗) of the square system F0. Furthermore, Λ∗
j (fi) = ǫ∗i,j = 0 for (i, j) ∈ Ω. Here Λ∗

1, . . . ,Λ
∗
r ∈ C[dξ∗ ]

are defined from (ξ∗, µ∗) recursively by

Λ∗
1 = 1ξ∗ and Λ∗

i =
∑

|βj |<|βi|

n
∑

k=1

µ∗
βi,βj+ek

∫
k

Λ∗
j . (20)

We have the following property:

Theorem 5.1. If the Newton iteration

(ξk+1, µk+1) = (ξk, µk)− J0(ξk, µk)
−1

F0(ξk, µk),

starting from a point (ξ0, µ0) converges when k → ∞, to a point (ξ∗, µ∗) such that B is a regular basis for the
inverse system D∗ associated to (ξ∗, µ∗) and D∗ is complete for f , then there exists a perturbed system fi,ǫ∗ =

fi−
∑

j|(i,j)∈Ω ǫ∗i,j x
βj

ξ∗ with ǫ∗i,j = Λ∗
j (fi) such that ξ∗ is a multiple root of fi,ǫ∗ with the multiplicity structure defined

by µ∗.

Proof. If the sequence (ξk, µk) converges to the fixed point (ξ∗, µ∗), then we have F0(ξ
∗, µ∗) = 0 and in particular,

G0(ξ
∗, µ∗) = 0 where G0(ξ

∗, µ∗) = 0 is the subset of equations selected from (a).
As µ∗ is regular for B, if it satisfies G0(ξ

∗, µ∗) = 0, it must satisfy all equations (a). Therefore µ∗ defines a
point D∗ = Λ∗

1 ∧ · · · ∧ Λ∗
r ∈ H

reg
B .

As (Λ∗
i ) is a basis of D∗ dual to B and fi,ǫ∗ = fi −

∑

j:(i,j)∈Ω ǫ∗i,j x
βj

ξ∗ with ǫ∗i,j = Λ∗
j (fi) for (i, j) ∈ Ω, we have

that if (i, j) ∈ Ω then Λ∗
j (fi,ǫ∗) = Λ∗

j (fi) − ǫ∗i,j = 0. Otherwise Λ∗
j (fi,ǫ∗) = Λ∗

j (fi), since it is one of the equations
selected in (c) to construct the system F0 and F0(ξ

∗, µ∗) = 0. This shows that

fǫ∗ = (fi,ǫ∗)
N
i=1 ⊂ (D∗)⊥ .

Since fǫ∗ is obtained from f by adding elements in B, the system (c), at order δ + 1 for fǫ∗ and f are equivalent.
Thus D∗ is complete for f and fǫ and D∗ = (fǫ∗)

⊥ ∩ C[dξ∗ ] is the inverse system at ξ∗ of the system fǫ∗ .

5.2. Numerical Newton iteration

We describe now how Newton iterations can be performed efficiently on the (point, dual basis) pair, without
resorting to the symbolic expression of the dual basis Λ in terms of the parameters µ. We assume that ξ ∈ Cn

is an approximate singular point, that B = {b1, . . . , br} ⊂ C[x] with bi = xβi

ξ is the primal basis and that
Λ = {Λ1, . . . ,Λr} ⊂ C[dξ] is an (approximate) dual bases with

Λk =
∑

i∈1:n,j<k

µk,i,j∫
i

Λj

where
µk,i,j := 〈Λk|xξ,ibj〉ξ = µβk,βj+ei . (21)

According to Lemma 2.5, the coefficients µk,i,j such that βj+ei = βl are fixed and the others are the free parameters
µ. The system of equations, on which Newton iteration is applied, is of the form:

F0(ξ, µ) =

{

〈Ci,i′,k(µ)|bl〉ξ = 0 for 1 ≤ i < i′ ≤ n, 1 ≤ k ≤ r and 1 ≤ l < k,
〈Λk(µ)|fm〉ξ = 0 for (k,m) ∈ I0,

where Ci,i′,k(µ) =
(

∑

j<k µk,i,jxξ,i′ ⋆ Λj

)

−
(

∑

j<k µk,i′,jxξ,i ⋆ Λj

)

are the commutation relations.

To perform a Newton step, we need to evaluate F0 at (ξ, µ), to compute the Jacobian JF0(ξ, µ) of F0 with
respect to ξ and the free parameters µ = (µt,u,v), to solve the system JF0(ξ, µ)(δξ, δµ) = −F0(ξ, µ) and to update
the pair (ξ,Λ(µ)) to (ξ + δξ,Λ(µ+ δµ)).
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The evaluation of F0(ξ, µ) requires the evaluation of

〈Ci,i′,k(µ)|bl〉ξ =





∑

j<k

µk,i,j〈Λj |xξ,i′bl〉ξ



−





∑

j<k

µk,i′,j〈Λj |xξ,ibl〉ξ



 =





∑

j<k

µk,i,jµj,i′,l − µk,i′,jµj,i,l



 ,

which can be computed from the coefficients µk,i,j = 〈Λk|xξ,ibj〉ξ. The evaluation of 〈Λk(µ)|fm〉ξ is done using
formula (19) evaluated at ξ.

To compute the Jacobian JF0(ξ, µ), we first compute the derivatives of Λ with respect to the free parameters
µ = (µl

u,v), using the following formula:

∂µt,u,v
Λk(µ) =



















∑

i∈1:n,j<k µk,i,j∫
i

∂µt,u,v
Λj if t < k

∫
u

Λv if t = k

0 if t > k

This shows that ∂µt,u,v
Λk(µ) can be computed by induction from the coefficients µk,i,j = 〈Λk|xξ,ibj〉ξ, and the

integration operators Λ 7→ ∫
i

Λ applied to ∂µt,u,v
Λj with j < k.

Similarly, we have

∂µt,u,v
Ci,i′,k(µ) =



























xξ,i′ ⋆ Λv if t = k, u = i,
−xξ,i ⋆ Λv if t = k, u = i′,
0 if t = k, u 6= i, u 6= i′,
(

∑

j<k µk,i,jxξ,i′ ⋆ ∂µt,u,v
Λj

)

−
(

∑

j<k µk,i′,jxξ,i ⋆ ∂µt,u,v
Λj

)

if t < k,

0 otherwise.

It also shows that ∂µt,u,v
Ci,i′,k(µ) can be computed by induction, from the coefficients µk,i,j = 〈Λk|xξ,ibj〉ξ and the

derivation operators Λ 7→ xξ,i ⋆ Λ applied to ∂µt,u,v
Λj with j < k.

Using (19), we have

∂ξi〈Λk(µ)|fm〉ξ =
∑

α

1

α!
µk,α∂

α∂ifm(ξ) = 〈Λk(µ)|∂ξ,ifm〉ξ. (22)

Therefore the differential of F0(ξ, µ) is of the form

JF0

(

dξ
dµ

)

=

{ ∑〈∂µt,u,v
Ci,i′,k|bl〉ξdµt,u,v

∑

i〈Λk|∂xi
fm〉ξdξi +

∑〈∂µt,u,v
Λk|fm〉ξdµt,u,v

The Jacobian JF0 can thus be computed from ξ,Λk, ∂xi
fm, ∂µt,u,v

Λk and µk,i,j = 〈Λk|xξ,ibj〉ξ.
Solving the Jacobian system, we obtain a new (point, parameter) pair (ξ′, µ′) = (ξ, µ) − J−1

F0
(ξ, µ)F0(ξ, µ). To

update the new inverse system Λ′ corresponding to the parameters µ′, we compute

Λ′
k =

∑

i∈1:n,j<k

µ′
k,i,j∫

i

Λ′
j

also by induction, since Λ′
k depends on µ′

k,i,j and ∫
i

Λ′
j for j < k.

This provides an algorithm to perform numerically the Newton iterations from a fixed primal basis B =
{b1, . . . , br} ⊂ C[x], an (approximate) singular point ξ ∈ Cn and an (approximate) dual bases Λ = {Λ1, . . . ,Λr} ⊂
C[dξ]. We will illustrate it in the experimentation.

6. Certification

In this section we describe how to certify that the Newton iteration defined in Section 5 quadratically converges
to a point that defines an exact root with an exact multiplicity structure of a perturbation of the input polynomial
system f . More precisely, we are given f = (f1, . . . , fN ) ∈ C[x]N , B = {xβ1 , . . . ,xβr} ⊂ C[x] in increasing order of
degrees and closed under division, δ := |βr|. We are also given the deflated systems F (x, µ), its square subsystem
F0(x, µ) defined in Section 5 and F1(x, µ) the remaining equations in F (x, µ). Finally, we are given ξ0 ∈ Cn and

µ0 = {µ(0)
βi,βj+ek

∈ C : i, j = 1, . . . , r, |βj | < |βi|, k = 1, . . . , n}. Our certification will consist of a symbolic and a
numeric part:
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6.1. Regularity certification

We certify that B is regular (see Definition 4.3). This part of the certification is purely symbolic and inductive
on t. Suppose for some t − 1 < δ we certified that Bt−1 is regular and computed the parameters µt−1 and the
parametrization

Φt−1 : µt−1 7→
(

qβi,α(µt−1)
)

|βi|≤t−1,|α|≤t−1

(Algorithm 2). Then to prove that Bt is regular, we consider the coefficient matrix Ht of equations (13) and (14).
We substitute the parametrization Φt−1 to get the matrices Ht(µt−1). We symbolically prove that the rows of
Ht(µt−1) (Definition 4.5) are linearly independent and span all rows of Ht(µt−1) over Q(µt−1). If that is certified,
we compute the parameters µt and the parametrization Φt : µt 7→ (qβi,α(µt))|βi|≤t,|α|≤t

as in Algorithm 2 inverting

the square submatrix Ht of Ht such that the denominators of qβi,α for |βi| = t divide det(Ht(µt−1)) 6= 0.

6.2. Singularity certification

(C1) We certify that the Newton iteration for the square system F0 starting from (ξ0, µ0) quadratically converges
to some root (ξ∗, µ∗) of F0, such that ‖(ξ0, µ0)− (ξ∗, µ∗)‖2 ≤ β̃, using α-theory.

(C2) We certify that D∗ = span(Λ∗) is regular for B (see Definition 4.3), by checking that |Ht(µ∗)| 6= 0 for
t = 1, . . . , δ (See Definition 4.5), using the Singular Value Decomposition of Ht(µ0) and the distance bound β̃
between µ∗ and µ0.

(C3) We certify that Λ∗ is complete for f at ξ∗ (see Definition 2.7), where Λ∗ ⊂ C[dξ∗ ] is the dual systems defined
from (ξ∗, µ∗) recursively as in (20). This is done by checking that kerKδ+1(ξ

∗, µ∗) = {0} (See Definition
2.7), using the Singular Value Decomposition of Kδ+1(ξ0, µ0) and the distance bound β̃ between (ξ∗, µ∗) and
(ξ0, µ0).

Let us now consider for a point-multiplicity structure pair (ξ0, µ0) γ̃ := supk≥2 ‖DF−1
0 (ξ0, µ0)

DkF0(ξ0,µ0)
k! ‖ 1

k−1 , β̃ :=

2‖DF−1
0 (ξ0, µ0)F0(ξ0, µ0)‖, α̃ := β̃ γ̃ and for a matrix function A(ξ, µ), let L1(A; ξ0, µ0; b) be a bound on its Lipschitz

constant in the ball Bb(ξ0, µ0) of radius b around (ξ0, µ0) such that ‖A(ξ, µ)−A(ξ0, µ0)‖ ≤ L1(A; ξ0, µ0; b) ‖(ξ, µ)−
(ξ0, µ0)‖ for (ξ, µ) ∈ Bb(ξ0, µ0). For a matrix M , let σmin(M) be its smallest singular value. We have the following
result:

Theorem 6.1. Let B = {xβ1 , . . . ,xβr} ⊂ C[x] be closed under division and suppose B is regular. Suppose that
α̃ < α̃0 := 0.26141, L1(Kδ+1; ξ0, µ0; β̃) β̃ < σmin(Kδ+1(ξ0, µ0)) and for t = 2, . . . , δ it holds that L1(Ht;µ0; β̃) β̃ <
σmin(Ht(µ0)). Then the Newton iteration on the square system F0 starting from (ξ0, µ0) converges quadratically to
a point (ξ∗, µ∗) corresponding to a multiple point ξ∗ with multiplicity structure µ∗ of the perturbed system fǫ∗ =

f − ǫ∗Bξ∗ such that ‖ǫ∗‖ ≤ ‖F1(ξ0, µ0)‖+ L1(F1; ξ0, µ0; β̃) β̃, where Bξ∗ = {xβ1

ξ∗ , . . . ,x
βr

ξ∗ }.

Proof. By the α-theorem [3][Chap. 8, Thm. 1], the Newton iteration on F0 starting from (ξ0, µ0) converges
quadratically to a point (ξ∗, µ∗) such that

‖(ξ∗, µ∗)− (ξ0, µ0)‖ < β̃ .

We deduce that

‖Kδ+1(ξ
∗, µ∗)−Kδ+1(ξ0, µ0)‖ ≤ L1(Kδ+1; ξ0, µ0; β̃) ‖(ξ∗, µ∗)− (ξ0, µ0)‖

< σmin(Kδ+1(ξ0, µ0)).

Therefore Kδ+1(ξ
∗, µ∗) is within a ball around Kδ+1(ξ0, µ0) of matrices of maximal rank, since σmin(Kδ+1(ξ0, µ0))

is the distance between Kδ+1(ξ0, µ0) and the set of matrices not of maximal rank.
Thus kerKδ+1(ξ

∗, µ∗) = {0}. A similar argument shows that |Ht(µ∗)| 6= 0 for t = 1, . . . , δ. By Theorem 5.1, (ξ∗, µ∗)
defines a multiple root ξ∗ with multiplicity structure µ∗ for the perturbed system fǫ∗ = f − ǫ∗Bξ∗ with

‖ǫ∗‖ = ‖F1(ξ
∗
, µ

∗)‖ ≤ ‖F1(ξ0, µ0)‖ + ‖F1(ξ
∗
, µ

∗)− F1(ξ
∗
, µ

∗)‖

≤ ‖F1(ξ0, µ0)‖+ L1(F1; ξ0, µ0; β̃) ‖(ξ
∗
, µ

∗)− (ξ∗0 , µ
∗
0)‖

≤ ‖F1(ξ0, µ0)‖+ L1(F1; ξ0, µ0; β̃) β̃.
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7. Experimentation

In this section we work out some examples with (approximate) singularities. The experiments are carried out
using Maple, to get the symbolic expressions of the inverse system and of the Jacobian in terms of the parameters
µ. Our code is publicly available at https://github.com/filiatra/polyonimo. For the numerical part, in
particular the numerical Newton iterations, we use the Julia code invsyst.jl available as additional material at
http://cutt.ly/certified-singularities.

Example 7.1. We consider the equations

f1 = x3
1 + x2

2 + x2
3 − 1, f2 = x3

2 + x2
1 + x2

3 − 1, f3 = x3
3 + x2

1 + x2
2 − 1,

the approximate root ξ0 = (0.002, 1.003, 0.004) and threshold ε = 0.01. In the following we use 32-digit arithmetic
for all computations.

We shall first compute a primal basis using Algorithm 1. In the first iteration we produce the 3× 3 Jacobian

K1 = K1(ξ0) =





ν1
1 ν2

1 ν3
1

Λ(f1) 0.00001 2.00600 0.00800
Λ(f2) 0.00400 3.01803 0.00800
Λ(f3) 0.00400 2.00600 0.00005



 .

The elements in the kernel of this matrix are of the form Λ = ν11d1 + ν21d2 + ν31d3. The singular values of K1(ξ0)
are (4.1421, 0.0064, 0.0012), which implies a two-dimensional kernel, since two of them are below threshold ε. The
(normalized) elements in the kernel are Λ̃2 = d1 − 0.00117d2 and Λ̃3 = d3 − 0.00235d2. Note that d2 was not
chosen as a leading term. This is due to pivoting used in the numeric process, in order to avoid leading terms
with coefficients below the tolerance ε. The resulting primal basis B1 = {1, x1, x3} turns out to be closed under
derivation.

Similarly, in degree 2 we compute the matrix

K2=















ν2
1 ν1

2 ν2
2 ν3

2 ν1
3 ν2

3 ν3
3

(9) 0 0 0 0.00117 0 1.00000 0.00235
(9) 0 0 0 −1.00000 1.00000 0 0
(9) 0 −0.00117 −1.00000 0 −0.00235 0 0

Λ(f1) 2.00600 0.00600 −0.00117 0 0. −0.00235 1.00000
Λ(f2) 3.01803 1.00000 −0.00353 0 0. −0.00707 1.00000
Λ(f3) 2.00600 1.00000 −0.00117 0 0. −0.00235 0.01200















,

and we obtain one element in its kernel Λ̃4 = d1d3 − 0.00002d21 − 0.00235d1d2 + 5.5 · 10−6d22 − 0.00117 · d2d3 −
0.00002d23 + 5.9 · 10−6d2. In the final step we produce a matrix K3 of size 12 × 9. We stop the iteration due to
assuming kerK3 = {0}, since the minimum singular value is σmin = 0.21549, therefore we stop the process, since
the computed dual is approximately complete (cf. Definition 2.7). We derive that the approximate multiple point
has multiplicity r = 4 and one primal basis is B = {1, x1, x3, x1x3}.

The full parametric form of a basis of D1 is kerK1 = 〈Λ2 = d1 + µ2,2,1d2,Λ3 = d3 + µ3,2,1d2〉. Here we
incorporated (10), thus fixing some of the parameters according to primal monomials x1 and x3.

The parametric form of the matrix K2(ξ,µ) of the integration method in degree 2 is















ν1
1 ν2

1 ν3
1 ν1

2 ν2
2 ν3

2 ν1
3 ν2

3 ν3
3

(9) 0 0 0 0 0 −µ2,2,1 0 1 −µ3,2,1

(9) 0 0 0 0 0 −1 1 0 0
(9) 0 0 0 µ2,2,1 -1 0 µ3,2,1 0 0

Λ(f1) 3ξ21 2ξ2 2ξ3 3ξ1 µ2,2,1 0 3ξ1 µ3,2,1 1
Λ(f2) 2ξ1 3ξ22 2ξ3 1 3µ2,2,1ξ2 0 0 3µ3,2,1ξ2 1
Λ(f3) 2ξ1 2ξ2 3ξ23 1 µ2,2,1 0 0 µ3,2,1 3ξ3















,

where the columns correspond to the parameters in the expansion (5):

Λ4 = ν1
1d1 + ν2

1d2 + ν3
1d3 + ν1

2d
2
1 + ν2

2(d1d2 + µ2,2,1d
2
2) + ν3

2 (d1d3 + µ2,2,1d3d2) + ν1
3(µ3,2,1d1d2) + ν2

3 (µ3,2,1d
2
2) + ν3

3(d
2
3 + µ3,2,1d2d3)

Setting Λ4(x1x3) = 1 and Λ4(x1) = Λ4(x3) = Λ4(1) = 0, we obtain ν11 = ν31 = 0 and ν32 = 1. Note that ν11 and ν31
are removed in advance from the numeric version of K2 above. The dual element of order 2 is has the parametric
form

Λ4 = d1d3 + µ4,2,1d2 + µ4,1,2d
2
1 + µ4,2,2d1d2 + µ4,3,3d

2
3 + (µ2,2,1 + µ3,2,1µ4,3,3)d2d3 + (µ2,2,1µ4,1,3 + µ3,2,1µ4,2,3)d

2
2

(ν21 = µ4,2,1, ν
1
2 = µ4,1,2, ν

2
2 = µ4,2,2, ν

1
3 = µ4,1,3, ν

2
3 = µ4,2,3 , ν

3
3 = µ4,3,3). Overall 8 parameters are used in

the representation of D2. The highlighted entries of K2(ξ,µ) form the non-singular matrix H2 in Definition 4.5,
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therefore D2 is regular for B (cf. Definition 4.3). We obtain the polynomial parameterization µ4,2,2 = µ2,2,1µ4,1,2+
µ3,2,1, µ4,1,3 = 1, µ4,2,3 = µ2,2,1 + µ3,2,1µ4,3,3 with the free parameters µ̄ = (µ2,2,1, µ3,2,1, µ4,2,1, µ4,1,2, µ4,3,3). There
is no denominator since det H2 = 1.

We now setup the numerical scheme. The overdetermined and deflated system F (x,µ) consists of 15 polynomials
in the variables x,µ:

F (x,µ)=







































µ2,2,1µ4,1,2 + µ3,2,1 − µ4,2,2 ,−µ4,1,3 + 1 ,−µ2,2,1µ4,1,3 − µ3,2,1µ4,3,3 + µ4,2,3,
Λ1(f1)=x3

1 + x2
2 + x2

3 − 1, Λ1(f2)=x3
2 + x2

1 + x2
3 − 1, Λ1(f3)=x3

3 + x2
1 + x2

2 − 1, Λ2(f1)=2µ2,2,1x2 + 3x2
1,

Λ2(f2)=3µ2,2,1x
2
2 + 2x1,Λ2(f3)=2µ2,2,1x2 + 2x1,Λ3(f1)=2µ3,2,1x2 + 2x3,

Λ3(f2)=3µ3,2,1x
2
2 + 2x3, Λ3(f3)=2µ3,2,1x2 + 3x2

3,
Λ4(f1)=µ2,2,1µ4,2,2+µ3,2,1µ4,2,3+2µ4,2,1x2+3µ4,1,2x1+µ4,3,3,
Λ4(f2)=3µ2,2,1µ4,2,2x2+3µ3,2,1µ4,2,3x2+3µ4,2,1x

2
2+µ4,1,2+µ4,3,3,

Λ4(f3)=µ2,2,1µ4,2,2+µ3,2,1µ4,2,3+2µ4,2,1x2+3µ4,3,3x3+µ4,1,2

We now consider JF (ξ0,µ0). This Jacobian is of full rank, and we can obtain a maximal minor by removing
Λ1(f2),Λ1(f3),Λ2(f3) and Λ3(f3) from F . We obtain the square 11× 11 system denoted by F0. The general form
of JF0(x,µ) is





































∂µ2,2,1 ∂µ3,2,1 ∂µ4,2,1 ∂µ4,1,2 ∂µ4,2,2 ∂µ4,1,3 ∂µ4,2,3 ∂µ4,3,3 ∂x1 ∂x2 ∂x3

(9) µ4,1,2 1 0 µ2,2,1 −1 0 0 0 0 0 0
(9) 0 0 0 0 0 −1 0 0 0 0 0
(9) −µ4,1,3 −µ4,3,3 0 0 0 −µ2,2,1 1 −µ3,2,1 0 0 0

Λ1(f1) 0 0 0 0 0 0 0 0 3x2
1 2x2 2x3

Λ2(f1) 2x2 0 0 0 0 0 0 0 6x1 2µ2,2,1 0
Λ2(f2) 3x2

2 0 0 0 0 0 0 0 2 6µ2,2,1x2 0
Λ3(f1) 0 2x2 0 0 0 0 0 0 0 2µ3,2,1 2
Λ3(f2) 0 3x2

2 0 0 0 0 0 0 0 6µ3,2,1x2 2
Λ4(f1) µ4,2,2 µ4,2,3 2x2 3x1 µ2,2,1 0 µ3,2,1 1 3µ4,1,2 2µ4,2,1 0
Λ4(f2) 3µ4,2,2x2 3µ4,2,3x2 3x2

2 1 3µ2,2,1x2 0 3µ3,2,1x2 1 0 ∂x2Λ4(f2) 0
Λ4(f3) µ4,2,2 µ4,2,3 2x2 1 µ2,2,1 0 µ3,2,1 3x3 0 2µ4,2,1 3µ4,3,3





































where ∂x2Λ4(f2) = 3(µ2,2,1µ4,2,2+µ3,2,1µ4,2,3+2µ4,2,1x2). The blocks in this matrix can be computed recursively
using the formulas in Section 5.2. The initial point of the Newton iterations is ξ0 = (0.002, 1.003, 0.004) and the
approximation of the variables µi,j provided by the numerical integration method: µ0 = (−0.00117,− 0.00235,5.9 ·
10−6,− 0.00002,− 0.00235,1.0,− 0.00117,− 0.00002) .

We use Theorem 6.1 to certify the convergence to a singular system. We can compute (see eg. [17]) for (ξ0,µ0):

β̃ ≈ 0.01301544 , γ ≤ 18.58366113 ,

which leads to β̃γ < α̃0. The Lipschitz constants can be estimated by means of interval arithmetic as:

L1(K3; ξ0,µ0
; β̃) ≤ 9.66542 , L1(H2;µ0

; β̃) ≤ 4.08068 , L1(H3;µ0
; β̃) ≤ 9.66542

as well as the singular values:

σmin(K3(ξ0,µ0)) = 0.21549.. , σmin(H2(µ0
)) = 0.21550.. , σmin(H3(µ0

)) = 0.21550..

The assumptions of Theorem 6.1 are satisfied for guaranteed convergence. In the next iterations we observe that
the sequence of β̃’s tends to zero (0.01302, 1.1 · 10−4, 7 · 10−9, 2.4 · 10−17), which confirms that we are in the region
of convergence: Indeed, the successive residuals for 4 iterations are 0.00603, 4.0 · 10−5, 2.07 · 10−9, 8.6 · 10−18, 3.55 ·
10−35. Clearly, the residual shrinks with a quadratic rate1. We obtain ξ4 = (1.8 · 10−37, 1.0, 2.8 · 10−36) and
the overdetermined system is satisfied by this point: ‖F (ξ4,µ4)‖∞ = 8 · 10−35; the resulting dual structure is
D∗

2 = {1, d1, d3, d1d3}.
Example 7.2. We demonstrate how our method handles inaccuracies in the input, and recovers a nearby system
with a true multiple point. Let

f1 = x1
2 + x1 − x2 + 0.003 , f2 = x2

2 + 1.004x1 − x2.

1The convergence is seen up to machine error. If we increase the accuracy to 150 digits the rate remains quadratic for 7 iterations:
. . . 3.55 · 10−35, 6.78 · 10−70, 4.15 · 10−140, 5.1 · 10−281 .
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There is a cluster of three roots around ξ0 = (0.001,−0.002). Our goal is to squeeze the cluster down to a three-
fold real root. We use 32 digits for the computation. Starting with ξ0, and a tolerance equal to 10−2 Algorithm 1
produces an approximate dual 1, d1+1.00099651d2, d

2
1+1.00099651d1d2+1.00266222d22+0.99933134d2 and identifies

the primal basis B = {1, x1, x
2
1} using pivoting on the integration matrix. The sole condition of type (13) reads

µ2,1,2 − µ3,2,2 = 0, and Λ1 = 1, Λ2 = d1 + µ2,1,2d2, Λ3 = d21 + µ2,1,2d1d2 + µ3,2,1d2 + µ3,2,2µ2,1,2d
2
2.

The nearby system that we shall obtain is deduced by the residue in Newton’s method. In particular, starting
from ξ0, we consider the square system given by removing the equations Λ1(f1) = 0 and Λ2(f2) = 0. The rank of
the corresponding Jacobian matrix remains maximal, therefore such a choice is valid. Newton’s iterations converge
quadratically to the point (ξ5,µ5) = (1.1 · 10−33, 1.2 · 10−33, 1, 1, 1). The full residual is now

F (ξ5,µ5) = (0, 0.003,−10−32, 10−32, 0.004, 0, 0) .

This yields a perturbation f̃1 ≈ f1 − 0.003 and f̃2 ≈ f2 − 0.004(x1 − ξ∗1) to obtain a system with an exact multiple
root at the origin (cf. Th. 6.1). Of course, this choice of the square sub-system is not unique. By selecting to remove
equations Λ1(f1) = 0 and Λ1(f2) = 0 instead, we obtain (ξ5,µ5) = (0.00066578,−0.00133245, 1.001, 1.0, 1.001) and
the residual F (ξ5,µ5) = (0, 0.005, 0.002, 0, 0, 0, 0), so that the nearby system

f∗
1 ≈ x1

2 + x1 − x2 + 0.008, f∗
2 ≈ x2

2 + 1.004x1 − x2 + 0.002

has a singularity at the limit point ξ∗ ≈ (0.00066578,−0.00133245) described locally by the coefficients µ∗ ≈
(1.001, 1.0, 1.001).

Finally, consider the two square sub-systems as above, after changing f1, f2 to define an exact three-fold root at
the origin (i.e. f1 = x1

2 + x1 − x2, f2 = x2
2 + x1 − x2). Newton’s iteration with initial point ξ0 on either deflated

system converges quadratically to (ξ,µ) = (0,1). This is a general property of the method: exact multiple roots
and their structure are recovered by this process if ξ0 is a sufficiently good initial approximation (cf. Section 5).

Example 7.3. We show some execution details on a set of benchmark examples in taken from [7], see also [27].
For this benchmark, we are given systems and approximate singular points. We compute the approximate inverse
system using the integration method, analyse the matrices involved in the computation and apply Newton iterations
to obtain better approximation of the singular points and its multiplicity structure.

In Table 1, “IM” is the maximal size of the (numeric) integration matrix that is computed to obtain the
multiplicity, “#µ” is the number of new parameters that are needed for certified deflation, “SC” is the number of
constraints of type (13) that were computed and “OS” stands for the size of the overdetermined system (equations ×
variables). This is the size of the Jacobian matrix that must be computed and inverted in each Newton’s iteration. r0
and r stand respectively for the norm of residual vector at the initial approximate solution and approximate inverse
system and after the last Newton iteration, N is the number of iterations, where the iterations are stopped when
the ratio of the norm of two consecutive Newton steps is less than 10. The initial inverse system is computed from
the given approximate singular point, using the integration method with an adapted threshold for the numerical
rank of the matrices Ht. For the numerical Newton iterations, we apply the formulas given in Section 5.2. The
computations are performed with double (64 bit) arithmetic. For Caprasse and Cyclic-9 examples, the singular
root has complex non-real coordinates.

We can observe that the number of parameters required can grow significantly. Moreover, these parameters
induce non-trivial denominators in the rational functions qβj,α(µ) of Proposition 4.4. for the instances cmbs1,
cmbs2 and KSS. The quadratic convergence of Newton method is observed on all the examples. For Caprasse
example, we observe a high initial residual error and a final residual which is not close to the machine precision,
due to an early stop of Newton iterations.
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