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To mimic the mechanical response of passive biological cilia in complex fluids, we study the
bending dynamics of an anchored elastic fiber submitted to a dilute granular suspension under
shear. We show that the bending fluctuations of the fiber accurately encode minute variations
of the granular suspension concentration. Indeed, besides the stationary bending induced by the
continuous phase flow, the passage of each single particle induces an additional deflection. We
demonstrate that the dominant particle/fiber interaction arises from contacts of the particles with
the fiber and we propose a simple elastohydrodynamics model to predict their amplitude. Our
results provide a mechanistic and statistical framework to describe particle detection by biological
ciliated systems.

Living organisms can probe the mechanical features
of their immediate environment with exquisite precision
and rapidity. Humans for instance, are able to discrim-
inate micrometric variations of the roughness of a solid
surface in less than a second, by rubbing their fingertips
across it [1]. Rodents use their long facial whiskers as
tactile organs and have a comparable tactile accuracy for
object detection and texture discrimination [2, 3]. Re-
gardless of the specific features of the tactile organ, the
early steps of texture detection processes can be sketched
into two phases. The first one is mechanical: upon con-
tact and sliding of the tactile organ, the solid texture elic-
its mechanical stress fluctuations which are propagated
through the tactile organ. The second phase is biologi-
cal: mechanosensitive cells embedded in the tactile organ
encode the mechanical signal in series of action poten-
tials [4–6]. During the first phase, the geometrical and
mechanical characteristics of the tactile organ, such as its
microstructure and its resonance properties, participate
in the texture encoding, by filtering and amplifying rapid
fluctuations of the texture induced stress signals [7–11].

However, many living organisms live in aquatic envi-
ronments. Their tactile detection is thus not mediated
by solid friction but rather by hydrodynamic interactions.
In many cases, aquatic animals and micro-organisms use
myriads of high aspect ratio hair-like or ciliated struc-
tures as tactile organs. Their bending in the liquid can
trigger the neural response of mechanosensitive cells em-
bedded at their proximity. Fish for instance use their
lateral line, a sensory organ made of neuromasts [12, 13],
consisting of receptive hair cells that bend under flow and
allow fish to detect predators, flow magnitude and direc-
tion [12, 14]. In vertebrates and mammals, the upper
surface of the tongue is almost entirely covered with soft
slender structures called filiform papillae that can bend
when submitted to hydrodynamic flows and trigger the
response of mechanosensitive channels at their base [15].
Filiform papillae are thus likely involved in the in-mouth

tactile perception [16, 17]. Because of their ubiquity in
Nature, numerous works have studied the deformation of
such cilia under given mechanical stresses, both in in-vivo
[18] and artificial systems [13, 17, 19]. For instance, the
bending equilibrium of an elastic fiber in a simple steady
viscous flow has been well characterized and accurately
modeled at zero Reynolds number using elastohydrody-
namics theories [16, 20].

Natural biological environments are, however, more
complex, often consisting of unsteady flows of hetero-
geneous media (composed of numerous macromolecules,
colloids, granular particles and even other cells). For in-
stance, liquid food products are usually made of oil in
water emulsions, and can also contain protein aggregates
and solid particles. Yet, Humans can discriminate minute
variations of such liquid food texture in the oral cavity.
They are able, for instance, to detect the presence of
micrometric particles in fluids, even at very low concen-
trations [21, 22]. The implication of filiform papillae in
food texture perception is highly suspected but unravel-
ing the precise encoding of food texture by such ciliated
structures requires further investigations.
As for solid texture perception, one can wonder how cili-
ated structures do encode the texture of a liquid, that one
can define a minima as the viscosity of the carrier fluid
and the typical size and concentration of the surround-
ing particles. This question remains largely unexplored.
In this work, we address it with the use of a minimal
biomimetic approach that consists in submitting an an-
chored elastic cylindrical fiber to a granular suspension
flow. We establish both experimentally and theoretically
how the fiber bending fluctuations encode the presence of
particles in the carrier fluid, as well as their number and
their size. We also estimate the typical stresses elicited
by particle/fiber interactions in living systems for which
the neural responses to mechanical stimuli have been well
characterized, such as the fish neuromasts [23, 24] and the
sense of hearing hair cells [25].
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FIG. 1. (A) Upper panel – Sketch of the experimental setup. A circular pool made of elastomer, the bottom of which is
decorated with cylindrical fibers, is filled with a granular suspension and placed at the static bottom of a rheometer. The
rotating tool of the rheometer is rotated to shear the granular suspension. An epifluorescence microscope, whose objective is
placed underneath, images the displacements of fluorescent microparticles embedded at the tip of the fiber. Middle panel –
Typical fluorescence images of the tip of the fiber, in the absence of flow (left) and in steady flow (right). Bottom panel –
Sketch of the geometrical properties of the fiber at rest (left) and deformed in a steady flow (right). (B) Typical time traces
of the fiber tip displacements for a particle size R0 = 40 µm with φ = 0 (left, blue curve), φ = 0.5% (middle, red curve) and
φ = 2% (right, yellow curve). For each trace, a zoom in time (shaded region) is shown just below to highlight a few spike events
induced by a particle/fiber interaction. (C ) Three different spikes labeled k − 1, k and k + 1. The spike k has an amplitude
Akδ and a duration τkd . The waiting time between spike k and k + 1 is τkw. The most probable value of the deflection, δmp, is
shown with the dashed line. The solid line is a fit of the k + 1th event with a symmetric double exponential pulse whose full
expression is given in the SI Appendix.

RESULTS

Fiber displacement

We monitor optically the deflection of the tip of an
elastic cylindrical fiber (radius a, height L) made of
elastomer (Young’s modulus E, see Materials and Meth-
ods and SI Appendix, Fig. S1). The base of the elastic
fiber is anchored to the bottom of a circular pool made
of the same elastomer. The pool is filled with a density
matched granular suspension consisting of a dispersion
of polystyrene spherical particles (radius R0 = 20, 40
and 70 µm) with a particle volume fraction φ (from 0 to
2 %) in a Polyethylene Glycol (PEG) aqueous solution
of viscosity η0 (Materials and Methods and SI Appendix,
Fig. S2B). The suspension is sheared in a rheometer,
using a planar circular tool as an upper plate, that
rotates at a constant rotation rate ω. Epifluorescence
microscopy is used to measure the modulus δ of the fiber
tip displacement over time at 100 frames per second
(fps). Our results are all presented in the steady flow
regime. The local shear rate of the flow is γ̇ = rω/H,
where r is the radial position of the fiber with respect to
the rotation axis of the rheometer cell and H is the gap
distance from the base of the pool to the lower surface of
the rotating plate (Fig. 1A, top panel and Materials and
Methods for the flow parameters values). The Reynolds
numbers associated to the fiber and to the particles
are both small, on the order of 10−3. The typical

relaxation time of the elastic fiber in the viscous flow
is teh = 4πη0L

4/EI(ln (2L/a) + 1/2) with I = πa4/4
the area moment of inertia of the cylindrical fiber. Its
value (here about 1 ms) is small with respect to the flow
timescale (teh � γ̇−1) so that the fiber can be safely
modeled in the quasi-static limit [16, 26]. Biological cilia
in natural environments are usually evolving in similar
flow regimes [16, 24, 27].

An experiment consists in a 1 minute long sequence of
shear. Each experiment is repeated many times (n = 5
to 20) to have a significant estimate of the variance of
δ. Without particles (φ=0), the tip deflection is induced
by viscous stresses of the continuous phase flow, which
has a Newtonian rheology (see SI Appendix, Fig. S2B).
As we have shown previously in [17], for an anchored
fiber sheared in a Newtonian fluid in the steady flow
regime, its tip deflection δ0 is proportional to the local

shear stress δ0 = K0
L5

a4
η0γ̇
E . The prefactor K0 has to

be determined experimentally as performed in [17]. Due
to the variations of the fiber length L and the Young’s
modulus E from fiber to fiber, its value has to be sys-
tematically measured and lies typically between 1 and 5.
When a granular suspension (φ 6= 0) is sheared in the
system, δ(t) displays discrete spikes, whose number in
a given time interval increases with the particle volume
fraction φ (Fig. 1B). The following of the paper focuses
on the statistical properties of the noise of the displace-
ment measurements and its physical origin.



3

Bending statistics in granular suspensions

When a granular suspension is sheared, the signal δ(t)
resembles that of a train of spikes. In the low particle
volume fraction limit explored here, each particle pas-
sage induces a spike due to the tip displacement of the
fiber. Typically, δ(t) has a baseline signal of amplitude
δmp on the top of which discrete spikes are overlapped,
due to these particle/fiber interactions. Experimentally,
we extract δmp as the displacement corresponding to the
maximum of the probability density function p(δ) (see
SI Appendix, Fig. S3). We find that the value of δmp
is, within experimental error bars, identical to the de-
flection due to the continuous phase δ0 (Fig. S3, insets).
Spikes have an amplitude Aδ, whose physical origin and
value will be discussed in depth further down, and have
a typical time duration τd that we resolve experimen-
tally (Fig. 1C ). Since the dispersion of particles is spa-
tially homogeneous, the signal is not time correlated and
the autocorrelation of δ(t) typically decays to zero on a
timescale of the order of τd (see SI Appendix, Fig. S4A).
The power spectrum of δ(t) is flat up to a cutoff fre-
quency of order 1/τd (see SI Appendix, Fig. S4B and C)
beyond which it abruptly decays. We have checked both
theoretically and experimentally that shear induced mi-
gration of the particles did not occur on the timescale of
the experiments (see SI Appendix, Material and Meth-
ods).

We have first measured the variation of the normal-
ized averaged deflection 〈δ〉 / 〈δ0〉 as a function of the
particle volume fraction (Fig. 2, inset), where brackets
denote an average over time and over the n repetitions
of the experiments, including different fibers and differ-
ent suspensions. In this range of volume fractions, spikes
are well separated and their amplitudes are small with
Aδ � δmp. They thus weakly impact the average, yield-
ing 〈δ〉 / 〈δ0〉 ≈ 1 at all φ. The large fluctuations of
〈δ〉 / 〈δ0〉 result from sample to sample variations that are
likely due to slight variations of the PEG concentration
which modifies the viscosity of the continuous phase. To
assess this statement, we have used the rheometer (see
SI Appendix, Methods) to measure the macroscopic vis-
cosity of the granular suspension η(φ) normalized by η0,
its value without particles (open circles in the inset of
Fig. 2). Within sample to sample experimental errors,
η/η0 does not vary significantly with φ for φ < 2%. Nei-
ther the averaged deflection nor the macroscopic viscos-
ity are thus good measurements of the particle presence,
concentration or size. In a second step, we have there-
fore quantified the fiber bending fluctuations as a func-
tion of the particle volume fraction. We plot on Fig. 2
the variance of the deflection, noted σ2

δ , to which we have
subtracted the variance in the absence of particles σ2

0 ≈
400 nm2, as a function of φ for all investigated sizes of
particles. For a given particle size R0, measuring the
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FIG. 2. Reduced variance of the noise σ2
δ − σ2

0 as a function
of φ, with σ0 ≈ 20 nm. Different symbols denote different
particle size R0. Solid lines are linear fits of the data σ2

δ−σ2
0 =

β(R0)φ. Inset: Normalized averaged displacement 〈δ〉 / 〈δ0〉
as a function of φ, with 〈δ0〉 the displacement at φ = 0. On
the same graph we have overlapped the relative increase of
the macroscopic viscosity η/η0 (open circles). Error bars are
sample to sample standard deviations of the data.

bending fluctuations allows to discriminate differences in
particle volume fraction of about 0.5%. Conversely, at a
given volume fraction, the bending fluctuations are sig-
nificantly different for different particle sizes. Note that
different pairs of (R0, φ) values can yield the same value
of σ2

δ−σ2
0 , so that sizes and concentrations cannot be dis-

criminated simultaneously. However, since the bending
statistics is not gaussian, the associated bending signals
are qualitatively and quantitatively different (see Fig. S6
and SI Appendix).

The individual particle/fiber interactions are sparse
and not correlated, therefore one expects the statistics
of δ(t) to be a Poisson process. The anchored fiber may
be seen as a particle counter, in a local interaction vol-
ume whose cross section will be discussed further down.
One simply expects that the variance of δ scales linearly
with the number of spike events N(T ) in a time period T ,
σ2
δ ∼ N . Since the number of particles in the interaction

volume is proportional to the particle concentration, one
thus expects σ2

δ ∼ φ. As shown on Fig. 2 with the solid
lines, this is clearly the case for all R0. Data points are
well fitted with σ2

δ −σ2
0 = β(R0)φ, yielding for β(R0) the

values given in Table 1.

Individual events: contact vs. distant interactions

To understand the physical nature of the particle/fiber
interactions that produce spikes in the tip displacement
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FIG. 3. A particle interacting with the artificial cilium. (A) Snapshots of a typical contact interaction between a fluorescent
particle (R0 = 83µm, circled in orange at different times) and the fiber (circled in red at its steady state position, prior to
contact). The trajectory of the particle is shown with the orange dashed line. The white bar is 200 µm long. On the right
of this picture are plotted the corresponding reduced displacements δ − δmp of the tip versus time t in both the direction of
the flow x (upper panel) and in the z direction, orthogonal to the flow (lower panel). (B) A typical hydrodynamic distant
interaction between a fluorescent particle (circled in blue) and the fiber (circled in red). As in (A), next to the picture are
plotted the corresponding displacements δ − δmp of the tip in both the x (upper panel) and z (lower panel) directions. (C )
|δ| versus time t for 10 increasing values of the gap H − L, varying from 10 µm to 280 µm in increments of 30 µm. For these
experiments, the non-fluorescent particles with the average radius R0 = 70 µm were used. Inset: Reduced variance σ2

δ − σ2
0

as a function of the gap H − L. Error bars correspond to the mean standard deviation of σ2
δ − σ2

0 obtained on 5 successive
experiments performed in the same conditions. The vertical dashed line corresponds to H − L = 2R0. Colors are the same as
in the main panel.

δ, we imaged the trajectories of the particles. For this,
we used fluorescent granular particles (R0 = 83 µm) to
prepare the sheared suspension (see Material and Meth-
ods). Since our optical imaging is restricted to the 2D
focal plane, we also unmatched the mass densities of the
particles and the liquid, so that particles cream at the
top of the suspension, using glycerol as the continuous
phase. The rigid plate of the rheometer is lowered so
that H & L. Fluorescent particles therefore approach
the fiber at the level of its tip and we extract both the tip
deflection (as previously done) and the particle positions
using a tracking routine (see SI Appendix, Material and
Methods). Shown on Figs. 3A and 3B are typical snap-
shots of two interaction events between a particle and the
fiber. On Fig. 3A, we show the case of a contact between
the particle and the fiber, for which the particle/fiber dis-
tance remains constant during τd (see Fig. S8B and SI
Movie S1). Note that at such low Reynolds numbers, this
contact remains lubricated. We show on Fig. 3B, a case

in which the particle/fiber distance is slightly larger (by
about 30 µm). Movies of both situations can be found
in the SI Appendix (SI Movie S1 for a contact and SI
Movie S2 for a distant interaction). Note that since the
tips of the fibers are a bit rounded (see Fig. 2a in [17])
the particle and the fiber can appear to slightly overlap,
as in Fig. 3A.

Next to the snapshots of Figs. 3A and B are plotted
the corresponding displacements in the flow direction δx
and orthogonal to it δz. When comparing both figures,
one can see that the contact perturbation is about 5 times
larger in amplitude than the distant one. Actually, dis-
tant interactions induce an additional deflection that is
hardly detected with our imaging technique, with a typ-
ical amplitude close to the noise level in the absence of
particles. This is a first indication that the range of par-
ticle/fiber interaction is R0, measured from the surface
of the fiber.

To further probe the range of these interactions, we
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TABLE I. Comparison between the experimental and pre-
dicted values of the coefficient β for different particle sizes
R0. For the model, numbers given in the brackets correspond
to the boundary values of β when the length of the fiber L is
decreased or increased by 5% and when E and η are varied
within their experimental errors.

R0 (µm) βexp (µm2) [Exp.] βth (µm2) [Model]
20 0.17 ± 0.04 0.22 [0.06 ; 0.88]
40 1.07 ± 0.13 0.8 [0.19 ; 2.74]
70 8.2 ± 1.2 1.96 [0.54 ; 7.74]

performed series of experiments in which the vertical
position of the rigid upper plate of the rheometer was
changed from H ∼ L (see Fig. 3C with t < 140 s) to
larger values. Since particles cream in the fluid, as soon
as H > L + 2R0, contacts are suppressed and the sole
response of distant hydrodynamic interactions is probed
(see Fig. 3C with t > 560 s). In this case, δ(t) is, indeed,
much smoother, with a reduced variance σ2

δ − σ2
0 ∼ 0

(Fig. 3C, inset). The decay of σ2
δ − σ2

0 typically occurs
on a length scale equal to R0 that indeed sets the range of
the interaction. Since the amplitudes of the tip deflection
induced by contacts are much larger than those due to
distant interactions, we focus in the following in develop-
ing a model for contacts. A model for distant interactions
is also provided and discussed in the SI Appendix.

THEORETICAL MODELING

Statistical modeling of the spike train

The statistical properties of a train of random spikes
have been described by Garcia and coworkers [28, 29].
Following their work, for a duration T , δ(t) can be writ-
ten as the discrete sum of N(T ) random successive spikes
as

δ(t) = δmp +

N(T )∑
k=1

Akδ (y, z)Π

(
t− tk

τd

)
(1)

where Akδ (y, z) is the random amplitude of the kth spike,
Π(x) a function describing the shape of the spike (taken
here as a symmetric double exponential pulse, see Fig. 1C
and its full expression in the SI Appendix ), centered on
the time tk of a given spike, and denoting τd its dura-
tion (see Fig. 1C ). Note that the use of a symmetric
double exponential pulse was simply chosen because it
fits the experimental spike shape and allows for a sim-
ple computation of the normalization integral I2 of Eq. 2
defined further down. This choice is not supported by
any physical model. Both the spike duration τd and its
amplitude Akδ are random variables that depend on the
random (y0, z0) coordinates of the granular particles that
interact with the fiber (see the sketch of Fig. 4A). De-
noting 〈τw〉 the average waiting time between spikes, the

variance of δ can be derived, by computing the long time
averaging of the square of Eq. 1, under both assumptions
that the spikes are independent and that they are well
separated τd � τw. One obtains

σ2
δ =

〈
A2
δτd
〉

〈τw〉
I2 (2)

where the average is taken on the particle coordinates
disorder and I2 =

∫∞
−∞Π2(x)dx = 1/2 is a shape nor-

malization integral. The average waiting time between
spikes 〈τw〉 can be estimated from the flux of particles
that effectively interact with the fiber, τw = Vp/(φL

2γ̇b)
with Vp = 4/3πR3

0 the particle volume and b = a + R0

the characteristic impact parameter length of the parti-
cle/fiber interaction. We now provide a physical estimate
of
〈
A2
δτd
〉

for contact interactions.

Model for the particle/fiber contact

In the case of a contact, we assume that the fiber ex-
periences an enhanced drag force due to the presence of
the particle in its immediate vicinity, responsible for the
additional bending of the fiber. We model this force as
a simple Stokes drag F(y0, z0) = −6πη0R0u, where u
is taken as the local fluid velocity around a cylindrical
obstacle (see SI Appendix ) and where y0 (resp. z0) is
the vertical (resp. lateral) coordinate of the particle (see
the sketch of Fig. 4A). Since the elastohydrodynamic re-
laxation time of the fiber (teh ∼1 ms) is much smaller
than the interaction duration (τd ∼0.1 s), the bending
dynamics is not governed by the relaxation timescale
of the fiber and the additional deflection can be mod-
eled in the quasi-static limit. For the sake of simplicity,
we only keep the radial component of the force, along
the particle/fiber center-to-center direction. Using lin-
ear elasticity theory, the fiber profile δ(y) can be solved,

writing that δ′′(y) = F (y0,z0)
EI (y0 − y), where the prime

symbol stands for a spatial y derivative and I = πa4/4
is the area moment of inertia of the fiber. Consider-
ing the boundary conditions (fiber clamped at its base
so that δ(0) = 0 and δ′(0) = 0, pinned at the contact
point so that δ′(y−0 ) = δ′(y+0 ) and free at its tip so that
δ′′(y > y0) = 0), we obtain the following expression for
the amplitude Aδ

Aδ =
4ηγ̇

E

(
1− a2

(a+R0)2

)
R0y

3
0(3L− y0)

a4

√
1−

(
z0

R0 + a

)2

(3)
Looking at the experiments with fluorescent granular
particles, we observe that during a contact event, the par-
ticle encounters the fiber at a lateral position z0, which is
a random variable. In the fiber frame, it corresponds to
an angular coordinate θi (see SI Appendix Fig. S8A). The
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particle detaches from the fiber at an angle θf . Exper-
imentally, we found that θf weakly depends on θi, with
< θf >= 108± 4◦ (see SI Appendix Fig. S8C). We make
the crude assumption that the particle travels a distance
(a + R0)(θf − θi), at the unperturbed flow velocity γ̇y0,

yielding τd =
θf (a+R0)−z0

γ̇y0
. We can thus average out A2

δτd
over space, taking into account a uniform distribution for
the (y0, z0) particle coordinates. After all computations
have been made, one finally gets (see the full calculation
in the SI Appendix, Theoretical Modeling)

(σδ
L

)2
=

4θf
π

(
ηγ̇

E

)2(
L

a

)8(
R0 + 2a

R0 + a

)2

×P2(R0/L)×φ

(4)
with P2(x) = 43/56x+ 4x2 + 8x3 + 7x4 + 5/4x5 − 2x6 −
5/2x7 + x8.

Comparison of this model’s predictions with the ex-
perimental data was done in the following way. First,
we looked at an individual contact event with the fluo-
rescent particles data and compared the model predic-
tion for Aδ(y0 ≈ L, z0), as provided by Eq. 3, to the
experiments. For moderate deflections (Aδ < δmp), we
find that our model is in reasonable agreement with the
data both for Aδ and τd (see SI Appendix, Fig. S8D).
We then confronted our model to the dataset of different
particle concentrations and sizes (density matched sus-
pensions). As we mentioned above, the signal δ(t) is that
of a particle counter, which explains the scaling σ2

δ ∼ φ
with the particle concentration φ. The standard devi-
ation is also expected to scale linearly with the strain
rate, in agreement with the experimental data (see SI
Appendix, Fig. S7B). We have also compared the exper-
imental values of β/L2 (see Fig. 2) to its predicted ones
as obtained from Eq. 4 and given in Table 1. As shown
on Fig. 4B, within experimental error bars, and without
any adjustable parameters, our model describes well the
variation of β with the particle size R0. Averaging over
the three particle sizes, we find

〈
βexp/βth

〉
≈ 2.1, which

is in the range of the measured values of the calibration
factor K0 in a shear flow without particles.

DISCUSSION

Several conclusions can be drawn from our results. On
a physical side, the increase of particle volume fraction
leads, at the macroscopic scale, to an increase of the
shear viscosity, according to Einstein’s law for suspen-
sions: η/η0 = 1 + 5/2φ + o(φ2). This relationship has
been verified experimentally using standard rheological
methods [30, 31], but mostly at particle volume fractions
larger than a few %. Detecting a particle volume fraction
of particles lower than 1% using a viscosity measurement
would indeed require a relative error on η better than
∼ 2%. Such a small error is beyond current rheometry
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line corresponds to the theoretical predictions of the contact
model, with a = 50 µm, L = 435 µm, E = 2.7 MPa and
η = 119.7 mPa.s. The dashed lines estimate the model pre-
diction limits taking ±5% variations in L and variations of E
and η within their experimental errors.

experimental errors, due to rheological artefacts such as
gap detection [32] or the presence of a rim at the edge
of the sample [33], which both lead typically to relative
errors on the order of 10%.
Actually, to discriminate the macroscopic viscosities
of the suspensions, the biomimetic cilium is not more
efficient than a rheometer, since it does not capture the
‘mean field’ increase of the macroscopic viscosity. Within
our experimental error bars, the average deflection does
not vary significantly with the particle volume fraction
φ. However, the biomimetic cilium is very sensitive to
the local environment heterogeneity through repeated



7

particle/fiber interactions. The interaction between an
anchored elastic fiber and granular particles has already
been explored, but mostly with active ciliated assemblies
adhering to particles in suspensions [34, 35], to mimic
the beating of some biological cilia, for instance in the
context of mucus cleaning in the lungs. In [36], the
authors show that by varying the adhesion strength,
particles can either be released, propelled, or trapped
by cilia. Surprisingly, the apparently simpler case of
a non-adhesive particle interacting with a passive and
isolated cilium has been less investigated. Non-adhesive
particle/cilia interactions were probed in [37] but in
the limit R0 � a. Severe deformations of the pillar
assemblies are observed, that could lead to the rupture
of the cilia. Our work contrasts with these results by
focusing on the case of non-adhesive particles with
R0 ∼ a, interacting with an isolated cilium.

In living systems, mechanoreceptors are usually lo-
cated at the base of the cilia and one can question
whether these individual particle/cilium interactions in-
duce sufficient mechanical signals to trigger a neural and
behavioral response. Humans are capable of detecting
with their tongues the presence of rigid particles in flu-
ids with sizes as low as 2 µm and concentrations as low
as 5% [21]. This detection was experimentally found to
depend on the size of the particles, their concentration
and the carrier liquid viscosity [22]. These behavioral ex-
periments tend to show that particles do induce a neural
response, even though it has not been explicitly mea-
sured. Usually, the neural response threshold of ciliated
structures is obtained by indenting the tip of the cilia
while recording the activity of basal mechanoreceptors.
This response threshold corresponds to a torque at the
base of the cilium, that has to be compared here with the
typical torque induced by a cilium/particle contact.

In the case of a contact between a single particle and
a cilium, the base torque Mb can be deduced from the
cilium base curvature and is given by Mb = EIδ′′(y =
0) = Fy0, where F is the Stokes viscous force mentioned
above. For multiple interactions, an average torque 〈Mb〉
can be computed by averaging over all possible particle
positions (see the full derivation in the SI Appendix ). As-
suming a uniform flow of velocity U∞ and for particles
of size R0 ≈ a, one finds that

〈Mb〉 ≈
9

16
π2ηU∞a(L+ 2a) (5)

Measurements of base torques in ciliated living systems
are rather scarce. One of the most thoroughly studied
ciliated system is the lateral line of the Zebrafish larvae,
which is composed of superficial neuromasts. These can
be assimilated to slender cylindrical structures of typical
length L ≈ 40 µm and base diameter 2a ≈ 8 µm. Using
either laser interferometry or direct microfiber indenta-
tion, a typical bending base torque of about 3.10−15 N.m

was estimated [23, 24]. How does this value compare to
the mean base torque induced by particle/neuromasts in-
teractions ? For a larvae swimming in water (viscosity
η ≈ 1 mPa.s) with a typical velocity U∞ ∼ 10−2 m/s [38],
Eq. 5 yields 〈Mb〉 ≈ 10−14 N.m, a value that compares
well with the above estimation. Could such a base torque
value be sufficient to induce a neural response from the
neuromast afferent fibers ? To the best of our knowl-
edge, on Zebrafish larvae, no measurements that combine
torque estimates together with electrophysiology mea-
surements were actually provided. Such combined mea-
surements have in fact been performed by Hudspeth and
coworkers in another, yet closely related system, the hair
bundle of the Bullfrog saccular hair cell [25] that has
similar sizes and compliance as the neuromast. In their
work, Hudspeth and coworkers show that the onset of
the neural response is triggered for forces acting on the
bundle F ≈ 10−11 N. Since the bundle has a typical
height of 10 µm, this force yields a threshold base torque
Mb ≈ 10−16 N.m that is smaller than our predicted value.

This strongly suggests that a single contact interaction
between the cilium and micrometer sized particles could
therefore be detectable by the lateral line of fish or any
comparable hair cell structures. It is known for instance
that cilia are involved in the left/right symmetry break-
ing during embryogenesis, possibly via the detection of
morphogens filled vesicles [39]. For a ciliated biologi-
cal system to measure particle concentrations, a statisti-
cal measurement over time of several of these individual
events is required. Our results show that the variance
of the bending signal could be used by biological sys-
tems to discriminate sizes or concentrations. In biolog-
ical systems, it is well known that sensory systems also
encode stimuli with the precise timing of the events [1].
Encoding simultaneously both sizes and concentrations
therefore calls for a more refined statistical analysis and
a direct confrontation with biological systems. For in-
stance, one could image the fluctuating deflections of a
cilium under the flow of a colloidal suspension at various
concentrations and perform at the same time electrophys-
iological measurements of its afferent neurons.

MATERIALS AND METHODS

Fiber fabrication

Elastic fibers were obtained using micro-milling and
molding techniques fully described in [17] and recalled
in the SI Appendix, Material and Methods. They are
made of a PolyDiMethylSiloxane elastomer (PDMS, Syl-
gard 184, Dow Corning, USA, cross-linking ratio 10:1,
Young’s modulus E ≈ 2.7 ± 0.8 MPa) and consist in
cylinders (height L=435±20µm, radius a=50 µm) whose
base is anchored to a circular pool made of the same
elastomer. To image their displacements with fluores-



8

cence microscopy, their tips were seeded with fluorescent
microspheres (diameter ∼ 5 µm) using the protocol de-
scribed in [17].

Granular suspensions

Two types of granular suspensions were used. The
first one consisted in a suspension of Polystyrene spher-
ical particles (TS-40, TS-80 and TS-140 of mean radius
R0 = 20, 40 and 70 µm respectively (Fig. S2A), mass den-
sity 1.05 g/cm3, Dynoseeds, Microbeads, Norway) dis-
persed in a dilute solution of Polyethylene Glycol (PEG,
Mw = 8.103 g.mol−1, Sigma Aldrich) with a particle vol-
ume fraction φ ranging from 0 to 2 %. For these suspen-
sions, a PEG mass concentration of 30% w/w was used.
This allowed having a solution with a rheology that is
still Newtonian (dynamic viscosity η ≈ 130 mPa.s, see
SI Appendix, Fig. S2B) and with a mass density that
closely matches that of the particles, thus limiting their
sedimentation or creaming. The second type of suspen-
sion consisted of green fluorescent Polyethylene particles
(mean radius R0=83 µm, UVPMS-BG-1.025, mass den-
sity 1.025 g/cm3, λem = 414 nm, Cospheric, USA) dis-
persed in pure glycerol (mass density 1.26 g/cm3, Sigma
Aldrich) with φ � 1 %. In this case, the fluorescent
particles did cream in the granular suspension.

Rheological and optical setup

The PDMS circular pool was placed at the bottom
static part of a commercial rheometer (MCR 302, Anton
Parr). The planar rotating tool of the rheometer (PP40
Anton Paar, diameter 40 mm) was positioned at a
height H=1 mm above the base of the fiber and rotated
at a constant rotation rate (yielding γ̇=10 Hz for all
experiments with non fluorescent particles) to induce
a shear flow (Fig. 1A). For fluorescent particles exper-
iments the rheometer tool was positioned at a height
H=540 µm above the base and the constant shear rate
was in the range [-2 ; 2] Hz. A fluorescence microscope
equipped with a 5X magnification objective is positioned
underneath the pool. Images of the tip position were
recorded at 100 fps as the granular suspension is sheared
with a CCD sensitive Camera (Blackfly S, FLIR, USA).

Fiber deflections measurements

We used an image correlation routine written in Mat-
lab (Mathworks, USA) to compute the displacement of
the fiber tip δx (in the the flow direction) and δz (or-
thogonal to the flow). Sub-pixel accuracy is obtained by

interpolating the correlation function as fully described in
[17], yielding a typical measurement noise σ0 = 20 nm.
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