
HAL Id: hal-03079837
https://hal.science/hal-03079837v1

Submitted on 17 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Characterizing Asynchronous Message-Passing Models
Through Rounds

Adam Shimi, Aurélie Hurault, Philippe Quéinnec

To cite this version:
Adam Shimi, Aurélie Hurault, Philippe Quéinnec. Characterizing Asynchronous Message-Passing
Models Through Rounds. 22nd International Conference on Principles of Distributed Systems
(OPODIS 2018), Dec 2018, Hong Kong, China. �10.4230/LIPIcs.OPODIS.2018.0�. �hal-03079837�

https://hal.science/hal-03079837v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Characterizing Asynchronous Message-Passing
Models Through Rounds

Adam Shimi
IRIT – Université de Toulouse, 2 rue Camichel, F-31000 Toulouse, France
http://www.irit.fr
adam.shimi@irit.fr

Aurélie Hurault
IRIT – Université de Toulouse, 2 rue Camichel, F-31000 Toulouse, France
http://www.irit.fr
aurelie.hurault@irit.fr

Philippe Quéinnec
IRIT – Université de Toulouse, 2 rue Camichel, F-31000 Toulouse, France
http://www.irit.fr
philippe.queinnec@irit.fr

Abstract
Message-passing models of distributed computing vary along numerous dimensions: degree of
synchrony, kind of faults, number of faults... Unfortunately, the sheer number of models and
their subtle distinctions hinder our ability to design a general theory of message-passing models.
One way out of this conundrum restricts communication to proceed by round. A great variety
of message-passing models can then be captured in the Heard-Of model, through predicates on
the messages sent in a round and received during or before this round. Then, the issue is to find
the most accurate Heard-Of predicate to capture a given model. This is straightforward in syn-
chronous models, because waiting for the upper bound on communication delay ensures that all
available messages are received, while not waiting forever. On the other hand, asynchrony allows
unbounded message delays. Is there nonetheless a meaningful characterization of asynchronous
models by a Heard-Of predicate?

We formalize this characterization by introducing Delivered collections: the collections of
all messages delivered at each round, whether late or not. Predicates on Delivered collections
capture message-passing models. The question is to determine which Heard-Of predicates can
be generated by a given Delivered predicate. We answer this by formalizing strategies for when
to change round. Thanks to a partial order on these strategies, we also find the "best" strategy
for multiple models, where "best" intuitively means it waits for as many messages as possible
while not waiting forever. Finally, a strategy for changing round that never blocks a process
forever implements a Heard-Of predicate. This allows us to translate the order on strategies into
an order on Heard-Of predicates. The characterizing predicate for a model is then the greatest
element for that order, if it exists.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Message-passing, Asynchronous Rounds, Dominant Strategies, Failures

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2018.0

Funding This work was supported by project PARDI ANR-16-CE25-0006.

© Adam Shimi, Aurélie Hurault and Philippe Quéinnec;
licensed under Creative Commons License CC-BY

22st International Conference on Principles of Distributed Systems (OPODIS 2018).
Editors: Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira; Article No. 0; pp. 0:1–0:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adam.shimi@irit.fr
mailto:aurelie.hurault@irit.fr
mailto:philippe.queinnec@irit.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2018.0
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:2 Characterizing Asynchronous Message-Passing Models Through Rounds

1 Introduction

1.1 Motivation
Even when restricted to message-passing, distributed computing spawns a plethora of models:
with various degrees of synchrony, with different kinds of faults, with different failure
detectors... Although some parameters are quantitative, such as the number of faults, the
majority are qualitative instead, for example the kinds of faults. Moreover, message-passing
models are usually defined by a mix of mathematical formalism and textual description,
with crucial details nested deep inside the latter. This is why these models resist unification
into a theory of distributed computing, and why results in the field are notoriously hard to
organize, use and extend.

One solution requires constraining communication to proceed by round: each process
repeatedly broadcasts a message with its current round number, waits for as many messages
as possible bearing this round number, and changes round by computing both its next state
and next message. The variations between models are then captured by the dynamic graph
specifying, for each round, from which processes each process received a message with this
round number before the end of its round; this fits the concept of dynamic network from
Kuhn and Oshman [11]. Nonetheless, we will privilege the perspective of Charron-Bost and
Schiper Heard-Of model [4], which places itself more at the level of processes. Here, the
Heard-Of collection of an execution contains, for each round r and each process j, the set
of processes from which j received a message sent in round r before going to round r + 1.
Then, a predicate on Heard-Of collections characterizes a message-passing model.

Yet rounds don’t remove the complexities and subtleties of message-passing models –
they just shift them to the characterization of a given model by a Heard-Of predicate. This
characterization depends on how rounds can be implemented in the underlying model. In the
synchronous case, processes progress in lock-step, and every message that will ever be received
is received during its corresponding round. Hence, the Heard-Of predicate characterizing a
synchronous model simply specifies which messages can be lost. In asynchronous models on
the other hand, messages can be late, and thus the distance between the round numbers of
processes is unbounded. The combination of these uncertainties implies that processes do
not know which messages will be delivered and when. Thus, there is a risk of not waiting for
useful messages that will eventually arrive, and to wait forever for messages that never will.

To the best of our knowledge, there is no systematic study of the Heard-Of predicates
generated by various asynchronous message-passing models. Because it is a crucial step in
unifying distributed computing’s menagerie of models through rounds, we also believe this
topic to be of importance.

1.2 Approach and Overview
As hinted above, the difficulty lies in the potential discrepancy between messages delivered
on time – captured by Heard-Of collections – and messages delivered at all. We want to
determine the former, but it is considerably easier to specify the latter for an operational
model: list the messages that will eventually arrive. We therefore center our formalization
around Delivered collections, infinite sequences of communication graphs capturing, for each
round, all messages sent at this round and eventually delivered for a given operational model.
The question is thus to characterize by a Heard-Of predicate which messages can be waited
for when the deliveries are those from the Delivered predicate.

From these Delivered collections, we build runs representing the different scheduling

A. Shimi, A. Hurault and P. Quéinnec 0:3

of deliveries and changes of round. Some of these runs, called valid, define a Heard-Of
collection; invalid runs have processes blocked forever at some round. We filter the latter
thanks to strategies: sets of local states for which a process is allowed to change round. Runs
for a strategy must also satisfy a fairness condition ensuring that if a process can change
round continuously, it does. Strategies with only valid runs for a Delivered predicate, that is
strategy implementing a Heard-Of predicate, are called valid.

The next question is how to choose a valid strategy and the corresponding predicate,
as characterizing a Delivered predicate and its underlying model? We answer by taking
the strategy generating the Heard-Of predicate that is the smallest overapproximation of
the Delivered predicate. From this intuition, we define a partial order on valid strategies
called domination; a characterizing strategy is a greatest element for this order, and the
characterizing predicate is the one it generates.

The results obtained with this approach are threefold:
The formalization itself, with a complete example: the asynchronous message-passing
model with reliable communication and at most F permanent crashes.
The study of carefree strategies, the ones depending only on messages from the current
round. This restricted class is both well-behaved enough to always have a unique
dominating strategy, and expressive enough to capture interesting Delivered predicates.
The study of reactionary strategies, the ones depending only on messages from past and
current rounds. Here too we show well-behavior of this class as well as an example where
reactionary is needed for domination, and another one where it is insufficient.

Along these results, we also formally prove the characterization of asynchronous models by
Heard-Of predicates given by Charron-Bost and Schiper [4].

We begin by the formalization in Section 2, while Section 3 introduces a fully developed
example: the asynchronous message-passing model with reliable communication and at most
F permanent crashes. Section 4 explores carefree strategies in terms of well-behavior and
expressivity, closing with the example with at most B failed broadcasts per round, a Delivered
predicate dominated by a carefree strategy. We follow by studying reactionary strategies
in Section 5. Here again, well-behavior and expressivity are examined, followed by the
example of at most F permanent initial crashes. Section 6 and Section 7 then conclude
the paper with a discussion of related works, the value of our results and some perspectives.

Due to space constraints, we only provide sketches for some proofs; the complete versions
can be found in the long paper [14].

2 Formalization

All our abstractions revolve around infinite sequences of graphs, called collections. A Delivered
collection maps each round r and process j to the set of processes from which j receive a
message sent at r. A Heard-Of collection maps each round r and process j to the set of
processes from which j received, before going to round r + 1, the message sent at r. The
difference lies in considering all deliveries for Delivered collections, but only the deliveries
before the end of the round of the receiver for Heard-Of collections.

I Definition 1 (Collections and Predicates). Let Π a set of processes. Col : (N∗×Π) 7→ P(Π) is
either a Delivered collection or a Heard-Of collection for Π, depending on the context.

In the same way, Pred : P((N∗ × Π) 7→ P(Π)) is either a Delivered predicate or a
Heard-Of predicate for Π.

For a given Col, the kernel of round r are the processes from which everyone receives a
message for this round KCol(r) ,

⋂
j∈Π

Col(r, j).

OPODIS 2018

0:4 Characterizing Asynchronous Message-Passing Models Through Rounds

2.1 Runs and Strategies
The behavior of processes is classically specified by runs, sequences of both states and
transitions satisfying some restricting conditions: messages cannot be delivered before the
round they are sent and are delivered only once. Given a Delivered collection, we additionally
require that the delivered messages are exactly the ones in the Delivered collection.

As we only care about which messages can be waited for, ignoring the content of messages
or the underlying computation, we limit the state to the received messages and the round.

I Definition 2 (Run). Let Π be a set of n processes. Let Q = (N× P(N∗ ×Π)) the set of
process states. The first element is the round of a process (written q.round for q ∈ Q) and
the second is the set of pairs 〈round it was sent, sender〉 for each delivered message (written
q.received for q ∈ Q). Let the set of transitions T = {nextj | j ∈ Π} ∪ {deliver(r, k, j) | r ∈
N∗ ∧ k, j ∈ Π} ∪ {end}. nextj is the transition for j changing round, deliver(r, k, j) is the
transition for the delivery to j of the message sent by k in round r, and end is the transition
to end a finite run. For qt ∈ Qn × T and j ∈ Π, we write qt.state for the state, qt.state.j for
the local state of j and qt.transition for the transition. Finally, let (Qn × T)∞ be the set of
finite and infinite words on the set (Qn × T). Then, t ∈ (Qn × T)∞ is a run ,

(Initial state) t[0].state = 〈1, ∅〉n

(Transitions) ∀i ∈ [0, size(t)) :

∃r ∈ N∗,∃k, j ∈ Π : t[i].transition = deliver(r, k, j) =⇒
t[i + 1].state = t[i].state

Except t[i + 1].state.j.received = t[i].state.j.received ∪ {(r, k)}
∧ ∃j ∈ Π : t[i].transition = nextj =⇒

t[i + 1].state = t[i].state Except t[i + 1].state.j.round = t[i].state.j.round + 1
∧ (t[i].transition = end) =⇒ (i = size(t)− 1)

(Delivery after sending) ∀i ∈ [0, size(t)) :
t[i].transition = deliver(r, k, j) =⇒ t[i].state.k.round ≥ r

(Unique delivery) ∀〈r, k, j〉 ∈ (N∗ × Π × Π) : (∃i ∈ [0, size(t)) : t[i].transition =
deliver(r, k, j)) =⇒ (∀i′ ∈ [0, size(t)) \ {i} : t[i′].transition 6= deliver(r, k, j))

Let CDel be a Delivered collection. Then, runs(CDel), the runs of CDel ,t a run

∣∣∣∣∣∣∣∣
∀〈r, k, j〉 ∈ N∗ ×Π×Π :

(k ∈ CDel(r, j) ∧ ∃i ∈ [0, size(t)) : t[i].state.j.round ≥ r)
⇐⇒
(∃i ∈ [0, size(t)) : t[i].transition = deliver(r, k, j))

For PDel a Delivered predicate, we write runs(PDel) = {runs(CDel) | CDel ∈ PDel}.

Our definition of runs does not force processes to change rounds. This contradicts our
intuition about a system using rounds: processes should keep on "forever", or at least as long
as necessary. In a valid run, processes change round an infinite number of times.

IDefinition 3 (Validity). A run t is valid , ∀j ∈ Π : |{i ∈ N | t[i].transition = nextj}| = ℵ0.

Valid run are necessarily infinite. Yet the definition above allows finite runs thanks to
the end transition. This is used in proofs by contradiction which imply the manipulation of
invalid runs and thus potentially finite ones.

Next, we define the other building block of our approach: strategies. They are simply
sets of local states, representing the states where processes can change round.

I Definition 4 (Strategy). f : P(Q) is a strategy.

A. Shimi, A. Hurault and P. Quéinnec 0:5

Combining a Delivered predicate and a strategy results in runs capturing the behavior of
processes for the corresponding Delivered collections when following the strategy. In these
runs, processes can change round only when allowed by the strategy, and must also do so if
the strategy allows it continuously.

I Definition 5 (Runs Generated by a Strategy). Let f be a strategy and t a run. t is a run
generated by f , t satisfies the following:

(Next only if allowed) ∀i ∈ [0, size(t)),∀j ∈ Π : (t[i].transition = nextj =⇒
t[i].state.j ∈ f)
(Infinite fairness of next) If t is infinite, then ∀j ∈ Π : |{i ∈ N | t[i].transition =
nextj}| < ℵ0 =⇒ |{i ∈ N | t[i].state.j /∈ f}| = ℵ0
(Finite fairness of next) If t is finite, then ∀j ∈ Π : t[size(t)− 1].state.j /∈ f .

For a Delivered predicate PDel, we note runsf (PDel) = {t a run | t generated by f ∧ t ∈
runs(PDel)}.

From that point, it is clear that a well-behaved strategy is such that all its runs are valid.

I Definition 6 (Valid Strategy). Let PDel a Delivered predicate and f a strategy. f is a
valid strategy for PDel , ∀t ∈ runsf (PDel) : t is a valid run.

Validity guarantees an infinite number of complete rounds for every run of the strategy.
This ensures that a run defines a Heard-Of collection, as we see next.

2.2 From Delivered Collections to Heard-Of Collections
Recall that the difference between a Heard-Of and a Delivered collection is that the latter
takes into account all delivered messages, while the former only considers messages from a
round if they were received before or during the corresponding round of the receiver.

If a run is valid, then all processes have infinitely many rounds, and thus it defines a
Heard-Of collection through its behavior.

I Definition 7 (Heard-Of Collection of a Valid Run). Let t a valid run. Then, CHOt is the
Heard-Of collection of t ,

∀r ∈ N∗,∀j ∈ Π : CHOt(r, j) =

k ∈ Π

∣∣∣∣∣∣ ∃i ∈ N :

 t[i].state.j.round = r

∧ t[i + 1].j.state.round = r + 1
∧ 〈r, k〉 ∈ t[i].state.j.received

It is useful to go the other way, and extract from a Heard-Of collection some canonical

valid run generating it. Our choice is a run where processes change round in lockstep, every
message from a Heard-Of set is delivered in the round where it was sent, and every late
message is delivered in the round following the one where it was sent.

I Definition 8 (Standard Run of a Heard-Of collection). Let cho be a Heard-Of collection.
For r > 0, let onTimeMesr be a permutation of {deliver(r, k, j) | k, j ∈ Π ∧ k ∈ cho(r, j)},
lateMesr a permutation of {deliver(r − 1, k, j) | k, j ∈ Π ∧ k /∈ cho(r − 1, j)}, and nexts
be a permutation of {nextj | j ∈ Π}. Then, the run starting at the initial state and with
transitions defined by the word

∏
r>0

(lateMesr.onTimeMesr.nexts) is a standard run of cho.

This canonical run is a run of any Delivered predicate containing the collection where
every message is delivered. This collection captures the case where no failure occurs: every
process always broadcasts and no message is lost. Having this collection in a Delivered
predicate ensures that although faults might happen, they are not forced to do so.

OPODIS 2018

0:6 Characterizing Asynchronous Message-Passing Models Through Rounds

I Lemma 9 (Standard Run is a Run for Total Collection). Let cho be a Heard-Of collection
and let PDel be a Delivered predicate containing the total collection CDeltotal defined by
∀r > 0,∀j ∈ Π : CDeltotal(r, j) = Π. Then, a standard run t of cho is a run of PDel.

Proof. t is a run since it satisfies the four constraints defining a run. Furthermore, one
message from each process is eventually delivered to everyone for each round in t, which
means that t is a run of the total Delivered collection, and thus a run of PDel. J

I Definition 10 (Heard-Of Predicate Generated by Strategy). If f is a valid strategy for PDel,
we write PHOf (PDel) for the Heard-Of collections of the runs generated by f for PDel:
PHOf (PDel) , {CHOt | t ∈ runsf (PDel)}.

Every valid strategy generates a Heard-Of predicate from the Delivered predicate. We
now have a way to go from a Delivered predicate to a Heard-Of one: design a valid strategy
for the former that generates the latter. But we still have not answered the original question:
among all the Heard-Of predicates one can generate from a given Delivered predicate, which
one should we consider as the characterization of the Delivered predicate?

First, remark that all Delivered collections can be generated as Heard-Of collections by
a valid strategy: simply deliver all messages from a round before changing the round of a
process – the change of round must eventually happen by validity of the strategy. Thus,
every Heard-Of predicate generated from a Delivered one is an overapproximation of the
latter: for any strategy f , PDel ⊆ PHOf (PDel). But we want to receive as many messages
as possible on time, that is to be as close as possible to the original Delivered predicate. The
characterizing Heard-Of predicate is thus the smallest such overapproximation, if it exists.

We formalize this intuition by defining a partial order on valid strategies for a Delivered
predicate capturing the implication of the generated Heard-Of predicates. One strategy
dominates another if the Heard-Of set it generates is included in the one generated by the
other. Dominating strategies are then the greatest elements for this order. By definition
of domination, all dominating strategies generate the same dominating Heard-Of predicate,
which characterizes the Delivered predicate.

I Definition 11 (Domination Order, Dominating Strategy and Dominating Predicate). Let
PDel be a Delivered predicate and let f and f ′ be two valid strategies for PDel. Then,
f dominates f ′ for PDel, written f ′ ≺PDel f , PHOf ′(PDel) ⊇ PHOf (PDel).

A greatest element for ≺PDel is called a dominating strategy for PDel. Given such a
strategy f , the dominating predicate for PDel is then PHOf (PDel).

3 A Complete Example: At Most F Crashes

To provide a more concrete intuition, we turn to an example: the message-passing model with
asynchronous and reliable communication, and at most F permanent crashes. To find the
corresponding Delivered predicate, we characterize which messages are delivered in a round
execution of this model: all the messages sent by a process before it crashes are delivered; it
sends no message after; at the round where it crashes, there may be an incomplete broadcast
if the process crashes in the middle of it. Additionally, at most F processes can crash.

I Definition 12 (PDelF). The Delivered predicate PDelF for the asynchronous model with
reliable communication and at most F permanent crashes ,{
CDel ∈ (N∗ ×Π) 7→ P(Π)

∣∣∣∣ ∀r > 0,∀j ∈ Π : |CDel(r, j)| ≥ n− F

∧ CDel(r + 1, j) ⊆ KCDel(r)

}
.

A. Shimi, A. Hurault and P. Quéinnec 0:7

The folklore strategy for this model is to wait for at least n− F messages before allowing
the change of round.

I Definition 13 (waiting for n− F messages). The strategy to wait for n− F messages is:
fn−F , {q ∈ Q | |{k ∈ Π | 〈q.round, k〉 ∈ q.received}| ≥ n− F}

To see why this strategy is used in the literature, simply remark that at least n − F

messages must be delivered to each process at each round. Thus, waiting for that many
messages ensures that no process is ever blocked. Rephrased with the concepts introduced
above, fn−F is a valid strategy for PDelF .

I Lemma 14 (Validity of fn−F). fn−F is valid for PDelF .

Proof. We proceed by contradiction: Assume fn−F is invalid for PDelF . Thus, there exists
t ∈ runsfn−F

(PDelF) invalid. Because t is infinite, the problem is either the infinite fairness
of next or a next done when fn−F does not allow it. Each next transition being played an
infinite number of times, we conclude that some next is played while fn−F does not allow it.
Let r be the smallest round where it happens and j be a process blocked at r in t. Let also
CDelt be a Delivered collection of PDelF such that t ∈ runs(CDelt).

We know by definition of PDelF that |CDelt(r, j)| ≥ n− F . The minimality of r and the
fact that t ∈ runs(CDel) then ensure that all messages in this Delivered set are delivered at
some point in t. By definition of fn−F , the transition nextj is then available from this point
on. This contradicts the fact that j cannot change round at this point in t. J

The Heard-Of predicate generated by fn−F was first given by Charron-Bost and Schiper [4]
as a characterization the asynchronous model with reliable communication and at most F

crashes. The intuition behind it is that even in the absence of crashes, we can make all
processes change round by delivering any set of at least n− F messages to them.

I Theorem 15 (Heard-Of Characterization of fn−F).
PHOfn−F

(PDelF) = {cho ∈ (N∗ ×Π) 7→ P(Π) | ∀r ∈ N∗,∀j ∈ Π : |cho(r, j)| ≥ n− F}.

Proof. First, we show ⊆. Let cho ∈ PHOfn−F
(PDelF) and t ∈ runsfn−F

(PDelF) a run
of fn−F generating cho. By definition of the runs of fn−F , processes change round only
when they received at least n − F messages from the current round, which implies that
∀r ∈ N∗,∀j ∈ Π : |cho(r, j)| ≥ n− F .

Then, we show ⊇. Let cho a Heard-Of collection over Π such that ∀r ∈ N,∀j ∈ Π :
|cho(r, j)| ≥ n−F . Let t be a standard run of cho; since PDelF contains the total collection,
t is a run of PDelF by Lemma 9. To prove this is also a run of fn−F , we proceed by
contradiction: Assume it is not: because t is infinite, the problem is either the infinite
fairness of next or a next done when fn−F does not allow it. Each next transition being
played an infinite number of times in a standard run, the only possibility left is the second
one: some next transition in t is done while fn−F does not allow the corresponding process
to change round. Let r be the smallest round where this happens, and j one of the concerned
processes at round r. By definition of t as a standard run, j received all messages from
cho(r, j) before the problematic next. And |cho(r, j)| ≥ n− F by hypothesis. By definition
of fn−F , the transition nextj is then available from this point on. This contradicts the fact
that j cannot change round at this point. We conclude that cho ∈ PHOfn−F

(PDelF). J

Finally, we want to vindicate the folklore intuition about this strategy: that it is optimal
in some sense. Intuitively, waiting for more than n− F messages per round means risking
waiting forever, and waiting for less is wasteful. Our domination order captures this concept

OPODIS 2018

0:8 Characterizing Asynchronous Message-Passing Models Through Rounds

of optimality: we show that fn−F is indeed a dominating strategy for PDelF . Therefore,
PHOfn−F

(PDelF) is the dominating predicate for PDelF .
To do so, we introduce another canonical run, this time for the combination of a Delivered

collection and a strategy. This run consists in delivering every message as early as possible.

I Definition 16 (Earliest Run of Strategy for Delivered Collection). Let CDel be a Delivered
collection and f be a strategy. An earliest run of f for CDel is a run of runsf (CDel)
starting in the initial state, and with the following transitions happening in successive
iterations:

At each iteration, all messages that can be delivered and were not already are delivered.
Then, every process allowed by f to change round does so.

By combining standard and earliest runs, we show that any valid strategy for PDelF is
dominated by fn−F and thus that PHOfn−F

(PDelF) is the dominating predicate for PDelF .

I Theorem 17 (fn−F Dominates PDelF). fn−F dominates PDelF .

Proof. Let f be a valid strategy for PDelF ; we now prove that f ≺PDelF fn−F , that is
PHOfn−F

(PDelF) ⊆ PHOf (PDelF). Let cho ∈ PHOfn−F
(PDelF), and let t be a standard

run of cho. Since PDelF contains the total collection, t is a run of PDelF by Lemma 9. We
only need to prove that it is also a run of f to conclude.

We do so by contradiction. Assume t is not a run of f : because t is infinite, the problem
is either the infinite fairness of next or a next done by a process j when f does not allow
it. Each next transition being played an infinite number of times in a standard run, the
only possibility left is the second one. At the point of the forbidden next, by definition
of a standard run, j has received every message from previous rounds, and all messages
from cho(r, j). By application of Theorem 15 and cho being in PHOfn−F

(PDelF), cho(r, j)
contains at least n− F processes.

Let CDelblock be the Delivered collection where all processes from which j did not
receive a message at the problematic next in t stop sending messages from this round on:

∀r′ > 0,∀k ∈ Π : CDelblock(r′, k) =
{

Π if r′ < r

cho(r, j) otherwise
This is a Delivered collection of PDelF : processes that stop sending messages never do

again, and at most F processes do so because cho(r, j) contains at least n− F processes.
Let tblock be an earliest run of f for CDelblock. This is a run of f , by definition. We then

have two possibilities.
During one of the first r−1 iterations of tblock, there is some process which cannot change
round. Let r′ be the smallest iteration where it happens, and k be a process unable to
change round at this iteration. By minimality of r′, all processes arrive at round r′, and
by symmetry of CDelblock they all receive the same messages as k. Thus, all processes are
blocked at round r′, there are no more next or deliveries, and tblock is therefore invalid.
For the first r − 1 iterations, all processes change round. Thus, every one arrives at
round r. By definition of an earliest run, all messages from the round are delivered before
any next. The symmetry of CDelblock also ensures that every process received the same
messages, that is all messages from round < r and all messages from cho(r, j). These are
exactly the messages received by j in t at round r. But by hypothesis, j is blocked in
this state in t. We thus deduce that all processes are blocked at round r in tblock, and
thus that it is an invalid run.

Either way, we deduce that f is invalid, which is a contradiction. J

A. Shimi, A. Hurault and P. Quéinnec 0:9

This means that when confronted with a model captured by PDelF , there is no point
in remembering messages from past rounds – and messages from future rounds are simply
buffered. Intuitively, messages from past rounds are of no use in detecting crashes in the
current round. As for messages from future rounds, they could serve to detect that a process
has not crashed when sending its messages from the current round. This does not alter the
Heard-Of predicate because nothing forces messages from future rounds to be delivered early,
and thus there is no way to systematically use the information from future rounds.

4 Carefree Strategies

We now turn to more general results about Delivered predicates and strategies. We focus
first on a restricted form of strategies, the carefree ones: they depend only on the received
messages from the current round. For example, fn−F is a carefree strategy. These are quite
simple strategies, yet they can be dominating, as shown for fn−F and PDelF .

4.1 Definition and Expressiveness Results
I Definition 18 (Carefree Strategy). Let f be a strategy and, ∀q ∈ Q, let cfree(q) =
{k ∈ Π | 〈q.round, k〉 ∈ q.received}. f is a carefree strategy , ∀q, q′ ∈ Q : cfree(q) =
cfree(q′) =⇒ (q ∈ f ⇐⇒ q′ ∈ f).

For f a carefree strategy, let Nextsf , {cfree(q) | q ∈ f}. It uniquely defines f .

Thus a carefree strategy can be defined by a set of sets of processes: receiving a message
from all processes in any of those set makes the strategy authorize the change of round.
This gives us a simple necessary condition on such a strategy to be valid: its Nexts set must
contains all Delivered set from the corresponding Delivered predicate. If it does not, then an
earliest run of any collection containing a Delivered set not in the Nexts would be invalid.

This simple necessary condition also proves sufficient.

I Lemma 19 (Validity of Carefree). Let PDel be a Delivered predicate and f a carefree strategy.
Then, f is valid for PDel ⇐⇒ ∀CDel ∈ PDel, ∀r > 0,∀j ∈ Π : CDel(r, j) ∈ Nextsf .

Proof sketch. (⇒) Let f be valid for PDel. We show by contradiction that it is impossible
that ∃CDel ∈ PDel that falsifies the right-hand side. Let t be an earliest run of f for a CDel,
which is a run of f by definition. If all processes reach round r, then by definition of t, all
messages from round r are delivered before any next at round r; if a process cannot change
round at this point, it will never be able later as its set of received messages from r will
never change, and t would be invalid. If some process is stuck at a round r′ < r while the
other ones reach rounds ≥ r′, by the same reasoning, it has received all available messages
from round r′ and will never be able to change round, which makes t invalid. Both cases
contradict the validity of f .

(⇐) Let PDel and f which satisfies the right-hand side, and assume that f is invalid. For
an invalid run t ∈ runsf (PDel), there is a delivery collection CDel and a smallest round r

where a process is blocked. By minimality of r, all processes reach r and the blocked process
eventually receives all messages from r, and thus can change round, which contradicts the
fact that some process is blocked. J

Carefree strategies are elegant, but they also have some drawbacks: mainly that the Heard-
Of predicates they can implement are quite basic. Precisely, when the Delivered predicate
contains the total collection, they implement predicates where the Heard-Of collections are
all possible combinations of Delivered sets from the original Delivered predicate.

OPODIS 2018

0:10 Characterizing Asynchronous Message-Passing Models Through Rounds

I Theorem 20 (Heard-Of Predicates of Carefree Strategy). Let PDel be a Delivered predicate
containing the total collection, and let f be a valid carefree strategy for PDel. Then, ∀cho a
Heard-Of collection for Π : cho ∈ CHOf (PDel) ⇐⇒ ∀r > 0,∀j ∈ Π : cho(r, j) ∈ Nextsf .

Proof. (⇒) This direction follows from the definition of a carefree strategy: it allows changing
round only when the messages received from the current round form a set in its Nexts.

(⇐) Let cho be a Heard-Of collection for Π such that ∀r > 0,∀j ∈ Π : cho(r, j) ∈ Nextsf .
Let t be a standard run of cho. It is a run by Lemma 9. It is also a run of f because at each
round, processes receive messages from a set in Nextsf and are thus allowed by f to change
round. We conclude that cho ∈ PHOf (PDel). J

Finally, carefree strategies always have a dominating element for a given Delivered
predicate.

I Theorem 21 (Always a Dominating Carefree Strategy). Let PDel be a Delivered predicate and
let fcfDom be the carefree strategy with Nextsf = {CDel(r, j) | CDel ∈ PDel ∧ r > 0 ∧ j ∈ Π}.
fcfDom dominates all carefree strategies for PDel.

Proof. First, fcfDom is valid for PDel by application of Lemma 19.
As for domination, we also deduce from Lemma 19 that ∀f a valid carefree strategy for

PDel, NextsfcfDom
⊆ Nextsf and thus fcfDom ⊆ f . Therefore, ∀q ∈ Q : q ∈ fcfDom =⇒ q ∈

f . This gives us runsfcfDom
(PDel) ⊆ runsf (PDel), and we conclude PHOfcfDom

(PDel) ⊆
PHOf (PDel). Therefore, fcfDom dominates all valid carefree strategies for PDel. J

In the case where PDel allows the delivery of all messages, that is contains the total
collection, there is only one carefree strategy which dominates all carefree strategies.

I Theorem 22 (With Total Collection, Unique Dominating Carefree Strategy). Let PDel be a
Delivered predicate containing the total collection. Let fcfDom be the carefree strategy with
Nextsf = {CDel(r, j) | CDel ∈ PDel ∧ r > 0 ∧ j ∈ Π}. fcfDom is the unique carefree strategy
which dominates all carefree strategies for PDel.

Proof. First, fcfDom dominates all carefree strategies for PDel by Theorem 21. To show
uniqueness, let f be a valid carefree strategy different from fcfDom; thusNextsf 6= NextsfcfDom

.
By Lemma 19, we also have NextsfcfDom

⊆ Nextsf . Therefore, NextsfcfDom
(Nextsf .

Let D ∈ Nextsf \ NextsfcfDom
and let cho ∈ (N∗ × Π) 7→ P(Π) the Heard-Of collection

such that ∀r > 0,∀j ∈ Π : cho(r, j) = D. By application of Theorem 20, this is a Heard-Of
collection generated by f but not by fcfDom. Therefore, PHOf (PDel) 6⊂ PHOfcfDom

(PDel),
and f ′ does not dominate fcfDom. J

4.2 When Carefree is Enough
Finally, the value of carefree strategy depends on which Delivered predicates have such a
dominating strategy. We already know that PDelF does; we now extend this result to a class
of Delivered predicates called Round-symmetric. This condition captures the fact that given
any Delivered set D, one can build, for any r > 0, a Delivered collection where processes
receive all messages up to round r, and then they share D as their Delivered set in round r.
As a limit case, the predicate also contains the total collection.

I Definition 23 (Round-Symmetric Delivered Predicate). Let PDel be a Delivered Predicate.
PDel is round-symmetric ,

(Total collection) PDel contains the total collection: CDeltotal ∈ PDel where CDeltotal

is defined by ∀r > 0,∀j ∈ Π : CDeltotal(r, j) = Π.

A. Shimi, A. Hurault and P. Quéinnec 0:11

(Symmetry up to a round) ∀D ∈ {CDel(r, j) | CDel ∈ PDel ∧ r > 0 ∧ j ∈ Π},
∀r > 0,∃CDel ∈ PDel,∀j ∈ Π : (∀r′ < r : CDel(r′, j) = Π ∧ CDel(r, j) = D)

What round-symmetry captures is what makes PDelF be dominated by a carefree strategy:
the inherent symmetry of these Delivered collections allows us to block processes with exactly
the same received messages. This allows us to show that any valid strategy should allow
changing round at this point, which is fundamental to any proof of domination.

I Theorem 24 (Sufficient Condition of Carefree Domination). Let PDel be a Round-symmetric
Delivered predicate. Then, there is a carefree strategy which dominates PDel.

Proof Sketch. Let f be the carefree strategy dominating all carefree strategies for PDel. It
exists by Theorem 21 and, as PDel contains the total collection, it is unique by Theorem 22.
Let f ′ be a valid (not necessarily carefree) strategy for PDel. We prove that f ′ ≺PDelF f ,
that is PHOf (PDel) ⊆ PHOf ′(PDel). Let cho ∈ PHOf (PDel) and t a standard run of cho.
We show t is a run of f ′ by contradiction on the validity of f ′. Assume it is not, then there
is some nextj transition at some round r in t that f ′ does not allow.

The round-symmetry of PDel allows us to build CDelblock ∈ PDel such that ∀r′ < r,∀k ∈
Π : CDelblock(r′, k) = Π and ∀k ∈ Π : CDelblock(r, k) = cho(r, j). Consider tblock, an earliest
run of f ′ for CDelblock. For a round r′ < r, all processes get a message from everyone. By
symmetry, either all processes are blocked, which makes f ′ invalid, or all processes change
round. For round r, all processes get the same set cho(r, j), and as a result, receive the same
messages that prevent j from changing round in t. No process is allowed to change round by
f ′ at this point, which makes f ′ invalid. J

As another example of a Delivered predicate satisfying this condition, we study the model
where at most B broadcasts per round can fail: either all processes receive the message sent
by a process at a round or none does; there are at most B processes per round that can be in
the latter case, where no one receives their message. The Delivered predicate states that each
process receives the kernel of the round, and this kernel contains at least n−B processes.

I Definition 25 (PDelB). The Delivered predicate PDelB corresponding to at most B full
broadcast failures is:
{CDel ∈ (N∗ ×Π) 7→ P(Π) | ∀r > 0,∀j ∈ Π : CDel(r, j) = KCDel(r) ∧ |KCDel(r)| ≥ n−B}.

The astute reader might have noticed that the carefree strategy dominating all carefree
for this Delivered predicate is fn−B (which is fn−F with F instantiated to B).

I Lemma 26 (fn−B Carefree Dominates PDelB). fn−B dominates carefree strategies for
PDelB.

Proof. The definition of PDelB gives us {CDel(r, j) | CDel ∈ PDel∧ r > 0∧ j ∈ Π} = { S ∈
P(Π) | |S| ≥ n−B} = Nextsfn−B

, because the only constrained on the Delivered sets are
that they must be the same for all processes at a round and that they must have at least
n−B processes. We therefore conclude from Lemma 19 that fn−B is valid for PDelB and
from Theorem 21 that it dominates carefree strategy for the same predicate. J

I Theorem 27 (fn−B Dominates PDelB). fn−B dominates PDelB.

Proof. We only need to prove that PDelB is round-symmetric; Theorem 24 will then
yield that PDelB is dominated by a carefree strategy, thus dominated by the carefree
strategy that dominates all carefree strategies. First, PDelB contains the total collection
where no failure occurs. Then, let D be any CDel(_,_) of PDelB. By definition of

OPODIS 2018

0:12 Characterizing Asynchronous Message-Passing Models Through Rounds

PDelB, D contains at least n − B processes. Let r > 0 and consider a CDel such that
∀j ∈ Π : ∀r′ < r : CDel(r′, j) = Π ∧ ∀r′ ≥ r : CDel(r, j) = D. All processes share the same
Delivered set of size at least n−B, thus CDel ∈ PDelB . CDel is symmetric, thus PDelB is
round-symmetric. J

I Theorem 28 (Heard-Of Characterization of PDelB). The Heard-Of predicate implemented
by fn−B in PDelB is CHOfn−B

(PDelB) = {cho ∈ (N∗ × Π) 7→ P(Π) | ∀r > 0,∀j ∈ Π :
|cho(r, j)| ≥ n−B}.

Proof. We know thatNextsfn−B
= {cfree(q) | q ∈ Q∧|{k ∈ Π | 〈q.round, k〉 ∈ q.received}| ≥

n−B} = {S ∈ P(Π) | |S| ≥ n−B}. We conclude by application of Theorem 20. J

5 Beyond Carefree Strategies: Reactionary Strategies

Sometimes, carefree strategies are not enough to capture the subtleties of a Delivered
predicate. Take the one corresponding to at most F initial crashes for example: to make
the most of this predicate, a strategy should remember from which processes it received a
message, since it knows this process did not crash. A class of strategies which allows this is
the class of reactionary strategies: they depend on messages from current and past rounds, as
well as the round number. The only part of the local state these strategies cannot take into
account is the set of messages received from "future" rounds, a possibility due to asynchrony.

5.1 Definition and Expressiveness Results
I Definition 29 (Reactionary Strategy). Let f be a strategy, and ∀q ∈ Q, let reac(q) ,
〈q.round, {〈r, k〉 ∈ q.received | r ≤ q.round}〉. f is a reactionary strategy , ∀q, q′ ∈ Q :
reac(q) = reac(q′) =⇒ (q ∈ f ⇐⇒ q′ ∈ f). We write NextsR

f , {reac(q) | q ∈ f} for the
set of reactionary states in f . This uniquely defines f .

Even if reactionary strategies are more complex, we can still prove the same kind of
results as for carefree ones, namely about validity and the existence of a reactionary strategy
dominating all reactionary strategies.

I Lemma 30 (Validity of Reactionary). Let PDel be a Delivered predicate and f a reactionary
strategy. Then, f is valid for PDel ⇐⇒ ∀CDel ∈ PDel, ∀r > 0,∀j ∈ Π : 〈r, {〈r′, k〉 | r′ ≤
r ∧ k ∈ CDel(r′, j)} 〉 ∈ NextsR

f .

Proof sketch. The proof is the same as the one of Lemma 19, replacing “messages from
round r” by “messages up to round r”. J

There is also always a reactionary strategy dominating all reactionary strategies for a
given Delivered predicate.

I Theorem 31 (Always a Dominating Reactionary Strategy). Let PDel a Delivered predicate
and let frcDom be the reactionary strategy defined by
NextsR

rcDom = {〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈ CDel(r′, j)} 〉 | r > 0 ∧ CDel ∈ PDel}.
frcDom dominates all reactionary strategies for PDel.

Proof. First, frcDom is valid for PDel by application of Lemma 30.
As for domination, we also deduce from Lemma 30 that ∀f a valid reactionary strategy for

PDel, NextsR
frcDom

⊆ NextsR
f and thus frcDom ⊆ f . Therefore, ∀q ∈ Q : q ∈ frcDom =⇒ q ∈

f . This gives us runsfrcDom
(PDel) ⊆ runsf (PDel), and we conclude PHOfrcDom

(PDel) ⊆
PHOf (PDel). We conclude that frcDom dominates all valid carefree strategies for PDel. J

A. Shimi, A. Hurault and P. Quéinnec 0:13

5.2 Example Dominated by Reactionary Strategy
To show the usefulness of reactionary strategies, we study the Delivered predicate corre-
sponding to reliable communication and at most F initial crashes: either processes crash
initially and no message of theirs is ever delivered, or they do not and all their messages will
be delivered eventually.

I Definition 32 (PDelF
ini). The Delivered predicate PDelFini for at most F initial crashes is:

{CDel ∈ (N∗ ×Π) 7→ P(Π) | ∃Σ ⊆ Π : |Σ| ≥ n− F ∧ ∀r > 0,∀j ∈ Π : CDel(r, j) = Σ}.

As we mentioned above, it is possible to take advantage of the past by waiting in the
current round for messages from processes which sent a message in a past round.

I Definition 33 (Past complete strategy). The past-complete strategy fpc is defined by
NextsR

fpc
= {〈r, [1, r]× Σ〉 | r > 0 ∧ Σ ⊆ Π ∧ |Σ| ≥ n− F}.

I Lemma 34 (fpc Reactionary Dominates PDelF
ini). fpc dominates all reactionary strategies

for PDelFini.

Proof. It follows from Theorem 31, because NextsR
fpc

= {〈r, { 〈r′, k〉 | r′ ≤ r ∧ k ∈ Σ}〉 | r >

0∧Σ ⊆ Π∧ |Σ| ≥ n−F} = {〈r, {〈r′, k〉 | r′ ≤ r∧k ∈ CDel(r′, j)}〉 | r > 0∧CDel ∈ PDelFini}.
The last equality follows from the fact that Delivered sets are always the same for all Delivered
collection in PDelFini. J

Reactionary strategies can generate more complex and involved Heard-Of predicates than
carefree ones. The one generated by fpc for PDelFini is a good example: it ensures that all
Heard-Of sets contains at least n−F processes, and it also forces Heard-Of sets for a process
to be non-decreasing, and for all rounds to eventually converge to the same Heard-Of set.
This follows from the fact that a process can detect an absence of crash: if one message is
received from a process, it will always be safe to wait for messages from this process as it
did not crash and never will. Since there is no loss of message for non crashed processes,
every one eventually receives a message from every process sending messages, and thus the
Heard-Of sets converge.

I Theorem 35 (Heard-Of Characterization of PDelF
ini). PHOfpc(PDelFini) =cho ∈ (N∗ ×Π) 7→ P(Π)

∣∣∣∣∣∣
 ∀r > 0,∀j ∈ Π :

(
|cho(r, j)| ≥ n− F

∧ cho(r, j) ⊆ cho(r + 1, j)

)
∧ ∃Σ0 ⊆ Π,∃r0 > 0,∀r ≥ r0,∀j ∈ Π : cho(r, j) = Σ0

Proof Sketch. First, we show ⊆. Let cho ∈ PHOfpc(PDelFini) and t a run of fpc implement-
ing cho. By definition of fpc, processes change round only when they have received at least
n− F messages from the current round and they have completed their past, which gives the
first conjunction. Concerning the second conjunction, observe that due to fairness, there is a
point in t where all messages from round 1 have been delivered. After that round (r0), fpc

makes all processes wait for the messages of the living processes (Σ0).
Then, we show ⊇. Consider a run t of cho in iterations such that at each iteration, the

delivered messages are the Heard-Of sets and the messages needed to complete the past of
these sets, and every process changes round. It is a run of fpc because each Heard-Of set
contains at least n − F processes and the past of each process is complete before playing
any next. Moreover, there is a round after which all processes share the same Heard-Of set
Σ0 forever. Consider CDel such that ∀r > 0,∀j ∈ Π : CDel(r, j) = Σ0. t ∈ runs(CDel) and
CDel ∈ PDelFini. Thus, cho ∈ PHOfpc

(PDelFini). J

OPODIS 2018

0:14 Characterizing Asynchronous Message-Passing Models Through Rounds

As for fpc dominating PDelFini, the argument is quite similar to the one for fn−F

dominating PDelF , with a more subtle manipulation of Delivered collection because we need
to take the past into account.

I Theorem 36 (fpc Dominates PDelF
ini). fpc dominates PDelFini.

Proof Sketch. This domination proof is similar to the one for Round-Symmetric Predicates
or for PDelF . The difference is that given a Heard-Of collection in PHOfpc

(PDelFini), the
run generating it for any valid strategy is a run in iterations where, at each iteration, all
processes get delivered their Heard-Of set and the messages necessary to complete their past,
and then they all change round. J

5.3 When The Future Serves
In the above, we considered cases where the dominating strategy is at most reactionary: only
the past and present rounds are useful for generating Heard-Of collections. But messages
from future rounds serve in some cases. We give an example, presenting only the intuition.

I Definition 37 (PDel1lost). The Delivered predicate PDel1lost corresponding to at most 1
message lost is: {CDel ∈ (N∗ ×Π) 7→ P(Π) |

∑
r>0,j∈Π

|Π \ CDel(r, j)| ≤ 1}.

Application of our results on carefree strategy shows that the carefree strategies dominating
all carefrees for this predicate is fn−1. Similarly, looking at the past only allows processes
to wait for n− 1 messages because one can always deliver all messages from the past, and
then the loss might be a message from the current round. If we look at the messages from
the next round, on the other hand, we can ensure that at each round, at most one message
among all processes is not delivered on time.

I Definition 38 (Asymmetric Strategy). Let after : Q 7→ P(Π) such that ∀q ∈ Q : after(q) =
{k ∈ Π | 〈q.round + 1, k〉 ∈ q.received}, and cfree as in Definition 18.

Define fasym ,

{
q ∈ Q

∣∣∣∣ cfree(q) = Π
∨ (|after(q)| = n− 1 ∧ |cfree(q)| = n− 1}

}
.

Intuitively, this strategy is valid because at each round and for each process, only two
cases exist: either no message for this process at this round is lost, and it receives a message
from each process; or one message for this process is lost at this round, and it only receives
n− 1 messages. But all other processes receive n messages, thus change round and send their
message from the next round. Since the one loss already happened, all these messages are
delivered, and the original process eventually receives n− 1 messages from the next round.

This strategy also ensures that at most one process per round receives only n−1 messages
on time – the others must receive all messages. This vindicates the value of messages from
future rounds for some Delivered predicates, such as the ones with asymmetry in them.

6 Related Works

Rounds Everywhere Rounds in message-passing algorithms date at least back to their
use by Arjomandi et al. [1] as a synchronous abstraction of time complexity. Since then,
they are omnipresent in the literature. First, the number of rounds taken by a distributed
computation is a measure of its complexity. Such round complexity was even developed into
a full-fledged analogous of classical complexity theory by Fraigniaud et al. [7]. Rounds also
serve as stable intervals in the dynamic network model championed by Kuhn and Osham [11]:

A. Shimi, A. Hurault and P. Quéinnec 0:15

each round corresponds to a fixed communication graph, the dynamicity following from
possible changes in the graph from round to round. Finally, many fault-tolerant algorithms
are structured in rounds, both synchronous [6] and asynchronous ones [3].

Although we only study message-passing models in this article, one cannot make justice to
the place of rounds in distributed computing without mentioning its even more domineering
place in shared-memory models. A classic example is the structure of executions underlying
the algebraic topology approach pioneered by Herlihy and Shavit [9], Saks and Zaharoglou [13],
and Borowsky and Gafni [2].

Abstracting the Round Gafni [8] was the first to attempt the unification of all versions
of rounds. He introduced the Round-by-Round Fault Detector abstraction, a distributed
module analogous to a failure detector which outputs a set of suspected processes. In a
system using RRFD, the end condition of rounds is the reception of a message from every
process not suspected by the local RRFD module; communication properties are then defined
as predicates on the output of RRFDs. Unfortunately, this approach does not suit our needs:
RRFDs do not ensure termination of rounds, while we require it.

Next, Charron-Bost and Schiper [4] took a dual approach to Gafni’s with the Heard-Of
Model. Instead of specifying communication by predicates on a set of suspected processes,
they used Heard-Of predicates: predicates on a collection of Heard-Of sets, one for each
round r and each process j, containing every process from which j received the message sent
in round r before the end of this same round. This conceptual shift brings two advantages: a
purely abstract characterization of message-passing models and the assumption of infinitely
many rounds, thus of round termination.

But determining which model implements a given Heard-Of predicate is an open question.
As mentioned in Marić [12], the only known works addressing it, one by Hutle and Schiper [10]
and the other by Drăgoi et al. [5], both limit themselves to very specific predicates and
partially synchronous system models.

7 Conclusion and Perspectives

We propose a formalization for characterizing Heard-Of predicate of an asynchronous message-
passing model through Delivered predicates and strategies. We also show its relevance,
expressivity and power: it allows us to prove the characterizations from Charron-Bost and
Schiper [4], to show the existence of characterizing predicates for large classes of strategies as
well as the form of these predicates. Yet there are two aspects of this research left to discuss:
applications and perspectives.

First, what can we do with this characterizing Heard-Of predicate? As mentioned above,
it gives the algorithm designer a concise logical formulation of the properties on rounds a
given model can generate. Therefore, it allows the design of algorithms at a higher level of
abstraction, implementable on any model which can generate the corresponding Heard-Of
predicate. The characterizing predicate is also crucial to verification: it bridges the gap
between the intuitive operational model and its formal counterpart. To verify a round-based
algorithm for a given message-passing model, one needs only to check if its correctness for
the characterizing predicate. If it is the case, we have a correct implementation by combining
the algorithm with a dominating strategy; if it is not, then the algorithm will be incorrect
for all predicates generated by the model.

Finally, it would be beneficial to prove more results about the existence of a dominating
strategy, as well as more conditions for the dominating strategy to be in a given class. There

OPODIS 2018

0:16 Characterizing Asynchronous Message-Passing Models Through Rounds

is also space for exploring different Delivered predicates. For example, some of our results
suppose that the predicate contains the total Delivered collection; what can we do without
this assumption? Removing it means that faults are certain to occur, which is rarely assumed.
Nonetheless, it might be interesting to study this case, both as a way to strengthen our
results, and because forcing failures might be relevant when modelling highly unreliable
environments such as the cloud or natural settings. Another viable direction would be to add
oracles to the processes, giving them additional information about the Delivered collection,
and see which Heard-Of predicates can be generated. These oracles might for example
capture the intuition behind failure detectors.

References
1 Eshrat Arjomandi, Michael J. Fischer, and Nancy A. Lynch. A difference in efficiency

between synchronous and asynchronous systems. In Thirteenth Annual ACM Symposium
on Theory of Computing, STOC ’81, pages 128–132, 1981. doi:10.1145/800076.802466.

2 Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for T-resilient
asynchronous computations. In Twenty-fifth Annual ACM Symposium on Theory of Com-
puting, STOC ’93, pages 91–100. ACM, 1993. doi:10.1145/167088.167119.

3 Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector
for solving consensus. J. ACM, 43(4):685–722, July 1996. doi:10.1145/234533.234549.

4 Bernadette Charron-Bost and André Schiper. The heard-of model: computing in dis-
tributed systems with benign faults. Distributed Computing, 22(1):49–71, April 2009.
doi:10.1007/s00446-009-0084-6.

5 Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. Psync: A partially syn-
chronous language for fault-tolerant distributed algorithms. In 43rd Symposium on Princi-
ples of Programming Languages, pages 400–415, 2016. doi:10.1145/2837614.2837650.

6 Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure inter-
active consistency. Information Processing Letters, 14(4):183–186, 1982. doi:10.1016/
0020-0190(82)90033-3.

7 Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local
distributed computing. J. ACM, 60(5):35:1–35:26, October 2013. doi:10.1145/2499228.

8 Eli Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and
asynchrony. In Seventeenth ACM Symposium on Principles of Distributed Computing,
PODC ’98, pages 143–152. ACM, 1998. doi:10.1145/277697.277724.

9 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
J. ACM, 46(6):858–923, November 1999. doi:10.1145/331524.331529.

10 M. Hutle and A. Schiper. Communication predicates: A high-level abstraction for coping
with transient and dynamic faults. In 37th International Conference on Dependable Systems
and Networks (DSN’07), pages 92–101, June 2007. doi:10.1109/DSN.2007.25.

11 Fabian Kuhn and Rotem Oshman. Dynamic networks: Models and algorithms. SIGACT
News, 42(1):82–96, March 2011. doi:10.1145/1959045.1959064.

12 Ognjen Marić, Christoph Sprenger, and David Basin. Cutoff bounds for consensus algo-
rithms. In Rupak Majumdar and Viktor Kunčak, editors, Computer Aided Verification,
pages 217–237. Springer International Publishing, 2017.

13 Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The topology
of public knowledge. SIAM J. Comput., 29(5):1449–1483, March 2000. doi:10.1137/
S0097539796307698.

14 Adam Shimi, Aurélie Hurault, and Philippe Quéinnec. Characterizing asynchronous
message-passing models through rounds. CoRR, abs/1805.01657, 2018. URL: http:
//arxiv.org/abs/1805.01657.

http://dx.doi.org/10.1145/800076.802466
http://dx.doi.org/10.1145/167088.167119
http://dx.doi.org/10.1145/234533.234549
http://dx.doi.org/10.1007/s00446-009-0084-6
http://dx.doi.org/10.1145/2837614.2837650
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1145/2499228
http://dx.doi.org/10.1145/277697.277724
http://dx.doi.org/10.1145/331524.331529
http://dx.doi.org/10.1109/DSN.2007.25
http://dx.doi.org/10.1145/1959045.1959064
http://dx.doi.org/10.1137/S0097539796307698
http://dx.doi.org/10.1137/S0097539796307698
http://arxiv.org/abs/1805.01657
http://arxiv.org/abs/1805.01657

	Introduction
	Motivation
	Approach and Overview

	Formalization
	Runs and Strategies
	From Delivered Collections to Heard-Of Collections

	A Complete Example: At Most F Crashes
	Carefree Strategies
	Definition and Expressiveness Results
	When Carefree is Enough

	Beyond Carefree Strategies: Reactionary Strategies
	Definition and Expressiveness Results
	Example Dominated by Reactionary Strategy
	When The Future Serves

	Related Works
	Conclusion and Perspectives

