
HAL Id: hal-03079830
https://hal.science/hal-03079830

Submitted on 17 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient querying of multidimensional RDF data with
aggregates: Comparing NoSQL, RDF and relational

data stores
Franck Ravat, Jiefu Song, Olivier Teste, Cassia Trojahn dos Santos

To cite this version:
Franck Ravat, Jiefu Song, Olivier Teste, Cassia Trojahn dos Santos. Efficient querying of multidimen-
sional RDF data with aggregates: Comparing NoSQL, RDF and relational data stores. International
Journal of Information Management, 2020, 54, pp.102089. �10.1016/j.ijinfomgt.2020.102089�. �hal-
03079830�

https://hal.science/hal-03079830
https://hal.archives-ouvertes.fr

Efficient querying of multidimensional RDF data with
aggregates: comparing NoSQL, RDF and relational data

stores

Franck Ravat1∗, Jiefu Song1,3, Olivier Teste2, Cassia Trojahn2

1 IRIT - Université Toulouse I, Toulouse France
2 IRIT - Université Toulouse II, Toulouse France

3 Activus Group, Toulouse France
{firstName.lastName}@irit.fr

Abstract

This paper proposes an approach to tackle the problem of querying large vol-

ume of statistical RDF data. Our approach relies on pre-aggregation strategies

to better manage the analysis of this kind of data. Specifically, we define a

conceptual model to represent original RDF data with aggregates in a multidi-

mensional structure. A set of translations rules for converting a well-known mul-

tidimensional RDF modelling vocabulary into the proposed conceptual model

is then proposed. We implement the conceptual model in six different data

stores: two RDF triple stores (Jena TDB and Virtuoso), one graph-oriented

NoSQL database (Neo4j), one column-oriented data store (Cassandra), and two

relational databases (MySQL and PostGreSQL). We compare the querying per-

formance, with and without aggregates, in these data stores. Experimental

results, on real-world datasets containing 81.92 million triplets, show that pre-

aggregation allows for reducing query runtime in all data stores. Neo4j NoSQL

and relational databases with aggregates outperform triple stores speeding up

to 99% query runtime.

Keywords: statistical RDF data, graph aggregation, NoSQL, data analytics

∗Corresponding author

Preprint submitted to International Journal of Information Management December 17, 2020

1. Introduction

Classically, data analytics focuses on business data managed by a decision

support system, with data being mostly stored in relational databases or struc-

tured files. In the era of Big Data [1, 2], business analytics must evolve con-

stantly. In particular, with the increasing amount of RDF data being made5

available on the Linked Open Data (LOD) cloud, the need of considering this

kind of data source is more than ever evident. This, however, involves not only

dealing with the heterogeneity of representations and granularities, but also

dealing with large volume of data.

While data analytics process largely benefits from multidimensional models10

(supporting, for example, Online Analytical Processing (OLAP) analysis [3] and

reporting [4]), these models have been largely studied in the database community

and maturity on optimising multidimensional querying has been mostly reached.

In the Semantic Web, exploiting such multidimensional views on RDF data has

received attention over the last ten years and a growing number of RDF data15

sources relying on such view has being published on the Linked Open Data1.

These data cube models2 answer the need of analysing statistical RDF data

from different perspectives and levels of granularity [5].

However, querying multidimensional data generates high workloads on RDF

triple stores. Despite the different efforts on optimising native RDF triple stores20

[6, 7, 8, 9], the scalability of SPARQL queries (the standard language for query-

ing RDF graphs) is still limited owing further development and optimization

[10]. Different proposals have addressed querying traditional relational data on

the top of SPARQL (the well-known Ontology-based Data Access [11]), where

the problem is shifted to the translation of SPARQL to SQL rather than to the25

performance of the data store itself. In parallel, a number of new data manage-

ment systems, broadly known as NoSQL databases, have being proposed, offer-

ing a performing alternative to SPARQL engines. Such systems have emerged

1https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations
2https://www.w3.org/TR/vocab-data-cube/

2

https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations
https://www.w3.org/TR/vocab-data-cube/

as an infrastructure for handling large amounts of data outside the RDF space

[12].30

Different works have addressed the follow-up question on how the perfor-

mance of NoSQL engines perform compared to RDF engines [13, 12, 14]. While

most of them scale more gracefully than the RDF stores, the findings in these

works also point out weaknesses of NoSQL engines in dealing with complex

SPARQL queries involving several joins or containing complex filters on large35

volume of data [12]. As stated in [13], NoSQL engines like Neo4j could better

isolate queries such that one poorly performing query does not cause a domino

effect and benefit from better query algorithms.

With a focus on a particular kind of data (statistical RDF data) which re-

quires specific treatments for facilitating the data analytics processes, one raised40

question is how triple stores performance would compare with that of relational

and NoSQL data stores, when exploiting aggregates (i.e. summarised numeric

values with grouping conditions and aggregation functions). For instance, sup-

pose that we want to calculate the SO2 rate by country for a given year. If the

data are modelled according to cities without aggregates, this analysis requires45

a query parsing all triples related to the SO2 rate by city before computing on-

the-fly an average for each country. Contrary, including both detailed data and

pre-computed aggregates, the analysis consists in a simple projection of SO2 rate

for each country. Computing aggregates implies an overload in the data store

by the addition of new data into the data store. Hence, the query performance50

intrinsically depends on the data store. Our hypothesis here are a) aggregating

data and b) taking advantage of relational optimisations and NoSQL perfor-

mances would better scale than triple stores when dealing with large amounts

of data. Differently from graph summarisation [15, 16, 17, 18], which mostly fo-

cus on structurally grouping vertices or edges, our aggregation strategy is based55

on creating new vertices whose content results from calculating numeric values

from a set of vertices through aggregation functions. Moreover, while works

have studied the problem of aggregating RDF data in RDF triple stores like

[19], to the best of our knowledge, this problem has not been addressed using

3

property-graph and column NoSQL systems. This has been addressed in other60

NoSQL engines such as MongoDB document-oriented [20].

The contributions of this paper can be summarised as follows:

• we propose a conceptual model to represent statistical RDF data with ag-

gregates according to a multidimensional structure. This model is generic

enough to serve as a basis for representing graph-like multidimensional65

data with aggregates;

• we present a designing process that takes as input well-known multidi-

mensional RDF data and produces a conceptual graph enriched with pre-

computed aggregates;

• we propose a set of rules for converting the logical model into different data70

representations (RDF, NoSQL graph-property and column, and relational

representations);

• we propose a benchmark composed of 24 queries for querying aggregated

and non-aggregated data together with the translation of them in different

languages (SQL, SPARQL, Cypher and CQL)3;75

• we compare the performance of querying data with and without aggregates

on a real-world RDF datasets containing 81.92 millions triples.

To the best of our knowledge, this is the first systematic study of aggregated

graph data including conceptual modelling, translation rules and experimental

evaluation on RDF triple stores, property-graph, column NoSQL and relational80

engines.

The remainder of the paper is organised as follows. Section 2 summarises

the related work. Section 3 introduces our conceptual multidimensional model.

Section 4 describes the designing process of Multidimensional Graph from sta-

tistical RDF data. Section 5 presents different logical and physical implementa-85

tions of a conceptual Multidimensional Graph. Section 6 describes the querying

3https://github.com/iblid/queries

4

https://github.com/iblid/queries

of Multidimensional Graph with and without pre-computed aggregates. Section

7 presents the experimental results. Finally, Section 9 concludes the paper and

discusses future work.

2. Related Work90

This section presents the main proposals on the different aspects related

to our work (i) managing RDF data on relational and NoSQL data stores,

(ii) optimising RDF storage and querying; (iii) graph summarisation and RDF

aggregates; and (iv) multidimensional analysis over RDF data.

Relational and NoSQL databases for managing RDF data. A large95

body of literature has focused on Ontology-based Data Access (OBDA) as a

way of querying relational databases via ontologies and SPARQL queries. The

reader can refer to [21] for a survey on these approaches. This involves deal-

ing with the different aspects of translating SPARQL queries into SQL queries,

as stated in [22]. In these works, however, the performance of triple-stores is100

not at all addressed. In the perspective of comparing the performance of dif-

ferent RDF data management solutions, [23] have shown that a triple store

built on top of a column-store DBMS is competitive, with no approach scal-

ing up to millions of RDF triples, and no approach competing with a purely

relational model. In parallel, various works have also investigated the different105

aspects of using NoSQL databases to manage RDF data. In [12], the perfor-

mance of NoSQL bases (HBase, Couchbase and Cassandra) is evaluated. While

most NoSQL systems scale more gracefully than RDF stores, complex SPARQL

queries involving several joins, on large volumes of data, or containing complex

filters perform poorly on NoSQL systems. In [13], the authors compare the per-110

formance of triple stores, relational and graph databases for querying Wikidata.

Two SPARQL triple stores (Virtuoso and Blazegraph), one relational database

(PostgreSQL), and one graph database (Neo4J) have been evaluated. They

show that NoSQL could better isolate queries such that one poorly perform-

ing query does not cause a domino effect and benefit from better query algo-115

5

rithms. In [24], using NoSQL MongoDB for RDF data integration is addressed.

A set of transformation rules is applied to translate MongoDB documents to

SPARQL. A SPARQL query is transformed into a pivot abstract query based

on the xR2RML mapping of the target database to RDF. In [25], the Gremli-

nator system translates SPARQL queries to path traversals for executing graph120

pattern matching over graph databases. It provides the foundation for a hybrid

use of RDF triple stores and property graph such as Neo4J, Sparksee and Ori-

entDB. Combining different data stores has been further developed in [26]. The

proposal combines relational storage (for adjacency information), with JSON

storage (for vertex and edge attributes), for storing property graphs. The query125

translation mechanism translates a subset of Gremlin queries into SQL queries.

The proposed system outperformed Titan and Neo4j property graph systems,

on query performance.

RDF storage and SPARQL query optimisation. While performance has

been addressed in the works described above, mostly on the the perspective of130

the data and data storage, complementary work has addressed the optimisation

of the querying mechanisms themselves. In that perspective, Characteristic Sets

(CS) have been introduced as a way to provide estimations for join cardinalities

for a better optimization of queries. In [27], optimisation of SPARQL queries

with multiple joins relies on the notion of CS as a way for helping estimating the135

cardinality of general queries. In [28], an indexing scheme for RDF data that

explores the inherent structure of triples and that relies on Extended Character-

istic Set (ECS) has been proposed. ECS are used to classify triples based on the

properties of their subjects and objects, with the objective of improving query

processing for conjunctive queries. In [29], the notion of CS has been extended140

to address the chain-star joins by reducing pairs of chain-star patterns that typ-

ically involve multiple self-joins. In [30] a system optimising both storing and

accessing RDF data has been proposed. In terms of storage, it reduces both

the size of stored RDF data and the size of its indexes, using a bit matrix stor-

age structure and an encoding-based compression method for storing huge RDF145

6

graphs. In terms of querying, a query plan generation algorithm aims at generat-

ing an optimal execution plan for a join query, reducing the size of intermediate

results. In [31], the RDF storage and query evaluation mechanisms rely on re-

lational representations. For storing, the approach takes advantage of indexing,

compressing and scalability of native relational stores and an entity-oriented150

mechanism for converting RDF data to relational data. For querying optimisa-

tion, the approach is based on a specialised structure, called a data flow, that

captures the query inter-relationships given the sharing of common variables or

constants of different query components. The data flow and cost estimations are

then used to establish the order with which to optimise the query components.155

In [32], the optimisation approach relies on distributed systems. The workload

of fragmentation and allocation of distributing RDF datasets is addressed, with

a focus on the reduction of the communication cost during SPARQL query pro-

cessing. Based on frequent access patterns expressing the characteristics of the

workload, vertical, horizontal, and mixed fragmentation strategies have been160

proposed. Experiments have shown the performance improvement on the re-

sults of fragmentation and allocation over large RDF datasets. Finally, in [33],

the strategy for managing RDF large datasets is based on on distributed file

systems and injecting reasoning within RDF query processing. They propose

an algorithm to generate query plans, and use Hadoop’s MapReduce framework165

to answer the queries. In fact, reasoning can be exploited for pre-compute and

materialise implicit triples or to compute the implicit triples on the fly [34]. The

proposed approach has shown good results when compared to Jena, BigOWLIL

and RDF3X systems.

Graph summarisation and aggregates in RDF. Graph summarisation170

has been extensively studied in the literature [18]. Two main categories of ap-

proaches can be distinguished: (1) aggregation approaches [35, 36], which rely on

strategies for grouping the graph nodes into groups based on diverse functions

(e.g., similarity of values of attributes, relationships to adjacent nodes, appli-

cation of aggregation functions, etc.); and (2) structural approaches [37, 38, 39]175

7

which rely on extracting a schema representing a summary of the graph, in

general, based on equivalence relations of nodes. The approach we propose here

falls into the former. This is the same for the work in [35], which produces

a summary graph of K-groups by grouping nodes based on user-selected node

attributes and relationships. This approach, however, is limited to graphs de-180

scribing entities characterised by the same set of attributes. Our approach is

not limited to this kind of graphs, given that RDF graphs are heterogeneous

by nature. In the second category, [38] summarise graphs following a top-K

approximate RDF graph pattern strategy, aiming at guiding the user in the

formulation of his queries. A similar approach is adopted in [37], where sum-185

marising relies on a generic graph model defining the notion of node collections

i.e., set of nodes sharing similar characteristics. In [40], graphs from the LOD

cloud are summarised, focusing on the distribution of classes and properties

across LOD sources. The summaries are based on a mechanism that combines

text labels and bisimulation contractions. The labels assigned to RDF graphs190

are hierarchical, enabling summarisation at different granularities. In [41] ‘in-

teresting insights’ in (generic) RDF graph are automatically identified by the

systems as RDF aggregate queries. The system ranks such insights and plots

the most interesting ones as bar charts, and shows them to the user. Finally, hy-

brid approaches are proposed in [16, 36], which take into account both attribute195

aggregation and structure summarisation of graphs. These works rather focus

on topological summarisation of graph aiming at helping users to extract and

understand main characteristics of a graph. Other works on RDF summariza-

tion include LODeX [42], ABSTAT [43] and SchemEX [44]. LODeX is a tool

that produces a representative summary of a LOD source. Similarly to [40],200

the summary reports statistical and structural information regarding the LOD

dataset (number of instances of classes and attributes). Contrary to them, we

apply aggregation on the values of properties. Under a different view, SchemEX

extracts a concise LOD schema with a structure to be used as an index, where

schema extraction means to abstract RDF instances to RDF schema concepts205

that represent instances with the same properties. Finally, ABSTAT takes the

8

RDF data summarisation problem as to provide a compact but complete rep-

resentation of a dataset, where every relation between concepts that is not in

the summary can be inferred. It adopts a minimisation mechanism based on

minimal type patterns. In [45], the the focus is the removal of semantic and con-210

textual redundancies in linked data, with two techniques that compress RDF

datasets begin introduced. The first, Logical Linked Data Compression com-

presses a dataset by generating a set of new logical rules from the dataset and

removing triples that can be inferred from these rules. The second one, Con-

textual Linked Data Compression compresses datasets by performing schema215

alignment and instance matching followed by pruning of alignments based on

confidence value and subsequent grouping of equivalent terms. Depending on

the structure of the dataset, the first technique was able to prune more than

50% of the triples.

On the perspective of data materialisation, [46] addresses the problem of220

selecting a set of RDF views to be materialised in the database, minimising both

query processing, such that workload queries can be answered based solely on

the recommended views, with no need to access the database. The view selection

is modelled as search space in a space of states, where each state models a

candidate view set together with the rewriting of the workload queries based on225

these views. They take into account as well the implicit tuples, by saturating

the database with them. Finally, [47] addresses the problem of identifying and

analysing instance relationships in multidimensional data (i.e., RDF Data Cube

sources) and injecting them into the query mechanism. They compare their

strategies to traditional query-based and inference-based solutions, with their230

proposal providing better scalability.

Multidimensional analysis over RDF data. Proposals on this topic mainly

address different aspects of analytical queries over RDF data. In [10], the pro-

posal maps typical OLAP operations to SPARQL and a tool named ASPG au-

tomatically generates OLAP queries from real-world Linked Data. The works in235

[48, 49] focus on generating SPARQL queries based on OLAP analysis, requiring

9

datasets being described in QB or QB4OLAP vocabularies. In [50], a high-level

query language (COL) that operates over cubes is proposed. Using the metadata

provided by QB4OLAP, COL queries are translated into SPARQL, exploiting

SPARQL query optimisation techniques. To address also performance, the ap-240

proach in [51] is based on a refactoring of analytical queries expressed in the

relational-like SPARQL algebra based on a set of logical operators. This refac-

toring enables parallel evaluation of groupings and aggregations, particularly

beneficial for scale-out processing on distributed cloud systems. Contrary to

these works, we address the performance of analytical queries exploiting mate-245

rialisation of aggregates. In [52], graph analytics (graph queries involving full

scans, joins, and aggregates) are expressed in relational databases. Translation

logical query plans of graph queries into relational operators. query optimisa-

tion techniques to tune the performance of graph queries, including considering

updating vs replacing the nodes table on each iteration, incremental evaluation250

of queries, and eliminating redundant joins. In [53], the focus is on the impact

of query optimisation of recursive queries on large graphs with different shapes

and densities, comparing columnar, row and array DBMSs. The performance on

three fundamental relational operators has been analysed (join, projection and,

selection). While a columnar DBMS with tuned query optimisation outperforms255

row and array systems, regardless of their shape, density and connectivity, there

is no clear best system between the row and array DBMSs.

Discussion. Contrary to the works on OBDA, the study here concentrates on

how other kinds of data stores scale when dealing with aggregates in RDF data.

Moreover, none of the above-mentioned approach has systematically studied260

the efficiency of queries computing observation values according to different

attributes at different granularity levels organised in different dimensions. While

the performance of RDF triple stores have been largely studied, as discussed

below, here we state that one can take advantage of the performance of relational

(as for OBDA) and NoSQL engines for better dealing with larger RDF datasets.265

As [12, 13], we address the evaluation of NoSQL systems as Neo4j (differently

10

from [24]) for storing RDF data, but here we focus on a specific kind of data

(multidimensional statistical data). While they have pointed out some weakness

of these systems, we argue here that materialising aggregates can provide better

querying performance. As [25], we consider both storage supports (triple stores270

and NoSQL databases) but do not combine them together. This is what has been

done in [26]. Differently from the works on query optimisation and storage, we

do not deal with the different optimising mechanisms. These are complementary

works to our study that has to be taken into account in the future. With respect

to graph summarisation, unlike most proposals, our approach differs from those275

by nature, since it works on aggregating numeric values within vertices and not

on reducing the graph. Differently from works exploiting reasoning for query

optimisation or graph summarisation, we do not exploit yet this mechanism.

As [46], where RDF views are materialised in the database, minimising query

processing our idea is to materialise aggregations and query the dedicated graph,280

reducing the number of comparisons to be done in the query time. Here, we

analyse the performance of this approach in several data stores. Close to ours,

in particular in multidimensional analysis, [19] compares the performance of

SPARQL and of ROLAP SQL queries and measures the gain of RDF aggregate

views that materialise parts of the RDF data cube. While RDF aggregate views285

show the capability to optimise query execution, yet, overall still take six times

longer for pre-processing and not nearly reach the performance gain of aggregate

tables in ROLAP. Here, we could observe that globally the aggregates can have a

positive impact in the querying performance. It is important to note, however,

that our experiments compared to [19] have not been executed on the same290

basis. On one hand, we propose a new conceptual modelling solution to include

pre-computed aggregates in a multidimensional graph. On the other hand, we

base our experiments on a new technical environment including triple stores,

NoSQL databases and relational databases.

11

3. Conceptual modelling295

Our objective is to propose a conceptual multidimensional model for mod-

elling statistical RDF data. The proposed model is characterised as follows:

(i) it should be independent of a specific storage structure (e.g. triple store,

DBMS, etc.), (ii) it should represent data in the graph form and (iii) it should

include different aggregation levels useful for multidimensional analyses. To do300

so, we introduce a conceptual multidimensional model based on the concepts of

graph structure and aggregates. In this section, we present the model named

Multidimensional Graph and illustrate it through an example.

A multidimensional graph enriches classical conceptual graph modelling with

pre-computed aggregates. It contains individuals organised according to three305

multidimensional concepts, namely numeric indicators (measures), descriptive

properties (attributes) and summarised numeric indicators with grouping con-

ditions and an aggregate function (aggregates).

Definition 1. A multidimensional graph is a bipartite graph composed of

measures, attributes and aggregates. It is defined as (V,E) where310

• V is a set of vertices such that V = M ∪ A ∪ G, where M is a set of vertices

corresponding to measures, A is a set of vertices corresponding to attributes

(parameters) and G is a set of vertices corresponding to aggregates. M =

{eMi}1≤i≤|M| is the set of measure values, A = {eAj}1≤j≤|A| is the set of

attribute values, G = {eGk}1≤k≤|A| is the set of aggregates315

• E ⊆ V× V is a set of edges such that E = EMA ∪ EAA ∪ EMG ∪ EAG ∪ EGG.

EMA is an edge between a measure value eMi and an attribute value eAj,

EAA is an edge between two attribute values eAi and eAj, EMG is an edge

between a measure value eMi and an aggregate eGi , EAG is an edge between

an attribute value eAj and an aggregate eGi , EGG is an edge between two320

aggregates eGi and eGj

The relationships between different types of vertices and edges are presented

in Figure 1.

12

Figure 1: Relationships between different types of vertices and edges

Example. Figure 2 gives an example of a multidimensional graph. It is

composed of one measure denoted cost, and one geographical analysis axis.325

The measure contains 3 values (i.e. eM1, e
M
2, e

M
3), while the analysis axis is com-

posed of 4 attributes (city, region, country and geography) with 7 instances (i.e.

eA1, e
A
2, e

A
3, e

A
4, e

A
5, e

A
6, e

A
7). The last attribute geography represents the maximal

(the most general) granularity, called ALL. The aggregates of the measure ac-

cording to different attributes are stored into one measure denoted cost_sum.330

The formal representation of this multidimensional graph is as follows:

• V = M ∪ A ∪ G where M = {eM1, eM2, eM3}, A = {eA1, eA2, eA3, eA4, eA5, eA6, eA7}, G =

{eG1, eG2, eG3, eG4}

• E = EMA ∪ EAA ∪ EAG where EMA = {(eM1, eA1), (eM2, eA2), (eM3, eA3)}, EAA =

{(eA1, eA4), (eA2, eA4), (eA3, eA5), (eA4, eA6), (eA5, eA6), (eA6, eA7)}, EMG = {(eM1, eG1), (eM2, eG1),335

(eM3, e
G
2)}, EAG = {(eA4, eG1), (eA5, e

G
2), (eA6, e

G
3), (e

A
7, e

G
4)}, EGG = {(eG1, eG3),

(eG2, e
G
3), (e

G
3, e

G
4)}.

Let {41, . . . 4d} a set of binary relations over A. Each 4i is a binary relation

over DiAA ⊆ A defining an ordered set. The subsets DiAA are disjoints; ∀i ∈

[1..d], j 6= i ∈ [1..d], DiAA ∩ D
j
AA = ∅.340

Attributes within a multidimensional graph can be organised according to

analysis axes (i.e. dimensions) :

Definition 2. A dimension is defined by (DiAA,4i) where

13

Figure 2: Example of multidimensional graph

• DiAA ⊆ A is a set of attributes,

• 4i is an ordered set over DiAA satisfying345

– irreflexivity: @eAj , eAj 4i e
A
j;

– transitivity: if eAj1 4i e
A
j2 and eAj2 4i e

A
j3, then eAj1 4i e

A
j3

– asymmetry: if eAj1 4i e
A
j2 then not eAj2 4i e

A
j1.

Attributes associated together through binary relations form one or several

aggregation paths (i.e. hierarchies) within a dimension. A measure can be350

summarised along a hierarchy by zooming in (drilling down) or zooming out

(rolling up).

Example. In the previous example, the multidimensional database is com-

posed of one dimension with one hierarchy of four granularities (city, region,

country and geography), such as355

• DGeography
AA = {eA1, eA2, eA3, eA4, eA5, eA6, eA7},

• 4Geography is an ordered set such as eA1 4Geography eA4; eA2 4Geography eA4;

eA3 4Geography eA5; eA4 4Geography eA6; eA5 4Geography eA6; eA6 4Geography eA7.

It is worth noticing that our proposed model is situated at the conceptual

level. We introduce a generic modelling solution independent of any implemen-360

tation environment. Our proposed model can be freely implemented in any data

14

store, for instance in a RDF triple stores through QB and QB4OLAP vocabular-

ies, or in a relational database through relations. We apply the multidimensional

modelling principles to our proposed model to make a distinction between raw

statistical RDF data and pre-computed aggregates through two types of vertices365

M and G. Specifically, the raw data vertices M are directly deduced the from data

source. Since QB or QB4OLAP which do not require including pre-computed

aggregates, not all datasets include all possible aggregates. Unlike these previ-

ous solutions, our proposed model systematically browses all the raw data and

discovers all possible aggregates. These aggregates are computed before analy-370

ses and materialised through aggregate vertices G to accelerate multidimensional

analyses.

4. Designing a Multidimensional Graph from statistical RDF data

Based on the conceptual modelling of a multidimensional graph, we propose

a designing process to pre-compute and materialise aggregates from statistical375

RDF data (cf. Figure 3). Contrary to the work from [54] that proposes textual

aggregations for OLAP analysis, here we focus on numeric aggregation. Our

design process begins with converting statistical RDF data without aggregates

at the physical level into the conceptual Multidimensional Graph (arrow 1).

During this step, aggregates are computed and combined with original data in380

a conceptual Multidimensional Graph.

4.1. Translating algorithm

In order to convert original RDF data into a conceptual Multidimensional

Graph and enrich original data with all possible aggregates, we depict an algo-

rithm which (a) takes a statistical RDF dataset in QB or QB4OLAP vocabulary385

as input and (b) produces a conceptual Multidimensional Graph including orig-

inal data and aggregates at output (cf. algorithm 1).

Algorithm 1 first identifies attributes on each dimension according to QB

(lines 3 and 4) and QB4OLAP (line 6) vocabularies and creates attribute vertices

15

Algorithm 1: Designing a MG based on original statistical RDF data
input : Original RDF data

output: Conceptual aggregate multidimensional graph

1 foreach dimension ?dim in original RDF data, such as ?dim a

qb:DimensionProperty. do

2 create a dimension Di in the multidimensional graph;

3 if there exists ?dim qb:codeList ?lst then

4 identify each attribute ?att within ?dim , such as

• ?lst skos:hasTopConcept ?att. or

• ?lst qb:hierarchyRoot ?att.

5 else

6 identify each attribute ?att within?dim (?level a qb4o:LevelProery.

?level qb4o:inDimension ?dim), such as ?att qb4o:inLevel ?level ;

7 end

8 foreach identified attribute ?att in original RDF data do

9 create an attribute vertex ai such as ai ∈ A, A ⊆ V ;

10 end

11 create an edge EAA between ?att and ?attUp, such as

• ?attUp skos:inSchema ?lst; skos:narrower ?att. or

• ?lst a qb:HierarchicalCodeList; qb:parentChildProperty ?p2c. ?attUp

skos:inSchema ?lst; ?p2c ?att.

12 end

13 foreach measure ?m in original RDF data, such as ?m a qb:Observation do

14 create an measure vertex mi such as mi ∈M , M ⊆ V ;

15 identify attribute ?att on dimension ?dim (?dim a qb:DimensionProperty)

associated with ?m, such as

• ?m ?dim ?att. or

• ?level a qb4o:LevelPropery; qb4o:inDimension ?dim. ?att qb4o:inLevel

?level. ?m ?dim ?att.

create an edge EMA between ?att and ?m ;

16 end

17 foreach measure mi ∈ M do

18 calculate aggregated values of mi according to the related attributes on each

dimension 2AD1
×...×ADn , where ADi

⊆ A is the set of related attribute

vertices on Di, such as ∀aj ∈ ADi
, aj is associated with mi through one EMA

edge or through a set of EAA edges and one EMA edge ;

19 create an aggregate vertex gi such as gi ∈ G,G ⊆ V ;

20 create an edge EMG between mi and gi. ;

21 create an edge EAG between each attribute agi in the grouping conditions and

gi. ;

22 create an edge EGG between related aggregate vertices gi and gj , such as there

exists an attribute agi associated with gi and an attribute agj , agi 4Dk
agj ;

23 end

16

Figure 3: Designing process of Multidimensional Graph from physical level to conceptual level.

in the Multidimensional Graph accordingly (lines 8-10). Then, it creates edges390

EAA between attributes linked together through standardised (skos:narrower)

or customised (?p2c4) relations (line 11). Next, the algorithm creates measure

vertices in the Multidimensional Graph (lines 13-16). At last, it calculates mea-

sure values according to attributes of different granularities on each dimension

and adds pre-computed aggregates in the Multidimensional Graph (lines 17-22).395

4.2. Use Case

In order to illustrate the feasibility of our proposed translating process, in

this section we describe a use case based on a real-world dataset named QBOAir-

base5. QBOAirbase corresponds to an RDF dataset including 5.07× 106 RDF

triples describing the European air quality database on air pollution and climate400

change mitigation6. This statistical RDF dataset includes triples describing air

pollution observations and corresponding descriptive attributes organized ac-

cording to different analysis axes and granularity levels. The multidimensional

4?lst a qb:HierarchicalCodeList; qb:parentChildProperty ?p2c.
5http://qweb.cs.aau.dk/qboairbase/
6https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-2

17

http://qweb.cs.aau.dk/qboairbase/
https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-2

structure of the QBAirbase dataset is shown in Figure 4(a) (without triple in-

dividuals).405

Figure 4: QBOAribase dataset.

First, we execute Algorithm 1 to build a intermediate conceptual Multidi-

mensional Graph without aggregate (cf. steps 1-16). The obtained Multidimen-

sional Graph includes a set ofMeasures M composed of 1.6×106 measure vertices.

Each measure vertices eMi corresponds to an observation (qb:Observation) in

the source. Each measure vertex describes one air pollution indicator such as410

SO2, Pb, O3 (cf. Figure 4(a)), and it can be analysed according to three dimen-

sions, namely s:year, s:station and s:sensor. The set of attributes A is composed

of 2.43 × 105 attribute vertices. Each attribute vertex represents an instance

from the source, and it describes one granularity within a dimension. 4.8× 106

18

EMA edges are created to associate an attribute vertex eAj with a measure vertex415

eMi . Relationships between attribute vertices are represented through 2.43× 105

EAA edges.

Then, Algorithm 1 completes the intermediate conceptual Multidimensional

Graph with pre-computed aggregates G by rolling up on different dimensions at

different granularities (cf. steps 17-23). To perform the group-by aggregation,420

attribute vertices are used. All 24 combinations of attribute vertices that can

be used in group-by aggregation as well as their relationships can be found in

figure 4(b).

Note that the first type of aggregate Station, Sensor, Year corresponds to

the original data, while the 16th types of aggregate compute measure values425

according to three distinct granularities, namely City, ALL_SE and ALL_Y (1.62×

106 vertices and 3.23×106 edges). Consequently, the obtained Multidimensional

Graph contains pre-computed aggregates represented by 3.57 × 1010 aggregate

vertices, 1.045× 1011 EAG edges, 7.63× 1010 EMG edges and 3.57× 1010 EGG

edges.430

The final conceptual Multidimensional Graph contains different types of ver-

tices. Original raw data are modelled through M and A vertices, while pre-

computed aggregates are represented through G vertices. These vertices can be

implemented in different technical environments. For instance, in a relational

OLAP context, they can be implemented through materialised views; in a mul-435

tidimensional OLAP system, they can be implemented through cubes; in the

RDF context, they can be implemented through new specific triples.

5. Logical and physical implementation

The second aim of our approach is to transform a conceptual Multidimen-

sional Graph including both original data and aggregates into different log-440

ical and physical implementations (RDF, property-graph, column and rela-

tional models at logical and physical levels (cf. Figure 5)). In the case of

an RDF model, we have defined an underlying RDF vocabulary supporting the

19

translation of our Multidimensional Graph model into the corresponding RDF

representation. Note that a pre-computed aggregate can be represented as a445

qb:Observation and its related edges can be represented through predicates

(e.g., Figure 6).

Figure 5: Logical and physical implementations of a conceptual Multidimensional Graph.

Figure 6: An example of aggregate in RDF model

5.1. MG to property-graph representation

In order to transform a conceptual Multidimensional Graph into a property-

graph representation, we define the following set of mapping rules.450

1. A dimension vertex dim is transformed into

(dim) - [:a] -> (:‘qb:DimensionProperty‘)

2. An attribute vertex att is transformed into

20

(a) (lst) - [:a] -> (:‘skos:ConceptSchema‘),

(lst) - [:‘skos:hasTopConcept‘] -> (att) or455

(b) (lst) - [:a] -> (:‘qb:HierarchicalCodeList‘),

(lst) - [:‘qb:hierarchyRoot‘] -> (att) or

(c) (level) - [:a] -> (:‘qb4o:LevelProperty‘),

(level) - [:‘qb4o:inDimension‘] -> (dim),

(att) - [:‘qb4o:inLevel‘] -> (level)460

3. An edge EAA is transformed into a standard relationship

[:‘skos:narrower‘] or a customized relationship [:‘e_aa‘] such as:

(lst) - [:a] -> (:‘qb:HierarchicalCodeList‘),

(lst) - [:‘qb:parentChildProperty‘] -> (e_aa)

4. An edge EMA is transformed into a relationship [:dim] whose label cor-465

responds to the identifier of a dimension, such as:

(a) (dim) - [:a] -> (:‘qb:DimensionProperty‘),

(m) - [:a] -> (:‘qb:Observation‘),

(m) - [:dim] -> (att) or

(b) (dim) - [:a] -> (:‘qb:DimensionProperty‘),470

(level) - [:a] -> (:‘qb4o:LevelProery‘),

(level) - [:‘qb4o:inDimension‘] -> (dim),

(att) - [:‘qb4o:inLevel‘] -> (level),

(m) - [:a] -> (:‘qb:Observation‘),

(m) - [:dim] -> (att)475

5. An aggregate vertex aggi is transformed into

(aggi :‘qb:Observation‘ { ‘MDGraph:value‘ : value,

‘MDGraph:dim1Name‘ : ’att1Name’, ...,

‘MDGraph:dimNName‘ : ’attNName’}),

(aggi) <- [‘aggDim1‘ : ‘MDGraph:dim1‘] - (att1),480

...

21

(aggi) <- [‘aggDimN‘ : ‘MDGraph:dimN‘] - (attN),

(aggi) - [:‘MDGraph:GG‘] -> (aggj)

...

(aggi) - [:‘MDGraph:MG‘] -> (mi : ‘qb:Observation‘)485

5.2. MG to column-oriented data store

A column-oriented data store manages data by columns rather than by rows

like in relational DBMS. More precisely, a column-oriented data store manages

each database table column separately, with attribute values belonging to the

same column stored contiguously, and densely packed [55]. For our experimental490

assessments, we use the Cassandra data store. This data store is based on the

following concepts. A keyspace closely corresponds to a relational database. A

column family is a container for an ordered collection of rows, each of which is

itself an ordered collection of columns [56]. A column is the basic component

defined by a name, a value, and a timestamp. A partition key correspond to a495

primary key in a relational database.

Our objective is to translate all the components of a multidimensional graph

into a keyspace. In Cassandra, the primary key concept is different from

relational databases. A key is used for grouping and organising data into

columns and rows. The order in which columns are defined for the primary500

key matters and it is possible to have a key composed of multiple columns.

Note that only the first column of the primary key is considered the partition

key and the rest of columns are clustering keys. To apply different group-

ing queries in CQL, it is necessary to create different tables (or column fam-

ilies) by combining all the possibilities for partition key and clustering keys.505

Specifically, for a MG including N dimensions, we should create N ! tables

to enable all grouping conditions during analyses. Each table has a rowkey

made up of a combination of dimension instances and dimension names, such

as suchasrowkey(instanceDim1
1 , ..., instanceDimn

m , nameDim1 , ...,

nameDimn). For instance, in Figure 4, we have 3 dimensions (i.e. year, sensor510

station) and we define 6 tables in order to combine these different possibilities:

22

Table 1: rowkey (StationDimInstance, SensorDimInstance,

YearDimInstance, station, sensor, year)

Table 2: rowkey (SensorDimInstance, StationDimInstance,

YearDimInstance, sensor, station, year)515

Table 3: rowkey (SensorDimInstance, YearDimInstance,

StationDimInstance, sensor, year, station)

Table 4: rowkey (StationDimInstance, YearDimInstance,

SensorDimInstance, station, year, sensor)

Table 5: rowkey (YearDimInstance, StationDimInstance,520

SensorDimInstance, year, station, sensor)

Table 6: rowkey (YearDimInstance, SensorDimInstance,

StationDimInstance,year, sensor, station)

The tables are implemented through CQL queries.

5.3. MG to relational DBMS525

Our objective is to implement all the components of the multidimensional

graph through relational tables. For the raw data, all the nodes of M (Mea-

sures) are implemented through a fact table. The primary key of the fact table

is composed of the URI of the subject. All the nodes of A (Attributes) are

implemented through different tables and each table represents an aggregation530

level (the primary key is the URI of the subject and the foreign key is the URI

of the predicate related to the following level). In Figure 7, we can identify one

fact table related to the observations and 6 tables for the dimensions related to

the attributes.

For the aggregated data, all the nodes G (Aggregates) are implemented535

through different tables. Each tuple in an aggregate table corresponds to an

aggregate vertex. A set of aggregate vertices sharing the same attributes are

grouped in one aggregate table according to the lattice shown in Figure 4 (b)

(excluding the lowest one representing the levels of raw data). The final schema

is composed of 7 tables implementing raw data (cf. Figure 7(a)) and 23 materi-540

23

Figure 7: Relational implementation of the conceptual Multidimensional Graph.

alized views implementing pre-computed aggregates (e.g., the three materialized

views in figure 7(b)).

6. Multidimensional Graph Querying

From the previous discussion (Section 3), we highlight the differences be-

tween our approach (graph aggregation) and graph summarisation. Specifically,545

instead of grouping and then reducing vertices and edges in a graph as the graph

summarisation does, we aggregate numeric values within measure vertices ac-

cording to values of attribute vertices from different analysis axes (dimensions)

on different granularities (analytical levels) prior to querying. All pre-computed

are materialised in a Multidimensional Graph to help reducing the volume of550

data involved in queries involving aggregates during analyses.

As a matter of fact, querying aggregated values in a Multidimensional Graph

is not carried out in the same way as in original statistical RDF dataset without

pre-computed aggregates. In original statistical RDF dataset, a query computes

24

aggregates on-the-fly according to some grouping conditions and an aggregation555

function. In a Multidimensional Graph, aggregated measure values are pre-

computed and can directly be extracted from the data store. In this way, a

Multidimensional Graph allows avoiding computing aggregates data on-the-fly

from detailed data.

For instance, in a relational data store (cf. Figure 7), a decision-maker wants560

to carry out an analysis of average SO2 by city, component and year. Without

a Multidimensional Graph, the decision-maker should write the SQL query as

shown in Figure 8(a) to compute average SO2 by city, by component and by

year from the detailed data. With a Multidimensional Graph, the decision-

maker can directly extract pre-computed aggregated value through the SQL565

query, as shown in Figure 8(b).

Figure 8: Querying with and without pre-computed aggregate in a relational data store.

Specifically, the first query (i.e. figure 8(a)) involves complex relational op-

erations such as five joins between six tables as well as an aggregation including

one average function and a group-by predicate with three attributes. In total,

41 billion tuples are involved in this query to generate the final result. The570

second query (i.e. Figure 8(b)) includes only one projection operation which

is much less costly than other complex relational operations in a DBMS. This

query directly extract pre-computed aggregates managed by a materialised view.

During its execution, only 2.3 million tuples are involved (i.e. 0.0055% of the

first query in Figure 8). The same principle applies to all the other data stores.575

25

T
ab

le
1:

Si
m
ila

ri
ti
es

an
d
di
ffe

re
nc
es

ac
ro
ss

th
e
co
m
pa

re
d
sy
st
em

s.

R
D

F
tr

ip
le

st
or

e
N

oS
Q

L
R
el

at
io

n
al

da
ta

ba
se

s

Je
n
a
T
D
B

V
ir
tu
os
o

N
eo
4j

C
as
sa
n
d
ra

M
yS

Q
L

P
os
tG

re
S
Q
L

M
od
el

R
D
F

R
D
F

P
ro
pe

rt
y
G
ra
ph

C
ol
um

n
R
el
at
io
na

l
R
el
at
io
na

l

Q
ue
ry

la
ng
ua

ge
SP

A
R
Q
L

SP
A
R
Q
L

C
yp

he
r

C
Q
L

SQ
L

SQ
L

G
ra
ph

im
pl
em

en
ta
ti
on

ea
sy

ea
sy

ea
sy

co
m
pl
ex

m
ed
iu
m

m
ed
iu
m

G
ra
ph

qu
er
yi
ng

ea
sy

ea
sy

ea
sy

co
m
pl
ex

co
m
pl
ex

co
m
pl
ex

26

A comparison of the different systems considered in this paper is presented in

Table 1. We first present the data model and the query language of the different

data stores used in this paper. Second, we provide an empirical comparison to

evaluate the capacity of each data store to implement and query graph data.

Specifically, implementing a graph in a column-oriented data store is complex,580

since using nested column structure to manage graph data requires a careful

choice of design solutions. In the same manner, querying graph data involving

a long path in relational and column data stores needs advanced skills in the

corresponding querying languages.

7. Experimental evaluation585

In this section, we present our experimental evaluation on querying statistical

RDF data using the aggregate-based model described above. We aim at studying

the benefits of graph aggregation for querying efficiency according to different

scenarios:

1. querying multidimensional graphs without aggregates, using Jena TDB2590

and Virtuoso triple stores;

2. querying multidimensional graphs with pre-computed aggregates, using

Jena TDB2 and Virtuoso triple stores;

3. querying multidimensional graphs without aggregates, in MySQL and

PostGre relational databases;595

4. querying multidimensional graphs with pre-computed aggregates, in MySQL

and PostgreSQL relational databases;

5. querying multidimensional graphs without aggregates, in Cassandra data

store;

6. querying multidimensional graphs with pre-computed aggregates, in Cas-600

sandra data store;

27

Table 2: QBOAirbase datasets of different volumes

Dataset
Included

countries
Size(GB)

No.

Observations

No.

Triples

DS1 England 0.7 147256 1876222

DS2 England, France 2.5 489035 6331624

DS3
England, France,

Spain
4.6 891632 11631570

DS4
England, France,

Spain, Germany
7.7 1497442 19343025

DS5 All countries 15 2842759 36920734

7. querying multidimensional graphs without aggregates, in Neo4j database;

8. querying multidimensional graphs with pre-computed aggregates, in Neo4j

database;

7.1. Material and methods605

Datasets. We built five datasets based on the QBOAirbase dataset. Each

dataset includes data related to one or several European countries and weights

from 0.7GB (about 4.14 million RDF triples) to 15GB (over 81.92 million RDF

triples). (cf. Table 2). The obtained logical representations are implemented

at the physical level in different data stores: Jena TDB2 (v.3.6.0), Virtuoso610

(v.7.2.4.2), Cassandra (3.11.2), MySQL (8.0.11), PostgreSQL (10.4) and Neo4j

(v.3.3.5). Our experiments are carried out in 60 datasets: 5 different data

volumes (DS1 - DS5) × 2 implementations (with and without aggregates) × 6

different data stores at the physical level.

It is worth noticing that we rely on the default tuning of each data store615

without any customised optimisation technique. By doing so, our objective

is to avoid introducing any bias during analyses and find out the best native

implementation for querying pre-computed aggregates.

28

Benchmark queries. We propose 24 queries covering a large range of opera-

tions during statistical RDF analyses. (cf. Figure 9). Specifically, the first 12620

queries involve all data ranging from the most detailed granularity to the most

general granularity, while the last 12 queries extract a sub-set of data according

to a selection criteria on different vertex of different granularities. Specifically,

queries Q1 and Q13 involve only original data without computing aggregated

measure values. It takes the same form in both orig. and ag. datasets. Queries625

Q2-Q12 (without selection conditions) and Q14-Q24 (with selection conditions)

involve aggregated measures values upon different granularities on different anal-

ysis axes. They (i) compute aggregated values on-the-fly according to some

grouping conditions and an aggregation function in orig. datasets and (ii) di-

rectly extract pre-computed and materialised aggregates in ag. datasets. For630

the selection and range queries, Table 7.1 shows the selectivity i.e., how many

triples/observations are retrieved). Each query has been run on the original

data, without the filtering conditions and with the filtering conditions (i.e., for

the query 16, calculating the number of cities of interest with respect to the

number of cities in the data store). Each query has been written with SPARQL635

(Jena and Virtuoso triple stores), SQL (MySQL and PostgreSQL relational

databases), CQL (Cassandra NoSQL) and Cypher (Neo4j NoSQL database).

In fact, different SPARQL query benchmarks exist, as for instance, the

Berlin SPARQL [57], which aims at comparing the performance of RDF stores

with the performance of relational database management systems; the LUBM640

dataset7, dedicated to OWL benchmarking (querying, reasoning, etc.); the Evo-

Gen Benchmark [58], for benchmarking of versioning RDF systems (temporal

querying, queries on changes, longitudinal queries across versions, etc); or still

the SPB benchmark (Semantic Publishing Benchmark) [59], a set of queries ex-

pressing the requirements each RDF store needs to address in order to satisfy645

in real use cases (aggregations, join ordering, complex filter conditions, etc.).

While these benchmarks cover aggregation queries, as we propose here, their

7swat.cse.lehigh.edu/projects/lubm/

29

swat.cse.lehigh.edu/projects/lubm/

Query %selectivity triples/observations

13 29,36% 104199/354944

14 0,02% 1/4479

15 0,07% 3/4479

16 0,04% 1/2305

17 2,94% 1/36

18 0,00% 1/22097

19 0,02% 5/22097

20 0,04% 1/2305

21 0,00% 1/36515

22 3,56% 787/22097

23 0,09% 2/2305

24 0,05% 1/2046

Table 3: %selectivity: how many triples/observations are retrieved.

RDF datasets are not expressed in the dedicated vocabulary for representing

statistical RDF data. Our motivation for constructing our own dataset is that

is dedicated to the multidimensional view and original data is modelled as a650

data cube using QB4OLAP.

Technical environment and evaluation metrics. The hardware configu-

ration is as follows: OS MAC OS 10.12.5, 2 x 2,4 GHz Quad-Core Intel Xeon,

48 GB 1066 MHz DDR3, 1TB SATA Disk. We willingly choose a RAM with

enough space to integrate all the datasets to avoid the different impacts of disk655

I/O when dealing with different sizes of datasets. In this case, the only influence

factor consists of the dataset size.

30

F
ig
ur
e
9:

B
en
ch
m
ar
k
Q
ue
ri
es

31

For each query, we record its execution time (in millisecond) in both im-

plementations, for ten runs. We clear the querying engine’s cache before each

execution, so that a previously executed query does not serve as warm-up run660

for the following one. In this way, during each query execution, data are read

from a secondary storage instead of system cache. The final execution time of

a query corresponds to the mean time of all runs.

7.2. Experimental results

In the following the results of our experiments are detailed by different kinds665

of queries.

Results per query. In a first analysis, we focus on the performance of each of

the 24 queries for the largest dataset (D5) (Figure 10). For the overall results

discussed in the following subsections, we present the results per dataset. As

we would expect, the best performance for most queries have been reported for670

the ag. datasets, with the the worst performances were observed for the orig.

datasets. For the best cases, while relational databases outperform the other

data stores, for most worst cases Cassandra (queries Q2-Q12, as detailed below)

is the one that performs poorly.

Figure 10: Execution time (ms) of each query for the dataset D5.

For queries Q23 and Q24, in particular, the worst performance was observed675

for Jena (57600ms in the ag., for Q23, and 3422447ms in orig. for Q24). In fact,

32

Figure 11: Execution time (in ms) of query Q1 with and without pre-computed aggregates.

Figure 12: Execution time (in ms) of query Q13 with and without pre-computed aggregates.

in Jena TDB2, queries are always more efficiently computed in datasets with pre-

computed aggregates. Queries with a single selection condition on measures and

attributes (Q22, Q23 and Q24), however, are slightly more efficiently computed

in datasets without aggregates. For Virtuoso, Q14-Q17 and Q23 perform worst680

in the ag. datasets. For Cassandra, a similar behaviour has been observed where

several queries involving a selection perform worst in the ag. datasets.

Querying without aggregated data. As the graph aggregation brings addi-

tional triples (i.e. materialised aggregates) into a dataset (about 1.8% in all

datasets from DS1 to DS5), we study if queries extracting original data without685

computing aggregated values require longer runtime. To do so, we execute the

queries Q1 (without grouping condition or selection condition) and Q13 (in-

cluding selection condition without grouping condition) in both orig. and ag.

datasets. Figures 11 and 12 show the execution time for queries Q1 and Q13

over the different datasets.690

For query Q1 which contains neither grouping condition nor selection condi-

tion, pre-computed aggregates have impacts over query runtime in Jena TDB2

33

and Virtuoso. We can also notice that the impact of pre-computed aggregate

over Q1 increases as the data volume increases (from DS1 to DS5) for Jena

(214ms in D1 up to 3557ms in D5), Virtuoso (119ms up to 1804ms) and Neo4j695

(25ms up to 45ms), while decreasing for Cassandra (-26744.5 in D1 down to

-400322.5 in D5), MySQL (-997.0 down to -21760) and PostGres (-62.4ms down

to -4105ms). The greatest gap (up to 3557ms) of Q1’s runtime is found in dataset

DS5 of Jena TDB (with an absolute runtime of 58790ms in orig. DS5 dataset

and 62347ms in ag. DS5 dataset), opposite to Cassandra (down to -400322ms,700

with an absolute runtime of 789978in orig. DS5 dataset and 389655ms in ag.

DS5 dataset).

For query Q13 which contains only selection conditions without any grouping

condition, its execution is greatly influenced by pre-computed aggregates in Jena

TDB2 and Virtuoso. Notably, from DS1 to DS5, the gap is widened nearly705

40 times in Virtuoso. The greatest gap (up to 2913 ms) of Q13’s runtime is

found in dataset DS5 of Virtuoso (with an absolute runtime of 7492ms in orig.

DS5 dataset and 10405ms in ag. DS5 dataset). For the other data stores, the

behaviour is similar than Q1, were the biggest differences are observed for D5

with Cassandra (-21296.4, with an absolute runtime of 171726ms in the orig.710

and 150429.6ms in the ag.).

Overall, Neo4j and Cassandra are the least affected by the materialisation

of aggregates. For Neo4j there is practically no difference (max. 45 ms) while

querying without summarising data before and after adding pre-computed ag-

gregates, with or without selection condition. For Cassandra, a positive impact715

of the aggregation is observed.

Querying aggregated numeric values without selection condition. The

second part of the experiments focuses on the impact of graph aggregation

over queries Q2–Q12 which summarise data according to different grouping

conditions without selection.720

As shown in Figure 13, overall, the average execution time in most data

stores increases as the dataset size becomes larger. From DS1 to DS5, in the

34

orig. datasets, the execution time increases by 8.87 times for Jena, 3.80 for

Virtuoso, 9.98 for Neo4j, 8.90 for Cassandra, 33.33 for MyQSL and 40.61 for

PostGres. For the ag., this runtime decreases for all data stores: 4.38 for Jena,725

6.14 for Virtuoso, 0.94 for Neo4j, 19.14 for Cassandra, 12.44 for MyQSL and

21.13 for PostGres. While Virtuoso is less affected by the increasing data volume

of datasets without aggregates, Neo4j is less affected with the ag. datasets.

Cassandra is the most affected with the increasing of the datasets for both orig.

and ag.. Overall, the shortest average runtime is observed for PostGres with730

the largest for Cassandra.

Figure 13: Average execution time (in ms) of queries Q2-Q12 in datasets of different volumes.

As already stated above when analysing the individual queries, with respect

to the pre-computed aggregates, it allows reducing query execution time in all

data stores.

Specifically, looking for the smallest and largest datasets, in the dataset735

DS1. The same query requires less execution time in the ag. implementations

than the orig. implementation of the same dataset in all data stores. Relational

databases greatly benefit from the aggregations (MySQL, for instance, decreases

from 2130.6ms to 6.1ms for D1, and from 71022.7ms to 76.4ms for D5). We

notice that the gain in Jena TDB2 and Neo4j with pre-computed aggregates740

becomes greater as the data volume increases; it reaches up to 83.4% and 98.8%

respectively in the dataset DS5.

35

Table 4: Gain after aggregation for DS1 et DS5.

Jena Virtuoso Neo4j Cassandra MySQL Postgres

Without

Condition

DS1 66.4% 50.2% 87.8% 87.8% 99.7% 98.8%

DS5 83.4% 19.6% 98.8% 73.7% 99.8% 99.4%

With

Condition

DS1 92.1% 84.6% 86.0% 94.9% 99.8% 97.0%

DS5 95.7% 95.6% 98.8% 87.3% 100.0% 99.5%

Querying aggregated numeric values with selection condition. In the

third part of our experiments, we study if queries with selection conditions are

efficiently computed in datasets with aggregates. We analyse the runtime of745

queries Q14-Q24 in all datasets with and without aggregates. From Figure 14,

we can observe that all data stores, pre-computed aggregates allow decreasing

the execution time of queries with selection conditions. As observed for the

first group of queries, overall runtime increases with the increasing in the vol-

ume of the datasets (with exception of Neo4j ag, Cassandra orig. and MySQL750

orig.). Among all data stores, for the largest dataset the lowest average run-

time is recorded in relational databases with aggregates (Postgres and MySQL,

respectively).

Figure 14: Average execution time (in ms) of queries Q14-Q24 in datasets of different volumes.

Table 4 shows the gain in terms of runtime for queries Q14-Q24 (with condi-

tion). We can observe that overall the gain is more important for this group of755

queries with respect to the first one. As observed above, all data stores benefit

36

from the aggregation (no negative gain). Again, relational databases are the

stores that better benefit from the aggregation, with MySQL with a gain of

100% for the largest dataset (from 1784.5ms to 0.7ms).

8. Discussion760

8.1. Synthesis of results

With the increasing amount of statistical RDF data made available on the

LOD cloud, there is a clear need for manipulating this kind of data taking ad-

vantage from multidimensional models as a way of facilitating the data analytic

tasks. However, from the conceptual modelling point of view, existing work fo-765

cuses rather on detailed data at the lowest levels of granularity. Consequently,

querying efficiency based on such modelling solutions is low when detailed data

should be summarised on-the-fly according to different levels of granularity on

different analysis axes. Moreover, from the implementation point of view, exist-

ing work mainly focuses on optimising native RDF triple stores. Our work is a770

fist attempt to address the problem of querying aggregated data using different

data stores.

In particular, the results of our experiments are opposite to what the au-

thors of [19] have observed: provided that aggregates are properly modelled in

an RDF dataset, we highly recommend pre-computing aggregates in statisti-775

cal RDF datasets to reduce query execution time. In our empirical evaluation,

our findings were that pre-computing aggregates is a promising approach to

improving querying performance in large RDF datasets.

In terms of findings, more specifically: i) pre-aggregates improve the perfor-

mance of all data stores; ii) relational databases outperform all other data stores;780

iii) Neo4j NoSQL is more recommended than Cassandra NoSQL for manipulat-

ing multidimensional data, as it scales better for larger datasets; iv) Neo4j

NoSQL performs better than Jena TDB2 and Virtuoso triple stores. This eval-

uation was based on a conceptual model with aggregates allows for representing

aggregates independently of its implantation in different data stores. This theo-785

37

retical model allows for the implantation of aggregates for further exploration in

practical scenarios as well as the exploitation of it in further experimentations

involving additional data store systems.

8.2. Theoretical contributions

Our theoretical contributions can be seen from different levels.790

First, we formalise the concept of aggregates for statistical RDF data. The

objective is to represent and materialise pre-computed summarised observation

values according to different granularity levels on different analysis axes to avoid

on-the-fly computing of detailed data during querying.

Second, based on the proposed concept of aggregate, we apply the multidi-795

mensional modelling principles to represent statistical RDF data. Our proposed

modelling solution makes a distinction between raw statistical RDF data and

pre-computed aggregates. It relies on the concepts of bipartite graph composed

of measures, attributes and aggregates. It is a a generic modelling solution

which can be freely implemented in different data stores.800

Third, we present a design process to convert statistical RDF data without

aggregates at the physical level into the conceptual Multidimensional Graph.

During the conversion, the process automatically enriches the Multidimensional

Graph by all possible aggregates.

Forth, we introduce a transformation process from a conceptual Multidi-805

mensional Graph including both original data and aggregates into different log-

ical and physical implementations (RDF, property-graph, column and relational

data stores).

8.3. Implications for practice

From the practical point of view, our study is carried out in a systematic810

manner by using different types of data stores based on large amounts of real-

world data.

It is worth noticing that short runtime (a few milliseconds) is always ob-

tained with pre-computed aggregates. Meanwhile, the execution of correspond-

38

ing queries based on detailed data without pre-computed aggregates takes sev-815

eral seconds even minutes. In another word, even though the amount of RAM is

considerably larger than the dataset volume, on-the-fly computing of aggregate

from detailed data is still not recommended for its low efficiency. Correspond-

ingly, with pre-computed aggregates, a query can be significantly simplified (cf.

section 6.) The query becomes quite easy to handle (notably in Neo4j and820

relational data store): it contains only simple operations (projection) and the

volume of data involved in this query become so small that a data store can

produce the result immediately.

Pre-computing aggregates is not only an efficient technique to deal with large

amounts of statistical RDF data but also a scalable solution. In fact, as we can825

see from our experiments, even though data volume increases rapidly (by 21

times), the average query runtime in all three data stores with aggregates does

not increase exponentially.

We can also notice that the execution of the same query does not take the

same time in different data stores. Thus, the choice of data stores impacts830

the querying efficiency. Among all types of data stores studied during our

experiments, we recommend relational databases to manage statistical RDF

data enriched with aggregates.

8.4. Limitations and Future Research Direction

A first limitation of our study concerns the data stores. We have not include835

all potential systems for all data stores types. For instance, among the RDF

data stores, we can further study the performance of Strabon, GraphDB, and

Stardog. Among the relational databases, we can complete our study with more

mature DBMS, such as Oracle, SQL Server and DB2. Among the graph and

column data stores, we also intent to implement the Multidimensional Graph in840

OrientDB, and HBase. Meanwhile, our future study must include data of larger

scale (e.g., exceeding memory limits). A long-term research direction could

include in our study cloud data management systems [60], such as Neptune

and Cosmos. By doing so, our objective is to go through a hybrid approach

39

for dynamically dispatching the query according to their type and previous845

characterised performance of the data store (i.e., taking the best of each data

store).

A second limitation of our study is that it does not include any query op-

timisation technique, which we believe can further improve querying efficiency.

Furthermore, while our experimental evaluation in this paper consists of a hori-850

zontal comparison of different data store with native tuning during multidimen-

sional analyses, a future direction of our research consists in applying specific

optimisation techniques (indexing, query plan, hint etc.) to each data store and

further investigate the impact of them in the querying process. The objective

is to study in a vertical manner the best performance that each data store can855

reach when dealing with analytic queries on statistical RDF data.

Another research direction would be improving the RDF modelling vocabu-

lary of our Multidimensional Graph model. In the line of the work of [11], the

objective would be to support ontology-based data access to enable SPARQL

querying over other data stores than RDF triple stores. For that, we will propose860

R2RML mappings for translating the original schemes to our ontology.

9. Conclusion

The primary aim of this paper was to improve the efficiency of complex

queries involving data from different granularity levels. To that extent, we have

proposed an approach for querying large volume of statistical RDF data, relying865

on pre-aggregation strategies. The proposal covers from a high level conceptual

modelling solution to an implementation in different data stores with real-world

large datasets. From the theoretical point of view, we have contributed to a

novel multidimensional modelling solution coupled with a design and an im-

plementation processes. This modelling solution allows for representing both870

detailed data and pre-computed aggregates. From the practical point of view,

we have illustrated through experiments that pre-computed aggregates reduce

query execution time in all data stores. The performance of analytic queries

40

on relational databases with aggregates outperforms RDF triple stores, with a

good performance of Neo4j NoSQL.875

Acknowledgements

We warmly thank Tianyuan LIU who loaded the datasets in Cassandra,

MySQL and PostGres. The authors have been partially supported by the French

CIMI Labex project IBLiD (Integration of Big and Linked Data for On-Line

Analytics).880

References

[1] J. B. de Vasconcelos, Á. Rocha, Business analytics and big data, Inter-

national Journal of Information Management 46 (2019) 320–321. doi:

10.1016/j.ijinfomgt.2018.10.019.

URL https://doi.org/10.1016/j.ijinfomgt.2018.10.019885

[2] A. Gandomi, M. Haider, Beyond the hype: Big data concepts, methods, and

analytics, International Journal of Information Management 35 (2) (2015)

137 – 144. doi:https://doi.org/10.1016/j.ijinfomgt.2014.10.007.

URL http://www.sciencedirect.com/science/article/pii/

S0268401214001066890

[3] F. Ravat, O. Teste, R. Tournier, G. Zurfluh, Algebraic and graphic lan-

guages for OLAP manipulations, International Journal of Data Warehous-

ing and Mining 4 (1) (2008) 17–46.

[4] M. Schulz, P. Winter, S.-K. T. Choi, On the relevance of reports-integrating

an automated archiving component into a business intelligence system, Int.895

J. Inf. Manag. 35 (6) (2015) 662–671. doi:10.1016/j.ijinfomgt.2015.

07.005.

URL http://dx.doi.org/10.1016/j.ijinfomgt.2015.07.005

41

https://doi.org/10.1016/j.ijinfomgt.2018.10.019
http://dx.doi.org/10.1016/j.ijinfomgt.2018.10.019
http://dx.doi.org/10.1016/j.ijinfomgt.2018.10.019
http://dx.doi.org/10.1016/j.ijinfomgt.2018.10.019
https://doi.org/10.1016/j.ijinfomgt.2018.10.019
http://www.sciencedirect.com/science/article/pii/S0268401214001066
http://www.sciencedirect.com/science/article/pii/S0268401214001066
http://www.sciencedirect.com/science/article/pii/S0268401214001066
http://dx.doi.org/https://doi.org/10.1016/j.ijinfomgt.2014.10.007
http://www.sciencedirect.com/science/article/pii/S0268401214001066
http://www.sciencedirect.com/science/article/pii/S0268401214001066
http://www.sciencedirect.com/science/article/pii/S0268401214001066
http://dx.doi.org/10.1016/j.ijinfomgt.2015.07.005
http://dx.doi.org/10.1016/j.ijinfomgt.2015.07.005
http://dx.doi.org/10.1016/j.ijinfomgt.2015.07.005
http://dx.doi.org/10.1016/j.ijinfomgt.2015.07.005
http://dx.doi.org/10.1016/j.ijinfomgt.2015.07.005
http://dx.doi.org/10.1016/j.ijinfomgt.2015.07.005
http://dx.doi.org/10.1016/j.ijinfomgt.2015.07.005

[5] L. Etcheverry, A. Vaisman, E. Zimányi, Modeling and Querying DataWare-

houses on the Semantic Web Using QB4olap, in: Data Warehousing and900

Knowledge Discovery, Vol. 8646, Springer International Publishing, Cham,

2014, pp. 45–56. doi:10.1007/978-3-319-10160-6_5.

[6] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of sparql,

ACM Trans. Database Syst. 34 (3).

[7] T. Neumann, G. Weikum, x-rdf-3x: Fast querying, high update rates, and905

consistency for rdf databases, Proc. VLDB Endow. 3 (1-2) (2010) 256–263.

doi:10.14778/1920841.1920877.

URL http://dx.doi.org/10.14778/1920841.1920877

[8] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, V. Christophides, P. Boncz,

Heuristics-based query optimisation for sparql, in: Proceedings of the 15th910

International Conference on Extending Database Technology, ACM, New

York, NY, USA, 2012, pp. 324–335.

[9] V. Ingalalli, D. Ienco, P. Poncelet, S. Villata, Querying RDF data using

A multigraph-based approach, in: Proceedings of the 19th International

Conference on Extending Database Technology, EDBT 2016, 2016, pp.915

245–256.

[10] X. Wang, S. Staab, T. Tiropanis, ASPG: generating OLAP queries for

SPARQL benchmarking, in: Semantic Technology - 6th Joint International

Conference, Singapore, November 2-4, 2016, 2016, pp. 171–185.

[11] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk,920

M. Rodriguez-Muro, G. Xiao, Ontop: Answering SPARQL queries over

relational databases, Semantic Web 8 (3) (2017) 471–487.

[12] P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth, A. Haque,

A. Harth, F. L. Keppmann, D. Miranker, J. F. Sequeda, M. Wylot, Nosql

databases for rdf: An empirical evaluation, in: The Semantic Web – ISWC925

2013, Springer, Berlin, Heidelberg, 2013, pp. 310–325.

42

http://dx.doi.org/10.1007/978-3-319-10160-6_5
http://dx.doi.org/10.14778/1920841.1920877
http://dx.doi.org/10.14778/1920841.1920877
http://dx.doi.org/10.14778/1920841.1920877
http://dx.doi.org/10.14778/1920841.1920877
http://dx.doi.org/10.14778/1920841.1920877

[13] D. Hernández, A. Hogan, C. Riveros, C. Rojas, E. Zerega, Querying Wiki-

data: Comparing SPARQL, Relational and Graph Databases, in: Proceed-

ings of the 15th International Semantic Web Conference, 2016, pp. 88–103.

[14] R. Bouhali, A. Laurent, Exploiting RDF Open Data Using NoSQL Graph930

Databases, in: AIAI: Artificial Intelligence Applications and Innovations,

Springer, Bayonne, France, 2015, pp. 177–190.

[15] C. Chen, X. Yan, F. Zhu, J. Han, P. S. Yu, Graph olap: Towards online

analytical processing on graphs, in: 2008 Eighth IEEE International Con-

ference on Data Mining, 2008, pp. 103–112. doi:10.1109/ICDM.2008.30.935

[16] P. Zhao, X. Li, D. Xin, J. Han, Graph Cube: On Warehousing and OLAP

Multidimensional Networks, in: Proceedings of the 2011 ACM SIGMOD

International Conference on Management of Data, 2011, pp. 853–864.

[17] A. Ghrab, O. Romero, S. Skhiri, A. Vaisman, E. Zimányi, A framework for

building olap cubes on graphs, in: Advances in Databases and Information940

Systems, Springer, Cham, 2015, pp. 92–105.

[18] Y. Liu, A. Dighe, T. Safavi, D. Koutra, A graph summarization: A survey,

CoRR abs/1612.04883. arXiv:1612.04883.

[19] B. Kämpgen, A. Harth, No Size Fits All – Running the Star Schema Bench-

mark with SPARQL and RDF Aggregate Views, in: The Semantic Web:945

Semantics and Big Data, Springer Berlin Heidelberg, 2013, pp. 290–304.

[20] E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk, G. Xiao, Obda beyond

relational dbs: A study for mongodb, in: Proc. of the 29th Int. Workshop

on Description Logics (DL 2016), 2016.

[21] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati,950

M. Zakharyaschev, Ontology-based data access: A survey, in: Proceedings

of the Twenty-Seventh International Joint Conference on Artificial Intelli-

gence, IJCAI-18, International Joint Conferences on Artificial Intelligence

43

http://dx.doi.org/10.1109/ICDM.2008.30
http://arxiv.org/abs/1612.04883
https://doi.org/10.24963/ijcai.2018/777

Organization, 2018, pp. 5511–5519. doi:10.24963/ijcai.2018/777.

URL https://doi.org/10.24963/ijcai.2018/777955

[22] G. Xiao, R. Kontchakov, B. Cogrel, D. Calvanese, E. Botoeva, Efficient

handling of sparql optional for obda, in: D. Vrandečić, K. Bontcheva, M. C.

Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee, E. Simperl

(Eds.), The Semantic Web – ISWC 2018, Springer International Publishing,

Cham, 2018, pp. 354–373.960

[23] M. Schmidt, T. Hornung, N. Küchlin, G. Lausen, C. Pinkel, An experi-

mental comparison of rdf data management approaches in a sparql bench-

mark scenario, in: A. Sheth, S. Staab, M. Dean, M. Paolucci, D. May-

nard, T. Finin, K. Thirunarayan (Eds.), The Semantic Web - ISWC 2008,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 82–97.965

[24] F. Michel, Integrating heterogeneous data sources in the Web of data, The-

ses, Université Côte d’Azur (Mar. 2017).

[25] H. Thakkar, D. Punjani, J. Lehmann, S. Auer, Killing Two Birds with One

Stone – Querying Property Graphs using SPARQL via GREMLINATOR,

ArXiv e-prints.970

[26] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, G. Xie, Sql-

graph: An efficient relational-based property graph store, in: Proceedings

of the 2015 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’15, ACM, New York, NY, USA, 2015, pp. 1887–1901.

doi:10.1145/2723372.2723732.975

URL http://doi.acm.org/10.1145/2723372.2723732

[27] T. Neumann, G. Moerkotte, Characteristic sets: Accurate cardinality

estimation for rdf queries with multiple joins, in: Proceedings of the

2011 IEEE 27th International Conference on Data Engineering, ICDE

’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 984–994.980

doi:10.1109/ICDE.2011.5767868.

URL http://dx.doi.org/10.1109/ICDE.2011.5767868

44

http://dx.doi.org/10.24963/ijcai.2018/777
https://doi.org/10.24963/ijcai.2018/777
http://doi.acm.org/10.1145/2723372.2723732
http://doi.acm.org/10.1145/2723372.2723732
http://doi.acm.org/10.1145/2723372.2723732
http://dx.doi.org/10.1145/2723372.2723732
http://doi.acm.org/10.1145/2723372.2723732
http://dx.doi.org/10.1109/ICDE.2011.5767868
http://dx.doi.org/10.1109/ICDE.2011.5767868
http://dx.doi.org/10.1109/ICDE.2011.5767868
http://dx.doi.org/10.1109/ICDE.2011.5767868
http://dx.doi.org/10.1109/ICDE.2011.5767868

[28] M. Meimaris, G. Papastefanatos, N. Mamoulis, I. Anagnostopoulos, Ex-

tended characteristic sets: Graph indexing for sparql query optimization,

in: 2017 IEEE 33rd International Conference on Data Engineering (ICDE),985

2017, pp. 497–508. doi:10.1109/ICDE.2017.106.

[29] M. Meimaris, G. Papastefanatos, Double chain-star: an rdf indexing scheme

for fast processing of sparql joins, in: EDBT, 2016.

[30] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, L. Liu, Triplebit: A fast and

compact system for large scale rdf data, Proc. VLDB Endow. 6 (7) (2013)990

517–528. doi:10.14778/2536349.2536352.

URL http://dx.doi.org/10.14778/2536349.2536352

[31] M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas, P. Dantressangle,

O. Udrea, B. Bhattacharjee, Building an efficient rdf store over a relational

database, in: Proceedings of the 2013 ACM SIGMOD International Con-995

ference on Management of Data, SIGMOD ’13, ACM, New York, NY, USA,

2013, pp. 121–132. doi:10.1145/2463676.2463718.

URL http://doi.acm.org/10.1145/2463676.2463718

[32] P. Peng, L. Zou, L. Chen, D. Zhao, Adaptive distributed rdf graph

fragmentation and allocation based on query workload, IEEE Transac-1000

tions on Knowledge and Data Engineering 31 (4) (2019) 670–685. doi:

10.1109/TKDE.2018.2841389.

[33] M. Husain, J. McGlothlin, M. M. Masud, L. Khan, B. M. Thuraisingham,

Heuristics-based query processing for large rdf graphs using cloud comput-

ing, IEEE Transactions on Knowledge and Data Engineering 23 (9) (2011)1005

1312–1327. doi:10.1109/TKDE.2011.103.

[34] Z. Kaoudi, I. Manolescu, Triples in the clouds, in: 2013 IEEE 29th In-

ternational Conference on Data Engineering (ICDE), 2013, pp. 1258–1261.

doi:10.1109/ICDE.2013.6544918.

45

http://dx.doi.org/10.1109/ICDE.2017.106
http://dx.doi.org/10.14778/2536349.2536352
http://dx.doi.org/10.14778/2536349.2536352
http://dx.doi.org/10.14778/2536349.2536352
http://dx.doi.org/10.14778/2536349.2536352
http://dx.doi.org/10.14778/2536349.2536352
http://doi.acm.org/10.1145/2463676.2463718
http://doi.acm.org/10.1145/2463676.2463718
http://doi.acm.org/10.1145/2463676.2463718
http://dx.doi.org/10.1145/2463676.2463718
http://doi.acm.org/10.1145/2463676.2463718
http://dx.doi.org/10.1109/TKDE.2018.2841389
http://dx.doi.org/10.1109/TKDE.2018.2841389
http://dx.doi.org/10.1109/TKDE.2018.2841389
http://dx.doi.org/10.1109/TKDE.2011.103
http://dx.doi.org/10.1109/ICDE.2013.6544918

[35] Y. Tian, R. A. Hankins, J. M. Patel, Efficient aggregation for graph sum-1010

marization, in: Proceedings of the 2008 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’08, ACM, 2008, pp. 567–580.

[36] Y. Wu, Z. Zhong, W. Xiong, N. Jing, Graph summarization for attributed

graphs, in: 2014 International Conference on Information Science, Elec-

tronics and Electrical Engineering, Vol. 1, 2014, pp. 503–507.1015

[37] S. Campinas, T. E. Perry, D. Ceccarelli, R. Delbru, G. Tummarello, Intro-

ducing rdf graph summary with application to assisted sparql formulation,

in: 2012 23rd International Workshop on Database and Expert Systems

Applications, 2012, pp. 261–266. doi:10.1109/DEXA.2012.38.

[38] M. Zneika, C. Lucchese, D. Vodislav, D. Kotzinos, Summarizing linked1020

data RDF graphs using approximate graph pattern mining, in: Proceed-

ings of the 19th International Conference on Extending Database Technol-

ogy, EDBT 2016, Bordeaux, France, March 15-16, 2016, Bordeaux, France,

March 15-16, 2016., 2016, pp. 684–685.

[39] S. Cebiric, F. Goasdoue, I. Manolescu, Query-oriented summarization of1025

rdf graphs, in: S. Maneth (Ed.), Data Science, Springer International Pub-

lishing, 2015, pp. 87–91.

[40] S. Khatchadourian, M. P. Consens, Explod: Summary-based exploration

of interlinking and rdf usage in the linked open data cloud, in: The Seman-

tic Web: Research and Applications, Springer Berlin Heidelberg, Berlin,1030

Heidelberg, 2010, pp. 272–287.

[41] Y. Diao, I. Manolescu, S. Shang, Dagger: Digging for interesting aggregates

in RDF graphs, in: Proceedings of the ISWC 2017 Posters & Demonstra-

tions and Industry Tracks co-located with 16th International Semantic Web

Conference, Vienna, Austria, October 23rd - to - 25th, 2017., 2017.1035

[42] F. Benedetti, L. Po, S. Bergamaschi, A visual summary for linked open

data sources, in: Proceedings of the ISWC 2014 Posters & Demonstrations

46

http://dx.doi.org/10.1109/DEXA.2012.38

Track a track within the 13th International Semantic Web Conference,

ISWC 2014, Riva del Garda, Italy, October 21, 2014, pp. 173–176.

[43] B. Spahiu, R. Porrini, M. Palmonari, A. Rula, A. Maurino, ABSTAT:1040

ontology-driven linked data summaries with pattern minimalization, in:

The Semantic Web - ESWC 2016 Satellite Events, Heraklion, Crete, Greece,

May 29 - June 2, 2016, 2016, pp. 381–395.

[44] M. Konrath, T. Gottron, S. Staab, A. Scherp, Schemex - efficient construc-

tion of a data catalogue by stream-based indexing of linked data, Web1045

Semant. 16 (2012) 52–58.

URL http://dx.doi.org/10.1016/j.websem.2012.06.002

[45] A. K. Joshi, P. Hitzler, G. Dong, Alignment aware linked data compression,

in: Semantic Technology - 5th Joint International Conference, JIST 2015,

Yichang, China, November 11-13, 2015, Revised Selected Papers, 2015, pp.1050

73–81.

[46] F. Goasdoué, K. Karanasos, J. Leblay, I. Manolescu, View selection in

semantic web databases, Proc. VLDB Endow. 5 (2) (2011) 97–108. doi:

10.14778/2078324.2078326.

URL http://dx.doi.org/10.14778/2078324.20783261055

[47] M. Meimaris, G. Papastefanatos, P. Vassiliadis, I. Anagnostopoulos, Com-

putational methods and optimizations for containment and complementar-

ity in web data cubes, Inf. Syst. 75 (2018) 56–74.

[48] N. Gür, J. Nielsen, K. Hose, T. B. Pedersen, Geosemolap: Geospatial olap

on the semantic web made easy, in: Proceedings of the 26th International1060

Conference on World Wide Web Companion, 2017, pp. 213–217.

[49] F. Ravat, J. Song, O. Teste, Designing Multidimensional Cubes from Ware-

housed Data and Linked Open Data, in: 2016 IEEE Tenth International

Conference on Research Challenges in Information Science (RCIS 2016),

47

http://dx.doi.org/10.1016/j.websem.2012.06.002
http://dx.doi.org/10.1016/j.websem.2012.06.002
http://dx.doi.org/10.1016/j.websem.2012.06.002
http://dx.doi.org/10.1016/j.websem.2012.06.002
http://dx.doi.org/10.14778/2078324.2078326
http://dx.doi.org/10.14778/2078324.2078326
http://dx.doi.org/10.14778/2078324.2078326
http://dx.doi.org/10.14778/2078324.2078326
http://dx.doi.org/10.14778/2078324.2078326
http://dx.doi.org/10.14778/2078324.2078326
http://dx.doi.org/10.14778/2078324.2078326

IEEE, Grenoble, France, 2016, pp. 171–182. doi:10.1109/RCIS.2016.1065

7549337.

[50] L. Etcheverry, A. A. Vaisman, Efficient analytical queries on semantic web

data cubes, Journal on Data Semantics 6 (4) (2017) 199–219. doi:10.

1007/s13740-017-0082-y.

[51] P. Ravindra, H. Kim, K. Anyanwu, Optimization of complex SPARQL1070

analytical queries, in: Proceedings of the 19th International Conference on

Extending Database Technology, 2016, pp. 257–268.

[52] A. Jindal, S. Madden, M. Castellanos, M. Hsu, Graph analytics using ver-

tica relational database, in: Proceedings of the 2015 IEEE International

Conference on Big Data (Big Data), BIG DATA ’15, IEEE Computer Soci-1075

ety, Washington, DC, USA, 2015, pp. 1191–1200. doi:10.1109/BigData.

2015.7363873.

URL https://doi.org/10.1109/BigData.2015.7363873

[53] C. Ordonez, W. Cabrera, A. Gurram, Comparing columnar, row and array

dbmss to process recursive queries on graphs, Inf. Syst. 63 (2017) 66–79.1080

doi:10.1016/j.is.2016.04.006.

URL https://doi.org/10.1016/j.is.2016.04.006

[54] M. Bouakkaz, Y. Ouinten, S. Loudcher, Y. Strekalova, Textual

aggregation approaches in olap context: A survey, International

Journal of Information Management 37 (6) (2017) 684 – 692.1085

doi:https://doi.org/10.1016/j.ijinfomgt.2017.06.005.

URL http://www.sciencedirect.com/science/article/pii/

S0268401215300463

[55] D. J. Abadi, P. A. Boncz, S. Harizopoulos, Column-oriented database

systems, Proc. VLDB Endow. 2 (2) (2009) 1664–1665. doi:10.14778/1090

1687553.1687625.

URL https://doi.org/10.14778/1687553.1687625

48

http://dx.doi.org/10.1109/RCIS.2016.7549337
http://dx.doi.org/10.1109/RCIS.2016.7549337
http://dx.doi.org/10.1109/RCIS.2016.7549337
http://dx.doi.org/10.1007/s13740-017-0082-y
http://dx.doi.org/10.1007/s13740-017-0082-y
http://dx.doi.org/10.1007/s13740-017-0082-y
https://doi.org/10.1109/BigData.2015.7363873
https://doi.org/10.1109/BigData.2015.7363873
https://doi.org/10.1109/BigData.2015.7363873
http://dx.doi.org/10.1109/BigData.2015.7363873
http://dx.doi.org/10.1109/BigData.2015.7363873
http://dx.doi.org/10.1109/BigData.2015.7363873
https://doi.org/10.1109/BigData.2015.7363873
https://doi.org/10.1016/j.is.2016.04.006
https://doi.org/10.1016/j.is.2016.04.006
https://doi.org/10.1016/j.is.2016.04.006
http://dx.doi.org/10.1016/j.is.2016.04.006
https://doi.org/10.1016/j.is.2016.04.006
http://www.sciencedirect.com/science/article/pii/S0268401215300463
http://www.sciencedirect.com/science/article/pii/S0268401215300463
http://www.sciencedirect.com/science/article/pii/S0268401215300463
http://dx.doi.org/https://doi.org/10.1016/j.ijinfomgt.2017.06.005
http://www.sciencedirect.com/science/article/pii/S0268401215300463
http://www.sciencedirect.com/science/article/pii/S0268401215300463
http://www.sciencedirect.com/science/article/pii/S0268401215300463
https://doi.org/10.14778/1687553.1687625
https://doi.org/10.14778/1687553.1687625
https://doi.org/10.14778/1687553.1687625
http://dx.doi.org/10.14778/1687553.1687625
http://dx.doi.org/10.14778/1687553.1687625
http://dx.doi.org/10.14778/1687553.1687625
https://doi.org/10.14778/1687553.1687625

[56] E. Hewitt, Cassandra: The Definitive Guide, 1st Edition, O’Reilly Media,

Inc., 2010.

[57] C. Bizer, A. Schultz, The berlin SPARQL benchmark, Int. J. Semantic Web1095

Inf. Syst. 5 (2) (2009) 1–24. doi:10.4018/jswis.2009040101.

URL https://doi.org/10.4018/jswis.2009040101

[58] M. Meimaris, G. Papastefanatos, The evogen benchmark suite for evolving

RDF data, in: Joint Proceedings of the 2nd Workshop on Managing the

Evolution and Preservation of the Data Web (MEPDaW 2016) and the 3rd1100

Workshop on Linked Data Quality (LDQ 2016) co-located with 13th Eu-

ropean Semantic Web Conference (ESWC 2016), Heraklion, Crete, Greece,

May 30th, 2016., 2016, pp. 20–35.

[59] V. Kotsev, N. Minadakis, V. Papakonstantinou, O. Erling, I. Fundulaki,

A. Kiryakov, Benchmarking RDF query engines: The LDBC semantic1105

publishing benchmark, in: Proceedings of the Workshop on Benchmarking

Linked Data (BLINK 2016) co-located with the 15th International Seman-

tic Web Conference (ISWC), Kobe, Japan, October 18, 2016., 2016.

[60] P. K. Senyo, E. Addae, R. Boateng, Cloud computing research: A review

of research themes, frameworks, methods and future research directions,1110

International Journal of Information Management 38 (1) (2018) 128–139.

doi:10.1016/j.ijinfomgt.2017.07.007.

URL https://doi.org/10.1016/j.ijinfomgt.2017.07.007

49

https://doi.org/10.4018/jswis.2009040101
http://dx.doi.org/10.4018/jswis.2009040101
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.1016/j.ijinfomgt.2017.07.007
https://doi.org/10.1016/j.ijinfomgt.2017.07.007
https://doi.org/10.1016/j.ijinfomgt.2017.07.007
http://dx.doi.org/10.1016/j.ijinfomgt.2017.07.007
https://doi.org/10.1016/j.ijinfomgt.2017.07.007

	Introduction
	Related Work
	Conceptual modelling
	Designing a Multidimensional Graph from statistical RDF data
	Translating algorithm
	Use Case

	Logical and physical implementation
	MG to property-graph representation
	MG to column-oriented data store
	MG to relational DBMS

	Multidimensional Graph Querying
	Experimental evaluation
	Material and methods
	Experimental results

	Discussion
	Synthesis of results
	Theoretical contributions
	Implications for practice
	Limitations and Future Research Direction

	Conclusion

