Efficient querying of multidimensional RDF data with aggregates: Comparing NoSQL, RDF and relational data stores - Archive ouverte HAL
Article Dans Une Revue International Journal of Information Management Année : 2020

Efficient querying of multidimensional RDF data with aggregates: Comparing NoSQL, RDF and relational data stores

Résumé

This paper proposes an approach to tackle the problem of querying large volume of statistical RDF data. Our approach relies on pre-aggregation strategies to better manage the analysis of this kind of data. Specifically, we define a conceptual model to represent original RDF data with aggregates in a multidimensional structure. A set of translations rules for converting a well-known multidimensional RDF modelling vocabulary into the proposed conceptual model is then proposed. We implement the conceptual model in six different data stores: two RDF triple stores (Jena TDB and Virtuoso), one graph-oriented NoSQL database (Neo4j), one column-oriented data store (Cassandra), and two relational databases (MySQL and PostGreSQL). We compare the querying performance, with and without aggregates, in these data stores. Experimental results, on real-world datasets containing 81.92 million triplets, show that pre-aggregation allows for reducing query runtime in all data stores. Neo4j NoSQL and relational databases with aggregates outperform triple stores speeding up to 99% query runtime.
Fichier principal
Vignette du fichier
JOURNAL_ijim_iblid.pdf (1.22 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03079830 , version 1 (17-12-2020)

Identifiants

Citer

Franck Ravat, Jiefu Song, Olivier Teste, Cassia Trojahn dos Santos. Efficient querying of multidimensional RDF data with aggregates: Comparing NoSQL, RDF and relational data stores. International Journal of Information Management, 2020, 54, pp.102089. ⟨10.1016/j.ijinfomgt.2020.102089⟩. ⟨hal-03079830⟩
178 Consultations
761 Téléchargements

Altmetric

Partager

More