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Time-delay identification in the chaotic output of a
semiconductor laser with optical feedback: a

dynamical point of view
D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin

Abstract—A critical issue in optical chaos-based communica-
tions is the possibility to identify the parameters of the chaotic
emitter, and hence to break the security. In this paper, we study
theoretically the identification of a chaotic emitter that consists of
a semiconductor laser with an optical feedback. The identification
of a critical security parameter, the external-cavity-round trip
time (the time delay in the laser dynamics), is performed
using both the auto-correlation function and delayed mutual
information methods applied to the chaotic time-series. The
influence on the time-delay identification of the experimentally
tunable parameters, the feedback rate, the pumping current and
the time-delay value, is carefully studied. We show that difficult
time-delay-identification scenarios strongly depend on the time-
scales of the system dynamics as it undergoes a route to chaos, in
particular on how close is the relaxation oscillation period from
the external-cavity-roundtrip time.

Index Terms—Semiconductor laser, optical feedback, nonlinear
dynamics, time-delay identification

I. INTRODUCTION

SEMICONDUCTOR lasers with an external cavity (ECSL)
have been considered as rich sources of optical chaos, with

well-known chaotic regimes such as the so-called coherence
collapse [1] and low-frequency fluctuations (LFF) regimes
[2]. Chaotic regimes from ECSL have received considerable
attention since they constitute key elements of optical secure
chaotic communications [3]. Indeed, the addition of an exter-
nal cavity introduces an infinite numbers of degree of freedom
through the time-delay in the dynamical representation of
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the semiconductor laser, leading to the generation of high-
dimensional chaos [4]. The unpredictable and noisy appear-
ance of the signals emitted by hyper-chaotic optical systems
has been used to enhance security and privacy in communica-
tions: A chaotic carrier conceals and transmits an information
bearing message, which is decrypted by synchronization at
the receiver end (a physical copy of the chaotic emitter) [3],
[5]–[8]. The security of such a chaos-based communication
scheme relies mainly on the difficulty to identify the emitter
parameters, and on the sensitivity of synchronization to param-
eter mismatch [9]. Therefore, it is of particular importance to
study the capability of an eavesdropper to retrieve information
about the parameters of a particular chaotic generator from its
time series transmitted through the communication channel.

In delayed hyper-chaotic systems, the security assumption
is based on the computational complexity to reconstruct a
high-dimensional attractor from the time series. However,
the knowledge of the time delay allows for the projection
of the high-dimensional attractor onto a reduced-dimensional
phase space, which makes the system vulnerable to low-
computational-complexity identification techniques [10]. It is
thus crucial that the delay not be easily identifiable in a
cryptosystem. Until recently, ECSLs with a single optical
feedback were considered as weakly secure systems in terms
of time-delay identification, such that the use of several
external cavities has been suggested [12]. However, we have
shown recently that a simple ECSL with a single optical
feedback could, with a careful choice of parameters, hide its
time-delay signature when standard estimators are employed
[13]. Interestingly the region of laser and feedback parameters
where such a difficult time-delay identification occurs does
not necessarily correspond to the situation where the chaos
complexity (dimension and entropy) is higher [4]. Indeed in
laser diodes with optical feedback high-dimensional chaos is
typically found where the optical feedback strength is large,
but then the time-delay parameter is easily retrieved from the
analysis of the chaotic output using straightforward techniques
[13]. Time-delay identification should therefore be considered
as an additional argument to appreciate the level of security
of chaos-based identification, besides chaos complexity and
robustness of chaos synchronization.

In this paper, we extend our earlier work on time-delay
identification in laser diode with optical feedback. Identifi-
cation is processed using both conventional technique based
on autocorrelation function (ACF) and more sophisticated
technique such as delayed mutual information (DMI). We
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analyze further the range of laser and feedback parameters
that lead to difficult parameter identification and link these bad
identification scenarios to the laser dynamics as it undergoes
a bifurcation cascade to optical chaos. More specifically we
show that the time-scales of the laser dynamics in its route
to chaos influence the time-delay identification and therefore
also the security of such a chaotic emitter. A careful tuning of
the external cavity round-trip time with respect to the intrinsic
laser relaxation oscillation frequency leads to situations where
the time-delay signature is lost in the laser chaotic output.
Finally we discuss the robustness of our results using other
signal processing techniques applied to the laser chaotic time-
series.

The paper is organized as followed. Section II presents the
model and specificities of the various identification techniques
used to retrieve the time-delay value. Section III details the
influence of the different operational parameters (the feed-
back rate, the time-delay and the pumping current) on the
identification. Section IV gives a dynamical interpretation of
the identification scenarios observed, based on the studies
of the frequencies that appear in the ECSL dynamics as it
undergoes a route to chaos. Section V discusses the influence
of key internal parameters that modify the ECSL model
and the possible application of our results to chaos-based
communications. Finally, we summarize our main conclusions
in section VI.

II. THEORETICAL FRAMEWORK

A. Rate equation model

In this work, we consider a single-mode semiconductor laser
with optical feedback modelled by the Lang-Kobayashi rate
equations [16]. This model has been successful in reproducing
dynamical behaviors experimentally observed in ECSLs. The
rate equations are

dE (t)
dt

=
1
2

(1 + iα)
(

GN,|E|2 −
1
τp

)
E (t) ,

+γeiω0τE (t− τ) + F (t) (1)
dN

dt
=pJth − N

τs
−GN,|E|2 |E (t)|2 , (2)

where E (t) = |E (t)| eiφ(t) is the slowly varying complex
electric field, N is the average carrier density in the active
region, α is the linewidth-enhancement factor that describes
the amplitude phase coupling, GN,|E|2 = GN (N−N0)

1+ε|E|2 is the
optical gain where ε is the saturation coefficient, N0 is the
carrier density at transparency, ω0 is the angular frequency
of the solitary laser, γ is the feedback rate, τp is the photon
lifetime, τs is the carrier lifetime, Jth is the threshold current,
p is the pumping factor, and τ is the delay corresponding to
the round-trip time of light in the external cavity. The force
F (t) = FD (t)+FL (t) added in the field equation models the
spontaneous emission occurring in the semiconductor laser. It
is composed of a deterministic part FD (t) = 2β N(t)

|E(t)|e
iφ(t)

and a stochastic part FL (t) =
√

2βN (t)ζ (t) which cor-
responds to a Langevin term where ζ = ζE (t) + iζφ (t)

is a complex Gaussian white-noise term with zero mean
and correlation:

〈
ζE (t) ζ∗φ (t′)

〉
= δEφδ (t− t′). β is the

spontaneous-emission rate. The relaxation-oscillation period
is an intrinsic damping time of the free-running laser and

is defined by τRO =
(

1
τpτs

(µ− 1)− µ2

4τ2
s

)−1/2

with µ =

GNτsτp

(
pJth − N0

τs

)
. We consider the following parameter

values: α = 5 , ω0τ = 0 rad, τp = 2 ps, τs = 2 ns,
GN = 7.5 × 10−13 m3s−1, N0 = 3 × 1024 m−3, Jth =
1.83× 1033 m−3s−1, ε = 2.5× 10−23 m3, and β = 103 s−1.

B. Time-delay estimator and time-delay signature

The time delay is a key parameter of delay systems. Its
estimation is of particular importance with regard to compu-
tationally efficient identification of all the parameters of the
nonlinear system under consideration. Standard techniques,
such as the ACF and the DMI, can be used to identify the
time-delay.

1) The autocorrelation function (ACF): If a random process
X(t) is ergodic and wide-sense-stationary, then the ACF is
defined by

Γ (θ) =
1

σ̂2
X

〈(x (t)− µ̂X) (x (t + θ)− µ̂X)〉 , (3)

where x(t) and x(t + θ) are sampled from the random

process X(t), µ̂X = 〈x (t)〉, and σ̂X =
〈
(x (t)− µ̂X)2

〉1/2

with 〈·〉 denoting time average. The ACF measures for a given
value θ, the tendency of the cloud of points (x (t) , x (t + θ))
to be aligned along a straight line, and thus measures a linear
relationship between x (t) and x (t + θ).

2) The delayed mutual information (DMI): The mutual
information, H , is a quantity originally used in information
theory [21]. Given two continuous variables X and Y with
joint probability density function, fXY (x, y) and marginal
probability density functions fX (x) and fY (y), the mutual
information of X and Y is defined as

H (X, Y ) = E
(

ln
(

fXY (x, y)
fX (x) fY (y)

))
, (4)

where E(·) is the expectancy operator, the two variables X
and Y are obtained by sampling the random process X (t)
at two times t and t + θ , and such process is assumed to be
stationary and ergodic. The probability density functions, fXY ,
fX , and fY , will be estimated by their respective histogram
f̂XY , f̂X , and f̂Y computed from the time series and leading
to the approximate mutual information estimator, also called
delayed mutual information (DMI),

H (θ) = E

(
ln

(
f̂X(t)X(t+θ) (x, y)

f̂X(t) (x) f̂X(t+θ) (y)

))
. (5)

The mutual information corresponds intuitively to the quan-
tity of information that the two random variables X (t) and
X (t + θ) are sharing. In time-delay systems, the presence of
a delayed feedback term induces a nonlocal time dependence
in the time evolution of its state variables. The integral
definition of the estimators under consideration allows for the
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detection of nonlocal time dependencies, linear for the ACF
and nonlinear for the DMI. Therefore, if a particular timescale,
such as a time delay, is present in a given time series, it should
manifest itself in the estimator through a local extremum. This
signature of the time scale, depending on its sign, will be
referred to as peak or valley later on in this article. The time
location of a peak (respectively valley) will be considered as
a possible estimation of the time delay.

III. IDENTIFICATION OF TIME DELAY IN
LANG-KOBAYASHI EQUATIONS

In this section, the security in terms of time-delay identifi-
cation is performed by analyzing the intensity time series of
a chaotic ECSL. The intensity is I(t) = |E(t)|2. The time-
delay signatures in the ACF and the DMI are analyzed with the
evolution of the following operational parameters of the ECSL:
the feedback rate γ, the external-cavity-roundtrip time τ , and
the pumping factor p. Throughout this study, the spontaneous-
emission rate β is taken equal to zero.

A. Influence of the feedback rate

The feedback rate controls the optical power reinjected in
the laser cavity. As a consequence, it drives the contribution of
the delayed intensity I (t− τ) in the time-evolution of I (t).
We thus expect that the stronger the feedback rate, the more
important the information shared between I (t− τ) and I (t)
will be.

Figure 1 analyzes a first case of time-delay identification,
for increasing values of the feedback rate γ. Large values of
the feedback rate produce chaotic time series with a clear
signature of the time delay in the estimators: a significant
peak is present in both the ACF [Fig. 1(b4)] and the DMI
[Fig. 1(c4)], at a time corresponding to the time-delay. Similar
results have been obtained experimentally, from the analysis
of the autocorrelation function [11]. The progressive decrease
in feedback rate produces the following: first, a decrease of
the peak’s amplitude close to the time delay location and
its multiples, in both the ACF and DMI [Fig. 1(b3) and
c(3)] until it reaches a minimum value [Fig. 1(b2) and (c2)];
second, a qualitative change of behavior appears. For relatively
weak feedback rates, numerous peaks and valleys, separated
by τRO/2 from each other, appear and are amplified in the
vicinity of the origin (θ = 0) and the time delay (θ ≈ τ ) [Fig.
1(b1) and (c1)]. They obscure the time-delay identification. A
quantitative description of the feedback-rate influence in terms
of time location and amplitude of the time-delay signature
is given in Fig. 2 for both the ACF and the DMI. Figure
2 is obtained by considering the most significant peak (or
valley) in a vicinity W (τ) of the time delay which is defined
by maxθ∈W (τ) |Γ(θ)| for the ACF and maxθ∈W (τ) |H(θ)|
for the DMI. In Fig. 2, the curves with triangle markers
are drawn for the same parameters as the ones of Fig. 1.
The curves confirm the tendency already observed in Fig.
1: as the feedback rate is decreased, the amplitude starts
to diminish until a global minimum value is reached, and
then it increases [Fig. 2(a1)-(a2)]. The decreasing region of
the curve corresponds to weak chaotic regime; therefore, the

ACF and DMI may still find a structural relationship within
the intensity time-series I (t). Then for a sufficiently strong
feedback rate, the chaotic regime becomes well established
and most of the timescale signatures are weakened due to
equivalent driving action of the intrinsic nonlinearity of the
ECSL and the linearly introduced feedback term. However, if
γ is further increased, then due to this linear introduction of the
delayed term, γeiω0τE (t− τ) eiφ(t−τ), in the rate equations,
the influence of the time delay is enhanced. The decrease in
feedback rate also influences the time location of the largest
peak at a time close to the time-delay; see Figs. 2(b1)-(b2).
For small feedback rates, the largest autocorrelation or mutual
information is obtained for a time close to a high order
multiple of τRO/2, when analyzing a small time window in
the vicinity of the time delay W (τ). Then the identification
gives a value of time which is quite shifted from the expected
value (τ ). However, as the feedback rate increases, the greatest
autocorrelation and mutual information values are achieved for
a time closer to the time-delay. This explains the monotonic
decreasing behavior of the time shift identification curve in
Fig. 2 (b1)-(b2).

In summary this first analysis shows that when the feedback
rate is relatively weak, the chaotic output of the laser diode
shows only small evidence of the time-delay signature, both in
the ACF or the DMI. The largest contribution to the ACF or
DMI, in a time window around the time-delay, is in fact closer
to a high multiple of the relaxation oscillation period τRO and
this blurs the good identification of the expected value τ .

Figure 2 also shows the influence of the pumping factor
p, which controls the injection current J = pJth as well
as the value of the relaxation oscillation period τRO. When
increasing p, chaotic dynamics are observed for larger values
of the feedback rate γ but similar conclusions hold for the
identification of the time-delay. The amplitude of the highest
peak (or valley) in the ACF and DMI in the vicinity of τ
exhibits a minimum value when the feedback rate increases,
and the feedback rate corresponding to this minimum increases
with the increase of p. Moreover the time value obtained from
the ACF or DMI identification techniques is shifted from the
expected value (τ ) when the feedback rate is small but gets
closer to τ as the feedback rate increases. The maximum time
shift is however smaller when p increases, hence progressively
leading to a better identification of τ .

B. Influence of the time delay relatively to the relaxation-
oscillation period

In this subsection, we study how the value τ affects the
time-delay identification based on the ACF and DMI. This
influence is analyzed relatively to the value of the relaxation-
oscillation period τRO, the other significant ECSL timescale in
terms of identification. This line of reasoning is supported by
the results of Section III.A, where the two timescales coexist
and τRO proves to have a blurring effect on the time-delay
signature [Fig. 1(b1)-(c1)]. Here, we will show that τRO may
have an even stronger effect. If it is taken sufficiently close
to τ and provided that the pumping current is small (p ≈ 1,
which leads to relatively large values of τRO), then the time-
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Fig. 1. ECSL intensity time series (1st column), Autocorrelation function (2nd column) and mutual information (3rd column) for increasing value of the
feedback rate γ = 2GHz (1st row), γ = 5GHz (2nd row), γ = 10GHz (3rd row), γ = 15GHz (4th row) with a time-delay value τ = 5ns and τRO = 0.75ns.
The vertical dotted-dashed and dashed lines give the time location of τRO and τ , respectively.

Fig. 2. Impact of the feedback variation and pumping factor on the amplitude and time location of the most significant peak in the vicinity W (τ) =
[4.5ns, 5.5ns] of the time delay τ = 5 ns. (a1)-(b1) gives respectively the amplitude and time location of maxθ∈W (τ) |Γ(θ)| (a2)-(b2) gives respectively the
amplitude and time location of maxθ∈W (τ) |H(θ)|. The solid lines with triangle (4), round (◦), and square (¤) markers stands for p = 1.05, p = 1.26
and p = 1.72 , respectively. These three different values of p, correspond to the following relaxation oscillation periods: τRO = 0.75 ns, τRO = 0.33 ns
and τRO = 0.2 ns, respectively. In sub-figures (b1)-(b2), the dotted-dashed lines give the time location of the time-delay τ .
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delay signature will not be easily retrievable either in the ACF
or the DMI.

Figure 3 illustrates this fact for τ = 1.2 ns and keeping
τRO = 0.75 ns.

At large feedback rate, the reduction of the time separation
between τ and τRO does not produce a qualitative change of
the time-delay identification at strong feedback rates. Both es-
timators still exhibit an easy-retrievable time-delay signature:
a sharp peak close to the time-delay location [Fig. 3(b3)-(c3)
and (b4)-(c4)]. Then, similar to Fig. 1, a diminution of the
feedback rate, promotes the effect of τRO. This leads to a
time-delay signature hardly retrievable for sufficiently close
values of τ and τRO [Fig. 3(b2)-(c2)], whereas it was still
possible to retrieve it when the two timescales were sufficiently
disparate [Fig. 1(b2)-(c2)]. We notice also that the ACF or
DMI evolve from a pulse-like shape at high feedback rates
to an oscillating shape at low feedback rate [Figs 3 (b1) and
(c1)]. The transition between these two shapes is achieved for
a feedback rate close to the one that leads to a minimum in the
curves of figs. 2 (a1)-(a2), which corresponds to a particularly
adapted situation to conceal the time-delay signature, since the
two timescales equivalently drive the dynamics of the intensity
time series. The exponentially-damped oscillations of the ACF
mask the time-delay signature if τ and τRO are sufficiently
close. Indeed, the peaks and valleys are temporally located at
multiples of τRO and multiples of τRO/2, respectively, and
no signature of the time delay remains, by contrast to the
situation where the difference between τRO and τ was larger
[Fig. 1(b1)-(c1)].

IV. TIME-DELAY IDENTIFICATION: A DYNAMICAL POINT
OF VIEW

The previous section has shown that the identification of
the time-delay in the chaotic output of a laser with optical
feedback strongly depends on the operational parameters of
the ECSL: the feedback rate γ, the pumping current pJth, and
the value of τ relatively to τRO. At high feedback rates, the
estimators always possess a predictable behavior: a pulse-like
shape with a clear signature of τ . However, when the feedback
rate is weak, a large variety of behaviors has been reported and
detailed in the previous section. These behaviors are largely
dependent on the choice of p and τ relatively to τRO.

These first results suggest a closer analysis of the time-
scales involved in the early stage of the laser chaotic dynamics,
at small feedback rates. Different dynamical scenarios are ex-
pected depending on the ratio between τ and τRO, which then
also lead to the different time-delay identification scenarios
we reported in the previous section.

A. Influence of the frequency generation on the time-delay
signature

1) Disparate timescales scenario: In this section we ana-
lyze the ECSL dynamics when the feedback rate γ is taken as
the bifurcation parameter, all the other parameters remaining
identical to the ones of Fig. 1. Figure 4(a) shows a bifurcation
diagram of the laser intensity. A quasi-periodic (QP) route
to chaos is observed. A projection of the system trajectory

in the phase plane (N, E), the power spectrum, the ACF
and the DMI, are plotted in Fig. 5 for specific values of the
feedback rate. As we increase the feedback rate, the stationary
solution of the ECSL is destabilized through a first Hopf
bifurcation (H1) which induces a time-periodic dynamics [Fig.
5(a1)], with a frequency fH1 = 1.32 GHz almost equal to the
relaxation-oscillation frequency fRO = 1/τRO = 1.33 GHz
[Fig. 5(b1)]. The intensity I(t) being time-periodic, the ACF
and the DMI exhibit an oscillating shape at the frequency
of the limit cycle oscillation. In the ACF, the maximum
correlation Γ (θ) = 1 and anti-correlation Γ (θ) = −1 are
reached at θ ≈ kτRO and θ ≈ kτRO/2, respectively. The
DMI presents two series of peaks with different amplitudes:
one located at θ ≈ kτRO and the other at θ ≈ kτRO/2.

Increasing the feedback rate, the limit cycle destabilizes
to a quasiperiodic dynamics [Fig. 5(a2)]. The power spec-
trum shows the appearance of new frequencies [Fig. 5(b2)].
Amongst them, one strong frequency component appears
separated from fH1 by ∆f = 0.19 GHz very close to the
external-cavity frequency fEC = 1/τ = 0.2 GHz.

This new frequency component induces a slow undamped
periodic modulation of both the ACF and DMI [Fig. 5(c2)-
(d2)]. Further increase of the feedback rate is accompanied
by the appearance of numerous new frequencies [Fig. 5(b3)]
that increase the attractor complexity [Fig. 5(a3)]. However,
the strong frequency components are still located at the fre-
quencies fH1 and fH1−∆f , which guarantees the persistence
of a global order of the time series on a long time-extension
even if on a short time-extension the complexity (disorder)
is increased. As a consequence, the ACF and DMI show a
stronger modulation, comparing to Fig. 5(c2)-(d2). This is
due to the local increase of complexity, although periodically
the ACF still attains both maximum correlation and anti-
correlation [Fig. 5(c3) and (d3)]. For still larger feedback
rate the laser exhibits fully developed chaos [Fig. 5(a4)]. The
intensity time series progressively looses correlation as time
increases, which corresponds to damp the modulated shape
of the ACF and DMI [Fig. 5(c4) and (d4)]. Although the
frequency content of the chaotic output is broad, the ACF and
DMI functions still retain signatures of the first time-scales that
appear in the bifurcation cascade: the undamped relaxation-
oscillation period τH1 ≈ τRO that appears after the first Hopf
bifurcation and the time delay τ that appears when crossing
a torus bifurcation to quasiperiodic dynamics. The undamped
relaxation oscillations are responsible for the oscillatory shape
of the ACF and the DMI functions, and then the time delay
time-scale appears from a bifurcation to quasiperiodicity and
slowly modulates the shapes of the ACF and DMI functions.
The fast oscillations at the first Hopf bifurcation, close to RO
frequency, perturb the identification of the time-delay at weak
feedback rate, close to the onset of chaos. Only high feedback
rates sufficiently weaken the relaxation-oscillation signature,
namely short-time correlation, and offers a clear time-delay
signature.

2) Close timescales scenario: Similarly, the influence of the
bifurcation cascade is investigated for close values of the two
timescales τ and τRO. In this case, the analysis is performed
using parameters identical to the ones in Fig. 3. The bifurcation
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Fig. 3. ECSL intensity time series (1st column), autocorrelation function (2nd column) and mutual information (3rd column) for increasing value of the
feedback rate γ = 2GHz (1st row), γ = 5GHz (2nd row), γ = 10GHz (3rd row), γ = 15GHz (4th row) with a time-delay value τ = 1.2ns and
τRO = 0.75ns. The vertical dotted-dashed and dashed lines give the time location of τRO and τ , respectively.

Fig. 4. Bifurcation diagrams with the feedback rate γ taken as the bifurcation parameter. It shows various routes to chaos depending on the choice of τ and
τRO . (a) quasi-periodic (QP) route to chaos for τ = 5ns and τRO = 0.75ns. (b) period-doubling (PD) route to chaos for τ = 1.2ns and τRO = 0.75ns. (c)
complex route to chaos for τ = 0.85ns and τRO = 0.75ns

diagram in Fig. 4(b) shows a period-doubling (PD) route to
chaos. We observe in this case that the frequencies generated
by the ECSL nonlinear dynamics also significantly influence
the shape of the estimators. However, unlike the previous case,
the time-delay does not manifest itself in the early stages of
the dynamics.

As previously, the progressive increase of feedback rate
leads to a time-periodic dynamics with a frequency fH1 =
1.34 GHz [Fig. 6(b1)] close to fRO. This time-periodic dy-
namics induces an oscillating behavior of the ACF [Fig. 6(c1)]
and DMI [Fig. 6(d1)] similar to Fig. 5(c1) and (d1). When
further increasing the feedback rate, the laser exhibits a period
doubling bifurcation, which yields a new frequency at fH1/2
[Fig. 6 (b2)]. The coexistence of these two timescales mod-
ulates the shape of the estimators [Fig. 6(c2)-(d2)], making
2τH1 = 2/fH1 and its multiples the time-locations of the

strongest contributions in the time-delay estimators. Further
increase of the feedback rate leads to the appearance of many
frequencies in the ECSL power spectrum, and has two effects
on the estimators: the global decrease of the amplitude of the
oscillations of the ACF and DMI, and a stronger modulation
[Fig. 6(b3)-(c3)] due to similar reasons as the ones in Fig.
5(c3)-(d3). The appearance of the chaotic regime produces
exponential damping of both the ACF and DMI [Fig. 6(c4)-
(d4)]. Even in the chaotic regime the strongest frequency
component is still found at the frequency fH1 = 1.34 GHz.
The ACF function exhibits fast oscillations at the period
τH1 = 1/fH1 but the correlation is lost on longer time-
extension. In this identification scenario, and by contrast to
the previous case, the time delay time-scale is not present
in the early stages of the ECSL nonlinear dynamics. This
prevents its clear signature to appear in the estimators at
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Fig. 5. Projection of the attractor in (N, E) plane (1st column), Power spectrum (FFT of |I(t)|2) (2nd column) , autocorrelation function (3rd column)
and mutual information (4th column) for increasing value of the feedback rate γ = 0.35GHz (1st row), γ = 0.55GHz (2nd row), γ = 0.85GHz (3rd row),
γ = 1GHz (4th row) with a time-delay value τ = 5ns and τRO = 0.75ns. The vertical dotted-dashed and dashed lines give the time location of τRO and
τ , respectively.

low feedback rates. Both the ACF and the DMI give only
information concerning the value of the undamped relaxation-
oscillation period through an oscillating behavior.

In conclusion, we have shown that the cascade of bifurca-
tions is responsible for the observed behavior of the estimator.
The first frequency appearing in the ECSL leads to oscillations
in both the ACF and DMI. Depending on the choice of the
parameters, the time-delay signature may or may not appear
early in the first stage of the ECSL nonlinear dynamics [Fig.
5(b2)]. This presence influences the security of the ECSL
cryptosystem in terms of time-delay identification. However,
the early appearance of τ is not the only aspect to consider:
the ACF and DMI starting to oscillate at the period of the
undamped relaxation oscillation τH1, it is of importance to also
study the particular role of this frequency and its remaining
presence as the ECSL undergoes its cascade of bifurcations.

B. Influence of the first Hopf frequency and diversity of time-
delay-identification scenarios

The undamped relaxation-oscillation period τH1 emerging
from H1 is the first timescale that appears in the ECSL. This
makes fH1 = 1/τH1 ≈ fRO play the role of a fundamental
frequency of the ECSL. The presence of this fundamental
frequency seems to be systematically responsible for the
oscillating behavior of the estimators and can blur or even
mask the time-delay signature [Figs. 1 and 3]. However, in
this section, we will underline two important facts: first, the
frequency fH1 can be significantly shifted from fRO; second,
the frequency emerging from H1 in the ECSL will not always
play the role of the fundamental frequency responsible for the
oscillating behavior of the ACF and DMI.

1) Frequency shift and influence on the time-delay identifi-
cation: In the previous cases of Figs. 1 and 3, fH1 was found
to be extremely close to the value of fRO. We have made in
Fig. 7 a more systematic analysis of the first Hopf bifurcation
frequency fH1 as a function of the time delay τ . The evolution
of fH1 with τ is not monotonic; it periodically oscillates
around a value corresponding to fRO (dashed line) and the
period of oscillation is close to τRO. A similar conclusion
has been obtained for other sets of parameters in previous
ECSL studies [17]–[20]. This property can be used to increase
the security of the ECSL. Indeed, the oscillating behavior
of the ACF and DMI is characteristic of the presence of
the undamped relaxation-oscillation timescale. Our previous
choice of the parameters τ = 1.2 ns or τ = 5 ns and
τRO = 0.75 ns has led to values of fH1 both close to fRO.
Now if we choose a value of the time delay τ close to τRO,
the fundamental frequency at which the ECSL will oscillate
will be significantly shifted from fRO; when combined with a
low feedback rate, we expect a damping oscillating behavior
of both the ACF and DMI at a time-scale that corresponds
neither to τ nor to τRO, hence preventing a good time-delay
identification.

2) Diversity of time-delay-identification scenarios: In the
previously investigated cases, the shape of the estimator (ACF
or DMI) unveils the influence of the first timescale appearing
in the ECSL, namely the frequency fH1. However it appears
that the frequency issued from the first Hopf bifurcation does
not systematically play the role of the fundamental frequency
that drives the shape of the ACF or DMI for larger feedback
rates. The following example taking τRO = 0.75 ns and
τ = 0.85 ns illustrates this fact. Figure 4(c) shows the corre-
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Fig. 6. Projection of the attractor in (N, E) plane (1st column), power spectrum (FFT of |I(t)|2) (2nd column) , autocorrelation function (3rd column)
and mutual information (4th column) for increasing values of the feedback rate: γ = 0.6GHz (1st row), γ = 0.8GHz (2nd row), γ = 1.2GHz (3rd row),
γ = 1.5GHz (4th row) with a time-delay value τ = 1.2ns and τRO = 0.75ns. The vertical dotted-dashed and dashed lines give the time location of τRO

and τ , respectively.

Fig. 7. Evolution of the first Hopf Frequency fH1 as a function of the time
delay τ , for τRO = 0.75ns. The horizontal and vertical dotted-dashed lines
represent respectively the relaxation oscillation frequency fRO = 1/τRO ,
and multiples of the relaxation-oscillation period τRO .

sponding bifurcation diagram with a complex route to chaos.
The first frequency fH1 = 1.64 GHz significantly shifted
from fRO = 1.33GHz [Fig. 8(b1)] induces an oscillating
behavior of the ACF and DMI [Fig. 8(c1) and (d1)]. Successive
increases of feedback rate first destabilize the limit cycle born
from H1 and lock the ECSL on a new limit cycle with a
frequency (also shifted from fRO) f = 1.02 GHz [Fig. 8(b2)],
and second make the ECSL locks on a period-doubled limit
cycle with fundamental frequency f = 0.88 GHz [Fig. 8(b3)].
This induces new oscillating behaviors for ACF and DMI with

fundamental frequencies largely shifted either from fH1 or
fRO [Fig. 8(c2)-(c3)]. Finally, the system enters in a weakly
developed chaotic regime that inherit the spectral contents
of the last stable attractor [Fig. 8(b3)-(b4)]. This explains
also the inherited shape of the ACF between Fig. 8(c3) and
(c4). In Fig. 8(c4), the ACF exhibits a largely shifted peak
issued from the fundamental frequency of the last stable limit
cycle [Fig. 8(a3)] which can be considered as a possible time-
delay signature. In conclusion, we have shown that the first
Hopf frequency is not systematically responsible for the fast
oscillating shape of the ACF or DMI. We have also illustrated,
again, the key role of the other frequencies born from the
cascade of bifurcation occurring in the ECSL: they shape in a
non-trivial way the ACF and the DMI, and are responsible for
blurring the time-delay signature. The resulting identification
scenario is not completely similar to the previous ones in
Figs. 5 and 6. This different identification scenarios take their
origin in the diversity of routes to chaos existing in the ECSL,
which influence directly on the laser time-series and shape the
estimators accordingly.

V. DISCUSSION

In this section, we discuss the robustness of the time-delay
concealment with respect to other identification techniques and
to the influence of laser spontaneous emission noise and gain
compression coefficient, as well as potential applications of
our results for chaos-based communications.
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Fig. 8. Projection of the attractor in (N, E) plane (1st column), power spectrum (FFT of |I(t)|2) (2nd column) , autocorrelation function (3rd column)
and mutual information (4th column) for increasing values of the feedback rate: γ = 1GHz (1st row), γ = 1.2GHz (2nd row), γ = 1.4GHz (3rd row),
γ = 1.6GHz (4th row) with a time-delay value τ = 0.85 ns and τRO = 0.75 ns. The vertical dotted-dashed and dashed lines give the time location of τRO

and τ , respectively.

A. Robustness of time-delay concealment to other identifica-
tion techniques

Numerous methods exist to identify the time-delay, besides
the well known ACF and DMI. The most common ones are:
the filling factor analysis [22], the local linear models (LLMs)
[10], global nonlinear models such as those obtained with
modular neural networks [23], and statistics of time-series
extrema [24]. It is however interesting to analyse whether these
time-delay-identification techniques would allow to retrieve
any information on the time-delay value.

We present here a time-delay extraction based on modular
neural networks (MNN). In order to mimic the structure of
the equation driving the evolution of the light intensity I(t),
the MNN incorporates two modules, one for the non delayed
part (ND) of I(t) and a second one for its delayed part (D).
A feed-forward neural network [23] is used for each of the
modules. The first module is fed with input data: xND =
[I(t− τe), ..., I(t−m1τe)] and the second module is fed with
xD = [I(t − θ − m2τe), ..., I(t − θ), ..., I(t − θ + m2τe)].
The parameter τe is the embedding time, θ is a time-delay
candidate, m1 is the number of inputs of the ND part, and
2m2 +1 is the number of required inputs for the delayed part
[10]. The output of the neural network is

xnn = f(xND) + h(xD), (6)

where f and h are nonlinear functions associated to ND and
D respectively. The forecast error of the MNN is defined by
σ(θ) = ‖I(t)− xnn‖, and is a function of θ. If there exists a
value θ0 such that σ(θ0) is minimum, corresponding to a valley
in the forecast-error curve, then θ0 will be considered a time-

delay estimation. We apply the MNN technique to the intensity
time series corresponding to the operational parameters τ = 1
ns, τRO = 0.75 ns, and γ = 2 GHz. In previous sections, we
have shown that such a set of parameter leads to a chaotic laser
output from which it is not possible to retrieve the information
on the time-delay using ACF or DMI. Figure 9 presents the
results of a time-delay extraction based on a MNN composed
of 6 neurons in the first layer and 3 neurons in the second
layer for the delayed module and only one neuron for the non
delayed module. The plot of the forecast error reveals only a
minimum for values θ close to 0, that corresponds to the linear
correlation time [23]. We do not observe, however, any other
minimum in the vicinity of the time delay τ . As a consequence,
the time delay cannot be inferred from the intensity time-series
using MNN.

The other identification techniques described above have
also been tested and do not give more insight about the time-
delay value. However, it is interesting to note that the statistics
of time-series extrema is among all methods the one that
identifies the time delay of the system for the smallest value
of the feedback rate γ.

In conclusion, we have shown that independently from the
method of identification, if the operational parameters of the
ECSL are carefully chosen, the time-delay signature remains
hidden.

B. Influence of internal parameters
1) Influence of the spontaneous-emission noise: In our

study, we have considered that the ECSL is fully deterministic;
as a consequence, a description based on a deterministic delay-
differential equation was sufficient. However, in real lasers,



JOURNAL OF QUANTUM ELECTRONICS, VOL. XX, NO. XX, JULY 2008 10

Fig. 9. Forecast error produced by the MNN on the intensity time series
I(t) generated with the following parameters: τ = 1 ns, τRO = 0.75 ns and
γ = 2 GHz. The identification time-step is 5 ps. The vertical dotted-dashed
and dashed lines give the time location of τRO and τ , respectively.

stochastic processes, such as spontaneous emission, occur
in the gain medium. Such phenomena therefore require an
adapted model. The influence of the spontaneous-emission
noise is modelled by a Langevin force and a deterministic
component added to the equation describing the time evolution
of the complex electric field E (t) [see Eq. (1)]. This additional
stochastic part of the LK equations blurs the cascade of bifur-
cations that has proven to be directly responsible, in a fully
deterministic approach, for the blurred time-delay signatures
observed in both the ACF and DMI. Indeed, when noise is
present at very weak feedback rates, its contribution in the
ECSL dynamics is comparable to that of the delayed optical
feedback term. The Langevin force FL (t) =

√
2βN (t)ζ (t)

acts as a driving force for the dynamics that weakly excite the
intrinsic nonlinearity of the ECSL. This stochastic excitation,
only visible at low feedback rate, does not influence the
time-delay identification: the signature is still blurred. For
large values of feedback rates, the contribution of the noise
is negligible in comparison with the delayed-feedback term.
This implies that the time-delay signature remains identical
to the one in Fig. 1(b4)-(c4). Figure 10 shows this result by
comparing the evolution for increasing feedback rate strength
of a model of ECSL with and without spontaneous-emission
noise. In conclusion, the presence of noise in the equation
does not affect the time-delay identification, and the results of
section III remain true.

2) Influence of gain saturation: Gain saturation is phe-
nomenologically introduced in the rate equations by consider-
ing an explicit intensity dependence of the gain. Its value is
typically smaller or equal than 2.5 × 10−23 m3. It has been
reported elsewhere that the saturation gain has a stabilizing
effect on the ECSL dynamics: the progressive increase of gain
saturation leads to an increasing feedback-strength threshold
above which the transition to chaotic regime occurs [25].

This stabilizing effect of gain saturation is due to the
damping effect of the intrinsic nonlinear part of rate equation
(1). As a consequence, reducing the value of ε will increase,
in the ECSL dynamics, the driving action of GN,|E|E (t)

relatively to the one of γeiω0τE (t− τ), blurring the time-
delay signature compared to fast timescales emerging from the
interplay of the laser intrinsic nonlinearities and the optical
feedback. From a quantitative point of view, a decrease of
the gain saturation has two simultaneous manifestations: first,
the amplitude of the extremum located around the time-
delay value decreases, second fast oscillations appearing in
the vicinity of the time delay and leads to a blurred time-
delay signature. These two combined effects also allow for
an increase of the time separation between τ and τRO that
maintains the time-delay concealment. It also allows for the
use of higher values of pumping current pJth. Figure 11
presents these results: three different identification scenarios
based on the ACF are considered for various choices of τ , τRO

and γ for a value of the gain saturation ε that progressively
increases. Interestingly, the first row shows, at a fixed feedback
rate, that for a large time separation between τ and τRO,
where it may be expected to result in a blurred signature
[Fig. 11(d4)], a progressive tendency to the disappearance
of the time-delay signature is observed [Fig. 11(d1)]. These
results hold for the various parameters used in Fig. 11. In
conclusion, small values of the gain saturation favors the
masking of the time-delay by emphasis the contribution of
the intrinsic nonlinearity in the intensity time-series. They
furthermore allow for extending the range in which the time-
delay identification is difficult both in terms of feedback rate
and separation of time-scales.

C. Application to chaos-based communications

The security in terms of time-delay identification appears
as a requirement for the security of chaos-based commu-
nication setups involving physical devices such as ECSLs.
However, it needs to be compatible with a sufficient chaos
complexity as well as good synchronization, to ensure secure
communications at low bit-error rates (BER). Indeed, it is
important to investigate if the signal generated, with a good
time-delay concealment, using our set of parameters, can
possibly lead to secure transmission that can be recovered at
the receiving end using chaos synchronization. Typically, the
ECSL unidirectional coupling is used to form a chaotic com-
munication scheme [3]. Two types of synchronization exist in
such a scheme: the so-called injection-locking synchronization
(generalized synchronization) and complete synchronization
[26]. The first regime occurs when the master and slave ECSLs
have identical optical feedback strengths (γm = γs), whereas
the second regime is achieved for a master optical feedback
equal to the sum of the slave optical feedback with the
coupling strength (γm = γs +γc), providing the condition that
γc > γs. The measurement of the quality of synchronization
is based on the cross-correlation function defined by

ΓXm,Xs (θ) =
〈(Xm (t)− µXm) (Xs (t + θ)− µXs)〉

σXmσXs

,

with µXm,s = 〈Xm,s〉 and σXm,s =
〈(

Xm,s − µXm,s

)〉1/2
.

With the set of parameters of Fig. 3(b2)-(c2), a good time-
delay concealment is achieved, but it leads to a poor quality of
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Fig. 10. Influence of the rate of spontaneous emission β on the time delay identification. The first row corresponds to the case with the spontaneous emission
noise β = 103 s−1, the second row corresponds to the case β = 0 s−1. Each column is associated to a given feedback rate. From left to right, the feedback
rates are: γ = 2.5 GHz, γ = 5 GHz, γ = 10 GHz and γ = 15 GHz. The time delay and the relaxation period are equal to τ = 5 ns and τRO = 0.75 ns.
They are represented by the dotted and dotted-dashed lines, respectively.

Fig. 11. Influence of the gain saturation ε on the time delay signature for three different cases of difficult identification. The first row corresponds to τ = 1 ns,
τRO = 0.2 ns, γ = 10 GHz, the second row to τ = 0.5 ns, τRO = 0.33 ns, γ = 5 GHz and the third row to τ = 5 ns, τRO = 0.75 ns, γ = 2.5 GHz.
The vertical dotted and dotted-dashed lines represent the time delay and the relaxation oscillation period, respectively. Each column corresponds to a different
value of the saturation gain, as indicated on the figure.

anticipating synchronization with maxθ |ΓXm,Xs (θ)| ≈ 0.2.
This result was expected because of the use of weak feed-
back rate in the master ECSL. In order to achieve complete
synchronization the coupling strength must be equal to the
feedback rate and must therefore take a value less than 5 GHz.
In the case of injection-locking synchronization, by contrast,
the coupling strength γc is no longer limited by the value of
the master optical feedback γm. Numerical simulations show
that as soon as the coupling strength satisfies γc ≥ 25 GHz
we achieve very good synchronization: maxθ |ΓXm,Xs (θ)| ≥
0.95. Hence, injection-locking synchronization can be used
to transmit information securely, when the parameters are
taken to ensure time-delay concealment, whereas complete
synchronization is not adapted.

VI. CONCLUSION

In this paper, we have analyzed the security of an ECSL in
terms of time-delay identification using standard time-delay

estimators such as the autocorrelation function (ACF) and
the delayed mutual information (DMI). The key role of the
feedback rate γ and the pumping factor, as well as the choice
of the time-delay (τ ) value in comparison with the relaxation-
oscillation period τRO, has been underlined. It appears that
the difficult identification scenarios occur for relatively weak
feedback rates and weak pumping factors with close values of
the two timescales τ and τRO. These difficult identifications
find their origin in the specific nonlinear dynamics and time-
scales appearing in the ECSL in its bifurcation cascade leading
to chaos. Indeed, at weak feedback rates the chaos keeps
reminiscence of the time-scales involved in the early stage of
the laser dynamics, such as the undamped relaxation oscilla-
tion time-scale and possibly period-doubling and quasiperiodic
dynamics. The time-delay estimators then exhibit complex
modulated shapes showing these different laser dynamics time-
scales. When τ and τRO are close to each other either, the true
value τ is efficiently concealed thanks to a shift of the first
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Hopf frequency fH1 with respect to the relaxation oscillation
frequency, such that the laser output at the Hopf frequency
starts pulsating at a frequency which is neither close to τ nor
to τRO. The impact of additional laser internal parameters is
also investigated. It appears that the decrease in gain saturation
coefficient allows to use more distant values of τ and τRO as
well as to increase the pumping factor p while maintaining
time-delay concealment. The robustness of our results has
been checked with other signal processing techniques such
as neural networks and filling-factor methods. We expect our
results to be of interest for a proper design of a laser chaotic
emitter that would allow for the best concealment of its system
parameters, hence also improving security in laser chaos-based
communications.
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of delay times from a delayed optical feedback laser experiment”,
Europhys. Lett. , vol. 42, pp. 353-358, 1998.

[12] M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle,
“Dynamical characterisation of laser diode subject to double optical
feedback for chaotic optical communications”, IEE Proc. Optoelectron.,
vol. 152, no. 2, pp. 97-102, 2005.

[13] D. Rontani, A. Locquet, M. Sciamanna and D. S. Citrin, “Loss of time-
delay signature in the chaotic output of a semiconductor laser”, Opt. Lett.,
vol. 32, no. 20, pp. 2960-2962, 2007.

[14] B. Dorizzi, B. Grammaticos, M. LeBerre, Y. Pomeau, E. Ressayre, A.
Tallet, “Statistics and dimension of chaos in differential delay systems”,
Phys. Rev. A, vol. 35, pp. 328-339, 1987.

[15] V.S Udaltsov, L. Larger, J.P Goedgebuer, A. Locquet, and D. S.
Citrin, “Security of chaos-based communication system ruled by delay
differential equation. Recovery of time-delay”, J. Opt. Technol., vol. 72,
no.5, pp. 373-377, 2005.

[16] R. Lang and K. Kobayashi, “External optical feedback effects on
semiconductor injection lasers properties” IEEE J. Quantum Electron.,
vol. 16, pp. 347-355, 1980.

[17] A. Murakami and J. Ohtsubo, “Stability analysis of semiconductor laser
with phase-conjgate feedback”, IEEE J. Quantum Electron., vol. 33, no.
10, pp. 1825-1831, 1997.

[18] A. Murakami and J. Ohtsubo, “Dynamics and linear stability analysis in
semiconductor lasers with phase-conjugate feedback”, IEEE J. Quantum
Electron., vol. 34, no. 10, pp. 1979-1986, 1998.

[19] B. Tromborg, J. H. Osmundsen, and H. Olesen, “Stability analysis for a
semiconductor laser in an external cavity”, IEEE J. Quantum Electron.,
vol. 20, no. 9, pp. 1023-1032, 1984.

[20] C. Masoller, “Effect of the external cavity length in the dynamics of a
semiconductor laser with optical feedback”, Opt. Comm., vol. 128, pp.
363-376, 1996.

[21] T. M. Cover and J. A. Thomas, “Elements of information theory”,John
Wiley & Sons, New York, USA, 1991.

[22] M. J. Bünner, Th. Meyer, A. Kittel, and J. Parisi, “Recovery of the time-
evolution equation of time-delay systems from time series”, Phys. Rev.
E, vol. 56, pp. 5083-5089, 1997.

[23] S. Ortin, J.M. Gutierrez, L. Pesquera, H. Vasquez, “Nonlinear dynamics
extraction for time-delay systems using modular neural networks syn-
chronization and prediction”, Physica A, vol. 351, pp. 133-141, 2005.

[24] B.P. Bezruchko, A.S. Karavaev, V.I. Ponomarenko, M.D. Prokhorov,
“Reconstruction of time-delay systems from chaotic time series”, Phys.
Rev. E, vol. 64, pp. 056216, 2001.

[25] C. Masoller, “Comparison of the Effects of Nonlinear Gain and Weak
Optical Feedback on the Dynamics of Semiconductor Lasers”, J. Quantum
Electron., vol. 33, no. 5, pp. 804-814, 1997.

[26] A. Locquet, C. Masoller, and C.R. Mirasso Blondel, “Synchronization
regimes of optical-feedback-induced chaos in unidirectionally coupled
semiconductor lasers”, Phys. Rev. E, vol. 65, pp. 056205, 2002.

[27] V. Ahlers, U. Parlitz, and W. Lauterborn, “Hyperchaotic dynamics and
synchronization of external-cavity semiconductor lasers”, Phys. Rev. E,
vol. 58, pp. 7208-7213, 1998.

PLACE
PHOTO
HERE

Damien Rontani received the M.S. degree in elec-
trical and computer engineering both from the Ecole
Supérieure d’Electricité (Supélec), Metz, France,
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