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(a) YFP-pull down from HeLa cells 
expressing YFP-SLX4. In lanes 3, 4 and 
5 YFP-pull downs were washed in a high 
salt buffer (NaCl) or carried out in the 
presence of Benzonase (Benzo) or 
Ethidium bromide (EtBr) (See Methods). 
MUS81 and XPF were used as positive 
controls for SLX4-binding. 
(b) Endogenous SLX4 was 
immunoprecipitated from a HeLa cell-
lysate with a combination of two 
different anti-SLX4 antibodies (See 
methods).  
(c) Immunoprecipitation of Flag-HA-
SLX4 from dox-inducible HeLa cells at 
various time points after release from a 
thymidine block. Cell cycle profiles of 
the samples (left). Immunoblot of a 
representative experiment (right) and the 
quantifications of three independent 
experiments (mean with SEM).  
(d) RTEL1-binding domain of SLX4 and 
multiple SLX4 sequence alignment 
centred on the region 599-635 of human 
SLX4. Top two sequences report 
secondary structures (H: helix) and 
disorder status (D) predicted by 
PSIPRED and SPOTD algorithms, 
respectively (See Methods). NCBI 
RefSeq identifiers are given within 
brackets. UBZ4: ubiquitin-binding, MLR: 
primary XPF-binding domain, BTB: 
homodimerization domain (also 
contributes to XPF-binding), TBM: 
TRF2-binding motif, SIM: SUMO-
interacting motifs, SAP: MUS81-binding 
region, CCD: SLX1-binding domain. 
(e) YFP-pull downs from HeLa cells 
expressing WT or mutated YFP-SLX4. 
∆BTB: M684VNN-GLPP764 was deleted 
from the BTB domain. BTB5A and SIM: 
point mutations in the BTB domain and 
SIM motifs, respectively, as described 
in2. D614G and L618P: cancer-associated 
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mutations (Fig. 1d).  
(f) YFP-pull downs from HeLa cells 
expressing WT or mutated YFP-SLX4. 
L1022A: TRF2-binding defective mutant. 
All immunoblots were performed with 
antibodies against the indicated proteins. 
Uncropped images for panels a,b,d,e,f 
and data for graphs in panel b are 
available as source data. 
 

Extended Data 
Fig. 2 

List of known 
SLX4 
interactors 
identified in 
YFP-SLX4 pull 
down 
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List of all known SLX4 interactors (light 
green) and RTEL1 (dark green) that were 
identified in the YFP-SLX4 pull down 
shown in Extended Data 1a. The table 
shows a spectral counting based on the 
number of peptide-to-spectrum matching 
(PSM) events. (see Supplementary Note 
for Mass spectrometry and data analysis 
methods and Supplementary Table 1 for 
the full data report).  
 

Extended Data 
Fig. 3 

List of SLX4 
partners 

impacted by 
the D614G and 
L618P SLX4 

mutations 
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List of all proteins identified in all three 
runs of the wild-type YFP-SLX4577-795 

sample but in none of the runs of the 
D614G and L618P mutated samples or 
the HeLa “Fit0” (HeLa Flp-In TREX 
cells with no SLX4 cDNA integrated at 
the FRT site) negative control (see 
Supplementary Table 4 for the mass 
spectrometry data full report). The table 
shows a spectral counting based on the 
number of peptide-to-spectrum matching 
(PSM) events. (see Supplementary Note 
for Mass spectrometry and data analysis 
methods and Supplementary Table 1 for 
the data full report). 
 

Extended Data 
Fig. 4 

SLX4 binds 
HD1 of RTEL1 
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(a) Multiple sequence alignment of 
RTEL1 homologs focused on the region 
888-1156 of human RTEL1. Top two 
sequences report the secondary structures 
(H for helix) and disorder status (D) 
predicted by PSIPRED and SPOTD 
algorithms, respectively (See Methods). 
Blue boxes indicate the delimitation of 
the canonical harmonin/PAH domains 
HD1 and HD2 and the red box spots out 
the extension required for interaction 
with SLX4. For species having diverged 
before the emergence of bony fishes, the 
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second harmonin domain is not present. 
NCBI RefSeq identifiers are given within 
brackets. 
(b) E. coli produced 6His-tagged HD1a 
(RTEL1885-975), HD1b (RTEL1885-990) and 
HD2a (RTEL11046-1142) fragments were 
used in a Ni++-pull down in vitro assay 
to monitor their interaction with a GST-
tagged SLX4577-1042 (Helix+BTB) 
fragment. The first and last lanes 
represent the inputs of the Ni++-pull 
down assays. B: Ni++-beads, Ft: Flow 
through. The pelleted beads were 
resuspended in a volume of Laemmli 
buffer equivalent to the initial volume of 
the binding assay. Identical volumes of 
the GST-tagged SLX4577-

1042 (Helix+BTB) fragment (diluted to the 
final concentration used in the binding 
assay), the B and the Ft samples were 
loaded on the gel. 
(c) Schematic representation of the 
RTEL1 fragment (Top) used in Y2H to 
assess direct binding to the SLX4577-

1042 fragment. K897E: Hoyeraal-
Hreidarsson syndrome (HHS) associated 
mutation. Bottom panel shows Y2H to 
assess direct binding between the RTEL1 
fragments and SLX4577-1042 (Helix+BTB) 
fragment.  
(d) Schematic representation of the YFP-
tagged RTEL1 fragments (Top) used in 
the YFP-pull down to assess binding to 
endogenous SLX4 (Bottom). All 
indicated RTEL1 point mutations are 
from Hoyeraal-Hreidarsson syndrome 
(HHS) patients31.   
Uncropped images of the immunoblots in 
panels b,d and Y2H in c  are available as 
source data. 
 

Extended Data 
Fig. 5 

Interaction 
between SLX4 
and RTEL1 is 
required for 
proper 
replication fork 
progression but 
not for ICL 
repair   
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(a) Colony survival assay with mock-
depleted (siLUC) and SLX4-depleted 
(siUTR) HeLa “Fit0” and HeLa Flp-In 
TREX cells expressing WT or mutated 
Flag-HA-SLX4 as indicated treated with 
MMC for 24 hrs. Values represent the 
means and SEM from three independent 
experiments. The Immunoblots were 
carried out with antibodies against SLX4 
and XPF.  



 4

n/a: lanes that are not relevant to the 
colony survival assay. A portion of the 
corresponding Ponceau stained 
membrane is shown under the 
immunoblots. SLX4 runs just above the 
250 kDa mark while XPF runs slightly 
above the 100 kDa mark. 
(b) Analysis of replication fork dynamics 
in HeLa cells depleted for SLX4 or 
RTEL1, as described in Fig. 3a. NT: non-
targeting control siRNA. Data are shown 
in box-plots (median, first and third 
quartile) with 5th-95th percentile whiskers 
(+: mean, n: number of unbroken signals 
analysed). Statistical significance was 
assessed with the Mann-Whitney test (ns: 
not significant, ***: p<0.001, ****: 
p<0.0001). The immunoblots were 
performed with antibodies against SLX4, 
RTEL1 and ß-actin used as internal 
loading control. The arrow indicates the 
SLX4 band. 
(c) as in b in U2OS “Fit0” cells depleted 
for SLX4 or RTEL1. LUC: control 
siRNA.  
(d) Control immunoblots and the 
corresponding Ponceau stained 
membrane for Fig. 3b showing the 
relative levels of endogenous SLX4 (lane 
1 before depletion; lanes 2 to 8 after 
depletion) and recombinant WT or 
mutated SLX4 proteins expressed in cells 
depleted for endogenous SLX4 (lanes 3 
to 8). SLX4 runs just above the 250 kDa 
mark while XPF runs slightly above the 
100 kDa mark. 
n/a: lanes that are not relevant to the data 
shown in Fig. 3b.  
(e) as in b in U2OS “Fit0” and U2OS 
Flp-In TREX cells stably expressing 
DOX-inducible WT or mutated Flag-HA-
SLX4 as indicated. siSLX4UTR was used 
to deplete endogenous SLX4. 
Uncropped images of the immunoblots in 
panels a-d and data for graphs in panels 
a,b,c,e are available as source data. 
 

Extended Data 
Fig. 6 

SLX4 promotes 
replication fork 
progression 
independently 
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(a) PLA between SLX4 (HA) and RTEL1 
was performed in HeLa Flp-In TREX 
cells expressing Flag-HA-SLX4 before 
HA counterstaining (in green and red, 
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of its associated 
SSEs 

nal_new.jpg respectively). PLA spots per HA-positive 
cells are plotted (red bars: median with 
interquartile range). Parental HeLa “Fit0” 
cells were used as a negative control and 
PLA spots were counted in random 
nuclei for this condition (grey distribution 
with orange bars). Kruskal-Wallis test 
(n>55, ****: p<0.0001). Representative 
single cells with different HA contents 
are shown (scale bar: 10 μm). 
(b) Nascent DNA strands were pulse-
labelled with 5-ethynyl-2-deoxyuridine 
(EdU). Biotin was conjugated to EdU by 
click chemistry after cell fixation. In situ 
proximity ligation assay (PLA) was 
performed between endogenous RTEL1 
and EdU, using an anti-biotin antibody, 
before EdU counterstaining (in green and 
red, respectively). Reactions omitting one 
of the primary antibodies (Ab) were used 
as negative controls. The number of PLA 
spots per EdU-positive cells is plotted, 
except in the RTEL1 Ab only negative 
control in which PLA spots were counted 
in random nuclei (red or orange bars: 
median with interquartile range, n>79).  
Statistical significance was tested with 
the Kruskal-Wallis test (****: p<0.0001). 
Representative nuclei are shown (scale 
bar: 10 μm). 
(c) As in b in SV40-immortalised patient 
fibroblasts expressing WT or R957W 
RTEL1. The immunoblot was performed 
with antibodies against RTEL1 and 
GAPDH used as internal loading control. 
Uncropped images of the immunoblots in 
panel c and data for graphs in panels a-c 
are available as source data. 
 

Extended Data 
Fig. 7 

SLX4-RTEL1 
interaction is 
need for tight 
colocalization 
between 
FANCD2 and 
RNA Pol II and 
to avoid 
replication-
transcription 
conflicts 
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(a) Number of SLX4 foci detected by 
anti-HA immunofluorescence in U2OS 
Flp-In TREX cells producing the 
indicated Flag-HA-SLX4 proteins. 
(b) Representative images of the 
immunofluorescence data quantified in 
Fig. 5a and Extended data Fig. 7a. 
(c) Representative fields for the PLA 
FANCD2/RNA pol II pS2 shown in Fig. 
5c. Scale bar: 10 μm. 
(d) PLA between SLX4 (HA) and RNA 
pol II pS2 was performed in U2OS Flp-In 
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TREX cells expressing Flag-HA-SLX4 
before HA counterstaining. Single-cell 
HA intensity (n>152, left panel) and PLA 
spots per HA-positive cells (right panel) 
are plotted (n>109, red bars: median with 
interquartile range). Parental U2OS 
“Fit0” cells were used as a negative 
control and PLA spots were counted in 
random nuclei for this condition (grey 
distribution with orange bars). Kruskal-
Wallis test (ns: not significant, ****: 
p<0.0001). 
(e) PLA between endogenous RTEL1 and 
RNA pol II pS2 was performed in SV40-
immortalised patient fibroblasts 
expressing WT or R957W RTEL1. 
Reactions omitting one of the primary 
antibodies (Ab) were used as negative 
controls. Kruskal-Wallis test (ns: not 
significant, ****: p<0.0001). 
Data for graphs in panels a,d,e are 
available as source data. 
 

Extended Data 
Fig. 8 

Transcription 
is toxic to 
replication in 
absence of 
SLX4-RTEL1 
complex 
formation 
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hi_Extended_
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a) Supporting data for the DNA fiber 
assay shown in Fig. 6a. 
(b) HeLa “Fit0” cells were depleted for 
SLX4 or RTEL1. 1 µM triptolide was 
added to the culture medium for 3 h 
before and during the IdU and CldU 
pulses to inhibit transcription initiation. 
Replication fork dynamics was analysed 
as in Fig. 3a. Mann-Whitney test, ns: not 
significant, **: p<0.01, ****: p<0.0001). 
Uncropped images of the immunoblots 
and data for graphs in panels a and b are 
available as source data. 
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The SLX4 tumour suppressor is a scaffold that plays a pivotal role in several aspects of genome 39 

protection including homologous recombination, interstrand DNA cross-link repair and the 40 

maintenance of common fragile sites and telomeres. Here we unravel an unexpected direct 41 

interaction between SLX4 and the DNA helicase RTEL1, which until now were viewed as having 42 

independent and antagonistic functions. We identify cancer and Hoyeraal-Hreidarsson 43 

syndrome-associated mutations in SLX4 and RTEL1, respectively, that abolish SLX4-RTEL1 44 

complex formation. We show that both proteins get recruited to nascent DNA, tightly colocalize 45 

with active RNA pol II and that SLX4, in complex with RTEL1, promotes FANCD2/RNA pol II 46 

colocalization. Importantly, disrupting SLX4-RTEL1 interaction leads to DNA replication defects 47 

in unstressed cells which are rescued by inhibiting transcription. Our data demonstrate that 48 

SLX4 and RTEL1 interact to prevent replication-transcription conflicts and provide evidence that 49 

this is independent of the nuclease scaffold function of SLX4.  50 

  51 

Keywords 52 

SLX4, RTEL1, FANCD2, DNA replication, transcription, cancer, Hoyeraal Hreidarsson 53 

syndrome, Fanconi anemia, replication stress, harmonin N-like domain, PAH domain, BTB 54 

domain 55 

 56 

INTRODUCTION 57 

Multi-protein scaffolds fulfil pivotal functions in the maintenance of genome stability by 58 

orchestrating the action of their partners and coordinating mechanisms ranging from DNA 59 

damage signalling, cell-cycle control, DNA repair, chromosome segregation to cell division.  60 

Amongst these, the human SLX4 (FANCP) tumour suppressor has been in the spotlight since it 61 

was found to associate with the XPF-ERCC1, MUS81-EME1 and SLX1 structure-specific 62 

endonucleases (SSE) and control these enzymes in interstrand DNA cross-link (ICL) repair, 63 

homologous recombination and/or the maintenance of telomeres and common fragile sites1-11. 64 

SLX4 also associates with other factors involved in the maintenance of genome stability 65 

including MSH2, TRF2, TOPBP1 and the PLK1 kinase1,3,4,12. Interaction with both ubiquitin and 66 

SUMO contributes to the regulatory functions of SLX42,7,13, which itself has been shown to 67 

promote its own SUMOylation as well as that of its XPF partner2. In yeast, Slx4 fulfils additional 68 

functions ranging from checkpoint dampening to promoting DNA end resection(for review14). 69 

The importance of its contribution to such diverse aspects of genome maintenance is 70 

underscored by the fact that biallelic mutations in SLX4 are causative of the rare hereditary 71 

syndrome Fanconi anemia that is characterized by chromosomal instability, bone marrow failure, 72 

developmental defects and high cancer predisposition15,16. Despite the progress made on our 73 

understanding of some of SLX4 functions, in particular its well-established prominent role in ICL 74 
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repair1,3,4,13,14,17-19, much remains to be done before we can fully understand the various ways by 75 

which SLX4 contributes to the maintenance of genome stability.  76 

Here we unravel an unexpected direct interaction between SLX4 and the RTEL1 77 

helicase, which were viewed until now as having rather independent and antagonistic 78 

functions20. The RTEL1 helicase contributes to the maintenance of genome stability by 79 

facilitating telomere as well as genome-wide replication20-26. Its ability to unfold D-loops is 80 

believed to reduce crossover rates by promoting double-strand break repair through synthesis-81 

dependent strand annealing27. It interacts with PCNA22 and contributes to the replication of 82 

pericentromeric heterochromatin in complex with TRF228. In addition to these DNA-metabolism 83 

related functions, which are believed to primarily rely on its helicase activity, RTEL1 is also 84 

involved in the trafficking of ribonucleoproteins29. The functional importance of RTEL1 is 85 

underscored by the fact that biallelic RTEL1 mutations are associated with Dyskeratosis 86 

congenita (DC) and Hoyeraal-Hreidarsson syndrome (HHS), its severe form, characterized by 87 

developmental defects, bone marrow failure and immunodeficiency30,31 while heterozygous 88 

RTEL1 mutations cause pulmonary fibrosis32,33.  89 

We demonstrate that SLX4 is necessary for optimal DNA replication in unstressed cells 90 

and that this relies on its interaction with RTEL1 but not its SSE partners. Importantly, we 91 

identify cancer-patient associated SLX4 and RTEL1 somatic mutations and HHS-associated 92 

RTEL1 germline mutations that abrogate SLX4-RTEL1 complex formation. We show that both 93 

SLX4 and RTEL1 get recruited to nascent DNA strands and that they can be found in the 94 

immediate vicinity of active RNA polymerase II (RNA pol II). SLX4 turns out to drive the 95 

recruitment and/or accumulation of FANCD2 at RNA pol II. In line with the recently described 96 

role of FANCD2 in preventing endogenous transcription-induced replication stress34,35, we 97 

demonstrate that SLX4 and RTEL1 interact to prevent replication-transcription conflicts in 98 

unstressed cells. 99 

 100 

RESULTS 101 

 102 

SLX4 interacts with RTEL1 103 

While conducting tandem mass spectrometry analyses of proteins that co-purify with YFP-SLX4 104 

stably produced in HeLa cells under the control of a doxycycline (Dox)-inducible promoter, we 105 

reproducibly and specifically found a small number of RTEL1 peptides in SLX4 complexes 106 

(Extended data Fig. 1a, Extended data Fig.2, Supplementary Table 1). Immunoprecipitation and 107 

Western blot analysis confirmed SLX4-RTEL1 complex formation and showed that it is not 108 

mediated by DNA and is sufficiently robust to be maintained in a high-salt buffer (Fig. 1a). 109 

Importantly, endogenous RTEL1 was also detected in pull downs of endogenous SLX4 (Fig. 1b). 110 

Furthermore, we found SLX4 and RTEL1 to partially colocalize in the nucleus (Extended data 111 
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Fig. 1b) and their interaction, while constitutive throughout the cell cycle, to be enhanced in late-112 

S/G2 and mitosis suggesting a cell-cycle dependent control (Fig. 1c and Extended data Fig. 1c).   113 

 114 

SLX4 and RTEL1 are direct binding partners 115 

To map the RTEL1 binding domain in SLX4, we assessed the ability of endogenous RTEL1 to 116 

co-immunoprecipitate with various recombinant YFP-tagged fragments of SLX4 produced in 117 

HeLa cells (Extended data Fig. 1d). As depicted in Fig. 1d, the RTEL1 binding domain 118 

corresponds to a region of SLX4 that encompasses both the BTB domain, which drives the 119 

homodimerization of SLX4 and is important for ICL-repair and telomere related functions of 120 

SLX42,36, and a short conserved amphipathic motif (residues 603 to 626) of unknown function 121 

located just upstream of the BTB domain (Fig. 1d and Extended data Fig. 1d). Interestingly, we 122 

have identified in biopsied metastases from two unrelated patients (lung metastasis of 123 

chondroblastic osteosarcoma and liver metastasis of gastric adenocarcinoma), two somatic 124 

mutations that alter conserved residues within that motif (Fig. 1d). Both D614G and L618P 125 

mutations abrogate interaction of SLX4 with RTEL1 (Fig. 1e) but not with XPF despite the 126 

nearby MLR XPF-binding domain (Fig. 1d). Deletion of the BTB or point mutations in that 127 

domain also strongly impairs interaction with RTEL1 (Fig. 1e). Our results indicate that both the 128 

short conserved motif upstream of the BTB and the BTB itself are required for optimal 129 

interaction with RTEL1. Accordingly, proteomic analyses confirmed that RTEL1 is the primary 130 

binding partner of an SLX4 fragment containing the conserved amphipathic motif and the BTB 131 

domain (Extended data Fig. 1e, Extended data Fig. 3, Supplementary Table 2). Most strikingly, 132 

the D614G and L618P mutations abrogated interaction only with RTEL1, amongst all 133 

functionally relevant potential interactors of that region of SLX4 (Extended data Fig. 1e, 134 

Extended data Fig. 3, Supplementary Table 2).  135 

Noteworthy, SLX4 and RTEL1 can both interact with TRF21,4,8,9,37. However, SLX4 mutations 136 

that abrogate interaction with RTEL1 do not impact interaction with TRF2 and vice versa (Fig. 137 

1f). This indicates that TRF2 does not contribute to SLX4-RTEL1 complex formation and 138 

suggests that RTEL1 and TRF2, which preferentially associate at the G1/S transition and in S 139 

phase37, bind SLX4 when not in complex with one another.  140 

We next undertook the identification of the SLX4-binding domain in RTEL1. The important 141 

contribution of the amphipathic motif in SLX4 provided clues as to which part of RTEL1 might be 142 

involved in the SLX4-RTEL1 interaction. Indeed, RTEL1 contains two harmonin-N-like motifs 143 

that are related to the paired amphipathic helix (PAH) domain38. The PAH domain is a protein-144 

protein interaction module that folds into a helical bundle structure that forms a hydrophobic 145 

cleft for the binding of a short amphipathic helix. Such a helix is predicted to form between 146 

residues 604 and 620 within the conserved domain of SLX4 that is critical for binding to RTEL1 147 

(Fig. 1d). Our modelling analyses suggested that both harmonins of RTEL1 could accommodate 148 
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this helix (Fig. 2a). In particular, residues D614 and L618 in SLX4 would lie at the interface of 149 

the helix and the harmonins-binding site. Supporting our prediction, an RTEL1763-1164 fragment 150 

that contains both harmonin domains (HD) efficiently pulls down endogenous SLX4 (Fig. 2b). 151 

Direct interaction between SLX4 and RTEL1 and precise mapping of the SLX4-binding domain 152 

in RTEL1 were further monitored by yeast two hybrid (Y2H). Interestingly, the amphipathic helix 153 

and the BTB are jointly needed to interact with an RTEL1 fragment containing both HDs as no 154 

interaction was detected with just the helix (Fig. 2c). In contrast to our modelling predictions (Fig. 155 

2a), interaction was detected only with the first HD (HD1) (Fig. 2c). This specificity turned out to 156 

rely on a short conserved sequence located just after the C-terminus of HD1 that is not found 157 

after the second harmonin domain (HD2) as an HD1 fragment lacking this short sequence, does 158 

not bind SLX4 (Fig. 2c and Extended data Fig. 4a). Both SLX4 D614G and L618P patient-159 

derived mutations totally abrogate interaction with RTEL1 in Y2H (Fig. 2d), confirming that the 160 

conserved amphipathic motif of SLX4 is essential for direct binding to RTEL1. The specificity of 161 

this direct interaction was further confirmed in vitro with bacterially produced recombinant SLX4 162 

and RTEL1 fragments (Figure 2e and Extended data Fig. 4b). Interestingly, amongst the RTEL1 163 

germline mutations identified in HHS patients, four missense mutations have been mapped 164 

within HD1 and two nonsense mutations in the non-structured segment that links HD1 and 165 

HD238. Strikingly, all six mutations negatively impact interaction with SLX4 (Fig. 2f-h and 166 

Extended data Fig. 4c,d). Our findings demonstrate that SLX4 and RTEL1 are direct binding 167 

partners and suggest a complex mode of interaction that strictly relies on not only the docking of 168 

a conserved amphipathic helix of SLX4 with the first HD of RTEL1 but also on the BTB homo-169 

dimerization domain of SLX4.  170 

 171 

SLX4 promotes replication fork progression and genome stability via interaction with 172 

RTEL1 173 

Having established that SLX4 and RTEL1 are direct binding partners, we next sought to 174 

understand the functional relevance of this interaction. Overall, both proteins are required for 175 

many of the same genome maintenance aspects including control of telomere homeostasis, ICL 176 

repair and homologous recombination. However, it is not known whether they act within the 177 

same pathways and, at least in mice, they have rather independent and antagonistic functions 178 

at telomeres where RTEL1 unfolds T-loops to prevent their SLX4-driven endonucleolytic 179 

processing and telomere attrition20. Considering our findings, one explanation could have been 180 

that RTEL1 also prevents such unscheduled processing of secondary DNA structures at 181 

telomeres by directly interacting with SLX4 and negatively controlling its associated structure-182 

specific endonucleases (SSEs). However, we observed no telomere attrition in human cells 183 

producing the RTEL1-binding defective SLX4D614G and SLX4L618P mutants, arguing against such 184 

a scenario (data not shown). We also did not observe any increased cellular sensitivity to 185 
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mitomycin C in those cells indicating that SLX4 and RTEL1 do not need to interact to fulfil their 186 

functions in ICL repair (Extended data Fig. 5a).  187 

RTEL1 plays a role in genome wide replication through direct interaction with PCNA22. 188 

Accordingly, impaired replication is observed in mouse cells expressing a PCNA-binding 189 

defective mutant22 or following depletion of RTEL1 in human cells22,28. Since SLX4 can also be 190 

found associated with the replisome39, we first assessed in DNA fiber assays whether loss of 191 

SLX4 similarly impairs replication. Cells were transfected with different siRNAs targeting SLX4 192 

or control siRNAs and nascent DNA was labelled in vivo by successive pulses of 193 

iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU). Analogues and total DNA were detected 194 

by immunofluorescence on spread DNA molecules. Depletion of SLX4 in HeLa and U2OS cells 195 

resulted in shorter nascent DNA tracks and increased fork ratio. This is indicative of impaired 196 

replication fork progression, as seen following depletion of RTEL128 (Fig. 3a and Extended data 197 

Fig. 5b,c). Importantly, the replication defects caused by depletion of SLX4 were fully rescued 198 

by the expression of Flag-HA-SLX4WT but not Flag-HA-SLX4D614G or Flag-HA-SLX4L618P (Fig. 3b 199 

and Extended data Fig. 5d,e).  Using in situ proximity ligation assays (PLA) between SLX4 and 200 

neo-synthesized DNA or RTEL1, we found that SLX4 does not need to interact with RTEL1 to 201 

get recruited to the replication fork (Fig. 3c) and that both proteins do not need to interact to get 202 

recruited in the vicinity of one another (Extended data Fig. 6a). To confirm that SLX4-RTEL1 203 

complex formation is nevertheless critical for proper replication fork progression in unchallenged 204 

cells, we used an HHS patient-derived immortalized cell line (P7) carrying a homozygous 205 

missense R957W mutation in HD131 that abrogates binding to SLX4 (Fig. 2f,g and Extended 206 

data Fig. 4d). Although RTEL1R957W, which has an intact PCNA interacting motif (PIP), is 207 

recruited like RTEL1WT to neo-synthesized DNA (Extended data Fig. 6b,c), the P7 patient-208 

derived cell line presented short nascent DNA tracks and a high fork ratio (Fig. 3d), reminiscent 209 

of what we observed in cells producing SLX4 mutants that cannot bind RTEL1 (Fig. 3b and 210 

Extended data Fig. 5d,e).  211 

Overall our results demonstrate that SLX4 is necessary for proper replication in unchallenged 212 

cells and that it must associate with RTEL1 to help the replisome overcome situations which 213 

impede replication fork progression during normal S-phase.  214 

 215 

SLX4 prevents replication perturbations independently of its associated structure-216 

specific endonucleases 217 

Both MUS81 and XPF-ERCC1 were shown to promote normal replication fork rates 218 

during unperturbed S phase40. To assess whether the RTEL1-dependent function of SLX4 in 219 

DNA replication in unstressed cells relies or not on its interaction with its associated SSEs, we 220 

generated an SLX4-SMX mutant that is unable to interact with all three SSE partners (Fig. 4a). 221 

This mutant carries a combination of SLX4 mutations that were previously shown to each 222 
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abrogate interaction between SLX4 and one of its SSE partners2,41. Immunoprecipitation of 223 

DOX-inducible Flag-HA-SLX4-SMX stably expressed in HeLa Flp-In TREX cells confirmed 224 

severely impaired interactions with all three SSE partners (Fig. 4b). Remarkably though and in 225 

stark contrast to the RTEL1-binding defective mutants, the SLX4-SMX mutant fully rescued the 226 

replication defects caused by depletion of endogenous SLX4 (Fig. 4c). This demonstrates that 227 

in unstressed cells SLX4 acts with RTEL1 to promote replication fork progression independently 228 

of its associated SSEs.   229 

 230 

SLX4 promotes FANCD2 foci formation via interaction with RTEL1 231 

The Fanconi anemia pathway protein FANCD2 ensures proper replication fork progression in 232 

response to various endogenous and exogenous sources of replication impediments (for 233 

review42). In unchallenged cells, FANCD2 is monoubiquitinated and can form spontaneous foci43. 234 

Interestingly, we noticed that depletion of SLX4 induced a drop in the amount of spontaneous 235 

FANCD2 foci (Fig. 5a) without altering the level of monoubiquitination of FANCD2 (data not 236 

shown). This was fully rescued by expression of Flag-HA-SLX4WT but not Flag-HA-SLX4D614G or 237 

Flag-HA-SLX4L618P (Fig. 5a and Extended data Fig. 7a,b). Our results demonstrate that SLX4 238 

drives the formation of FANCD2 foci in unchallenged cells and that this relies on its interaction 239 

with RTEL1. FANCD2 was recently shown to colocalize with RNA polymerase II (RNA pol II) 240 

and contributes to preventing endogenous transcription-induced replication stress34,35. We thus 241 

assessed whether SLX4 may influence the recruitment and/or persistence of FANCD2 in the 242 

vicinity of active RNA pol II. We observed a reduction in proximity ligation assay (PLA) signals 243 

between FANCD2 and phosphorylated RNA pol II upon depletion of SLX4 (Fig. 5b). This was 244 

rescued by SLX4WT but not the RTEL1-binding defective mutants (Fig. 5c and Extended data 245 

Fig. 7c), indicating that the accumulation of FANCD2 in the vicinity of active RNA pol II requires 246 

an interaction between SLX4 and RTEL1. 247 

 248 

SLX4 binds RTEL1 to prevent conflicts between replication and transcription 249 

Since SLX4 appeared to drive the association of FANCD2 with RNA pol II we hypothesized that 250 

it might itself be found in the immediate vicinity of RNA pol II. As shown in Fig. 5d, SLX4 can be 251 

found in association with RNA pol II in PLA analyses. This was also the case for RTEL1 (Fig. 252 

5e). However, as observed for the association of SLX4 and RTEL1 with nascent DNA, RTEL1-253 

binding defective SLX4D614G and SLX4L618P mutants were also detected in the vicinity of RNA pol 254 

II indicating that SLX4 does not need to associate with RTEL1 to reach RNA pol II (Extended 255 

data Fig. 7d). Similarly, we also found the SLX4-binding defective RTEL1R957W mutant to be in 256 

tight vicinity with RNA Pol II in the P7 patient-derived cell line (Extended data Fig. 7e). Although 257 

we cannot exclude that the pools of SLX4 and RTEL1 that we find associated with nascent DNA 258 

strands (Fig. 3c and Extended data Fig. 6b,c) are different from those associated with active 259 
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RNA pol II (Fig. 5d,e and Extended data Fig. 7d,e), it is tempting to speculate that SLX4 and 260 

RTEL1 play a role at the interface of DNA replication and transcription where they help 261 

replication overcome transcription-mediated impediments. To test this hypothesis we used PLA 262 

to determine whether depletion of SLX4 or RTEL1 leads to increased colocalization between 263 

PCNA and active RNA pol II, which has been used as a readout of collisions between DNA 264 

replication and transcription44. In agreement, a significant increase of PCNA tightly colocalized 265 

with RNA pol II was detected in SLX4 and RTEL1-depleted cells compared to mock depleted 266 

cells (Fig. 5f).  267 

Finally, to determine if transcription is responsible for the replication defects seen in cells lacking 268 

SLX4 and RTEL1 we tested the impact of transcription inhibition on replication fork dynamics. 269 

Strikingly, inhibiting transcription with cordycepin or triptolide rescued the replication defects 270 

caused by depletion of SLX4 or RTEL1 (Fig. 6a and Extended data Figure 8a,b). It also 271 

corrected those resulting from loss of SLX4-RTEL1 complex formation in cells producing the 272 

RTEL1-binding defective SLX4D614G or SLX4L618P mutants and in the P7 patient-derived cell line 273 

that produces the SLX4-binding defective RTEL1R957W mutant (Fig. 6b,c). Overall our results 274 

demonstrate that SLX4 and RTEL1 play a key role in preventing replication impediments 275 

caused by transcription which relies on their direct interaction.  276 

 277 

DISCUSSION 278 

We have unravelled a direct interaction between SLX4 and RTEL1 and demonstrated 279 

that this interaction is critical to help DNA replication overcome transcription-mediated 280 

impediments. By showing that the SLX4-RTEL1 interaction is mediated through the association 281 

of a conserved amphipathic helix and the BTB domain of SLX4 with the HD1 of RTEL1, we 282 

assign a function to a highly conserved region of SLX4 that was of unknown function until now 283 

and identify the first partner of one of the HDs of RTEL1, which has important implications in 284 

terms of human disease as later discussed. We also assign a possibly novel function to the BTB 285 

domain, which was previously shown to mediate homodimerization of SLX42,36. The fact that the 286 

interaction between the amphipathic helix of SLX4 and the HD1 of RTEL1 is not sufficient for 287 

stable SLX4-RTEL1 interaction, which also relies on the BTB domain of SLX4, suggests a more 288 

elaborate mode of interaction than the canonical interaction that is established between a 289 

harmonin-like PAH domain in SIN3 and an amphipathic helix in MAD145,46. Instead, the 290 

contribution made by the BTB domain of SLX4 is closer to what has been described for the 291 

interaction between CCM2 and MEKK3 where the interaction between an amphipathic helix in 292 

MEKK3 with the harmonin homology domain of CCM2 is stabilized by the PB1 protein binding 293 

domain of MEKK347. Structural analyses will help to better characterize the SLX4-RTEL1 294 

binding interface and determine whether dimerization per se is necessary for binding to RTEL1 295 
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and/or whether the BTB domain makes direct contacts with RTEL1. Such analyses should also 296 

provide insight into how the association between SLX4 and RTEL1 might be controlled.  297 

Adding to the multiple roles that SLX4 fulfils in the maintenance of genome stability (for review 298 

see14), we demonstrate that SLX4 contributes to genome wide DNA replication in unstressed 299 

cells and that this relies on its direct interaction with RTEL1 (Fig. 3), since SLX4D614G and 300 

SLX4L618P mutants that cannot bind RTEL1 are unable to rescue the replication defects caused 301 

by depletion of endogenous SLX4. We cannot fully exclude that the D614G and L618P 302 

mutations might impact additional functionalities of SLX4. However, both mutations affect highly 303 

conserved residues within the amphipathic helix of SLX4 that are ideally positioned to engage in 304 

contacts with the harmonins of RTEL1 (Fig. 2) and they are not predicted to impact the overall 305 

fold of SLX4. Furthermore, we identified RTEL1 as the only functionally relevant interactor of 306 

SLX4 to be impacted by both mutations (Extended data Fig. 1e, Extended data Fig. 3, 307 

Supplementary Table 2) and, last but not least, an HHS patient-derived cell line producing an 308 

RTEL1 mutant that cannot bind SLX4 (Fig. 2f,g and Extended data Fig. 4d) phenocopies the 309 

replication defects of cells producing the SLX4D614G and SLX4L618P mutants (Fig. 3b and 3d, 310 

Extended data Fig. 5d,e). Therefore, all evidence points towards a need for SLX4 to interact 311 

with RTEL1 to facilitate replication genome wide. Quite remarkably though, we find that it does 312 

not need to interact with its SSE partners (Fig. 4), providing unprecedented evidence of a 313 

function of SLX4 in human cells that is totally independent of its established nuclease scaffold 314 

functions. Our findings further demonstrate that the SLX4-RTEL1 complex is necessary to 315 

prevent replication-transcription conflicts (Fig. 5, 6). Indeed, inhibiting transcription not only 316 

compensated for the loss of SLX4 or RTEL1, it alleviated to the same extent the replication 317 

defects that result from impaired SLX4-RTEL1 complex formation (Fig. 6 and Extended data Fig. 318 

8). Noteworthy, those replication defects were monitored through unbiased DNA fiber analyses 319 

in unstressed cells. Therefore, the transcription-mediated impairments to DNA replication seen 320 

in absence of SLX4 or RTEL1 must be frequent enough to be detected by such genome wide 321 

analyses and not restricted to a limited number of loci. 322 

Interestingly, RTEL1 was recently found to contribute to the removal of protein-DNA 323 

complexes that hinder the progression of replication forks48. Therefore, one way by which the 324 

SLX4-RTEL1 complex may circumvent replication-transcription conflicts could be by promoting 325 

the clearance of the RNA polymerase complex in the vicinity of replication forks. However, given 326 

the functional ties between both RTEL1 and SLX4 and the processing of secondary DNA 327 

structures, it is likely that the SLX4-RTEL1 complex is involved in non-nucleolytic processing of 328 

nucleic acid structures that form as a result of replication-transcription conflicts. Amongst these, 329 

R-loops that consist of a DNA:RNA hybrid and a displaced single-stranded DNA loop, which 330 

itself can form G-quadruplexes that stabilize the R-loop49, represent a major obstruction for 331 

replication fork progression50. In line with a role in R-loop processing, we find that SLX4 drives 332 
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the accumulation and/or stabilization of FANCD2 in the direct vicinity of RNA pol II (Fig. 5b,c). 333 

FANCD2, along with other components of the Fanconi anemia pathway, makes important 334 

contributions to the signalling of R-loops and their processing34,35,44,51. Intriguingly, we found that 335 

SLX4 and RTEL1 can be detected in close proximity to one another, even when they cannot 336 

interact, and are independently recruited to nascent DNA and RNA pol II (Fig. 3c and Extended 337 

data Fig. 6). Yet, SLX4-RTEL1 complex formation is required for the tight colocalization of 338 

FANCD2 and RNA pol II and is essential for proper replication fork progression (Fig. 3b,d, 339 

Extended data Fig. 5e and Fig. 7c). This suggests that both proteins get recruited independently 340 

from one another but that they need at one stage to make contact for replication to proceed 341 

normally. Such contact may constitute a molecular switch that allows SLX4 to control the 342 

catalytic activity of the RTEL1 helicase for the timely processing of secondary structures that 343 

impede replication fork progression.  344 

Although we found the SLX4-RTEL1 interaction to be constitutive throughout the cell 345 

cycle, we noticed that it increased in late S and G2/M phases (Fig. 1c). Noteworthy, both 346 

FANCD2 and SLX4 contribute to the maintenance of common fragile sites (CFS) in late G2 and 347 

mitosis2,6,52,53. Furthermore, R-loops have been found to accumulate at CFS in absence of 348 

FANCD251,54. Therefore, the preferential interaction between SLX4 and RTEL1 in late S/G2 may 349 

reflect an additional and specific role related to the maintenance of CFS and/or other late 350 

replicating loci where SLX4 recruits RTEL1 for the processing of G4-associated R-loops as 351 

recently described55. 352 

The relevance of our findings in terms of human disease is underscored by the 353 

identification of cancer-derived somatic SLX4 mutations and HHS-associated germline RTEL1 354 

mutations that abrogate the SLX4-RTEL1 interaction (Fig. 1d,e and 2d-h). It is striking that de 355 

novo mutations, each impacting a different and highly conserved residue in the predicted 356 

amphipathic helix of SLX4 and that abrogate interaction with RTEL1, were identified in two 357 

unrelated patients presenting different disease profiles. Furthermore, the HHS-associated 358 

germline homozygote R957W mutation in the HD1 of RTEL1, is also reported in the COSMIC 359 

data base56 as the most represented cancer-associated somatic mutation identified in RTEL1. 360 

Considering that replication stress is an established hallmarks of tumorigenesis (for review57 361 

and that loss of interaction between SLX4 and RTEL1 perturbs DNA replication (Fig. 3b and 362 

Extended data Fig. 5e), it is tempting to speculate that mutations in SLX4 and RTEL1 that 363 

abrogate complex formation are more than just passenger mutations. Replication-transcription 364 

conflicts, which have been linked to the fragility of both late and early-replicating fragile sites of 365 

the genome58-60, are emerging as a potentially much broader source of genome instability with 366 

the realization that transcription is a pervasive process that covers more than 80% of the human 367 

genome61,62. Moreover, oncogene activation during tumorigenesis drives premature entry into S 368 

phase and the firing of intragenic origins, which increases conflicts between replication and 369 
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transcription and genomic instability63. Thus, it will be important to assess what impact SLX4 370 

and RTEL1 mutations that abrogate SLX4-RTEL1 complex formation have on the tumoral 371 

process. Importantly, we have also shown that all reported HHS-associated germline mutations 372 

mapped in the HD1 of RTEL1 negatively impact interaction with SLX4, suggesting that loss of 373 

SLX4-RTEL1 complex formation contributes to the aetiology of the disease. We cannot at this 374 

stage draw any conclusions as to whether SLX4 mutations that abrogate SLX4-RTEL1 complex 375 

formation could be associated with HHS, since both D614G and L618P SLX4 variants that we 376 

have identified in cancer patients were somatic mutations with low allelic frequencies. 377 

Furthermore, bi-allelic germline mutations in SLX4 have been associated until now with Fanconi 378 

anemia15,16. However, there are many cases where different mutations in the same gene are 379 

associated with different pathologic outcomes and diseases. Therefore, it will be important to 380 

determine what clinical phenotypes might be associated with germline SLX4 mutations that 381 

abrogate SLX4-RTEL1 complex formation and whether SLX4 should be considered as a 382 

possible candidate gene for HHS. 383 

Our demonstration of a functionally relevant interaction between SLX4 and RTEL1 384 

redefines the way we ought to think about how they contribute to the maintenance of genome 385 

stability and opens new lines of investigation to help better understand how they prevent the 386 

emergence of cancer and other human diseases.  387 
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FIGURE LEGENDS 579 

 580 

Fig. 1:  SLX4 interacts with RTEL1 581 

(a) YFP-pull down from HeLa cells expressing YFP-SLX4. In lanes 3- 5, YFP-pull downs were 582 

washed in a high salt buffer (NaCl) or carried out in the presence of Benzonase (Benzo) or 583 

Ethidium bromide (EtBr) as indicated. MUS81 and XPF were used as positive controls for SLX4-584 

binding. 585 

(b) Endogenous SLX4 was immunoprecipitated from a HeLa cell-lysate with a combination of 586 

two different anti-SLX4 and visualized by western blotting. 587 

(c) Immunoprecipitation of Flag-HA-SLX4 from dox-inducible HeLa cells at the indicated time 588 

points after release from a thymidine block. Cell cycle profiles of the samples are shown at left. 589 

Immunoblot of a representative experiment (right) and the quantifications of n=3 independent 590 

experiments. Error bars = mean ± s.e.m.  591 

(d) Schematic diagram showing RTEL1-binding domain of SLX4, and multiple SLX4 sequence 592 

alignment centred on the region 599-635 of human SLX4. Top two sequences report secondary 593 

structures (H: helix) and disorder status (D) predicted by PSIPRED and SPOTD algorithms, 594 

respectively (See Methods). NCBI RefSeq identifiers are given within brackets. UBZ4: ubiquitin-595 

binding, MLR: primary XPF-binding domain, BTB: homodimerization domain (also contributes to 596 

XPF-binding), TBM: TRF2-binding motif, SIM: SUMO-interacting motifs, SAP: MUS81-binding 597 

region, CCD: SLX1-binding domain. 598 

(e) YFP-pull downs from HeLa cells expressing WT or mutated YFP-SLX4. ∆BTB: M684VNN-599 

GLPP764 was deleted from the BTB domain. BTB5A and SIM: point mutations in the BTB 600 

domain and SIM motifs, respectively, as described in2. D614G and L618P: cancer-associated 601 

mutations (Fig. 1d).  602 

(f) YFP-pull downs from HeLa cells expressing WT or mutated YFP-SLX4. L1022A: TRF2-603 

binding defective mutant.  604 

All immunoblots were performed with antibodies against the indicated proteins. 605 

Uncropped images for panels a, b, d-f and data for graphs in panel b are available as source 606 
data.  607 
   608 
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Fig. 2: Mapping the interaction domains of SLX4 and RTEL1 609 

(a) Schematic of the RTEL1 protein (top) and 3D modelling (ribbon representation) of HD1 and 610 

HD2, on which the SLX4 peptide has been docked. 611 

(b) Co-immunoprecipitation of endogenous SLX4 with Flag-tagged full-length RTEL1 or a 612 

fragment containing the two harmonins (763-1164) indicated in (a). Immunoblots were 613 

performed with antibodies against SLX4 or the Flag peptide. *Flag indicates the band 614 

corresponding to Flag-RTEL1 full-length and the Flag-RTEL1763-1164 fragment. 615 

(c) Schematic of RTEL1 fragments containing HD1 and/or HD2 (top panel) that were used to 616 

assess direct binding  to the SLX4577-685 (Helix) and SLX4577-1042 (Helix+BTB) fragments by Y2H 617 

(bottom panel). SLX4-interacting fragments are in red. SD: media complemented with all amino 618 

acids except Leu and Trp; X-Gal: ß-galactosidase test; -URA: same as -Leu-Trp with no uracil; 619 

5-FOA: same as -Leu-Trp complemented with 0,2% 5-Fluoroorotic acid; 3-AT: same as –Leu-620 

Trp with no histidine and complemented with 50mM 3-Amino-1,2,4-triazole. 621 

(d) Y2H carried out with WT or mutated SLX4577-1042 (Helix+BTB) fragment and the RTEL1885-990 622 

fragment (HD1b in Fig. 2c). All interaction assays are in duplicate. Media are indicated as in (c). 623 

(e) E.coli-produced 6His-tagged HD1b (RTEL1885-990) and HD2a (RTEL11046-1142) fragments were 624 

used in a Ni++-pull down assay with a WT or a mutated GST-tagged SLX4577-1042 (Helix+BTB) 625 

fragment. Ni++-agarose beads were resuspended in a volume of Laemmli buffer equivalent to 626 

the initial volume of the assay. Identical volumes of Helix+BTB fragments, diluted in Laemmli 627 

buffer to the final concentration used in the assay, and of the Ni++-agarose beads resuspended 628 

in Laemmli buffer were loaded on the gel. 629 

(f) Schematic of RTEL1 fragments used in g and h with Hoyeraal-Hreidarsson syndrome (HHS) 630 

patient mutations mapped in HD1. 631 

(g,h) Co-immunoprecipitation of endogenous SLX4 with transiently expressed WT or mutated 632 

YFP-RTEL1 fragments. Immunoblots were performed with antibodies against the indicated 633 

proteins. 634 

Uncropped images for panels b-e,g,h are available as source data. 635 
  636 
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Fig. 3: SLX4 promotes replication fork progression during S phase through interaction 637 

with RTEL1  638 

(a) HeLa Flp-In TREX “Fit0” cells (empty FRT site) were transfected with siRNAs targeting SLX4 639 

(siSLX4UTR and siSLX4SP) or control siRNAs (siLUC). Nascent DNA was labelled with pulses of 640 

iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU). Replication fork dynamics were analysed 641 

on stretched DNA after immunostaining of IdU, CldU and DNA (red, green and blue, 642 

respectively). Distributions of replication track lengths and fork ratios (ratio between the longest 643 

tract over the shortest for each individual unbroken fork) are shown in box-plots (median, first 644 

and third quartiles) with 5th-95th percentile whiskers (+=mean; dots= outliers; n=number of 645 

unbroken signals analysed by Mann-Whitney test, **: p<0.01, ****: p<0.0001). The immunoblot 646 

was performed with antibodies against SLX4 and ß-catenin (internal loading control). Arrow: 647 

SLX4 band. *: prominent non-specific band. Scale bar = 10 μm. 648 

(b) HeLa “Fit0” and Hela cells stably expressing DOX-inducible WT or mutated Flag-HA-SLX4 649 

as indicated. siSLX4UTR was used to deplete endogenous SLX4. ns: not significant; **: p<0.01; 650 

***: p<0.001; ****: p<0.0001 by Mann-Whitney test. Scale bar = 10 μm. 651 

(c) Nascent DNA strands were pulse-labelled with 5-ethynyl-2-deoxyuridine (EdU). Biotin was 652 

conjugated to EdU by click chemistry after cell fixation. In situ proximity ligation assay (PLA, 653 

green) was performed between SLX4 (anti-HA) and EdU (anti-biotin) before EdU 654 

counterstaining (red). Representative fields and zooms on single cells (white squares) are 655 

shown. The number of PLA spots per EdU-positive cells is plotted (red bars: median with 656 

interquartile range; n>79; Kruskal-Wallis test, ****: p<0.0001). In parallel, single-cell expression 657 

of the different Flag-HA-SLX4 constructs was assessed by HA immunostaining (n>99). Parental 658 

HeLa “Fit0” cells (-) were used as negative control. Scale bar = 10 μm. 659 

(d) Replication fork dynamics analysed as in a in HHS-patient derived SV40-transformed 660 

fibroblasts (P7) bearing a homozygous RTEL1R957W mutation in HD1 that abrogates interaction 661 

with SLX4 (Fig. 2g,h and Extended data Fig 4). P7 cells were compared to SV40-immortalized 662 

fibroblasts expressing WT RTEL1. ****: p<0.0001 by Mann-Whitney test. Scale bar = 10 μm. 663 

Uncropped images of the immunoblots in panel a and data for graphs in panels a-d are 664 
available as source data.  665 
  666 
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 667 

Fig. 4: SLX4 promotes replication fork progression independently of its associated SSEs 668 

(a) Schematic of SLX4 showing the F529LW > ALA, E1577L > AA and C1805 > R point 669 

mutations introduced to generate the SLX4-SMX mutant that abrogate binding to XPF, MUS81 670 

and SLX1, respectively. 671 

(b) anti-Flag immunoprecipitations were performed on cell lysates from HeLa “Fit0” and HeLa 672 

Flp-In TREX cells stably expressing DOX-inducible WT or Flag-HA-SLX4-SMX as indicated. 673 

Immunoblots were performed with antibodies against SLX4, XPF, MUS81 and SLX1. The 674 

fraction of SLX1, MUS81 and XPF associated with SLX4 was normalized to the total 675 

immunoprecipitated SLX4. The relative ratio of SLX1, MUS81 and XPF associated with SLX4-676 
SMX was then normalized to the corresponding SLX4WT ratio. 677 

(c) Replication fork dynamics were assessed as in Fig. 3 in HeLa “Fit0” and HeLa Flp-In TREX 678 

cells stably expressing DOX-inducible Flag-HA-SLX4-SMX. siSLX4UTR was used to deplete 679 

endogenous SLX4. Box-plots show median, first and third quartiles with 5th-95th percentile 680 

whiskers (+=mean; dots= outliers; n=number of unbroken signals analysed). ns: not significant; 681 

*: p<0.05; **: p<0.01; ****: p<0.0001 by Mann-Whitney test. 682 

Uncropped images of blots for panels b and c and data for co-IP ratios in b and graphs in c are 683 

available as source data.  684 

  685 
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Fig. 5: SLX4 and RTEL1 interaction promotes FANCD2:RNA pol II colocalization and 686 

prevents conflicts between replication and transcription 687 

 688 

(a) Quantification of FANCD2 foci in unchallenged interphase U2OS “Fit0” cells or expressing 689 

WT or mutated Flag-HA-SLX4. The number of foci per cell with the mean ± s.e.m. of the 690 

distribution is plotted (n=120 cells). Cells were mock- (siLUC) or SLX4-depleted (siSLX4UTR). 691 

Immunoblots at top were performed with anti-SLX4, anti-RTEL1, anti-XPF and anti-GRB2 692 

(loading control). 693 

(b) PLA between FANCD2 and RNA pol II phospho S2 in HeLa “Fit0” cells mock- or SLX4-694 

depleted. Reactions with single primary antibodies (Ab) were used as negative controls. Box-695 

plots show number of PLA spots per nucleus (n>180; median, first and third quartiles, 5-95th 696 

percentile whiskers, +: mean). Immunoblot at right was performed with anti-SLX4 or anti-ß-697 

catenin (loading control). The arrow indicates the SLX4 band.  698 

(c) As in b, in U2OS cells expressing Flag-HA-SLX4 (n>180). Endogenous SLX4 was depleted 699 

with siSLX4UTR. 700 

(d) PLA between SLX4 (HA) and RNA pol II phospho S2 in U2OS cells expressing Flag-HA-701 

SLX4WT (left panel, n>139, median with interquartile range). Parental U2OS “Fit0” cells (-) were 702 

used as a negative control. Right panel shows single-cell expression of the construct (HA 703 

staining, n>124).  704 

(e) PLA between endogenous RTEL1 and RNA pol II phospho S2 in HeLa “Fit0” cells (n>153). 705 

PLA negative controls as in b. 706 

(f) PLA between endogenous PCNA and RNA pol II phospho S2 was performed in mock-707 

depleted (siLUC), SLX4-depleted (siSLX4UTR, siSLX4sp) or RTEL1-depleted (siRTEL1) HeLa 708 

“Fit0” cells (n>175). PLA negative controls as in b. 709 

Kruskal-Wallis (a, b, c, e, f) and Mann-Whitney (d) tests (ns: not significant, *: p<0.05, **: 710 

p<0.01, ***: p<0.001, ****: p<0.0001). Scale bar of representative fields and cells = 10 μm in all 711 

panels. 712 

Uncropped images of the immunoblots in panels a,b and data for graphs in panels a-f are 713 

available as source data. 714 

  715 
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Fig. 6: Transcription inhibition rescues replication defects caused by loss of SLX4-RTEL1 716 

complex formation 717 

(a) HeLa “Fit0” cells were depleted for SLX4 or RTEL1 and 50 µM cordycepin was added to 718 

culture medium 3 h before and during the IdU and CldU pulses to inhibit transcription elongation. 719 

Replication fork dynamics were analysed as in Fig. 3a. The distribution of the fork ratio is shown 720 

in box-plots (median, first and third quartiles with 5th-95th percentile whiskers; +=mean; dots= 721 

outliers; n=number of unbroken signals analysed; ns: not significant, **: p<0.01, ****: p<0.0001 722 

by Mann-Whitney test). See also Extended Data Fig. 8a for the distributions of replication track 723 

lengths and western blot showing depletion efficiency. 724 

(b) As in a in HeLa Flp-In TREX cells stably expressing DOX-inducible WT, D614G or L618P 725 

Flag-HA-SLX4 depleted for endogenous SLX4. The immunoblot was performed with antibodies 726 

against SLX4 and ß-catenin used as internal loading control. 727 

(c) As in a in RTEL1WT and RTEL1R957W SV-40 immortalized human fibroblasts. 728 

Uncropped images of the immunoblots in panel b and data for graphs in panels a-c are 729 

available as source data. 730 

 731 

 732 

  733 
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METHODS 734 

 735 

DNA construction and mutagenesis 736 

DNA constructions and cloning were performed using Gateway Technology (Invitrogen) as per 737 

manufacturer’s instruction. A list of primers used in this study is available upon request. The 738 

BTB and SIM mutants of SLX4 were generated as previously described2: 739 

SLX4BTB* (H706KFVL710  AAAAA)  740 

SLX4SIM* (SIM1: V1151ILLL1155 AAAAA; SIM2: I1194IDV  AADV; SIM3: V1392VEV AAEV) 741 

In addition, a deletion of the BTB domain was generated and used in the present study:  742 

SLX4∆BTB (deletion M684VNN-GLPP764) 743 

SLX4-SMX (F529LW ALA, E1577L AA, C1805 R) 744 

 745 

Antibodies 746 

Rabbit anti-SLX4 (A302-270A), rabbit anti-XPF (A301-315A-T), rabbit anti-biotin (A150-109A) 747 

and rabbit anti-TRF2 (A300-796A) antibodies were purchased from Bethyl. Rabbit anti-RTEL1 748 

antibody was produced by the laboratory of Arturo Londoño-Vallejo’s64. Mouse anti-MUS81 749 

[MTA30 2G10/3] (ab14387), mouse anti-GAPDH (ab9484), rabbit anti-FANCD2 (ab2187) and 750 

rabbit anti-RNA polymerase II  (ab5095 [phospho S2]) antibodies were purchased from Abcam. 751 

Mouse anti-RNA polymerase II  (clone H5 MMS-129R [phospho S2]), mouse anti-HA [16B12] 752 

(901513) antibodies were purchased from BioLegend. Mouse anti-XPF [clone 219] (XPF Ab-1) 753 

antibody was from Thermo scientific. Mouse anti-ß-catenin (clone 14, 610153) and mouse anti-754 

GRB2 (610111) antibodies were from BD Biosciences. Mouse anti-ß-actin antibody (AC-15, 755 

A5441) was purchased from Sigma. Mouse anti-laminA/C antibody was purchased from Santa 756 

Cruz (sc-7292). Mouse anti-BrdU antibody (clone B44, 347580) was from Becton Dickinson. Rat 757 

anti-BrdU antibody (clone BU1/75, AbC117-7513) was purchased from Abcys. Mouse anti-758 

ssDNA antibody (clone 16-19, MAB3034) was from Millipore. Mouse anti-biotin antibody (200-759 

002-211) was purchased from Jackson Immunoresearch. 760 

Duolink® In Situ PLA® Probe anti-Rabbit PLUS (DUO92002) anti-Mouse MINUS (DUO92004) 761 

were from Sigma. 762 

Goat anti-rabbit IgG/HRP (2019-08) and goat anti-mouse IgG/HRP (2019-05) antibodies were 763 

purchased from Dako. Alexa Fluor 488 conjugated donkey anti-mouse (A-21202), goat anti-764 

mouse (A-11001), goat anti-rat (A-11006) and Alexa Fluor 594 conjugated donkey anti-rabbit 765 

(A-21207), goat anti-mouse (A-11032 and A-11020), goat anti-rabbit (A-11072), rabbit anti-766 

mouse (A-21062), goat anti-rabbit (A-11046) antibodies were from Molecular probes.  767 

 768 

Immunoblotting 769 
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SDS-PAGE and immunoblotting were done with Novex® NuPAGE® SDS-PAGE Gel System 770 

and XCell IITM blot module (Invitrogen), respectively. Hybond-C Extra (RPN203e) was 771 

purchased from GE healthcare. Western lightning plus ECL (NEL105001eA) was from 772 

PerkinElmer, Hyperfilm ECL (28-9068-35) was purchased from GE healthcare. Chemidoc MP 773 

imaging system (Biorad), ImageQuant LAS 4000 system (GE Healthcare) or Amersham Imager 774 

600 (GE health care) were also used for detection. 775 

 776 

Cell lines, cell culture and transfection 777 

HeLa cells (ATCC) were cultured in DMEM with 10% FBS and Pen/Strept (Gibco). HeLa Flp-In 778 

TRex and U2OS Flp-In TRex cells (Fit0: parental cells with no cDNA integrated at the FRT site) 779 

(kindly provided by Stephen Taylor and Palm Silver, respectively) were maintained in DMEM 780 

containing 10% FBS and Pen/Strept with 2 µg/mL Blasticidine (Invivogen) and 100 µg/mL 781 

Zeocin (Invitrogen) to maintain the genomic FRT site. For generating stable cell lines expressing 782 

YFP- or Flag-HA- tagged SLX4 in a doxycycline-inducible manner, pDEST-YFP-SLX4 or 783 

pDEST-Flag-HA-SLX4 were co-transfected with pOG44 (encoding the Flp recombinase) with 784 

1:9 ratio, respectively, using JetPEI (Polyplus transfection) as per manufacturer’s instruction. 785 

Recombinant clones were selected with the medium described above with 100 µg/mL 786 

Hygromycin B (Invitrogen) instead of Zeocin. Selected clones were pooled to generate a 787 

population in order to minimize clonal heterogeneity. Fibroblasts from a severe combined 788 

immunodeficient patient with genetic defect in the lymphoid specific RAG1 gene that is not 789 

expressed in fibroblasts (WT RTEL1 control in Extended data Fig. 6c)  and from an RTEL1-790 

deficient patient P731  were obtained from skin biopsies. Informed and written consent was 791 

obtained from donors and patients. The study and protocols comply with the 1975 Declaration 792 

of Helsinki as well as with the local legislation and ethical guidelines from the Comité de 793 

Protection des Personnes de l’Ile de France II and the French advisory committee on data 794 

processing in medical research. Fibroblasts were transformed by the large T antigen from 795 

SV40T as previously described65. Fibroblasts were cultured in RPMI with 15% FBS, Pen/Strept 796 

and 25 mM Hepes (Gibco) under 3% O2. All cell lines were checked for mycoplasma 797 

contamination.  798 

 799 

Immunoprecipitation  800 

In YFP-pull downs, the SLX4 complex was purified from HeLa Fit0 cells transfected with 801 

pDEST-YFP-SLX4 or HeLa Flp-In TREX cells expressing YFP-SLX4 under 10 ng/mL 802 

doxycycline, as previously described2. Briefly, cells were harvested by Trypsin/EDTA, washed 803 

with PBS then lysed with NETN buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1 mM EDTA, 804 

1% NP-40, 1 mM DTT, 0.25 mM PMSF) containing proteasome inhibitor cocktail (Complete 805 

EDTA-free [Roche]) for 30 min at 4˚C. After centrifugation (15000 rpm, 10 min at 4˚C), 806 
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supernatants were incubated with GFP nanobody (kindly provided by Mauro Modesty) for 2 hrs 807 

at 4˚C. The beads were washed 3 times with NETN buffer, twice with TBS, and 5 times with 50 808 

mM Tris-HCl [pH 8.0] before samples were eluted with NuPAGE LDS sample buffer (Invitrogen) 809 

for 5 min at 95˚C. For Fig. 1a (lane 3), NETN buffer including 850 mM NaCl was added to the 810 

supernatant before immunoprecipitation to adjust the final concentration of NaCl to 500 mM. 811 

After the incubation, beads were washed with NETN including 500 mM NaCl for 3 times before 812 

TBS wash. For Fig. 1a (lane 4 and 5), beads were incubated with either 500 U/mL Benzonase 813 

(Sigma) in presence of 2 mM MgCl2 or 50 µg/mL EtBr for 16 hrs after TBS wash. Beads were 814 

washed 5 times with 50 mM Tris-HCl [pH 8.0] buffer then samples were eluted with NuPAGE 815 

LDS sample buffer. For anti-Flag immunoprecipitation samples were processed as described 816 

above using FLAG M2 Agarose beads (Sigma-Aldrich) instead of a GFP-nanobody.  817 

 818 

Co-immunoprecipitation of endogenous SLX4 and RTEL1 819 

107 HeLa (Fit0) cells were lysed in NETN buffer (50 mM Tris-HCl [pH=8.0], 150 mM NaCl, 1 mM 820 

EDTA, 0.5% NP-40 supplemented with anti-proteases cocktail (Roche)) at 4°C before 821 

sonication and centrifugation. Half of the clarified lysate were incubated either with 2µg of IgG 822 

rabbit (Cell Signaling #2729S)) or 2µg of anti-SLX4 (1µg of A302-270A + 1µg A302-269A from 823 

Bethyl laboratories) and 15µL dynabeads-protein G (invitrogen) overnight at 4°C. Beads were 824 

washed 4 times in NETN buffer before elution in loading buffer. To probe for RTEL1 and SLX4 825 

in WB and avoid the signal of the IgG used for immunoprecipitation, specific secondary 826 

antibodies were used (Veriblot, Abcam). 827 

 828 

Cell cycle synchronization  829 

HeLa Flp-In TREX cells expressing Flag-HA-SLX4 were synchronized by double thymidine 830 

block. 2x106 cells were seeded the day before treatment then incubated with 10% FBS/DMEM 831 

containing 2 mM Thymidine (Sigma) and doxycycline (10 ng/mL) for 18 hrs. After PBS wash, 832 

cells were incubated in the medium without Thymidine for 9 hrs then incubated in the medium 833 

containing 2 mM of Thymidine for 16 hrs. The cells synchronized at G1/S phase were released 834 

from Thymidine block and collected at several time points after release (described in the Fig.). 835 

Cell cycle stages of samples were analyzed with a MuseTM cell analyser (Millipore) as per 836 

manufacturer’s instructions.  837 

 838 

Yeast Two Hybrid 839 

Yeast Two-Hybrid assay was performed using ProQuest Two-Hybrid systems as per 840 

manufacturer’s instruction. Briefly, various Human SLX4 and RTEL1 cDNA fragments indicated 841 

in Fig. 2c,d and Extended data Fig. 4 were inserted in yeast two-hybrid vectors pDEST22 and 842 

pDEST32, respectively. Yeast two-hybrid vectors were transformed into the yeast strain 843 
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MaV203. Cells were cultured on plates with the selective media as indicated in Fig. 2c,d and 844 

Extended data Fig. 4. 845 

 846 

Protein Expression and Purification and in vitro binding assay 847 

The 6His-tagged RTEL1 HD1a, HD1b and H2a fragments and the GST-SLX4 (Helix-BTB) WT 848 

and D614G mutant fragments were expressed in E.coli (Rosetta) induced with 0.1 mM IPTG at 849 

16°C overnight. Bacterial pellets were frozen in PBS. The next day, an equivalent volume of 2x 850 

lysis buffer (100 mM Tris [pH=8], 20% [v/v] glycerol, 2% [v/v] Triton X-100, 1 M NaCl, 1 mg/ml 851 

lysozyme (Sigma)) was added. A protease inhibitor cocktail (Complete EDTA-free, Roche) and 852 

PMSF were added to the thawed lysates just before sonication and clarification.  853 

Ni++-agarose was charged with the 6His-tagged RTEL1 HD fragments after incubation with the 854 

supernatant for 3 hrs at 4°C. The Ni++-agarose resin was washed 5 times in wash buffer (50 855 

mM Tris.Cl pH=8, 1 M NaCl, 0.01% [v/v] Triton X-100) and stored at 4°C in binding buffer 856 

(150mM NaCl, Tris.Cl pH=8, 0,01% [v/v] Triton X100, 10% [v/v] glycerol). The GST-SLX4 857 

(Helix-BTB) WT and D614G mutant fragments were purified on Glutathione agarose (Molecular 858 

probes) following standard procedures 859 

For in vitro binding assays the GST-SLX4 (Helix-BTB) fragments were incubated with Ni++-860 

agarose charged with the 6His-tagged RTEL1 HD fragments for 2 hours at 22°C. The flow 861 

through (Ft) was recovered after centrifugation. The pelleted Ni++-agarose was subsequently 862 

was washed 10 times with 10 bead volume of binding buffer before it was resuspended in a 863 

volume of Laemmli buffer equivalent to the total volume of the in vitro binding assay.  864 

Proteins were analyzed by SDS-PAGE and detected following transfer to a nitrocellulose 865 

membrane (Amersham) with anti-6His or anti-GST antibodies. 866 

 867 

siRNA transfection and Complementation assays 868 

The following siRNA sequences were used in this work. 869 

siLUC (CGUACGCGGAAUACUUCGAdTdT) 870 

siSLX4UTR targeting the 5’UTR and 3’UTR of SLX4 consists of a mix of two siRNAs: 871 

SLX4 UTR87 (GCACCAGGUUCAUAUGUAUdTdT) 872 

SLX4 UTR7062 (GCACAAGGGCCCAGAACAAdTdT) 873 

In addition, siRNAs for SLX4 (M-014895-01-0005) (siSLX4SP) and RTEL1 (M-013379-00-0005) 874 

(siRTEL1SP) were purchased from Dharmacon. 875 

Fit0 cells or stable cell lines described in Cell lines section were seeded the day before 876 

transfection (1.5x105 cells/6-well). The transfection was performed in 10%FBS/DMEM 877 

containing doxycycline to induce Flag-HA-SLX4 protein expression. siRNAs were transfected at 878 

10 or 20 nM of final siRNA concentrations using INTERFERin (Polyplus transfection) as per 879 

manufacturer’s instructions. The transfection was repeated 24 hrs later then cells were 880 
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reseeded 6 hrs after the 2nd siRNA transfection. Cells were then incubated in 10%FBS/DMEM 881 

containing doxycycline for 1 or 2 days in order to achieve optimal knockdown efficiency and to 882 

maintain Flag-HA-SLX4 expression. Cell biological and biochemical analysis were performed as 883 

described below. 884 

 885 

Colony survival assay 886 

siRNA-treated HeLa Flp-In TREX cells expressing Flag-HA-SLX4 were reseeded at 900 cells/60 887 

mm Petri dish 6 hrs after the 2nd siRNA transfection. 20 hrs later, cells were treated with the 888 

indicated concentrations of mitomycin C (MMC) in presence of doxycycline (1 ng/mL) for 24 hrs. 889 

Cells were then subsequently washed with PBS and cultured with 10% FBS/DMEM including 1 890 

ng/ml of doxycycline. Colonies were fixed with fix solution (50% EtOH, 7% Acetic acid) including 891 

0.5 mg/mL Brilliant blue R 250 (Sigma) 8 days after MMC treatment and counted.  892 

  893 

DNA fiber analysis 894 

Cells were pulse labelled with 25 µM IdU (Sigma) for 20 min, washed with pre-heated medium 895 

and PBS, then pulse labeled with 50 µM CldU (Sigma) for 20 min. In Fig. 6 and Extended data 896 

Fig. 8a, cells were pre-treated for 3 h with 50 µM cordycepin (Sigma) and cordycepin was 897 

maintained during the labelling procedure. In Extended data Fig. 8b, cells were treated for 3 h 898 

with 1 µM triptolide (Sigma) and triptolide was maintained during the labelling procedure. Cells 899 

were harvested by trypsinization and resuspended in ice-cold PBS at 500,000 cells per ml. 2 µL 900 

of the cell suspension (1,000 cells) were spotted on microscope glass slides and lyzed in 7 µL 901 

of spreading buffer (200 mM Tris-HCl [pH 7.5], 50 mM EDTA [pH8.0], 10% SDS). Slides were 902 

tilted to 15˚ in order to spread the DNA molecules. After fixation with a mixture of methanol and 903 

acetic acid (3:1), air-dried slides were incubated twice in H2O for 5 min followed by denaturation 904 

in 2.5 M HCl for 1 hr.  Slides were washed in PBS and blocked for 1 h in blocking buffer (1% 905 

BSA, 0.1% Tween20 in PBS). IdU, CldU and total DNA were immunodetected with the following 906 

procedure: (1) mouse anti-BrdU (clone B44 347580, Becton Dickinson, 1/20, IdU) + rat anti-907 

BrdU (clone BU1/75 AbC117-7513, Abcys, 1/100, CldU) for 1 h at room temperature, (2) goat 908 

anti-mouse AF594 (A11032) + goat anti-rat AF488 (A11006) for 30 min at 37°C, (3) mouse anti-909 

single stranded DNA (clone 16-19 MAB3034, Ozyme, 1/100) for 45 min at 37°C, (4) rabbit anti-910 

mouse AF350 (A21062) for 20 min at 37°C and (5) goat anti-rabbit AF350 (A11046) for 20 min 911 

at 37°C. All AlexaFluor-coupled antibodies were from Molecular probes and used at 1/100 912 

dilution. All antibodies were diluted in blocking buffer. Samples were mounted in fluorescent 913 

mounting medium (DAKO). Images were acquired on an Axio Imager Z1 microscope using the 914 

Axio Vision software (Zeiss). Images were analyzed with the Axio Vision software. Broken 915 

replication tracks, established by total DNA counterstaining, were excluded from the analysis. 916 
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For each intact individual fork (i.e. one IdU tract flanked by a CldU track), the fork ratio was 917 

calculated as the ratio between max(IdU,CldU) and min(IdU,CldU). 918 

 919 

Immunofluorescence 920 

siRNA-treated HeLa Flp-In TREX or U2OS Flp-In TREX cells expressing Flag-HA-SLX4  or 921 

YFP-SLX4 were cultured on coverslips. Cells were washed with CSK buffer (100 mM NaCl, 300 922 

mM sucrose, 10 mM PIPES [pH 7.0], 3 mM MgCl2) and pre-extracted in CSK buffer containing 923 

0.5% TritonX-100 for 3 min at 4˚C then fixed in 4% paraformaldehyde/PBS. For Extended data 924 

Fig. 1b, HeLa Flp-In TREX cells expressing YFP-SLX4 were washed with PBS and fixed in 4% 925 

paraformaldehyde/PBS then permeabilized in 0.5% TritonX-100/PBS for 15 min. After PBS 926 

wash, cells were incubated in blocking buffer (3% BSA/PBS) for 30 min then immunostained 927 

with primary antibodies in blocking buffer for 2 hrs at room temperature or overnight at 4˚C. 928 

Cells were washed three times with blocking buffer and stained with secondary antibodies in 929 

blocking buffer for 2 hrs at room temperature. After three times of PBS wash, coverslips were 930 

mounted in fluorescent mounting medium supplemented with DAPI (Vector Laboratory or Dako). 931 

Images were acquired with LSM-880 microscope using Zen software (Zeiss) (Fig. 4a) or with 932 

Axio Imager Z1 and Z2 microscope using Axio Vision software (Zeiss) (Extended data Fig. 1c). 933 

Images were analyzed with ImageJ software. 934 

 935 

In situ Proximity ligation assay (PLA) 936 

For PLA, cells were seeded on fibronectin-coated glass coverslips. PLA between SLX4, RTEL1 937 

or FANCD2 and RNA polymerase II were performed as described previously34. Cells were fixed 938 

with 4% paraformaldehyde/PBS and permeabilized in 0.5% TritonX-100/PBS for 5 min. PLA 939 

was performed with the Duolink PLA In situ Green kit (Sigma) according to manufacturer’s 940 

instructions. The following couples of primary antibodies were used: mouse anti-HA [16B12] (to 941 

detected SLX4, 1/1000) + rabbit anti-RNA polymerase II ab5095 (1/900); mouse anti-RNA 942 

polymerase II MMS-129R (1/600) + rabbit anti-FANCD2 ab2187 (1/1000) or rabbit anti-RTEL1 943 

(1/500). When indicated, HA counterstaining was performed by incubating the coverslips with 944 

goat anti-mouse AF594 after the PLA procedure. 945 

PLA between SLX4 and nascent DNA was performed as described previously66, with minor 946 

modifications. Briefly, cells were pulse labeled with 30 µM EdU for 7 min, pre-extracted with 947 

CSK100 buffer (100 mM NaCl, 300 mM sucrose, 10 mM PIPES [pH 6.8], 3 mM MgCl2, 1 mM 948 

EGTA, 0.5% TritonX-100, protease inhibitors) for 5 min at 4 ˚C and fixed. Biotin-azide 949 

(Molecular Probes) was conjugated to EdU by click chemistry. PLA was performed using mouse 950 

anti-HA [16B12] (1/1000) and rabbit anti-biotin (A150-109A, Bethyl, 1/3000) antibodies or 951 

mouse anti-biotin (1/3000) and rabbit anti-RTEL1 (1/500) antibodies. PLA was followed by EdU 952 

counterstaining. 953 
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 954 

Bioinformatic and structural analyses 955 

Homolog Sequences of RTEL1 and SLX4 were retrieved using PSI-BLAST searches67 against 956 

the RefSeq database. Multiple sequence alignments were calculated using MAFFT (e-insi 957 

mode)68 and represented using Jalview69. Secondary structures (H for helix, E for extended) and 958 

disorder status (d) were predicted by PSIPRED70 and SPOTD71 algorithms, respectively. 3d 959 

models of the HD1 and HD2 harmonin domains of human RTEL1 in complex with the helix of 960 

human SLX4 were generated by template-based docking using the alignments calculated by 961 

hhpred72 and the RosettaCM73 protocol for comparative modeling. As a structural template the 962 

structure (PDB code:4yl6) of the complex between the harmonin domain of CCM2 and the 963 

MEKK3 helix74 was used as it was the best hhpred hit obtained from an X-ray structure (hhpred 964 

proba of 98.2% and 97.8% for HD1 and HD2, respectively). HD1 and HD2 share 21% and 17% 965 

sequence identity with CCM2, respectively, while SLX4 shares significant similarities with 966 

MEKK3 sequence, which were used to align both ligands sequences. 967 

 968 

Next generation sequencing of clinical samples 969 

Targeted NGS was applied to a custom-made panel of 494 “cancer-associated” genes selected 970 

for their involvement in cancers (CCP-V8 panel). The DNA libraries of all coding exons and 971 

intron-exon boundaries of all genes using the HaloPlex Target Enrichment System (Agilent, 972 

Santa Clara, CA, USA) were done as described75. Sequencing was done using the 2×150-bp 973 

paired-end technology on the Illumina Nextseq500 platform according to the manufacturer's 974 

instructions (Illumina, San Diego, CA, USA). To identify somatic mutations only, germline DNAs 975 

from normal counterpart samples (blood lymphocytes of corresponding patients) were similarly 976 

sequenced. Samples were biopsied metastases from patients enrolled in the prospective 977 

PERMED-01 trial (NCT02342158)76. Samples were sequenced at an average depth greater 978 

than 700x for the targeted regions. PERMED 1069 was a liver metastasis of gastric 979 

adenocarcinoma; the SLX4 NM_032444 exon8 c.T1853c p.L618P variant had an allelic 980 

frequency of 2.30% (the ratio of malignant cells was 30%). PERMED 1115 was a lung 981 

metastasis of chondroblastic osteosarcoma; the SLX4 NM_032444 exon8 c.A1841G p.D614G 982 

variant had an allelic frequency of 6.80% (the ratio of malignant cells was 90%).  983 

   984 

 985 

Mass spectroscopy and data analysis methods are presented as a Supplementary Note. 986 

 987 

Statistics  988 

GraphPad Prism 6 software was used for statistics. Statistical comparisons of replication track 989 

length and fork ratio distributions were assessed with the non-parametric two-tailed Mann–990 
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Whitney test. IF and PLA experiments were tested with the non-parametric two-tailed Kruskal-991 

Wallis followed by Dunn’s multiple comparisons. Complete results of statistics tests are shown 992 

in the Source Data files. 993 

  994 

DATA AVAILABILITY  995 

The data supporting the findings of this study are available with the online article. The mass 996 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 997 

the PRIDE [1] partner repository with the datasets identifiers PXD012426 and PXD012425.  998 

Next Generation sequence data (PERMED 1069 = isolate P1, PERMED 1115 = isolate P2) 999 

were deposited in the Sequence Read Archive (SRA) under the BioProject PRJNA611917 and 1000 

can be retrieved at https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA611917 1001 
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Reporting summary. Further information on experimental design is available in the Nature 1003 

Research Reporting Summary linked to this paper. 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