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Abstract

In this paper we consider a class of optimal control problems governed by a differential
system. We analyse the link between the co-state arc of the Pontryagin Maximum Principle
and the value function that associates the optimal value of the control problem to the initial
time and state. Such a relationship has been already investigated for state-constrained
problems under some controllability assumptions to guarantee Lipschitz regularity property
of the value function. Here, we consider the case with intermediate and final state constraints,
without any controllability assumption on the system, and without Lipschitz regularity of
the value function. Furthermore, our analysis covers the case of normal optimal solutions,
and abnormal solutions as well.

AMS Classification: 49K15, 49L20, 34H05
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1 Introduction

The aim of this paper is to study the relationship between the Maximum Principle and Dynamic
Programming for control problems in presence of finale and/or intermediate state constraints.
Let T > 0 be a fixed final time horizon, let t0 = 0 < t1 < · · · < tm = T be real numbers (with
a fixed integer m ≥ 1), and U be a compact subset of Rr (with r ≥ 1). Our control problem is
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formulated as follows:

Minimize ϕ(x(T )) +

∫ T

t
`(s,x(s),u(s)) ds

subject to ẋ(s) = f(s,x(s),u(s)), a.e. s ∈ (t, T ), (1a)

x(t) = x, (1b)

u(s) ∈ U, a.e. s ∈ (t, T ), (1c)

gi(x(ti)) ≤ 0, i = 1, · · · ,m (1d)

where the dynamics f : [0, T ]× Rd × U → Rd, the distributed cost ` : [0, T ]× Rd × U → R, the
final cost ϕ : Rd → R, and the constraints gi : Rd → R are smooth functions (the precise nature
of these functions is unimportant at this juncture. The assumptions will be made precise in the
next section). An admissible control function is a measurable function u : [0, T ] → Rm that
satisfies (1c). An admissible process is a pair of functions (x,u) where u is an admissible control
function and x is an absolutely continuous solution of (1a)-(1b) that satisfies the constraints
(1d).

The study of unconstrained continuous non-linear control problems (i.e. when gi ≡ 0) has
provided the foundation of numerous advances in control theory over many decades. In that
setting it is very well known by now (see [17, 6, 20] and the references therein) that any optimal
process (x,u) satisfies the so-called Pontryagin Maximum principle (PMP) stating the existence
of a dual arc p satisfying the following relations:

ẋ(s) = −∇pH(s,x(s),u(s),p(s))

ṗ(s) = ∇xH(s,x(s),u(s),p(s))

H(s,x(s),u(s),p(s)) = max
u∈U

H(s,x(s), u,p(s)),

where H(s, x, u, p) := −f(s, x, u) ·p− `(s, x, u), for every (s, x, u, p) ∈ [0, T ]×Rd×U ×Rd. The
PMP provides a necessary condition for any optimal process. On the other hand, the dynamic
programming approach provides valuable information on the value function V that associates to
every initial condition (t, x), the optimal value V (t, x) of the control problem. Under standing
assumptions, the value function is guaranteed to be Lipschitz continuous everywhere, see for
instance [3, 20]. It is also well known that the value function is characterized as the unique
viscosity solution of a corresponding partial differential equation (PDE), called Hamilton-Jacobi-
Bellman (HJB) equation:

−∂tV (t, x) +H(t, x,DxV (t, x) = 0 t ∈ [0, T ), x ∈ Rd, (3a)

V (T, x) = ϕ(x) x ∈ Rd, (3b)

where ∂tV and DxV represent respectively the derivative with respect to time and to space,
and where H(t, x, p) := maxu∈U H(t, x, u, p) for every (t, x, p) ∈ [0, T ] × Rd × Rd. Semi-smooth
analysis and viscosity theory provide adequate tools to analyse the properties of solutions for
HJB equations, we refer to [20, 3] and the references therein.

The connection between the dynamic programming approach and the Pontryagin maximum
principle is known since the early work of Bellman and is described in introductory works of
optimal control theory with the following relation :

p(t) = ∇xV (t,x(t)), (4)
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emphasizing the fact that the adjoint arc is a measure of the sensitivity of the optimal cost with
respect to perturbations around the optimal trajectory. Combining (3a) and (4), we obtain:

(H(t,x(t),p(t)),p(t)) = ∇t,xV (t,x(t)). (5)

When the value function is C1, and all the data are smooth enough, the proof of the relations
(4)-(5) is quite straightforward. However, the assumption on the regularity of the value function
does not hold in general even for simple cases [4, 11, 17].

When the value function is only Lipschitz continuous, and in situations where the costate
is unique, relations (4)-(5) can be extended by using the framework of the super-differential
and the sub-differential [21] (we refer also to [3] where different proofs for relations (4)-(5) are
provided).

If the functions f , ` and ϕ are not supposed continuously differentiable in x-variable, the
co-state satisfying the PMP may not be unique. In these situations, a natural question arises
regarding the existence of some co-state arc that satisfies an extension of the sensitivity relations
(4)-(5).

In [7], Clarke and Vinter proved that, for a very large class of non-smooth free endpoint
problems, it is possible to choose a co-state function p such that

p(t) ∈ ∂xV (t,x(t)) a. e. on (0, T ), p(0) ∈ ∂xV (0,x(0)), and p(T ) ∈ ∂xV (T,x(T )). (6)

These inclusions hold for control problems with a Lipschitz continuous value function, and extend
the relation (4) by using the generalised gradient of the value function (which is well defined for
Lipschitz continuous functions). In [19], Vinter established also a generalization of (5) stating
the existence of a co-state satisfying:

(H(t,x(t),p(t)),p(t)) ∈ ∂t,xV (t,x(t)) for all t ∈ [0, T ]. (7)

The link (7) involves the generalized gradient of V in both variables and asserts a property
which holds everywhere on the time interval [0, T ]. Relations (6) and (7) do not entail each
other. Moreover, some examples are given in [7, 20] showing that, in some cases, there are a
number of possible choices of co-state arcs associated with the same optimal control problem,
but not all of them satisfy both sentivity relations (6) or (7) (some of the co-state arcs do not
satisfy any of the two relations, while some other co-state satisfy one relation and not the other).

The proof for (6) (in [7]) and the one for (7) (in [19]) are both based on the construction
of a new optimal control problem, related to the original one, but involving additional control
variables, and for which the original minimizer, is still a minimizer of the new problem. Nec-
essary conditions for optimality are then applied to the new optimal control problem which
has, by construction, a richer class of variations. New information emerge from these necessary
conditions and lead to the generalized sensitivity relation. It should be noticed also that the
original proof of (6) (in [7]) is much complex than that of (7) and requires the approximation
of the dynamic equation by a new ‘impulsive’ system.

In [12, 5], the generalization of sensitivity relations are analyzed for a general nonsmooth
differential inclusion setting. In particular in [5], the authors establish the existence of a co-state
that satisfies the two sensitivity relations (6)-(7). Note that in [5] the problem is in presence of
state constraints but some controllability assumptions are considered so that the value function is
locally Lipschitz continuous. Moreover, he proof of (7) given in [5] is based on the approximation
of the dynamic equation by an impulsive system.
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The introduction of state constraints into non-linear control problems fundamentally impacts
their analysis. Indeed, unless some strong controllability assumptions are satisfied, the value
function is no longer guaranteed to be Lipschitz continuous. The connection between the value
function of a given control problem and corresponding Hamilton-Jacobi-Bellman equation, in
the presence of state constraints, is a central issue in control theory, which has been attacked
with methods coming from viscosity solutions theory as well as from non-smooth analysis and
viability theory. It is well known that, unless some compatibility condition between constraints
and dynamics does hold, the value function has not enough regularity, or can fail to be the
unique constrained viscosity solution of a HJB equation. Several works have been devoted to
the analysis of regularity of the value function when the control problem is in presence of state
constraints, we refer for instance to [18, 13, 12, 16, 15, 14] and the references therein.

The link between dynamic programming principle and Pontryagin maximum principle has
been established for pointwise state constrained control problems in [12, 5] under some con-
trollability assumptions under wich the value function is Lipschitz continuous. The case with
final state constraints has been also investigated in [19, 7] under the assumption of Lipschitz
regularity of the value function in a ”tube” around the trajectory.

In the present work, we are interested in the case when the control problem is in presence
of final and/or intermediate constraints. Such problems have already been considered in the
literature and optimality conditions have been derived in the form of Pontryagin maximum
principle, see for instance [9, 8, 10]. Moreover, in this setting, and without controllability
assumption, the value function is in general merely lower semicontinuous, it may have infinite
values and might even take finite values only on a set having empty interior. So, it is not
clear how to extend the results of [7, 19, 5] (as mentioned in [7], such extension must involve
generalized gradients of possibly non-Lipschitz continuous, extended valued functions).

Instead of assuming regularity assumptions on the value function, we follow an idea intro-
duced in [1] and consider an auxiliary control problem without state constraints. The value
function of this auxiliary control problem is an interesting tool that can be used to characterize
the epigraph of the function ϑ. Moreover, it turns out that the value function of the auxil-
iary control problem can be used to establish the link between the PMP and the HJB approach
along an optimal path, without assuming any controllability assumption and for general optimal
solutions (including the abnormal optimal trajectories).

The contributions of this paper are threefold. First, we derive new sensitivity relations
between the PMP and the dynamic programming principle for a class of control problems with
endpoint and intermediate state constraints without assuming any controllability assumptions.
The sensitivity relations hold for normal optimal trajectories and abnormal trajectories as well.
Furthermore, we simplify the arguments introduced in [7, 19] to establish the sensitivity relations
and we show that both relations can be obtained by considering a same perturbed control
problem (without adding complex approximations of the dynamic equation by impulse systems).

The paper is organized as follows. Section 2 introduces the control problem with endpoint
and intermediate constraints, and recall some known results in non-smooth analysis. The main
results of the paper are given in section 3. Section 4 is devoted to the particular case of endpoint
constrained problem. In section 5, we derive the sensitivity relations for a control problem with
intermediate costs but without any constraint. This result is also a contribution of the paper
and constitues an important step for the proof of the main results of the paper. Finally, section
6 presents the proof of the main results.
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2 Statement of the Problem. Hypotheses

We recall in this section some useful notions in non-smooth analysis. Then we formulate the
control problem and lay out the assumptions that will be used in the paper.

2.1 Notations and some preliminaries.

In all this paper, R denotes the set of real numbers, 〈·, ·〉 and ‖ · ‖ denote the Euclidean inner
product and norm on RN (for any N ≥ 1), BN is the unit closed ball {x ∈ RN : ‖x‖ ≤ 1} (also

denoted B if there is no ambiguity) and B(x; r) = x + rB. For any set S ⊆ RN ,
◦
S, S, ∂S, coS

denote its interior, closure, boundary, and convex envelope, respectively. For any a, b ∈ R, we
define

a
∨
b := max(a, b).

Similarly, for a1, · · · , am ∈ R, the notation

m∨
i=1

ai is defined as:

m∨
i=1

ai := max(a1, · · · , am).

The notation W 1,1([a, b]) is used for the usual Sobolev space {f ∈ L1(a, b), f ′ ∈ L1(a, b)}.
Finally, abbrevation ”w.r.t.” stands for ”with respect to”, and ”a.e.” means ”almost everywhere”.

Let us recall some definitions and properties from sub-differential calculus that will be used
throught the paper. We refer to [6, Chapter 10] or [20, Chapter 5] for more details on non-smooth
analysis.

Let φ : RN → R (with N ≥ 1) be a locally Lipschitz function in a neighborhood of a point
x ∈ RN . The function φ is not necessary differentiable at x, but we can define a generalized
directional derivative at x, for any direction v ∈ RN , as follows:

D◦φ(x; v) = lim sup
y→x,h↓0

φ(y + hv)− φ(y)

h
. (8)

With this notion of directional derivative, we can define the Clarke’s sub-differential of φ at x
by:

∂φ(x) = {ξ ∈ RN | D◦φ(x; v) ≥ ξ · v, ∀v ∈ Rd}. (9)

The generalized directional derivative satisfies also:

D◦φ(x; v) = max
ξ∈∂φ(x)

ξ · v, ∀v ∈ RN . (10)

It turns out that the sub-differential of φ at x is a compact convex set of RN , and if L > 0 is
the Lipschitz constant of φ in a neighborhood of x then ∂φ(x) ⊂ B(0, L). The sub-differential
satisfies some properties reminiscent of the classical differential calculus; for instance for any
α ∈ R, we have: ∂(αφ(x)) = α∂φ(x). Furthermore, we have: ∂(φ+ ψ)(x) ⊂ ∂φ(x) + ∂ψ(x) for
φ and ψ Lipschitz functions in a neighborhood of x, and when ψ is continuously differentiable
(in a neighborhoof of x) then

∂(φ+ ψ)(x) = ∂φ(x) + {∇ψ(x)}.
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Some other properties satisfied by the sub-differential have no smooth counterpart: consider
φ1, · · · , φn continuously differentiable functions on an open neighberhood Ω of x and φ the
pointwise maximum given by φ(y) := max(φ1(y), · · · , φn(y)) for every y ∈ RN , is a Lipschitz
continuous function. Moreover, if we denote I(x) = {i ∈ {1, . . . , n}, | φi(x) = φ(x)}. Then the
sub-differential of φ at x is given by:

∂φ(x) = co{∇φi(x), i ∈ I(x)}. (11)

In the sequel, for a function φ : RN → R, we will also use the lower Dini directional derivative,
in the direction v ∈ RN , defined as:

D↑φ(x; v) = lim inf
w→v,h↓0

φ(x+ hw)− φ(x)

h
, (12)

and when φ is Lipschitz in a neighborhood of x then we have the following more simple expres-
sion:

D↑φ(x; v) = lim inf
h↓0

φ(x+ hv)− φ(x)

h
.

Some useful properties, that will be used later in the paper, are given in the next Lemma:

Lemma 2.1. Let φ : RN → R be a Lipschitz continuous function on a neighborhood of x ∈ RN ,
and let u, v ∈ RN . Then

D↑φ(x;u+ v) ≥ D0,−φ(x;u) +D↑φ(x; v), (13)

where

D0,−φ(x;u) := −D0(−φ)(x;u) = lim inf
y→x,
h↓0

φ(y + hu)− φ(y)

h
. (14)

Proof. The following decomposition holds:

1

h
(φ(x+ h(u+ v))− φ(x)) =

1

h
(φ(x+ hv + hu)− φ(x+ hv)) +

1

h
(φ(x+ hv)− φ(x)).(15)

Notice that yh = x+ hv → x as h→ 0, hence

lim inf
h↓0

1

h
(φ(x+ hv + hu)− φ(x+ hv)) = lim inf

h↓0

1

h
(φ(yh + hu)− φ(yh))

≥ D0,−φ(x;u).

Therefore, taking the lim infh↓0 in (15), we obtain the inequality (13).

As direct consequence of Lemma 2.1, for u, v, w ∈ RN , the following inequality holds:

D↑φ(x;u+ v + w) ≥ D0,−φ(x;u) +D0,−φ(x; v) +D↑φ(x;w). (16)
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2.2 Formulation of the problem

Let T > 0 be a finite time horizon and consider the following dynamical system (for0 ≤ t < T ) :

ẋ(s) = f(s,x(s),u(s)), a.e. s ∈ (t, T ), (17)

where the control input u : [0, T ] −→ Rr (r ≥ 1) is a measurable function such that u(s) ∈ U
for almost every s ∈ [0, T ]. Throughout this paper, we assume that

(H0) U is a compact subset of Rr

We denote by U the set of all admissible controls:

U := {u : [0, T ] −→ Rr measurable, and u(s) ∈ U a.e.}.

The dynamics f : [0, T ] × Rd × U → Rd and the distributed cost ` : [0, T ] × Rd × U → R are
given functions satisfying the following assumptions:

(H1a)



(i) f is continuous on [0, T ]× Rd × U
(ii) x→ f(t, x, u) is locally Lipschitz continuous in the following sense:

∀R > 0, ∃kR ≥ 0, ∀(x, y) ∈ (Bd(0;R))2, ∀(t, u) ∈ [0, T ]× U :

‖f(t, x, u)− f(t, y, u)‖ ≤ kR‖x− y‖
(iii) ∃cf > 0 such that ‖f(t, x, u)‖ ≤ cf (1 + ‖x‖) ∀(t, x, u) ∈ [0, T ]× Rd × U.

and

(H1b)



(i) ` is continuous on [0, T ]× Rd × U
(ii) x→ `(t, x, u) is locally Lipschitz continuous in the following sense:

∀R > 0, ∃kR ≥ 0, ∀(x, y) ∈ (Bd(0;R))2, ∀(t, u) ∈ [0, T ]× U :

|`(t, x, u)− `(t, y, u)| ≤ kR‖x− y‖
(iii) ∃c` > 0 such that |`(t, x, u)| ≤ c`(1 + ‖x‖) ∀(t, x, u) ∈ [0, T ]× Rd × U.

In the light of the standard theory of differential equations, assumptions (ii)-(iii) of (H1a)
guarantee, for every u ∈ U and (t, x) ∈ [0, T ] × Rd, the existence of an absolutely continuous
curve x : [t, T ]→ RN which satisfies (17) and the initial data x(t) = x. Gronwall’s Lemma leads
also to

1 + ‖x(s)‖ ≤ (1 + ‖x‖)ecf (s−t), ∀s ∈ [t, T ]. (18)

In the sequel, we shall denote the set of all admissible pairs control-and-trajectories starting
at time t from the position x as:

X[t,T ](x) := {(x,u) ∈W 1,1(t, T )× U | (x,u) satisfies (17) with x(t) = x}.

Let t0 = 0 < t1 < · · · < tm = T be given real numbers in [0, T ] (for some given integer
m ≥ 1), and consider the control problem

minimize ϕ(x(T )) +

∫ T

0
`(t,x(t),u(t)) dt,

(x,u) ∈ X[0,T ](x0),

gi(x(ti)) ≤ 0 for i = 1, · · · ,m,

(19)
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with the standard convention that inf ∅ = +∞. The final cost ϕ : Rd → R and the constraint
functions gi are given functions satisfying:

(H2) ϕ : Rd → R is locally Lipschitz continuous and there exists a constant cϕ ≥ 0 such that

|ϕ(y)| ≤ cϕ(1 + ‖y‖).

(H3) For i ∈ {1, . . . ,m} the constraint function gi : Rd → R is locally Lipschitz continuous
and there exists a constant cg ≥ 0 such that, for all i:

|gi(y)| ≤ cg(1 + ‖y‖).

Remark 2.1. To simplify the presentation, we assume here that every intermediate constraint
is scalar. In the case where there are multiple constraints at an intermediate time ti:

gji (x(ti)) ≤ 0, 1 ≤ j ≤ qi,

it suffices to consider the function gi(x(ti)) ≤ 0 := min(g1
i , · · · , g

qi
i ) and replace the multiple

constraints by a single one.

We consider the value function ϑ : [0, T ]× Rd −→ R, associated to this control problem, as
follows:

ϑ(t, x) := inf

{
ϕ(x(T )) +

∫ T

t
`(t,x(t),u(t))dt

∣∣∣∣
(x,u) ∈ X[t,T ](x), gj(x(tj)) ≤ 0 for all j s.t. tj ≥ t

}
. (20)

It is known that when the control problem does not include any state constraint (for instance
if gi ≡ 0, ∀i), under assumptions (H0)-(H3), the value function ϑ is Lipschitz continuous and
can be characterized as unique solution of a Hamilton-Jacobi equation, see [3, Chapter III].
Furthermore, a relation between the Pontryagin’s Maximum Principle and the Hamilton-Jacobi
approach for problem (19) has been established in [19]. This relation gives a link between an
adjoint state of (19) and the sub-differential of the value function ϑ along an optimal trajectory
stating from x0 at t = 0.

In this work, we are interested in the case when the control problem is in presence of final or
intermediate constraints (m ≥ 1). In this case the value function fails to be Lipschitz continuous
unless some controllability assumptions are satisfied (see [3, Chapter V]). Actually, in general
the value function is discontinuous and may have infinite values. So, it is not clear how to
define the sub-differential of the value function along a trajectory. A direct extension of the
work [19] requires some additional assumptions on the Lipschitz regularity of ϑ in at least a
tube around an optimal trajectory, see [7] for more details. Instead of assuming such regularity
assumptions, we follow an idea introduced in [1] and consider an auxiliary control problem
without state constraints. It turns out that the value function of this auxiliary control problem
is an interesting tool that can be used to obtain the values of the function ϑ and also to establish
the link between the PMP and the HJB approach along an optimal path.
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Let us first consider the augmented dynamical system:

ẋ(s) = f(x,x(s),u(s)) a.e. s ∈ (t, T ), (21a)

ż(s) = −`(s,x(s),u(s)) a.e. s ∈ (t, T ). (21b)

This augmented dynamical system is usually used as a classical technique in control theory to
recast the Bolza problem in the Mayer form:

ϑ(t, x) = inf

{
ϕ(x(T ))− z(T )

∣∣∣∣
(x, z,u) satisfies (21) with x(t) = x, z(t) = 0, and gj(x(tj)) ≤ 0 for all j s.t. tj ≥ t

}
.

In what follows, we will assume that the augmented dynamics satisfies the following assump-
tion:

(H4) For any s ∈ [0, T ] and every x ∈ Rd,{(
f(s, x, u)

−`(s, x, u) + η

)
, u ∈ U, −c`(1 + ‖x‖) + `(s, x, u) ≤ η ≤ 0

}
is a convex set.

Remark 2.2. Note that if ` ≡ 0 (Mayer problem), (H4) reduces to

f(t, x, U) convex for all (t, x) ∈ [0, T ]× Rd.

Remark 2.3. For 0 ≤ a < b ≤ T and (x, z) ∈ Rd × R, consider the set of all trajectories
satisfying (21) on the time interval [a, b], for a control input u ∈ U , and starting from a position
(x, z) at time a:

S[a,b](x, z) := {(x, z) ∈W 1,1([a, b]) | ∃u ∈ U such that (x, z,u) satisfies (21) with x(a) = x, z(a) = z}.

Under assumptions (H0), (H1a), (H1b) and (H4), and by Filippov’s Theorem, the multi-
valued application (t, x, z) ⇒ S[t,T ](x, z) is locally Lipschitz continuous from [0, T ] × Rd+1 into

W 1,1([0, T ]). Moreover, for every (x, z) ∈ Rd+1 and every t ∈ [0, T ], S[t,T ](x, z) is a compact set
in W 1,1([0, T ]) endowed with the C0([0, T ])-topology, see [2, Theorem 1.4.1]. Therefore, for a
given (t, x) ∈ [0, T ]× Rd, if there exists a trajectory x ∈ S[t,T ](x) that satisfies the intermediate
and final constraints gj(x(tj)) ≤ 0 for all j such that tj ≥ t, then the value ϑ(t, x) is finite and
the control problem (20) admits a minimal solution (see Proposition 3.1 for a precise statement).

Now, we define an auxiliary control problem and its value function w : [0, T ] × Rd × R, for
(x, z) ∈ Rd × R and t ∈ [0, T ] as follows:

w(t, x, z) = min{max

(
ϕ(x(T ))− z(T )),

∨
i≥1 s.t. ti≥t

gi(x(ti))

)
| (x, z) ∈ S[t,T ](x, z)}. (22)

We are interested in characterizing the function w as a solution to a HJB equation and also
in expressing the link between the HJB equation and the Pontryagin’s principle for problem
(19).
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In the sequel, we will use the following Hamiltonian function H : [0, T ]×Rd×U ×Rd+1 → R
defined, for (s, x, u, px, pz) ∈ [0, T ]× Rd × U × Rd × R, as:

H(s, x, u, px, pz) := −f(s, x, u) · px + `(s, x, u) pz. (23a)

We will also use the maximized Hamiltonian function H : [0, T ] × Rd × U × Rd+1 × R defined,
for (s, x, u, (px, pz)) ∈ [0, T ]× Rd × Rd × R, as:

H(s, x, px, pz) := max
u∈U

(
− f(s, x, u) · px + `(s, x, u) pz

)
. (23b)

3 Main Results

The optimal control problem (19) might admit no solution if there is no trajectory that can
realise all the intermediate constraints. However, under assumptions (H0)-(H4), the auxiliary
control problem does always achieved a minimum (x, z) ∈ S0,T ](x, z). Moreover, every optimal
solution of the original control problem (19) is related to an optimal solution of the auxiliary
control problem (??). More precisely, we have the following result.

Proposition 3.1. Assume that (H0)-(H4) are satisfied. Then the following assertions hold:
(i) For every (t, x, z) ∈ [0, T ] × Rd+1, the auxiliary control problem (22) admits an optimal

solution.
(ii) For every (t, x) ∈ [0, T ]×Rd, if ϑ(t, x) <∞, then the optimal control problem (20) admits

a solution. Moreover, the function ϑ : [0, T ]× Rd −→ R ∪ {+∞} is lower semi-continuous.
(iii) For every x ∈ Rd and t ∈ [0, T ], we have:

ϑ(t, x) = min{z ∈ R | w(t, x, z) ≤ 0}

(by convention, the minimum is +∞ if the set {z ∈ R | w(t, x, z) ≤ 0} is empty).
(iv) Let (t, x) ∈ [0, T ]× Rd such that zt,x := ϑ(t, x) <∞. If (x,u) ∈ X[t,T ](x) is an optimal

solution of (20), then (x, z,u) is also an optimal solution of the auxiliary problem (22), where

z(s) := zt,x +
∫ T
s `(τ,x(τ),u(τ)) dτ for every s ∈ [t, T ].

Conversely, any optimal solution to the auxiliary control problem (22) with z = ϑ(t, x) <∞
is also an optimal solution to the original problem (20).

Proof. Under assumptions (H0)-(H4), the set of trajectories S[t,T ](x, z) (as defined in Re-
mark 2.3) is a non-empty compact set of W 1,1([t, T ]) endowed with the C0-topology. This means
that there exists a minimizing sequence (xn,yn) ∈ S[t,T ](x, z) that converges in C0([t, T ];Rd+1)
to some (x̄, z̄) ∈ S[t,T ](x, z), see [2, Theorem 0.3.4 and Theorem 1.4.1]. Moreover the sequence of
derivatives (ẋn, ẏn) converges weakly in L1(0, T ) to ( ˙̄x, ˙̄z). On the other hand, for any t ∈ [0, T ]
and (x, z) ∈ Rd × R, the functional:

(x, z) 7−→ max

(
ϕ(x(T ))− z(T ),

∨
i≥1 s.t. ti≥t

gi(x(ti))

)

is a continuous function from C0([t, T ];Rd+1) to R. Therefore, problem (22) achieves a minimum,
which proves assertion (i).

Assertion (ii) is also a classical result whose proof is based again on the compactness of the
set of trajectories, see [15, Proposition 2.1].
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To prove (iii), notice that if w(t, x, z) ≤ 0 then there exists (x, z) ∈ S[t,T ](x, z) such that

ϕ(x(T ))− z(T ) ≤ 0, and gj(x(tj)) ≤ 0 for all j such that tj ≥ t,

Hence, there exists an admissible control u ∈ U corresponding to the trajectory (x, z) such that
(x,u) ∈ X[t,T ](x, z) and

ϕ(x(T ))−
∫ T

t
`(s,x(s),u(s)) ds ≤ z, and gj(x(tj)) ≤ 0 for all j such that tj ≥ t,

Hence, by definition of ϑ, we conclude that ϑ(t, x) ≤ z. Furthermore, if there is no z such that
w(t, x, z) ≤ 0, then it means that there is no trajectory x satisfying the constraints gj(x(tj)) ≤ 0
(∀j ≥ 1 s.t. tj ≥ t), hence ϑ(t, x) = +∞.

Conversely, if zt,x := ϑ(t, x) < +∞, then by assertion (i), there exists an admissible pair
(x,u) ∈ X[t,T ](x) such that gj(x(tj)) ≤ 0 for every j such that tj ≥ t, and such that 0 =

ϕ(x(T )) − z(T ), where z(T ) = zt,x −
∫ T
t `(s,x(s),u(s)) ds. This implies, that w(t, x, z̄) ≤

0. If ϑ(t, x) = +∞, this means there is no admissible trajectory x satisfying the constraints
gj(x(tj)) ≤ 0 (∀j ≥ 1 s.t. tj ≥ t), so w(t, x, z) > 0, ∀z, and inf{z ∈ R, w(t, x, z) ≤ 0} = +∞.
This concludes the proof of assertion (iii).

Finally assertion (iv) can be proved by using the same arguments as for (iii).

Proposition 3.1 states that the auxiliary problem admits an optimal solution even when the
original problem doesn’t have any solution. It is the sign of the optimal values w(t, x, ·) that
indicates if the original problem has a solution or not.

The next Theorem gives preliminary results on the auxiliary value function w, and a chara-
terisation of w as solution of an HJB equation (assumption (H4) is not needed in this theorem).

Let us denote

I1 := [0, t1], and Ij :=]tj−1, tj ], for j = 2, . . . ,m.

In particular, I1 ∪ I2 ∪ · · · ∪ Im is a partition of [0, T ], and for any t ∈ [0, T ] there is a unique
j ∈ {1, . . . ,m} such that t ∈ Ij . In the sequel, we denote by ̂ the application from [0, T ] into
{1, ·,m} that associates to every t ∈ [0, T ] the index j such that t ∈ Ij :

̂(t) = j ⇐⇒ t ∈ Ij . (24)

Proposition 3.2. Assume that (H0)-(H3) are verified. Then the value function w is locally
Lipschitz continuous on each Ij × Rd × R, j = 1, . . . ,m, with linear growth (i.e., |w(t, x, z)| ≤
C(1 + ‖x‖ + |z|), ∀t, x, z, for somme constant C ≥ 0). Moreover, w is the unique viscosity
solution of the following HJB system (with H defined in (23b)):

−∂tw(t, x, z) +H(t, x,Dxw(t, x, z), Dzw(t, x, z)) = 0,

∀t ∈ Ij , ∀j = 1, . . . ,m, x ∈ Rd, z ∈ R (25a)

w(t−j , x, z) = w(t+j , x, z)
∨
gj(x) ∀j = 1, . . . ,m− 1, x ∈ Rd, z ∈ R (25b)

w(T, x, z) = (ϕ(x)− z)
∨
gm(x) x ∈ Rd, z ∈ R. (25c)
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Proof. The result of this Theorem is quite straightforward and uses classical viscosity theory.
Indeed, for t ∈]tm−1, tm] =]tm−1, T ], the value function w is given by:

w(t, x, z) = min{(ϕ(x(T ))− z(T ))
∨
gm(x(T )), (x, z) ∈ S[t,T ](x, z)}.

As a value function of a Mayer control problem, with assumptions (H2)-(H3), the function w
is locally Lipschitz continuous on ]tm−1, T ]× Rd × R and is the unique viscosity solution of the
equation (see [3, Chapter III]):

−∂tw(t, x, z) +H(t, x,Dxw(t, x, z), Dzw(t, x, z)) = 0, t ∈]tm−1, T ], x ∈ Rd, z ∈ R
w(T, x, z) = (ϕ(x)− z)

∨
gm(x) x ∈ Rd, z ∈ R.

Now, by using the Dynamic Programming principle, for i = 1, · · · ,m−1 and for every t ∈ Ii,
we have for any h > 0 such that ti < t+ h ≤ ti+1:

w(t, x, z) = min{w(t+ h,x(t+ h), z(t+ h))
∨
gi(x(ti)) | (x,u) ∈ X[t,t+h](x)}.

Therefore, for t+ h→ t+i , we obtain

w(t, x, z) = min{w(t+i ,x(ti), z(ti))
∨
gi(x(ti)) | (x,u) ∈ X[t,ti](x)}.

In particular, for t = t−i , we deduce the relation (25b).
Again by classical arguments, for any i = 1, . . . ,m−1, the function w is Lipschitz continuous

on Ii and is the unique viscosity solution of:

−∂tw(t, x, z) +H(t, x,Dxw(t, x, z), Dzw(t, x, z)) = 0 ∀(t, x, z) ∈ Ii × Rd × R (26a)

w(t−i , x, z) = w(t+i , x, z)
∨
gi(x) ∀(x, z) ∈ Rd × R. (26b)

More precisely, it is a classical result that there is a unique locally Lipschitz continuous viscosity
solution of (26a) with the given terminal data at t = ti (w(ti, x, z) = w(t+i , x, z)

∨
gi(x)). Let

us denote by wi this solution. Then w(t, x, z) = wi(t, x, z) for any ti−1 < t ≤ ti. While wi is
Lipschitz regular up to the left boundary t = ti−1 of [ti−1, ti], the function w may differ from wi
at this boundary because of the jump condition (25b). Uniqueness then follows by recursion on
i = m− 1, . . . , 1. This concludes the proof.

So far, Propositions 3.1 and 3.2 establish the link between the original control problem and
the auxiliary one. One main feature of the function w consists in the fact that it is more regular
than ϑ, it takes finite values everywhere, and it is characterized as the viscosity solution of a
Hamilton-Jacobi equation (which is convenient for numerical approximations). Now, we are
interested in linking the optimality conditions for an optimal solution of problem (19) with the
auxiliary value function w. This link is the main result of this paper and it is stated precisely
in the following Theorem.

Theorem 3.1. Assume that (H0)-(H4) are satisfied. Let x0 ∈ Rn be such that z0 = ϑ(0, x0) <
+∞, and assume that (x̄, ū) ∈ X[0,T ](x) is a solution to the control problem (19). Let z̄(·) be
defined by:

z̄(t) = z0 −
∫ t

0
`(s, x̄(s), ū(s)) ds ∀t ∈ [0, T ].
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Then, there exist multipliers (λi)0≤i≤m and a co-state p̄(·), absolutely continuous on each sub-
interval (tj−1, tj): p̄∣∣(tj−1,tj)

∈W 1,1((tj−1, tj),Rd), such that the following assertions hold:

(i) non-triviality of the multipliers:

m∑
j=0

λj = 1, λj ≥ 0 for j ≥ 0, and λjgj(x̄(tj)) = 0 ∀j ≥ 1; (27)

(ii) co-state equation:

˙̄p(s) ∈ ∂xH(s, x̄(s), ū(s), p̄x(s),−λ0), a.e. s ∈ [0, T ], (28a)

p̄(t−i ) ∈ p̄(t+i ) + λi∂gi(x̄(ti)) ∀i = 1, . . . ,m− 1, (28b)

p̄(T ) ∈ λ0∂ϕ(x̄(T )) + λm∂gm(x̄(T ))); (28c)

(iii) Pontryagin’s Principle (with H defined as in (23a)):

H(t, x̄(t), ū(t), p̄(t),−λ0) = max
u∈U

H(t, x̄(t), u, p̄(t),−λ0), for a.e. t ∈ [0, T ]; (29)

(iv) general sensitivity relation:(
H
(
t, x̄(t), p̄(t),−λ0

)
, p̄(t),−λ0

)
∈ q(t)∂t,x,zw(t, x̄(t), z̄(t)) ∀t ∈ Ij , j = 1, · · · ,m (30)

where the function q(t) is given by:

q(t) := λ0 +

m∑
j=̂(t)

λj , with ̂(·) defined as in (24);

(v) sensitivity relations:

(p̄(t),−λ0) ∈ q(t)∂x,zw(t, x̄(t), z̄(t)) for a.e. t ∈ [0, T ], (31a)

(p̄(0),−λ0) ∈ ∂x,zw(0, x0, z0), (31b)

(p̄(t±i ),−λ0) ∈ q(t±i )∂x,zw(t±i , x̄(ti), z̄(ti)) ∀i = 1, . . . ,m− 1. (31c)

Remark 3.1. In the case when λ0 6= 0, the co-state p̄ and the multipliers (λi)0≤i≤m can be
rescaled , and the statement (i) can be replaced by:

λ0 = 1, λj ≥ 0 and λjgj(x̄(tj)) = 0 ∀j ≥ 1.

In the case of a Mayer problem (i.e., when there is no distributed cost, ` ≡ 0), the previous
theorem holds with z̄(t) = const = z0. Furthermore, in this case, we can establish the sensitivity
relations in a slightly different way. The precise statement is given in the next theorem.

Theorem 3.2. Assume that (H0)-(H4) are satisfied with ` ≡ 0. Let x0 ∈ Rn be such that
z0 = ϑ(0, x0) < +∞, and assume that (x̄, ū) ∈ X[0,T ](x) is a solution to the control prob-
lem (19). Then, there exist multipliers (λi)0≤i≤m and a co-state p̄(·), absolutely continuous on
each sub-interval (tj−1, tj): p̄∣∣(tj−1,tj)

∈ W 1,1((tj−1, tj),Rd), and such that the relations (i)-(iii)

of Theorem 3.1 hold true. Furthermore, we have the following sensitivity relations.
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(iv’) General sensitivity relation:(
H
(
t, x̄(t), p̄(t),−λ0

)
, p̄(t)

)
∈ q(t)∂t,xw(t, x̄(t), z0) ∀t ∈ Ij , j = 1, · · · ,m, (32)

where the function q(t) is given by:

q(t) := λ0 +
m∑

̂(t)

λj , with ̂(·) defined as in (24);

(v’) sensitivity relations:

p̄(t) ∈ q(t)∂xw(t, x̄(t), z0) for a.e. t ∈ [0, T ], (33a)

p̄(0) ∈ ∂xw(0, x0, z0), (33b)

p̄(t±i ) ∈ q(t±i )∂xw(t±i , x̄(ti), z0) ∀i = 1, . . . ,m− 1. (33c)

Theorem 3.2 provides sensitivity relations related the the adjoint state p̄ while Theorem 3.1
expresses the sensitivity relations with (p̄, λ0)) and thus gives an additional information on the
multiplier λ0. Note also that conditions (31) do not subsume (33) since the assertion (a, b) ∈
∂x,zw(t, x, z) does not imply that a ∈ ∂xw(t, x, z).

The proof of Theorem 3.1 in the case when m = 1 (no intermediate state constraints) will
be first given in section 4. The proof of Theorem 3.1 (as well as Theorem 3.2), for the general
case m ≥ 1, will be the focus of sections 5 and 6.

Comments. First of all, let us notice that when there are no state constraints (for instance
when m = 1 and g1(y) ≡ C, where C is a sufficiently large negative constant), then

ϑ(t, x)− z = w(t, x, z). (34)

Moreover, in this case, the transversality condition (27) implies that λ1 = 0 and λ0 = 1.
Therefore, Theorem 3.1 gives the existence of a co-state p̄(·), absolutely continuous on [0, T ],

satisfying

˙̄p(s) ∈ ∂xH(s, x̄(s), ū(s), p̄(s),−1), a.e. s ∈ [0, T ]

p̄(T ) = ∇ϕ(x(T )),

the Pontryagin’s Maximum principle (PMP): a.e. t ∈ [0, T ]:

H(t, x̄(t), ū(t), p̄(t),−1) = max
u∈U

H(t, x̄(t), u, p̄(t),−1)

and the link between PMP and the function ϑ (which can be deduced from (30) and using (34)):(
H
(
t, x̄(t), p̄(t),−1

)
, p̄(t)

)
∈ ∂t,xϑ(t, x̄(t)) for every t ∈ [0, T ].

This result is exactly the one already established in [19] (see also [7]).
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Theorems 3.1 & 3.2 establish the relation between the PMP and the HJB approach by using
the auxiliary value function w and not the value function ϑ. Let us stress on the fact that because
the function ϑ may be discontinuous, a relation between the PMP and the HJB approach cannot
be expressed by using only ϑ. Indeed, if the value function is not locally Lipschitz then it is not
even clear which sub-differential should be used, see [7].

Another feature of Theorems 3.1 & 3.2 is that no qualification constraint is required and so
the extremal (x̄, ū, p̄) may be abnormal (i.e., λ0 = 0). In all cases, the multiplier λ0 is related
to the sensitivity of the auxiliary value function w w.r.t the variable z.

4 The case of Mayer problem with final state constraints

In this section, we prove most of the assertions of Theorem 3.1 in the particular case where the
control problem is a Mayer problem with only one end-point constraint (casem = 1, tm = t1 = T ,
` ≡ 0), and we furthermore denote g = g1 throughout this section. The problem in this simplified
setting is :

minimize ϕ(x(T ))

subject to g(x(T )) ≤ 0 and (x,u) ∈ X[0,T ](x) (35)

where g and ϕ are given locally Lipschitz continuous functions.
In this setting the auxiliary optimal control problem becomes

w(t, x, z) = min
(x,u)∈X[t,T ](x)

(
ϕ(x(T ))− z

)∨
g(x(T )). (36)

This problem corresponds to an augmented dynamics where the dynamics for the z variable is
zero. We recall that if z0 = inf{z ∈ R, w(0, x, z) ≤ 0} is finite, then any optimal trajectory
(x,u) for the auxiliary OCP associated with the value w(0, x, z0) is also an optimal solution of
the initial problem (20), and z0 = ϑ(t, x).

Theorem 4.1. Assume that (H0)-(H4) are satisfied. Let x0 ∈ Rd and assume z0 := ϑ(0, x) is
finite. Let (x̄, ū) ∈ X[0,T ](x) be an optimal solution of the control problem (35). Then there exist

multipliers (λ0, λ1) ∈ R× R and a co-state p̄ ∈W 1,1((0, T ),Rd) such that:
(i) non-triviality of the multipliers: λ0 + λ1 = 1, λ0, λ1 ≥ 0 and λ1g(x̄(T )) = 0,
(ii) co-state equation:

˙̄p(t) ∈ ∂xH(t, x̄(t), ū(t), p̄(t),−λ0) a.e. t ∈ [0, T ], (37a)

p̄(T ) ∈ λ0∂ϕ(x̄(T )) + λ1∂g(x̄(T )), (37b)

(iii) Pontryagin’s principle:

H(t, x̄(t), ū(t), p̄(t),−λ0) = max
u∈U

H(t, x̄(t), u, p̄(t),−λ0) a.e t ∈ [0, T ], (37c)

(iv) link between PMP and the function w:

(H(t, x̄(t), p̄(t),−λ0), p̄(t),−λ0) ∈ ∂t,x,zw(t, x̄(t), z0) for every t ∈ [0, T ], (37d)

(p̄(0),−λ0) ∈ ∂x,zw(0, x0, z0), (37e)

(p̄(T ),−λ0) ∈ ∂x,zw(T, x̄(T ), z0), (37f)

(p̄(t),−λ0) ∈ ∂x,zw(t, x̄(t), z0) a.e. t ∈ [0, T ]. (37g)
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Remark 4.1. In the setting of Mayer problem with final state constraint (and without in-
termediate state constraints), we notice that the function q(t) in Theorem 3.1-(iv) satisfies
q(t) = λ0 + λ1 ≡ 1. Therefore the function q(·) does not appear in Theorem 4.1.

Proof of Theorem 4.1. Let (x̄, ū) be a solution of the control problem (35), then (x̄, ū, z0) is an
optimal solution for the auxiliary control problem (36), for t = 0, x = x0 and z = z0. By using
the results of [5], we get the existence of an adjoint state p ≡ (px,pz) ∈ W 1,1((0, T ),Rd+1)
satisfying the PMP:

ṗx(t) ∈ ∂xH(t, x̄(t), ū(t),px(t),pz(t)), a.e. t ∈ [0, T ], (38a)

ṗz(t) = 0, a.e. t ∈ [0, T ], (38b)

H(t, x̄(t), ū(t),px(t),pz(t)) = max
u∈U

H(t, x̄(t), u,px(t),pz(t)), a.e t ∈ [0, T ], (38c)

and the following sensitivity relations:

(H(t, x̄(t),px(t),pz(t)),px(t),pz(t)) ∈ ∂t,x,zw(t, x̄(t), z0) for a.e. t ∈ [0, T ], (39a)

(px(0),pz(0)) ∈ ∂x,zw(0, x0, z0), (39b)

(px(T ),pz(T )) ∈ ∂x,zw(T, x̄(T ), z0), (39c)

(px(t),pz(t)) ∈ ∂x,zw(t, x̄(t), z0) for a.e. t ∈ [0, T ], (39d)

where the Hamiltonian functions H and H are the same as (23a) with ` ≡ 0. If we set p̄ := px,
then equations (38a), (38c) lead immediately to (37a) and (37c). From (38b) we deduce also
that pz(t) = const.

On the other hand, relation (39c) gives(
px(T )
pz(T )

)
∈ ∂x,z

[
(ϕ(x̄(T ))− z0)

∨
g(x̄(T ))

]
.

By using (11), we have

∂x,z

[
(ϕ(y)− z)

∨
g(y)

]
⊂

{
λ0

(
ξϕ
−1

)
+ λ1

(
ξg
0

)
, λ0, λ1 ≥ 0, λ0 + λ1 = 1,

ξϕ ∈ ∂ϕ(y), ξg ∈ ∂g(y)

}
.

Therefore we obtain the existence of a couple (λ0, λ1) such that λ0, λ1 ≥ 0, λ0 +λ1 = 1, and

px(T ) ∈ λ0∂ϕ(x̄(T )) + λ1∂g(x̄(T ))

pz(T ) = −λ0.

In the case when g(x̄(T )) < 0, since z̄ is the minimal value such that w(0, x, z̄) = 0, we have
ϕ(x̄(T )) − z̄ = 0 and therefore g(x̄(T )) < ϕ(x̄(T )) − z̄. In that case, λ1 = 0 and λ0 = 1. We
conclude that the nontriviality of the multipliers λ0, λ1.

Now, the general sensitivity relation (39a) leads to:

(H(t, x̄(t), p̄(t),−λ0), p̄(t),−λ0) ∈ ∂t,x,zw(t, x̄(t), z0) for a.e t ∈ [0, T ]

which is still true for every t ∈ [0, T ], since H, p̄, x̄ are continuous functions and the generalized
gradient has closed graph. The other sensitivity relations (37e)-(37g) can be directly deduced
from (39b)-(39d).
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As it can be seen in the proof of Theorem 4.1, pz(t) = const = −λ0. Also pz represents a
sensitivity of the cost function w with respect to the z variable.

The case when λ0 = 0 means that there is no sensitivity with respect to the z variable and
the cost only depends on the constraint g(x(T )).

5 Sensitivity relations for a control problem with intermediate
costs

In order to prove Theorem 3.1, we need to proceed in several steps. The first step aims to
establish sensitivity relations for a general control problem where the cost function is in the form
of a maximum of intermediate costs at given intermediate times 0 < t1 < t2 < · · · < tm = T . In
this section we consider functions (Φj)1≤j≤m with the following regularity assumption:

(HΦ) For each j = 1, . . . ,m, Φj : Rd → R is locally Lipschitz continuous.

Consider the dynamics F : [0, T ] × RN × U satisfying the following assumption: are given
functions satisfying the following assumptions:

(HF)



(i) F is continuous on [0, T ]× RN × U
(ii) x→ F (t, x, u) is locally Lipschitz continuous in the following sense:

∀R > 0, ∃kR ≥ 0, ∀(x, y) ∈ (BN (0;R))2, ∀(t, u) ∈ [0, T ]× U :

‖F (t, x, u)− F (t, y, u)‖ ≤ kR‖x− y‖
(iii) ∃cF > 0 such that

‖F (t, x, u)‖ ≤ cF (1 + ‖x‖), ∀(t, x, u) ∈ [0, T ]× RN × U.

The control problem that is considered here is the following:

minimize
m∨
j=1

Φj(y(tj)) (40)

ẏ(s) = F (s,y(s),u(s)), a.e. on [0, T ],

y(0) = y0,

u ∈ U .

Note that the above control problem has no state constraint. Assumption (HF) guarantee
that for every u ∈ U and (t, x) ∈ [0, T ] × RN , the existence of an absolutely continuous curve
y : [t, T ] → RN which satisfies the dynamic equation and the initial data y(t) = y. We define
the set of all admissible pairs control-and-trajectories starting at time t from the position y as:

XF[t,T ](y) := {(y,u) ∈W 1,1(t, T )× U | (y,u) satisfies ẏ(s) = F (s,y(s),u(s)) with y(t) = y}.

The value function associated to the control problem (40) is defined as follows. For every x ∈ Rd,
for every t ∈ [0, T ] and j ∈ {1, . . . ,m} such that t ∈ Ij :

V(t, y) := min
{ m∨
k=j

Φj(y(tk)), (y,u) ∈ XF[t,T ](y)
}
.
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By using the same arguments as in the proof of Proposition 3.2, we can show that the value
function V is locally Lipschitz continuous on each Ij×Rd (∀j), and that V is a viscosity solution
of the following system of HJB equations:

−∂V
∂t

(t, y) + max
u∈U

(−F (t, y, u) ·DyV(t, y)) = 0 t ∈ Ij , j = 1, . . . ,m, y ∈ Rd

V(t−j , y) = V(t+j , y)
∨

Φj(y) j = 1, . . . ,m− 1, y ∈ Rd

V(T, y) = Φm(y) y ∈ Rd.

(41)

Furthermore, if we assume that all (Φj) have linear growth (i.e., ∃cΦ > 0 such that |Φj(y)| ≤
cΦ(1 + |y|) ∀y ∈ RN and j = 1, · · · ,m), then V has also a linear growth on [0, T ]× Rd and V is
the unique viscosity solution of (41) with linear growth.

Optimality conditions for the problem (40) can be deduced as particular cases of the problems
considered in [9] or in [10]. The main result of this section aims at deriving the relation between
the co-state associated to an optimal solution and the generalized gradient of the value function
along that optimal solution.

It is worth noticing that the sensitivity relations cannot be deduced directly from the exist-
ing literature, however the proof is inspired by the arguments in [7, 19, 5]. We give here the
complete proof for two main reasons: first, we show how the arguments can be adapted in case
of intermediate costs and discontinuities of the value function at times ti, for i = 1, · · · ,m− 1.
Secondly, we give a simplified proof and show that all the sensitivity relations can be obtained
by a simple perturbed control problem without using an approximation of the dynamic equa-
tion by impulse systems (as required in [7, 5]). In this section, we introduce the Hamiltonian
corresponding to problem (40):

HF (t, y, u, p) = −F (t, y, u) · p, for t ∈ [0, T ], y ∈ RN , u ∈ U, p ∈ RN .

Theorem 5.1. Assume that the hypothesis (H0), (HF) and (HΦ) hold. Let (ȳ, ū) be a local
minimizer for problem (40). Set

J (ȳ) := {j ∈ {1, . . . ,m} | Φj(ȳ(tj)) =

m∨
k=1

Φk(ȳ(tk))}. (42)

Then there exist ν ∈ Rm and p(.) : [0, T ] → Rd, with p(.) ∈ W 1,1(Ij ,RN ) for every j =
1, · · · ,m, and such that
(i) Normality:

m∑
j=1

νj = 1, νj ≥ 0, and νj = 0 for j /∈ J (ȳ). (43a)

(ii) Adjoint state equation. For every (t, y, u, p) ∈ [0, T ]× RN × U × RN , then we have:
ṗ(t) ∈ ∂yHF (t, ȳ(t), ū(t),p(t)) a.e. on [0, T ],

p(t−j )− p(t+j ) ∈ νj∂Φj(ȳ(tj)) j = 1, . . . ,m− 1,

p(T ) ∈ νm∂Φm(ȳ(T )).

(43b)
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(iii) Maximality:

HF (t, ȳ(t), ū(t),p(t)) = max
u∈U

HF (t, ȳ(t), u,p(t)) (43c)

(iv) General sensitivity relation: ∀t ∈ [0, T ]\{t1, . . . , tm−1}

(HF (t, ȳ(t), ū(t),p(t)), p(t)) ∈ q(t)∂V(t, ȳ(t)), where q(t) :=
m∑

̂(t)

νj ; (43d)

(v) Sensitivity relations: for a.e. t ∈ [0, T ]:

p(t) ∈ q(t)∂yV(t, ȳ(t)), (43e)

p(0) ∈ ∂yV(0, ȳ(0)), (43f)

p(t±i ) ∈ q(t±i )∂yV(t±i , ȳ(ti)) ∀i = 1, . . . ,m− 1, (43g)

Remark 5.1. We have also, analogously to (43g), the relation

p(T ) ∈ q(T )∂xV(T, ȳ(T )),

but since q(T ) = νm and V(T, x) = Φm(x) this leads to the last relation already given in (43b).

Remark 5.2. The cost function being a maximum of intermediate costs, the sensitivity relation
that gives a link between the adjoint arc and the value function holds actually along the optimal
trajectory until the final time tm0 that corresponds to the time where the maximal intermediate
cost is reached.

Proof. Let (ȳ, ū) be a local minimizer of problem (40). The proof of the optimality conditions
and sensitivity relations will be split into three steps.

Step 1. For every j = 1, · · · ,m, define the function Vj : [tj−1, tj ]× RN −→ R by:

Vj(t, y) := min
{ m∨
k=j

Φk(y(tk)), (y,u) ∈ XF[t,T ](y)
}
.

Then Vj is locally Lipschitz on [tj−1, tj ] × Rd × R. Moreover, on the interval t ∈ [tj−1, tj ], the
function V(t, .) differs from Vj only at t = tj−1. More precisely,

V(t, x) = Vj(t, x) for any t ∈ Ij ,
V(t−j−1, x) = max(Vj(tj−1, x),Φj−1(x)). (44)

For a given ε ∈]0, 1], we define the following subset of Rd+1, for any s ∈ [0, T ]:

Gε,0(s) :=
{

(α, β) ∈ ∂Vj(τ, ξ)
∣∣∣ τ ∈ [tj−1, tj ], (τ, ξ) ∈ (s, ȳ(s)) + εBN+1

}
, (45)

where j is such that s ∈ Ij (recall that BN+1 denotes the closed unit ball of RN+1). We define
also the set:

Gε,1(s) :=
{
β ∈ ∂xVj(s, ξ)

∣∣∣ ξ ∈ ȳ(s) + εBN
}
. (46)
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For any bounded set S of RN , ∂Vj is bounded on Ij × S, hence Gε,0(s) and Gε,1(s) are
uniformly bounded sets.

Now, introduce the support functions σε,0 : [0, T ]×R×RN and σε,1 : [0, T ]×RN defined as:

σε,0(s, ω, θ) := sup
(α,β)∈Gε,0(s)

(α, β) · (ω,−θ) ∀s ∈ [0, T ], ω ∈ R, and θ ∈ RN ; (47)

σε,1(s, b) := sup
β∈Gε,1(s)

β · (−b) ∀s ∈ [0, T ], and b ∈ RN (48)

The quantities Gε,1(.) and σε,1(.) will be useful in order to analyze the sensitivity relations w.r.t
the state variable.

By similar arguments as in [19, Lemma 3.1], we can show that, for any j = 1, . . . ,m, the
function σε,0 is upper semi-continuous on [tj−1, tj ] × RN × R. Moreover, for any s ∈ (tj−1, tj),
σε,0(s, ., .) is continuous on R × RN . On the other hand, the function σε,0 is bounded on any
bounded set of [0, T ] × R × RN . In particular, for any essentially bounded and measurable
functions (ω,θ) : [0, T ] → R × Rd, the function σε,0(.,ω(.),θ(.)) is integrable. Similarly, for
any measurable b : [0, T ] → Rd, the function σε,1(., b(.)) is measurable and bounded on [0, T ].
Therefore we can define the following perturbed optimal control problem:

(Pε) : minimize Jε(y, ζ,u,ω,θ, b) =

m∨
j=1

(Φj(y(tj)) + ζ(tj))− V(0,y(0))− ζ(0) (49a)

such that{
ẏ(t) = (1 + ω(t))F (t,y(t),u(t)) + θ(t) + b(t) a.e. t ∈ (0, T ),

ζ̇(t) = σε,0(t,ω(t),θ(t)) + σε,1(t, b(t)) a.e. t ∈ (0, T ),
(49b)

u(t) ∈ U, |ω(t)| ≤ ε, ‖θ(t)‖ ≤ ε, ‖b(t)‖ ≤ ε a.e. t ∈ (0, T ), (49c)

where (u,ω,θ, b) are measurable functions. Notice that in problem (Pε) the initial position for
the state equation is free. Besides, the perturbations (u,ω,θ, b) are considered as control inputs
that enrich the class of variations for this new optimal control problem.

Step 2. For any given ε ∈]0, 1], let us show that (ȳ(.), ζ ≡ 0, ū, 0, 0, 0) is a local minimizer
of the problem (Pε). For this, we first remark that (ȳ(.), ζ ≡ 0) is a solution of (49b) with the
control law (ū(.), ω ≡ 0, θ ≡ 0, b ≡ 0) and

Jε(ȳ, 0, ū(t), 0, 0, 0) =
m∨
j=1

Φj(ȳ(tj))− V(0, ȳ(0)) = 0.

Now, consider any solution (y(.), ζ(.),u(.),ω(.),θ(.), b(.)) of (49b)-(49c) and such that y lies in
an ε-tube around ȳ, i.e.,

‖y(t)− ȳ(t)‖ < ε, ∀t ∈ [0, T ].

We will show that

Jε(y, ζ,u,ω,θ, b) ≥ 0, (50)

which in turn will lead directly to the desired conclusion that is (ȳ(.), ζ ≡ 0, ū, 0, 0, 0) is a local
minimizer of the problem (Pε).

As V(·,y(·)) is a Lipschitz continuous function on Ij (for any j), it is then almost everywhere
differentiable on [0, T ]. Furthermore, we have the following key result:

20



Lemma 5.1.

d

ds
V(s,y(s)) + σε,0(s,ω(s),θ(s)) + σε,1(s, b(s)) ≥ 0, a.e. on [0, T ]. (51)

Proof of Lemma 5.1. The arguments of this proof are similar to the ones introduced in [19]. The
difference is that here we establish inequality (51) with respect to the two perturbations (ω,θ)
and b. This is a key result to derive all sensitivity relations by considering the perturbed control
problem (Pε) and without considering additional approximations of the state (as it was done in
[7, 5]).

It is sufficient to prove that

d

ds
Vj(s,y(s)) + σε,0(s,ω(s),θ(s))) + σε,1(s, b(s)) ≥ 0, a.e. on [tj−1, tj ]. (52)

For almost every s ∈ [tj−1, tj ], it holds:

d

ds
Vj(s,y(s)) = lim

h↓0

1

h

(
Vj(s+ h,y(s+ h))− Vj(s,y(s))

)
= lim

h↓0

1

h

(
Vj(s+ h,y(s) + hẏ(s))− Vj(s,y(s))

)
= D↑Vj((s,y(s)); (1, ẏ(s))) (53)

whereD↑ is the upper Dini directional derivative. Furthermore (with the notation F = F (s,y(s),u(s)))
we have(

1
ẏ(s)

)
=

(
1

(1 + ω(s))F + θ(s) + b(s)

)
= (1 + ω(s))

(
1
F

)
+

(
−ω(s)
θ(s)

)
+

(
0
b(s)

)
. (54)

By using (16) and the relation D◦,−φ(x;λv) = λD◦,−φ(x; v) (for λ ≥ 0), we get:

d

ds
Vj(s,y(s)) = D↑Vj((s,y(s)); (1, ẏ(s))) ≥ (1 + ω(s))D◦,−Vj((s,y(s)); (1, F (s,y(s),u(s)))

+ D◦,−Vj((s,y(s)); (−ω(s),θ(s)))

+ D↑Vj((s,y(s)); (0, b(s))) (55)

From one hand, Lemma 5.2 (at the end of the section) says that for a.e. s ∈ Ij :

D◦,−Vj((s,y(s)); (1, F (s,y(s),u(s))) ≥ 0. (56)

On the other hand, for any given values of ω, θ, it holds

−D◦,−Vj((s,y(s)); (−ω, θ)) = D◦Vj((s,y(s)); (ω,−θ))
= max

(α,β)∈∂Vj(s,y(s))
(αω − β · θ)

≤ max
(α,β)∈Gε,0(s)

(αω − β · θ) = σε,0(s, ω, θ). (57)
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We turn now to the third term in the right hand side of (55). Since y(s) ∈ ȳ(s) + εBN , by
definition of Gε,1(s) and σε,1(s, .), for any b ∈ RN , we have

−D↑Vj((s,y(s)); (0, b)) = − lim inf
h↓0

1

h

(
Vj(s,y(s) + hb)− Vj(s,y(s))

)
= lim sup

h↓0

1

h

(
Vj(s,y(s))− Vj(s,y(s) + hb)

)
≤ lim sup

h↓0, ξ→y(s)

1

h

(
Vj(s, ξ − hb)− Vj(s, ξ)

)
≤ D◦x(Vj(s, .))(y(s);−b)
≤ max

β∈Gε,1(s)
β · (−b) = σε,1(s,−b) (58)

Finally, by combining inequalities (55), (56), (57), (58) and using the fact that 1 +ω(s) ≥ 0,
we conclude that (51) is satisfied.

Now, by integrating (51) over each interval (tj−1, tj), for j = 1, . . . ,m, we get:

0 ≤ V(t−j ,y(tj))− V(t+j−1,y(tj−1)) + ζ(tj)− ζ(tj−1),

which combined with (44) gives:

V(t+j−1,y(tj−1)) + ζ(tj−1) ≤ (V(t+j ,y(tj)) + ζ(tj))
∨

(Φj(y(tj)) + ζ(tj)). (59)

Using a recursion on (59) and the fact that V(T,y(T )) = Φm(y(T )), we obtain

V(0,y(0)) + ζ(0) ≤ (V(t+1 ,y(t1)) + ζ(t1))
∨

(Φ1(y(t1)) + ζ(t1))

≤ (V(t+2 ,y(t2)) + ζ(t1))
∨

(Φ2(y(t2)) + ζ(t2))
∨

(Φ1(y(t1)) + ζ(t1))

≤ · · · ≤
m∨
j=1

(Φj(y(tj)) + ζ(tj)).

This is sufficient to justify that Jε(y, ζ,u,ω,θ, b) ≥ 0 which is the desired claim to prove in this
step.

Step 3: Now, we apply the Pontryagin maximum principle to the optimal control problem
(Pε) with intermediate costs. Such a problem is a particular case of optimal control problems
for multi-processes in [9] and [8] (see also [10]).

Since (ȳ, ζ ≡ 0) is a local minimizer of the optimal control problem (Pε), then according to
[9, 8], there exist νε ∈ Rm and (pε(.), qε(.)) absolutely continuous on each sub-interval Ij such
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that

(i) νεj ≥ 0,
m∑
j=1

νεj = 1, and νεk = 0 for k /∈ J (ȳ)

(ii)

(
ṗε(s)

q̇ε(s)

)
∈ ∂y,ζHε(s, ȳ(s), ζ̄(s), ū(s), 0, 0, 0,pε(s), qε(s)), a.e. on [0, T ]

(iii) Hε(s, ȳ(s), ζ̄(s), ū(s), 0, 0, 0,pε(s), qε(s))= max
u∈U,‖θ‖≤ε,
|ω|≤ε, ‖b‖≤ε

Hε(s, ȳ(s), ζ̄(s), u, θ, ω, b,pε(s), qε(s)) a.e. on [0, T ]

(iv) −

(
pε(0)

qε(0)

)
∈ ∂y,ζ(−V(0, ȳ(0))− ζ̄(0))

(v)

(
pε(T )

qε(T )

)
∈ νεm∂y,ζ(Φm(ȳ(T )) + ζ̄(T ))

(vi)

(
pε(t

−
j )− pε(t+j )

qε(t
−
j )− qε(t+j )

)
∈ νεj∂x,ζ

(
Φj(ȳ(tj)) + ζ̄(tj)

)
, j = 1, . . . ,m− 1

(60)

where Hε is defined by:

Hε(s, y, ζ, u, θ, ω, b, p, q) := −
(
(1 + ω)F (s, y, u) + θ + b

)
· p− (σε,0(s, θ, ω) + σε,1(s, b))q . (61)

Analysis of (60)(ii). As Hε does not depend on ζ, it comes:

q̇ε(s) ≡ 0,

and
ṗε(s) ∈ ∂yHε(s, ȳ(s), ζ̄(s), ū(s), 0, 0, 0,pε(s), qε(s)), a.e. on [0, T ]

In addition, by definition of Hε, we can easily check that:

∂yHε(s, ȳ(s), ζ̄(s), ū(s), 0, 0, 0,pε(s), qε(s)) = (1 + ω̄(s))∂yH
F (s, ȳ(s), ū(s),pε(s)).

As ω̄ ≡ 0, we conclude that:{
ṗε ∈ ∂yHF (s, ȳ(s), ū(s),pε(s)), a.e. on [0, T ]

q̇ε ≡ 0, a.e. on [0, T ].
(62)

Analysis of assertions (60) (iv), (v) and (vi). The function (y, ζ) 7−→ Φm(y) + ζ is a
separable sum of a locally Lipschitz function Φm and a C1 function of ζ. Hence (v) can be
rewritten (

pε(T )
qε(T )

)
∈ νεm∂Φm(ȳ(T ))× {1},

which gives
pε(T ) ∈ νεm∂Φm(ȳ(T )) and qε(T ) = νεm. (63)

With similar arguments, we get also:

pε(0) ∈ ∂yV(0, ȳ(0)), qε(0) = 1, (64)
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as well as
pε(t

−
j )− pε(t+j ) ∈ νεj∂Φj(ȳ(tj)), qε(t

−
j )− qε(t+j ) = νεj . (65)

It follows from (62), (63) and (65) that q(.) is piecewise constant, with:

qε(s) =

m∑
k=j

νεk for s ∈ Ij , j = 1, . . . ,m. (66)

In particular, s→ qε(s) is a decreasing function with qε(0) = 1, qε(T ) = νεm, and consequently
0 ≤ qε(s) ≤ 1 for a.e. s ∈ [0, T ].

Analysis of assertion (60)(iii): ∀u ∈ U , ∀(ω, θ) ∈ R×Rd such that for a.e. s ∈ (0, T ) and
for every |ω| ≤ ε, ‖θ‖ ≤ ε, ‖b‖ ≤ ε, we have:

− (1 +ω)F (s, ȳ(s), u) ·pε(s)−σε(s, θ, ω)qε(s)−σε,1(s, b)qε(s) ≤ −F (s, ȳ(s), ū(s)) ·pε(s). (67)

In particular, taking θ = 0, ω = 0 and b = 0 in (67), it comes:

−F (s, ȳ(s), u) · pε(s) ≤ −F (s, ȳ(s), ū(s)) · pε(s) ∀u ∈ U,

that is,
HF (s, ȳ(s), ū(s),pε(s)) = max

u∈U
HF (s, ȳ(s), u,pε(s)) a.e. on (0, T ).

On the other hand, with u = ū(s) in (67), for every (ω, θ) ∈ Rd+1 such that |ω| ≤ ε, ‖θ‖ ≤ ε
and ‖b‖ ≤ ε :

−(1 + ω)F (s, ȳ(s), ū(s)) · pε(s)− θ · pε(s)− b · pε(s)− σε,0(s, θ, ω)qε(s)− σε,1(s, b)qε(s)

≤ −F (s, ȳ(s), ū(s)) · pε(s). (68)

Hence, for b = 0:

−ωF (s, ȳ(s), ū(s)) · pε(s)− θ · pε(s)− σε,0(s, θ, ω)qε(s) ≤ 0

and

ωHF (s, ȳ(s), ū(s),pε(s))− θ · pε(s) ≤ qε(s)(s)σε,0(s, θ, ω) = qε(s)
(

max
(α,β)∈Gε,0(s)

(α, β) · (ω,−θ)
)
.

Therefore, for all |ω| ≤ ε and ‖θ‖ ≤ ε,

(ω,−θ) · (HF (s, ȳ(s), ū(s),pε(s)),pε(s)) ≤ qε(s)
(

max
(α,β)∈Gε,0(s)

(α, β) · (ω,−θ)
)
.

By a separating hyperplane argument as in [19], since qε(s) ≥ 0, this last inequality implies:(
HF (s, ȳ(s), ū(s),pε(s)),pε(s)

)
∈ qε(s)coGε,0(s) a.e. s ∈ [0, T ]. (69)

On the other hand, if we set θ = 0 and ω = 0 in (68), with ‖b‖ ≤ ε, we obtain

−b · pε(s)− σε,1(s, b)qε(s) ≤ 0.
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We then deduce that

pε(s) ∈ qε(s)coGε,1(s), a.e. s ∈ [0, T ]. (70)

The rest of the proof follows the same arguments as in [19]. All the previous properties were
established for a given ε > 0. Now let us consider a sequence εi → 0 and denote by pεi(·) the
corresponding adjoint states. One can find a subsequence such that pεi(·) converges uniformly
on each sub-interval Ij to an absolutely continuous function p(·), and νεi converges to some
ν ∈ Rm satisfying the normality condition. It is clear that the limit function p(·) satisfies

ṗ(s) ∈ ∂yHF (s, ȳ(s), ū(s),p(s)) a.e. on [0, T ]

and
−p(s) · F (s, ȳ(s), ū(s)) = max

u∈U
(−F (s, ȳ(s), u) · p(s)), a.e. on [0, T ].

Moreover, all boundary conditions are preserved:
−p(0) ∈ −∂yV(0, ȳ(0)),

p(t−j )− p(t+j ) ∈ νj∂Φj(ȳ(tj)) for j = 1, . . . ,m− 1,

p(T ) ∈ νm∂Φm(ȳ(T )).

(71)

Finally, by passing to the limit in (69), one has ∀j ∈ {1, . . . ,m}, for almost every s ∈ Jj :(
HF (s, ȳ(s), ū(s),p(s)),p(s)

)
∈ q(s)

⋂
ε>0

co
{
∂Vj(τ, y)

∣∣∣ (τ, y) ∈ (s, ȳ(s)) + εBd+1 ∩ (Ij × Rd)
}
≡ q(s)∂Vj(s, ȳ(s)).

From this relationship, using the same argument as in [19], one deduces that(
HF (s, ȳ(s), ū(s),p(s)),p(s)

)
∈ q(s)∂Vj(s, ȳ(s)) ∀s ∈ (tj−1, tj).

Also, by passing to the limit in (70), we obtain for a.e. s ∈ Ij :

p(s) ∈ q(s)
⋂
ε>0

co
{
∂yVj(s, y)

∣∣∣y ∈ ȳ(s) + εBN
}
≡ q(s)∂yVj(s, ȳ(s)). (72)

This concludes the proof.

The proof of Lemma 5.1 is based on the following result whose proof comes directly from
the dynamic principle of the value function Vj (a sketch of the proof is given below for sake of
completeness).

Lemma 5.2. For any (s, y, u) ∈ [tj−1, tj ]× Rd × U ,

D◦,−Vj((s, y), (1, F (s, y, u)) := lim inf
h↓0, s′→s, y′→y

1

h

(
Vj(s′ + h, y′ + hF (s, y, u))− Vj(s′, y′)

)
≥ 0.
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Proof of Lemma 5.2. Consider the constant admissible control u(θ) ≡ u and let yus,y(.) denote
the absolutely continuous solution of ẏ(θ) = F (θ,y(θ), u) a.e. θ ∈ [0, T ], with y(s) = y.

Let ε > 0. By assumption (HF) on the dynamics F , and by standard arguments, we can
show that, for h sufficiently small and for any (s′, y′) close enough to (s, y), we have:

‖yus′,y′(s′ + h)− (y′ + hF (s, y, u))‖ ≤ hε.

Moreover, since Vj is locally Lipschitz continuous on [tj−1, tj ] × RN , there exists L > 0 such
that:

Vj(s′ + h, y′ + hF (s, y, u)) ≥ Vj(s′ + h,yus′,y′(s
′ + h))− Lhε.

This inequality with the dynamic programming principle leads to:

Vj(s′ + h, y′ + hF (s, y, u)) ≥ Vj(s′ + h,yus′,y′(s
′ + h))− Lhε ≥ Vj(s′, y′)− Lhε.

Therefore,

lim inf
h↓0, s′→s, y′→y

1

h
(Vj(s′ + h, y′ + hF (s, y, u))− Vj(s′, y′)) ≥ −2Lε,

and since the result holds for any ε > 0, we deduce the desired inequality.

6 Proof of the main results (Theorems 3.1 and 3.2)

Proof of of Theorem 3.1. Let x0 ∈ Rn be such that z0 = ϑ(0, x0) < +∞, and assume that
(x̄, ū) ∈ X[0,T ](x) is a solution to the control problem (19). Let z̄(·) be defined by:

z̄(t) = z0 −
∫ t

0
`(s, x̄(s), ū(s)) ds ∀t ∈ [0, T ].

By proposition 3.1, we know that (x̄, ū, z̄) is also an optimal solution to the augmented control
problem associated to the value w(0, x, z) (as defined in (22)). By using the result of Theorem 5.1,
we get the existence of ν ∈ Rm and p(·) = (px(·),pz(·)) absolutely continuous on each sub-
interval Ij : px|(tj−1,tj) ∈W

1,1([tj−1, tj ],Rd) and pz|(tj−1,tj) ∈W
1,1([tj−1, tj ],R), such that

(i)

m∑
j=1

νj = 1, νj ≥ 0 (∀j), and j /∈ J (ȳ)⇒ νj = 0 (∀j)

(ii)

{
ṗx(t) ∈ ∂xH(t, x̄(t), ū(t),px(t),pz(t))
ṗz(t) = 0

a.e. on [0, T ]

(iii)


px(t−j )− px(t+j ) ∈ νj∂xgj(x̄(tj)) j = 1, . . . ,m− 1

pz(t
−
j )− pz(t+j ) = 0 j = 1, . . . ,m− 1

(px(T ),pz(T )) ∈ νm∂x,z (gm(x̄(T ))
∨

(ϕ(x̄(T ))− z̄(T )))

(iv) H(t, x̄(t), ū(t),px(t),pz(t)) = max
u∈U

H(t, x̄(t), u, (px(t),pz(t)))

(v) (H(t, x̄(t),px(t),pz(t)),px(t),pz(t)) ∈ q(t)∂(t,x,z)w(t, x̄(t), z(t)),

∀t ∈]tj−1, tj [, ∀j = 1, . . . ,m,

(px(0),pz(0)) ∈ ∂x,zw(0, x̄(0), z̄(0)),

(px(t),pz(t)) ∈ q(t)∂x,zw(t, x̄(t), z̄(t)), a.e. t ∈ (0, T ).
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From (ii) we deduce that pz(t) is constant on all intervals (tj−1, tj), and since pz(t
−
i ) = pz(t

+
i )

by (iii), we deduce that pz(t) is constant on [0, T ].
By using the sub-differential calculus rule for the maximum of two functions, we conclude

that there exist α0 ≥ 0, α1 ≥ 0 such that α0 + α1 = 1 and(
px(T )
pz(T )

)
∈ νm

(
α0∂ϕ(x̄(T )) + α1∂gm(x̄(T ))

−α0

)
with α1gm(x̄(T )) = 0, and pz(T ) = −α0νm. Finally, if we set

λ0 := νmα0,

λj := νj , for j = 1, . . . ,m− 1,

λm := νmα1,

and p̄ ≡ px,

then all the assertions of Theorem 3.1 follow directly from the above optimality conditions.

Proof of of Theorem 3.2. Recall here that we assume ` ≡ 0. We apply Theorem 5.1 for the
optimal solution (x̄, ū), with fixed parameter z0 = ϑ(0, x0), the optimal control problem (t, x)→
w(t, x, z0) where w is defined as usual by (22), considering the variable x ∈ Rd, the dynamics
F (t, x, u) := f(t, x, u), and the functions Φj(x) := gj(x) for j = 1, . . . ,m − 1 and Φm(x) :=
max(gm(x), ϕ(x)−z0). The proof then follows the same lines as for the proof of Theorem 3.1.
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