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A one-step algorithm for spectral CT with an
application on multi-source inverse geometry

Frédéric Jolivet, Clarisse Fournier, Jérôme Lesaint and Andrea Brambilla.

Abstract—Spectral computerized tomography (Spectral CT) is
an imaging technique which uses the spectral information of
the attenuated X-ray beam. Energy-resolved photon-counting
detector is a promising technique for improved spectral CT
imaging and allows to obtain material selective images. While
energy-resolved photon-counting detectors can have good spectral
resolution (with many energy bins), the size of these detectors
is often limited. For their part Multi-Source Inverse Geometry
CT (MS-IGCT) architectures allow the use of a smaller detector
than conventional Cone Beam CT architecture (CBCT). In a
previous work, we have proposed a one-step reconstruction
algorithm validated with spectral data from classical Cone Beam
CT architecture. In this work we propose to adapt this one-step
method on spectral data from MS-IGCT architecture. From noisy
simulated data, we compare the proposed one-step method with
two two-step decomposition methods.

Index Terms—Multi-source Inverse Geometry CT, Spectral CT,
Iterative image reconstruction, Material decomposition.

I. INTRODUCTION

Spectral CT with energy-resolved photon-counting detectors
gives the possibility to record the multi-energy data in a single
acquisition [1]. One interest of spectral CT for medical x-ray
imaging is to decompose the object onto some physical or
materials basis [2]. Several approaches are proposed to tackle
the decomposition problem. Two-step approaches first estimate
multi-material decomposed sinograms from multi-energies
sinograms. Then material specific images are reconstructed
from the multi-material decomposed sinograms [3], [4]. One-
step methods propose to tackle the decomposition problem in a
one-step inversion, i.e. estimate multi-material reconstructions
in the image domain from multi-energies sinograms [5], [6].
In a conventional CBCT architecture, the field of view of
the reconstructed maps is directly limited by the size of the
energy resolved photon counting detector. For their part multi-
source inverse geometry CT (MS-IGCT) architectures (see
Fig. 1 for example) allow the use of a smaller detector than
conventional Cone Beam CT architecture [7]. Compared to
conventional CBCT, MS-IGCT (with a small detector) also
reduces scattered radiation, which should help improve mate-
rial decomposition results. In previous works, we proposed
an iterative tomographic reconstruction algorithm for MS-
IGCT with an energy-integrating X-ray detector [8], and one-
step method using photon-counting detectors for conventional
CBCT architecture [9]. In this work, we adapt the one-step
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method [9] for multi-source inverse geometry CT and com-
pare multi-material reconstructions obtained with the proposed
method with those of two-step methods. The two-step methods
estimate decomposed sinograms with a Maximum Likelihood
Estimator (MLE), and from these decomposed sinograms the
first two-step method uses Filtered Back-Projection (FBP) to
obtain the multi-material reconstructions (in the image do-
main) whereas the second one uses a regularized tomographic
reconstruction [8].
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Fig. 1. Multi-Source Inverse Geometry setup.

II. AN EMPIRICAL IMAGING MODEL

In inverse problems approaches, the image formation model
links the observed data to the imaged object according to the
properties of the acquisition system and the unknown object.
In spectral CT the energy-dependant attenuation coefficient is
classically expressed as a linear combination of a few basis
materials [2], [10]. This model combined with the forward
model of spectral tomographic reconstruction (including the
incident spectrum and the spectral response of the detector)
leads to a non-convex optimization problem (in the inverse
problems framework) [3], [6] and requires an accurate knowl-
edge of the system response. In this work, we choose to
use an empirical imaging model based on a linear fit of
attenuation calibration data [4] and adapt it for multi-source
inverse geometry architectures.

A calibration basis of two materials is used to determine
the coefficients p that best fits measurements obtained with
N combinations of material specific thicknesses. With multi-
source inverse geometry, N calibrated measurements are ac-
quired for the energy-bin c of the pixel k when the q-th source
is active. These measurements are collected in the vector
sq,k,c,

sq,k,c = Hpq,k,c + ecalibq,k,c (1)

where sq,k,c ∈ RN and ecalibq,k,c ∈ RN are respectively the
calibration data vector and the error vector, whereas pq,k,c is
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a vector of two order-1-polynomial coefficients (in this work
the number of basis materials is equal to 2) and H ∈ RN×2

is a matrix defined by,

H =

(
l1,1 · · · l1,N
l2,1 · · · l2,N

)T
.

Considering all vectors ecalibq,k,c as white gaussian noises, we
determine the coefficients pq,k,c of these polynomial functions
with,

p̂q,k,c = argmin
p∈R2

‖Hp− sq,k,c‖22 (2)

The optimization problem (2) leads to the following closed-
form solution (see chap.4 of the book [11]),

p̂q,k,c =
(
HTH

)−1

HTsq,k,c . (3)

We use the coefficients p̂q,k,c to model the C energy bins
attenuation measurements at pixel k and object rotation angle θ
when the q-th source is active,

mq,k,θ(x1,x2) = M q,kχq,k,θ (4)

where x1 ∈ RNx (respectively x2 ∈ RNx ) is the material-
specific sinogram for the material 1 (respectively for the ma-
terial 2). The matrix M q,k ∈ RC×2 and the vector χq,k,θ ∈ R2

are defined by,

M q,k =
(
p̂q,k,1 · · · p̂q,k,C

)T
and χq,k,θ =

(
[x1]q,k,θ
[x2]q,k,θ

)
,

where [xη]q,k,θ = [Azη]q,k,θ with A the forward projection
matrix and zη is the vector of Nz unknowns in the image
domain for the material η.
This leads to the following data formation model,

dq,k,θ = mq,k,θ(x1,x2) + eq,k,θ (5)

where dq,k,θ ∈ RC is the data vector for the k-th pixel of
the θ-th object rotation angle when the q-th source is active
and eq,k,θ ∈ RC is the error vector including different noises
(detection noise, modeling noise...).
Note : In conventional CBCT, it is crucial to have pixel-
specific model (and therefore a pixel-specific calibration) to
take into account the non-uniform response between each
pixels detector. In MS-IGCT, we must also take into account
the variation between each sources.

III. THE PROPOSED ONE-STEP METHOD

Considering all error vectors eq,k,θ in (5) are Gaussian
noises, the data fidelity term can be formulated as the negative
log-likelihood,

F(x1,x2) =

Q∑
q=1

K∑
k=1

Θ∑
θ=1

‖mq,k,θ(x1,x2)− dq,k,θ‖2W q,k
(6)

with W q,k the inverse of the covariance matrix of the noise
for the k-th pixel when the q-th source is active (in our
case W q,k is diagonal because we assume a non correlated
noise), K is the number of detector pixels, Θ is the number
of object rotation angles and Q is the number of sources.

This inverse problem is ill-posed and ill-conditioned. For this
reason it is necessary to introduce prior information in order
to restrict ambiguity for the inversion. In inverse problems
framework, these prior information can be termed as a feasibil-
ity set (bound constraints,...) and/or a regularization function
to favor specific properties of the spatial distribution of the
reconstructed object. In our case we assume an isotropic total
variation regularization which promotes piecewise-constant
objects [12], [13] on reconstruction objects {z1, z2}, and a
feasible set Ω. The proposed one-step method for MS-IGCT
can be formulated as an optimization problem,

ẑ ∈ argmin
z
F(Az1,Az2) +R(z1, z2) (7)

where z =

(
z1

z2

)
and R is a regularization term which

introduces an isotropic total variation constraint in the image
domain and could restrict z values to a feasible set Ω (a non-
negativity constraint for instance). Thus R is defined by

R(z1, z2) = λ

2∑
η=1

‖∇zη‖2,1 + iz∈Ω(z1, z2) , (8)

where iz∈Ω is the indicator function which restrict z values
to the set Ω, λ ∈ R+ is an hyperparameter that balances the
weight of the regularization term with the data fidelity term
and ‖.‖2,1 is the (2,1)-mixed norm `2,1.

IV. PROPOSED ITERATIVE RECONSTRUCTION ALGORITHM

In the previous section we have formulated the inverse
problem as the large scale optimization problem (7) which
is non-smooth (due to the regularization term). Furthermore,
the data fidelity and the regularization term are not in the
same domain, respectively in the projection domain and the
image domain. For these reasons the optimization problem
(7) is challenging. In order to limit the time complexity of
the reconstruction, it is important to solve data fidelity term in
the projection domain. We therefore choose to use a variable
splitting strategy such that at convergence xη = Azη . We
reformulate the optimization problem (7) as the following
constrained optimization problem,

ẑ ∈ argmin
x,z

s. t. x=Ãz

F(x1,x2) +R(z1, z2) (9)

where x =

(
x1

x2

)
and Ã = I2⊗A with I2 is the identity ma-

trix and ⊗ is the Kronecker product. The function F(x1,x2) is
smooth convex, and R(z1, z2) is a non-smooth and non-linear
function. To handle the constrained optimization problem (9),
we can form the augmented Lagrangian Lρ and search for a
saddle point,

Lρ(x, z,u) = F(x1,x2) +R(z1, z2)

+ ρ

2∑
η=1

(
‖xη −Azη + uη‖22 − ‖uη‖

2
2

)
(10)

where uη=1,2 ∈ RNx are the scaled dual variables, and
ρ ∈ R+ is the augmented Lagrangian penalization param-
eter [14]. To find a saddle point we can resolve alternatively
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a minimization with respect to the primal variables and a
maximization with respect to the dual variables,{

x(j+1), z(j+1)
}
∈ argmin

x,z
Lρ(x, z,u(j))

dual update : u(j+1)
η = u(j)

η + x(j+1)
η −Az(j+1)

η

where η ∈ {1, 2} and (j) corresponds to the iteration number.
This optimization problem can be performed by the Alternat-
ing Direction Method of Multipliers (ADMM) [14],

x(j+1) = argmin
x

Lρ
(
x, z(j),u(j)

)
(11)

z(j+1) = argmin
z
Lρ
(
x(j+1), z,u(j)

)
(12)

u(j+1)
η = u(j)

η + x(j+1)
η −Az(j+1)

η ,∀ η ∈ {1, 2} .

Since the projection matrix A is a linear operator, the min-
imization problem (12) is a convex/non-smooth large-scale
optimization problem solved with the MS-IGCT reconstruction
method [8]. On the other hand, the minimization problem (11)
is a convex/smooth minimization problem which is separable
and can thus be solved independently pixel by pixel and source
by source with the following closed-form expression,

χ̂
(j+1)
q,k,θ =

(MT
q,kW q,kM q,k + ρI2)−1(MT

q,kW q,kdq,k,θ + ρv
(j)
q,k,θ),

with I2 the identity matrix and vq,k,θ =

(
[Az1 − u1]q,k,θ
[Az2 − u2]q,k,θ

)
.

The closed-form solution of (11) is the key point of the
proposed one-step method.

V. EXPERIMENTS & RESULTS

A. Simulations

20 40 60 80 100 120

20

40

60

80

100

120 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

D
et

ec
to

r 
en

er
g
y 

(k
eV

)

Photon energy (keV)

Fig. 2. Detector Response Matrix for the simulated CdTe detector.

Fig. 1 is a realistic illustration of the simulated MS-IGCT
architecture. We simulate 4 distributed sources shifted from 0
to 40 cm (0/10/25/40cm). The source-to-detector distance is
100 cm whereas the source-to-isocenter distance is 80 cm. The
object is a Shepp-Logan Phantom of 18.4×13.8 cm, containing
different proportions of water and cortical bone materials.
The simulated photon counting detector is a line of 50 pixels
with a pitch of 1 × 1 mm2 (i.e. detector size ∼ 5 cm). The
detector is simulated with one hundred and eleven energy bins

from 10keV to 120keV and the realistic Detector Response
Matrix (DRM) shown in Fig. 2. The simulated source was
set to 140kV with 0.1 cm aluminum filtration at 0.1 mA.s per
projection which result of an x-ray exposure of 5×106 photons
per pixel. Attenuation coefficients of water and cortical bone
come from the computer program XMuDat [15]. Energy-
resolved photon counting data are corrupted by a Poissonnian
noise. These simulated data are represented Fig.3. A two basis
material calibration of water and cortical bone was simulated
with 15 thicknesses ranging from 0 to 17 cm for the water,
and 15 thicknesses ranging from 0 to 6 cm for the cortical
bone.

Source S1 Source S2

Source S3 Source S4

Fig. 3. Truncated simulated sinograms of the MS-IGCT architecture (Fig.1).

B. Results

Fig. 4 shows a comparison between 3 methods : the pro-
posed one-step method (fourth column) with a non-negativity
constraint. Method 1 (second column) : A two-step method
based on a Maximum Likelihood Estimation (MLE) of ma-
terials sinograms x (which consists in minimizing the data
fidelity expressed in (6) ) followed by a filtered back-projection
step. Method 2 (third column) : A two-step method based on
the same first step but followed by a regularized tomographic
reconstruction method with TV regularization adapted for MS-
IGCT [8]. For the last method, regularization hyperparameters
of the second step are tuned automatically to maximize re-
construction’s Peak Signal-to-Noise Ratio (PSNR). All these
reconstructions are obtained from simulated data described in
Sec. V-A and can be compared with ground truth (second
column). Results in Fig. 4 show that the proposed one-step
method gives reconstructions with a better PSNR than the
two-step methods (see Tab.I). Regarding the proposed one-
step method, the number of iterations needed to solve (12)
is another key parameter to maximize the ratio reconstruction
image quality vs. computation time. In our case, 15 iterations
of the regularized reconstruction for MS-IGCT [8] give sat-
isfying reconstructions. To finish we applied 50 iterations of
the ADMM method. The proposed method is implemented on
GPU to drastically reduce the computational time.

PSNR Method 1 Method 2 Proposed method
Bone 18.05 dB 23.31 dB 29.66 dB
Water 11.15 dB 22.25 dB 23.30 dB

TABLE I
RECONSTRUCTION’S PEAK-SIGNAL-TO-NOISE RATIO.
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Fig. 4. Comparison of bone (top) and water (bottom) reconstructions in the image domain with spectral data from MS-IGCT architecture with 4 distributed
sources and a small detector (5 cm). The ground truth (first column), and reconstructions obtained with the two-step method based on MLE decomposed
sinograms followed by regularized iterative reconstructions (third column) and reconstructions obtained with the proposed one-step method (fourth column).
With an other corlorbar, reconstructions obtained with the two-step based on MLE decomposed sinograms followed by filtered back-projections (second
column).

VI. CONCLUSION & PERSPECTIVES

We have proposed a one-step method which has been
applied on spectral data for a multi-source inverse geometry
CT. This one step method used an empirical model based on
calibration data, and an alternating optimization strategy. The
data fidelity reconstruction step is solved with a closed-formed
expression, which drastically reduces the computation time of
the material decomposition. The total-variation constraint and
bound constraints are introduced by the iterative regularized
reconstruction method for multi-source inverse geometry [8].
The present work shows that the proposed method reduces the
noise for a bi-material reconstruction. Finally, this work opens
up interesting perspectives for spectral CT reconstruction with
a small spectral detector and a flat panel of sources. These
preliminary - but promising - results, obtained on noisy
simulated data, must now be validated on experimental spectral
data.
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