
HAL Id: hal-03079736
https://hal.science/hal-03079736v1

Submitted on 17 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of orthogonal codes with chaotic optical
systems

D. Rontani, A. Locquet, M. Sciamanna, D. S Citrin, A. Uchida

To cite this version:
D. Rontani, A. Locquet, M. Sciamanna, D. S Citrin, A. Uchida. Generation of orthogonal codes
with chaotic optical systems. Optics Letters, 2011, 36 (12), pp.2287-2289. �10.1364/OL.36.002287�.
�hal-03079736�

https://hal.science/hal-03079736v1
https://hal.archives-ouvertes.fr


Generation of Orthogonal Codes with Chaotic Optical

Systems

D. Rontani1,2,3∗, A. Locquet2,3, M. Sciamanna1,2, D.S. Citrin2,3, and A. Uchida4
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We propose to use an electro-optic oscillator based on two Mach-Zehnder

modulators in two different delayed feedback loops to generate two orthogonal

chaotic spreading sequences (codes). We numerically demonstrate, for such

codes, spectrally-efficient multiplexing and demultiplexing of two digital data

streams at multi-Gb/s rates using chaos synchronization and covariance-based

detection. c© 2011 Optical Society of America

OCIS codes: 140.1540, 190.3100, 060.4230.

Optical chaos-based communications are spread-spectrum techniques that typically exploit

noise-like waveforms to convey and encrypt at the physical layer a single data stream and

chaos synchronization to decrypt it [1]. Interest has grown recently in multiplexing chaotic

signals [2–4] and multiple data streams [5,6] using nonlinear and delayed systems. In optics,

only an application of the principle of wavelength division multiplexing (WDM) was consid-

ered with chaotic lasers [7–9]. A different approach to multiplexing relies on code-division

multiple access (CDMA); this techniques makes use of multiple fixed pseudo-random binary
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Fig. 1. Chaotic transmission chain using for the emitter E and receiver R a single optoelec-

tronic oscillator with two cosine-square nonlinearities with different internal gain. LD: laser

diode, OC: optical coupler, MZ1,2: Mach-Zehnder modulator, DL: optical delay line, λ/2:

half-wave plate, PD: photodetector, RF: band-pass amplifier, D1,2: voltage divider, m1,2:

messages to be encrypted.

signals (known as codes) to spread out the spectrum of various binary data streams, which

then overlap spectrally. At the receiver, duplicates of the codes are used to recover data

using correlation-based detection [10]. Near-perfect orthogonality, defined as having a dot

product between the binary codes close to zero, is crucial in CDMA to properly recover each

user’s binary message. We propose to substitute these fixed codes with optical chaotic signals

(chaotic codes). In order to do so, the following issues must be solved: (i) the duplication of

the chaotic codes at the receiver, (ii) their joint modulating and spectrum-spreading effect,

and (iii) their non-stationarity resulting in difficulty of ensuring orthogonality [5].

In this letter, we propose to generate two orthogonal chaotic optical codes using an opto-

electronic system. For this, the chaotic electro-optic oscillator (EOO) of ref. [11] is modified;

two delayed feedback loops, each comprising a Mach-Zehnder modulator, are added. We later

exploit the statistics of their outputs to generate the desired codes. We discuss the conditions

that ensure their orthogonality and then numerically demonstrate how they can be used in

a multiplexed two-user encryption/decryption at 2.5 Gb/s per user.

Figure 1 depicts a two-user optical chaos-based transmission chain based on our modified

EOO with two feedback loops. Emitter (E) is composed of a monochromatic CW laser diode

with optical power P divided in two separate arms. In each arm the light is modulated by

a Mach-Zehnder modulator (MZi) biased by voltage Vdci and with constant-valued rf and
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dc half-wave voltages Vπrfi
and Vπdci

. The linearly polarized optical signals travel through

different optical fibers DLi imposing time delays Ti. Before being recombined and detected

by a single photodetector PD (of efficiency S), the polarization direction of one of the signals

is rotated by π/2 relative to the other with a half-wave plate (λ/2) to prevent optical inter-

ferences. The electrical signal generated by the PD is then amplified with gain G and filtered

by a band-pass filter with low and high cut-off frequencies fL and fH . The total attenuation

of each loop is denoted gi < 1 and is obtained for instance by using a voltage divider Di,

inducing different internal gains ωi in the cosine-square nonlinearities because they reduce

the electrical voltage V (t) before driving the respective Mach-Zehnder modulator MZi. The

receiver (R) has a similar structure. This results in the following two dynamical models using

similar notations to [11]:

τ
dx

dt
+ x+

1

θ

∫ t

t0

x (u) du = s(t), (1)

τ
dy

dt
+ y +

1

θ

∫ t

t0

y (u) du = s(t− Tc), (2)

with x(t) and y(t) the respective dimensionless RF variable of E and R, x(t) =

πg1GV (t)/2Vπrf1 , θ = (2πfL)
−1, τ = (2πfH)

−1. s(t) =
∑n=2

i=1 β cos2 (ωixTi
+ φ0i) is the mul-

tiplexed signal with xTi
= x(t − Ti), β = g1GSPπ/(2nVπrf1

), φ0i = πVdci/(2Vπdci
), and

ωi = gi/g1Vπrf1
/Vπrfi

. The dynamics of the synchronization error e(t) = y(t) − x(t − τc)

between E and R is that of a damped oscillator, converging exponentially fast to zero. This

ensures E and R to be chaotically synchronized. In the simulations, the transmission time

Tc is taken equal to zero without loss of generality.

The codes being generated from the state variable x(t), we must first analyze its statistical

properties. It is already known that an EOO with a single cosine-square nonlinearity can

generate high-dimensional chaos with Gaussian statistics similar to Ikeda-like systems [12].

Figure 2 confirms that such statistics can be observed in our architecture with two feedback

loops (for sufficiently large values of βi). This can also be explained by the combination of

the band-passing action of our EOO architecture with the “random-like” driving action of

the delayed nonlinear feedbacks (a key feature of the feedback to observe Gaussian statistics

with a single delayed EOO).

We propose to use the delayed output of each Mach-Zehnder modulator si(t) =
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Fig. 2. (a) Time series of x(t), (b) probability density function (gray line) of x(t) and a

theoretical Gaussian distribution (red dashed line). The parameters are τ = 25 ps, θ = 10 μs,

Ti=1,2 = 30 ns, βi|i=1,2 = 5, φ0i|i=1,2 = −π/4, ω2 = 2ω1 = 2, and time step Δt = 5 ps.

βi cos
2(ωixTi

+ φ0i) (i = 1, 2) for the optical chaotic codes, as they process x(t) with two

different and strong nonlinearities. The properties of each code are controlled by the non-

linear gain βi, the internal gain ωi, the offset phase φ0i, and bit duration Tb. To understand

the influence of these four parameters on the orthogonality between the two chaotic codes

si(t), which corresponds to zero cross-covariance, we carry out a systematic numerical inves-

tigation. Orthogonality is studied as a function of internal gain difference Δωij = ωi − ωj,

nonlinear gain βi (taken identical for the two nonlinearities for the codes to have approx-

imately identical variance), and relative phase difference Δφ0ij = φ0i − φ0j. The bit du-

ration Tb may also impact orthogonality significantly. In particular, if Tb is comparable or

smaller than the time scale of the chaotic fluctuations of x(t), a sound estimate of the

Fig. 3. Evolution of the normalized cross-covariance coefficient ρsisj in the two-parameter

space (Δωij, β) in (a) and (Δωij,Δφ0ij) in (b).
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cross-covariance cannot be obtained. To study orthogonality, we consider the normalized

cross-covariance coefficient ρsisj = Γsisj/[ΓsisiΓsjsj ]
1/2 calculated over a finite period Tb with

Γsisj = 〈(si(t)− 〈si)〉(sj(t)− 〈sj〉)〉 and 〈·〉 the time-average operator.

Figure 3 plots |ρsisj | as a function of (Δωij, β) in Fig. 3(a), and (Δωij,Δφ0ij) in Fig. 3(b).

The results are averaged over 5000 realizations of the chaotic codes with duration Tb = 0.4 ns.

Figure 3(a), in which the phases are identical φ0i = −π/4 (i=1,2), confirms the existence

of quasi-perfect orthogonality between the codes with short duration Tb over a large region

and highlights to this regard the key role of Δωij and βi. In Fig. 3(b), similar parameters

to those of Fig. 3(a) are used except for the gains βi = 5 (to ensure a hyperchaotic regime)

and for the relative phase-shift Δφ0ij that varies. It shows the existence, for small Δωij, of

only four narrow zones of orthogonality, which merge as the internal gain difference Δωij

increases until quasi-perfect orthogonality is reached for any value of Δφ0ij.

Additional insight into the properties of Γsisj may be gained if its analytical form is found.

Toward this end, we assume x(t) to be perfectly Gaussian with zero mean and variance σ2
x

[based on our observation of Fig. 2(b)] and obtain in the Tb → ∞ limit

Γsisj =
β2

8

(
1− e−4ωiωjσ

2
x

)
e−2Δω2

ijσ
2
x×

(
cos 2Δφ0ij + cos(2φ0i + 2φ0j)e

−4ωiωjσ
2
x

)
.

(3)

Equation 3 explains how cross-covariance behaves with Δωij, β, and Δφ0ij . Since σ2
x varies

like β2 for large β [12], Eq. 3 demonstrates that Γsisj decreases exponentially fast with β2 and

Δωij, hence explaining the decorrelation obtained for large values of these two parameters.

Our orthogonal codes can be used to multiplex and demultiplex two messages in the

spirit of CDMA. This can be achieved by digitally modulating each nonlinear gain βi at

the rate 1/Tb with the binary message of the ith user mi. The signal s(t) now reads s(t) =∑n=2
i=1 βi (1 + δmi) cos

2 (ωixTi
+ φ0i), where δ is modulation depth that satisfies |δ| � 1 and

mi(t) = ±1. For the decryption, R produces the duplicates s′i(t) of each code si(t) with

chaos synchronization and then performs covariance-based detection. The extraction of each

message is based on

m̂i={1,2} 	 1

δΓs′is
′
i

(
Γss′i − Γs′is

′
i
− Γs′is

′
j

)
, (4)

with s′i(t) = βi cos
2(ωiyTi

+φ0i). Γss′i and Γsis′j are the cross-covariance of the (s, s
′
i) and (s′j, s

′
i)
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Fig. 4. Decryption of two binary messages transmitted simultaneously at 2.5 Gb/s per user.

The colored and gray lines represent the encrypted and decrypted messages, respectively.

The simulation parameters are identical to those of Fig. 1.

pairs calculated during Tb, respectively. The decoding equation for the ith user originates

from the calculation of Γss′i = (1+ δmi)Γsis′i + (1+ δmj)Γsjs′i . Neglecting δmjΓsjs′i thanks to

the quasi-perfect orthogonality between the two codes leads to Γss′i 	 (1 + δmi)Γsis′i +Γsjs′i .

E and R being chaotically synchronized, signals sj and s′j are equal, which finally leads to

Eq. 4. It is similar to the decoding equation used in [5], except that cross-covariance are

used instead of cross-correlation. Figure 4 illustrates our approach with the demultiplexing

of two data streams encoded at 2.5 Gb/s (bit rate of the OC-48 standard), thus resulting

in a cumulative bit rate of 5 Gb/s. We have also checked that the simulations are robust

to realistic levels of noise and parameter mismatch. Furthermore, a crucial property of our

encoding technique is that significant increase of spectral efficiency is achieved by comparison

to a similar encryption technique using an EOO-based architecture with a single loop. Using

identical parameters to those of Fig. 4 (including bit rate) for both the single and double-loop

EOO, it is found that the spectral efficiency approximately doubles in the latter case.

We have restricted ourselves to the case of two optical lines to avoid optical interferences

at the photodetector resulting form the optical summation, but our structure can be gen-

eralized to more than two optical lines to achieve even better spectral efficiency. However,

the unavoidable optical interferences would impact the dynamics, the statistics of x(t) and

s(t), and the decoding equation. These effects and their consequences on the modeling and

performance of the architecture will be further discussed elsewhere.

In this letter, we have demonstrated how to advantageously use a single electro-optic
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oscillator (EOO) with two delayed feedback loops comprising Mach-Zehnder modulators to

generate two orthogonal chaotic codes. Orthogonality is easily achieved when the gain βi

of each cosine-square nonlinearity and the difference in internal gain Δωij are sufficiently

large. This allows for the orthogonal codes to be used as carriers and ensures a cross-talk

free decryption of messages. Encryption and decryption of two messages at 2.5 Gb/s per user

were numerically demonstrated. Consequently, our approach may constitute a first significant

step towards multiplexed and spectrally-efficient optical chaos-based communications.
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