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Abstract— We report detailed experimental bifurcation1

diagrams of an external-cavity semiconductor laser. We have2

focused on the case of a DFB laser biased up to 1.6 times3

the threshold current and subjected to feedback from a distant4

reflector. We observe bifurcation cascades resulting from the5

destabilization of external-cavity modes that appear successively6

when the feedback is increased, and explain, in light of the7

Lang and Kobayashi (LK) model, how the cascading is influenced8

by various laser operating parameters (current, delay, and9

feedback phase) and experimental conditions. The qualitative10

agreement between experiments and simulations validates over a11

large range of operating parameters, the LK model as a tool for12

reproducing the salient aspects of the dynamics of a DFB laser13

subjected to external optical feedback.14

Index Terms— Bifurcation diagrams, dynamical regimes,15

external-cavity semiconductor laser.16

I. INTRODUCTION17

AN EXTERNAL-CAVITY semiconductor laser (ECSL),18

which utilizes the external cavity to provide time-delayed19

optical feedback into the gain region of the laser diode (LD),20

displays various dynamical behaviors depending on the oper-21

ating and design parameters. In particular, delayed feedback22

induces an infinite-dimentional phase space and allows for23

chaotic behavior in ESCLs [1], [2]. More broadly, the dynam-24

ics of ECSLs has been extensively studied [3]–[8] and they25

are expected to be employed for numerous applications such26

as secure communication [9]–[12], light detection and rang-27

ing (LIDAR) [13], random-number generation [12], [14], [15],28

and reservoir computing [16]. Despite years of interest in these29

systems, experimental investigations on ECSLs have suffered30

from a lack of detailed knowledge of the various dynamical31

regimes that can be accessed as a function of the various32

operating parameters, such as the feedback strength, the injec-33

tion current I, and the external cavity length L (creating a34
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delay τ ), for example. Valuable information concerning the 35

detailed dynamical regimes, and transitions between them, can 36

be conveniently summarized in easily visualized bifurcation 37

diagrams (BDs). Several theoretical and numerical works 38

have studied in detail the BDs of ECSLs as a function of 39

the feedback strength [17]–[19]. Experimentalist investigated 40

changes in intensity time series or in the optical/RF spectra 41

for a discrete set of operating parameters but before our 42

recent work [20], no BD based on a continuous tuning of a 43

parameter had been obtained. In this article, we seek to further 44

to elucidate the dynamics of ECSLs by means of BDs. 45

The chaotic transitions in long-cavity ECSLs for given L, I, 46

and feedback strength fall under a rich range of types, and 47

various routes to chaos have been observed. A common one 48

is the quasi-periodic route [21], in which a stable external- 49

cavity mode (ECM) is replaced by a periodic oscillation at 50

a frequency close to the relaxation-oscillation frequency fRO 51

of the solitary LD, then quasi-periodicity, involving a second 52

frequency close to 1/τ , and chaos are observed. A period- 53

doubling route to chaos has also been observed [22], in which 54

a cascade of period-doubling bifurcations creates oscillations 55

at frequencies close to sub-multiples of fRO . Other possibil- 56

ities also exist. When the conditions are such that several 57

ECMs are destabilized simultaneously, generalized multista- 58

bility ensues as several attractors or attractor ruins coexist 59

in phase space [4], [23]. In this case, numerous phenomena 60

related to attractor switching may be expected in a BD. One 61

remarkable example is the switching between a low-frequency- 62

fluctuations (LFF) state and a state of stable emission as was 63

observed in [24]–[26]. 64

Considerable and systematic information concerning the 65

dynamical regimes and the bifurcations between them is con- 66

veyed by the BD obtained by fixing all but one parameter and 67

then mapping out the extremal values of a conveniently mea- 68

sured dynamical variable as the parameter varies. Investigation 69

of BDs therefore provides new vantage point from which to 70

view ECSLs. In particular, BDs provide clear and systematic 71

experimental evidence of the way in which instabilities of vari- 72

ous nature develop in an ECSL. There are two important moti- 73

vations to the further investigation of ECSL BDs that reveal 74

links between various types of dynamical behavior. The first 75

is that it provides a global picture of the dynamical system. 76

Second, and more important, it enables systematic investi- 77

gations of the rich variety of dynamical behavior observed 78

in ECSLs, including LD stationary dynamics, multistability, 79

intermittency between stable states, and various routes to 80

chaos, in terms of transitions between these types of behavior. 81

0018-9197 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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By way of providing context for our work, a number82

of theoretical studies of ECSL BDs as a function of the83

feedback strength have been presented [1], [2]. Experimen-84

tal BDs have been obtained for other kinds of lasers such85

as erbium-doped fiber lasers subjected to pump modula-86

tion [27], optically injected solid-state lasers [28], q-switched87

gas lasers [29], [30], and bifurcations transitions have been88

identified in LDs subjected to optical injection [31], [32].89

In our recent paper [20], we overcame the experimental90

difficulties, prevented the existence of BDs for ECSLs, which91

η is controlled in small steps by means of a motorized rotation92

stage in high-stability conditions which allows for very good93

horizontal resolution of the BDs.94

In this article, we present a more systematic investigation,95

in light of experimental BDs, of the influence of operational96

parameters (current, length, feedback level, feedback phase)97

and conditions (forward and reverse BDs, influence of noise)98

on ECSL dynamics. Furthermore, to elucidate the underly-99

ing dynamics observed experimentally, we provide extensive100

theoretical studies based on the Lang and Kobayashi (LK)101

model. It is worth noting here that in the simulation we102

have identified the dynamical regimes and the instabilities103

involved in the cascade of bifurcations, as well as the influence104

of I and L on the cascade thus illustrating the dynamical105

regimes and their bifurcations over a wide range of parameters.106

More importantly, our numerical results show good qualita-107

tive agreement with the experimental results, validating the108

effectiveness of the BDs obtained experimentally. Our work109

thus connects the measured experimental BDs with theoretical110

phase-space trajectories, i.e., the multidimensional dynamics111

of the system. The agreement between experiment and simu-112

lation validates, within the boundary of the parameters range113

considered and of the examined phenomena, but over a large114

range of continuously tuned parameters, the LK model as a115

tool for reproducing the salient aspects of the dynamics of a116

DFB laser subjected to coherent optical feedback.117

II. THEORETICAL FRAMEWORK118

The LK model provides a single-longitudinal-mode descrip-119

tion of a semiconductor laser in terms of rate equations.120

It must be born in mind that this approach integrates out spa-121

tial degrees of freedom; nonetheless, while obtaining perfect122

agreement between theory and experiment is not expected,123

the LK equations reliably predict some dynamical trends as a124

function of various parameters [1], [2]. They are thus widely125

used. In the LK model, the external cavity is described by three126

parameters: theoretical feedback strength κ (proportional to127

experimental feedback strength η), delay time τ (proportional128

to L), and the feedback phase ωoτ , with the solitary laser129

angular frequency ωo. The (complex) electric-field amplitude130

E(t) and the carrier density N(t) are the solutions of131

dE

dt
= 1+iα

2

(
G− 1

τp

)
E(t) + κ

τin
E(t − τ )e−iωoτ + FE , (1)132

dN

dt
= pJth − N(t)

τs
− G|E|2. (2)133

with G = G[N(t) − No] being the optical gain where G is the134

gain coefficient and No is the carrier density at transparency.135

Fig. 1. Ellipse structure of fixed points in the phase-difference-vs.-N plane
for κ = 0.007 and τ = 1 ns. Circles represent ECMs; crosses represent
antimodes.

In addition, τp is the photon lifetime, τs the carrier life- 136

time, τin the optical round-trip time within the laser cavity, 137

α the linewidth-enhancement factor, p the pumping factor, and 138

Jth the threshold current. The spontaneous-emission noise is 139

modeled by a term FE = √
2βNξ , where β is a spontaneous- 140

emission noise factor and ξ is a complex Gaussian white noise 141

of zero and auto-covariance function Cx (t−t ′) = 〈ξ(t)ξ(t ′)〉 = 142

2ξ(t − t ′). We numerically integrated Eqs. (1) and (2) 143

with the following parameters: G = 8.1 × 10−13 m3s−1, 144

No = 1.1 × 1024 m−3, τp = 1 ps, τs = 1 ns, τin = 8 ps, 145

α = 3, and ωoτ = 0. Other parameters will be specified in 146

the context. 147

A steady-state analysis shows that two types of equilibrium 148

solutions of Eqs. (1) and (2) exist. The first is the possibly 149

stable ECMs, while the second are the unstable antimodes that 150

correspond to saddle points [4]. These solutions, when plotted 151

in the N(t) versus phase-difference 	φ(t) = φ(t) − φ(t − τ ) 152

plane, lie on an ellipse [33] as shown in Fig. 1, where the 153

ECMs are indicated by circles while antimodes are represented 154

by crosses. 155

Two specific ECMs are worthy of comment: the minimum 156

linewidth mode (MLM) and the maximum gain mode (MGM). 157

The MGM is the ECM with the lowest frequency (high- 158

gain end of the ellipse), and is typically stable [4], [24]. The 159

MLM is the ECM most proximate in frequency to the solitary 160

laser mode. In the general time-dependent case, a trajectory 161

in the space shown in Fig. 1 is traced out parametrically 162

in time, indicating the detailed evolution of all dynamical 163

variables of the system. The time-dependent intensity can be 164

extracted from the phase-space trajectory and used to construct 165

a theoretical BD which in turn can be compared with the 166

experimental BD. Thus the connection between dynamical 167

regime as manifested in the BD and the detailed dynamics 168

can be made. 169

III. EXPERIMENTAL SETUP 170

The experimental setup is shown in Fig. 2. Light from 171

the LD is split into two free-space optical paths using a 172

beam splitter (BS). One optical path is used for feedback 173

into the LD and the other is for coupling and/or observing 174

the dynamics of the intensity detected at the photodiode. The 175

semiconductor laser used in our experiments is an intrinsically 176

single-longitudinal mode InGaAsP DFB laser that oscillates 177
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Fig. 2. Experimental setup. LD : laser diode, PD : photodiode, L : collimation
lens, M : mirror, BS : beam splitter, P : linear polarizer, QWP : quarter-wave
plate, OI : optical isolator.

Fig. 3. Experimental BD for I = 10.54 mA and L = 15 cm.

at wavelength 1550 nm with maximum power of 15 mW.178

The free-running threshold current (Ith ) is 9.27 mA. A real-179

time oscilloscope with 12 GHz bandwidth is employed to180

capture the time series of the optical-intensity time series.181

In addition, we measure the RF spectrum of the optical182

intensity with a spectrum analyzer with a 23 GHz bandwidth.183

The optical spectrum is measured with a scanning Fabry-Perot184

interferometer of 10 GHz free spectral range and finesse equal185

to 150. L is variously chosen to be 15, 30, or 65 cm which186

corresponds to external-cavity round time τ = 1, 2, or 4.3 ns,187

respectively.188

It is essential to have highly stabilized temperature (tem-189

perature stability/24 hours < 0.002 °C) and current I (drift/190

24 hours < 100 μA) to ensure reproducibility. In addition,191

η is controlled in small steps by slowly changing the angle192

of the quarter-wave plate (QWP) in the external cavity by193

means of a motorized rotation stage. This allows for very good194

horizontal resolution of the BDs; indeed, the rotation velocity195

is 0.01 degree/minute and the resolution of the angle of QWP196

is 1/100 degree, leading to a 4500 possible different values of197

the feedback in a BD. The maximum feedback attainable in198

our experiment, corresponding to η = 0.8, is reached when199

the QWP is such that the polarization is not subjected to any200

rotation. Then, approximately 20% of the optical power is fed201

back onto the collimating lens.202

IV. EXPERIMENTAL BIFURCATION DIAGRAM203

An example of an experimental BD is shown in Fig. 3204

for I = 10.54 mA with L = 15 cm, corresponding to a205

frequency spacing between ECMs of ∼1 GHz. The BD is 206

obtained by taking the local extrema of the intensity time series 207

from the high-bandwidth oscilloscope used in the experiment 208

as a function of η. A probability density function of the 209

extrema of the intensity time series is obtained and plotted 210

with a color map, in which density is high in white (blue 211

in the color figure) but low in black regions. A bifurcation 212

cascade between apparently stable and unstable regions is 213

observed. 214

Because of the low current chosen, the photodetected optical 215

intensity is weak and does not always stand out of system 216

noise. Consequently, the thinner regions in the optical inten- 217

sity, that we call stable regions, do not necessarily correspond 218

to stable CW behavior but also contain regimes in which 219

instabilities around a single ECM have developed. The wider 220

regions in the optical intensity, referred to as unstable regions, 221

typically correspond to regimes in which trajectories wander 222

around several ECMs as a result of chaotic itinerancy and thus 223

clearly stand out of noise. The first experimental report of a 224

cascade of bifurcations is due to Hohl and Gavrielides [3]. This 225

observation was mainly based on an analysis of the optical 226

spectrum. A detailed study of the optical spectrum can also 227

be found in our previous work [20]. 228

A. Varying the Current 229

In order to analyze the effect of I, we compare the exper- 230

imentally observed bifurcation cascades for I = 11.84 mA, 231

12.70 mA, 14.67 mA, and 16.01 mA [Fig. 4]. We observe three 232

marked phenomena with increasing I. The first is that alter- 233

nating stable and unstable regions are observed, but no longer 234

a systematically cascade involving the successive MGMs that 235

appear when η increased. The second is that as I is increased, 236

the BD tends to exhibit large regions of uninterrupted chaotic 237

behavior. The third is that for larger I, the stable regions, 238

though limited in number, persist for a larger range of feedback 239

levels than is the case for low I. 240

The first observation shows the relative experimental robust- 241

ness of the bifurcation cascade. Indeed, we have observed 242

consistently the presence of alternating stable and unstable 243

regions for all values of the current between Ith and ∼1.6Ith . 244

However, when I >∼1.6Ith , we cannot observe any stable 245

region in the entire BD; we conclude that in this case, our 246

laser never lies on or in the vicinity of a single ECM and 247

therefore its dynamics necessarily involves attractor ruins of 248

several ECMs. The analysis of the time series, RF, and optical 249

spectra [20] also reveals that the dynamical behavior in the 250

first few unstable regions of the cascade is typically LFF for 251

currents up to 1.2Ith , while larger feedback and current levels 252

lead to fully-developed coherence collapse (CC). 253

To help us interpret different parts of the experimental BDs, 254

the intensity time series and the corresponding RF spectra 255

both in LFF and CC regimes are shown in Fig. 5, which 256

includes the results for η = 0.11 and 0.35 at I = 11.84 mA 257

corresponding to the BD of Fig. 4(a). In order to clearly 258

characterize the power dropouts during LFF, a low pass filter 259

with a bandwidth of 350 MHz was used to filter out the 260

high-frequency components of the time series. As discussed 261
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Fig. 4. Experimental BDs for L = 30 cm with (a) I = 11.84 mA,
(b) 12.70 mA, (c) 14.67 mA, and (d) 16.01 mA.

in previous work [20], in the unstable regions for low η,262

we systematically identify LFF [Figs. 5(a) and (b)], and in263

particular its typical random power dropouts. In contrast, for264

higher η, we do not observe LFF but a regime of fully265

developed CC [Figs. 5(c) and (d)]. We systematically identify266

LFF until η ∼0.18 is reached in Fig. 4(a) while for larger I, we267

do not observe LFF. A detailed study of the optical spectrum268

related to LFF and CC is presented in [20].269

Fig. 5. Experimental intensity time series after applying a 350 MHz low-pass
filter (first column) and RF spectrum (second column) for I = 11.84 mA;
(a)(b) η = 0.11 and (c)(d) η = 0.35.

B. Varying the External Cavity Length 270

The dependence of the BD on L is explored in Fig. 6. The 271

experiment is executed for 4 different cavity lengths L = 10, 272

30, 50, and 65 cm, at I = 11 mA. For a short cavity with 273

small L, we again observe a cascade of bifurcations, but with 274

significantly longer stable regions during which the laser- 275

output power dwells on a single ECM before moving into 276

the subsequent unstable regime, itself followed by the next 277

ECM [Fig. 6(a)]. Moreover, we also observe a well-resolved 278

experimental Hopf bifurcation of the first ECM that appears in 279

the cascade, thanks to the increased stability of short cavities. 280

In Fig. 6(d), when L = 65 cm, we barely observe a cascade of 281

bifurcations for small η (0.05 ≤ η ≤ 0.08). The laser-output 282

power remains briefly on a single ECM, then moves into an 283

unstable regime followed by the next stable ECM over a small 284

range of η and we cannot observe any cascading behavior by 285

further increasing η. The absence of a cascade in such case 286

is consistent with the numerical results, as will be shown in 287

section V. 288

C. Effect of the Feedback Phase 289

The feedback phase ωoτ can be varied by changing the 290

cavity length on the sub-wavlength scale. The change is so 291

small that, in terms of its dynamical effects, the delay itself can 292

be considered to be constant. We experimentally control the 293

optical feedback phase of the reflected light by a piezoactuated 294

translation stage. Figure 7 shows the BDs for I = 10.88 mA 295

and L = 13 cm, when the feedback phases differ by 1.22 rad. 296

We observe that the essential features of the BD, namely the 297

presence of a cascade between stable and unstable states and 298

the number of elements in the cascade, are preserved when 299

ωoτ is changed. 300

D. Forward and Reverse Bifurcation Diagrams 301

We compared both forward (increasing η) and reverse 302

(decreasing η) BDs. The corresponding results are shown in 303

Fig. 8 for (a) increasing η and (b) decreasing η. Although we 304

can observe the cascade behavior in both cases, the transitions 305

between stable and unstable regions typically occur at smaller 306
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Fig. 6. Experimental BDs for I = 11 mA with (a) L = 10 cm, (b) 30 cm,
(c) 50 cm, and (d) 65 cm.

η in the reverse cascade. These differences are an illustration307

of the generalized multistabilty of the system: as several308

attracting steady-states coexist for a given set of parameters,309

the initial state will influence the observed steady-state. In the310

forward BDs, the state of the ECM, as η increased, results311

from lower feedback, while in reverse BDs, the state results312

from higher-feedback attractors. It is thus normal to observe313

a shift to the left of the switching points between stable and314

unstable regimes, in the reverse BDs.315

Fig. 7. Experimental BD for I = 10.88 mA and L = 13 cm. The values of
the feedback phase in (a) and (b) differ by 1.22 rads. The vertical dotted line
corresponds to identical feedback strengths.

Fig. 8. Experimental BD of (a) increasing the feedback strength
(Forward BD) and (b) decreasing the feedback strength (Reverse BD) for
I = 11.03 mA and L = 15 cm. The vertical dotted lines correspond to
identical feedback strengths.

V. NUMERICAL BIFURCATION DIAGRAM 316

Figure 9(a) presents a simulated BD of the optical intensity 317

as a function of the theoretical feedback strength κ having 318

first subtracted off the time-averaged intensity, as is done 319

by the photodetector in the experiments. To further reflect 320

our experiments where η is gradually ramped up, the initial 321

state, for a given κ , is taken to be equal to the final state of 322

the simulation corresponding to the previous, smaller value 323

of κ . It is evident from the plot that alternating stable and 324
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Fig. 9. Numerical BD for (a) L = 15 cm and (b) L = 65 cm at p = 1.03.

Fig. 10. Numerical BD for p = 1.03 and L = 15 cm (0 ≤ κ ≤ 5.5×10−3).

unstable regions occur. Such numerical simulations facilitate325

the interpretation of the influence of L and I on the BD.326

A. Varying the Operating Parameters: External Cavity327

Length, Current, and Feedback Phase328

Figures 9(a) and (b) show the simulated BDs for different329

external cavity lengths (L = 15 cm and 65 cm). With330

short L, we observe a cascade of bifurcations, but with331

significantly longer stable regions during which the laser-332

output power dwells on a single ECM before moving into the333

subsequent unstable regime, itself followed by the next ECM.334

As explained in [4], we observe that the chaotic behavior335

initially develops around a single ECM and then extends to336

several ECMs as the ruins of neighboring attractors merge337

through an attractor-merging crisis (region ϕ of Fig. 10) [34].338

This crisis leads to an abrupt change in the optical intensity339

range. We interpret the unstable regions we observe in the340

experiments as corresponding to the onset of these crises that341

make the amplitude jump above the noise level.342

When L is large, the spectral separation between ECMs343

is reduced (e.g., 1 GHz→15 cm, 500 MHz→30 cm,344

233 MHz→65 cm) in the optical spectrum. Therefore, each345

participating mode being close in phase space, large-amplitude346

itinerancy between several modes is easily observed. In the347

limit of a very long L, Ruiz-Oliveras and Pisarchik have348

observed numerically that the laser is always unstable [35].349

Indeed, numerical observation of the trajectories on the ellipse350

shows that the proximity to the ECMs impedes the devel-351

opment of independent stable attractors and thus prevents352

the existence of a cascade of stable and unstable regions,353

as confirmed by our experimental observations. Conversely,354

increased distance between the ECMs for shorter L means355

that larger η is needed before attractor merging occurs,356

thus explaining the longer stable regions as observed in the357

experimental BDs of Fig. 6.358

Fig. 11. Numerical BD for (a) p = 1.02 and (b) p = 1.04 at L = 15 cm.

Fig. 12. Trajectory in phase space with pumping currents (a) p = 1.03 and
(b) p = 1.05 at τ = 2 ns and κ = 0.0025.

Small variations of L lead to changes in the feedback phase. 359

It is known that this in turn changes the stability conditions of 360

the ECMs [36], thus affecting the duration and location of the 361

stable regions. The global picture of the successive appearance 362

of MGMs and their destabilization is though not affected by 363

the value of the feedback phase, as is observed experimentally 364

in Fig. 7. 365

Figures 11(a) and (b) show simulated BDs for different 366

normalized pumping currents (p = 1.02 and 1.04) and Fig. 12 367

presents the trajectory in phase space for identical parameters 368

except for the current level p. 369

These help us interpret the influence of I on the BD. 370

Larger I leads to larger changes in the optical intensity and 371

thus to trajectories that explore a larger region of phase space. 372

Also, at low I, the unstable regions typically correspond to 373

the LFF regime, within which a drift toward the MGM is 374

observed. At larger I, the unstable regions typically correspond 375

to fully-developed CC in which chaotic itinerancy between 376

ruins of ECMs is observed, with no drift toward the MGM. 377

This behavior explains the increased difficulty in reaching 378

the MGM as I is increased. In particular, it explains why 379

we observe numerically that at larger I, either larger κ is 380

needed to get out of an unstable region and reach the MGM, 381

or the MGM is not reached at all. This in turn explains 382

the perturbed aspect of the bifurcation cascades observed 383

experimentally for larger I, in which some stable regions do 384

not appear in the BD because the trajectory never settles 385

on the MGM, and in which long uninterrupted regions of 386

chaotic itinerancy are observed. We also observe numerically 387

that above a certain feedback level, the dynamic regimes only 388

correspond to chaotic itinerancy among ECMs that are far 389

away from the MGM, with no drift toward the MGM, making 390

the MGM inaccessible [1], [2]. This explains the experimental 391
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Fig. 13. Numerical BD of p = 1.03 and L = 15 cm with β = 100.

observation of the total absence of stable regions when the392

I is larger than 1.6Ith .393

Finally, we interpret the experimental observation that long394

stable regions can be observed at larger I as being linked to395

the fact that larger κ is needed to destabilize the MGM when396

I is increased. This interpretation has a good agreement with397

the [21, eq. 21] giving an approximated value for κ at which398

Hopf instability sets in. Thus, when the trajectory reaches the399

MGM, which happens rarely for large I, larger κ is needed400

to destabilize it, a phenomenon which is consistent with the401

longer stable regions observed for relatively large currents402

(but smaller than 1.6 Ith). We have also observed that another403

phenomenon can contribute to explain the long stable regions.404

Indeed, we have determined experimentally that what appears405

to be a single stable region can sometimes correspond, espe-406

cially for large values of I, to two or more successive stable407

regions linked to different, successively appearing, ECMs.408

Thus long stable regions can be due to the slipping of the409

dynamics from one ECM to the next, without ever going410

through a phase of itinerancy around several ECMs.411

B. Effect of Noise412

We observe that the inclusion of noise in the LK model,413

through the addition of a Langevin noise source, tends to blur414

the low amplitude signal variations appearing when the laser415

bifurcates out of a CW state, making the simulated BDs closer-416

looking to the experimental ones.417

The effect of noise is illustrated by the comparison of418

Fig. 13, in which a spontaneous noise level β = 100 is419

used, with Fig. 9(a), which does not include noise. Qualitative420

features such as the feedback level at which the laser jumps to421

the MGM does not seem to change significantly when noise422

is included. This observation, combined with the resemblance423

of the noisy simulated BDs with the experimental ones,424

corroborates the fact that noise does not seem to induce the425

qualitative features of the cascade. Therefore, this observation426

is in favor of a deterministic origin of bifurcation cascades427

in ECSLs.428

VI. CONCLUSION429

A global experimental-based understanding of the various430

dynamical regimes is essential to gain a fundamental appre-431

hension the dynamics of an ECSL. In this regard, we have432

examined several aspects of fundamental importance for the433

dynamics of ECSLs using BDs based on experimental time434

series of the optical intensity of a DFB laser subjected to 435

coherent optical feedback. 436

In order to validate our interpretation of the experimental 437

results, we have carried out theoretical calculations based 438

on the well known LK model. Despite its simplifications, 439

this model can successfully reproduce the bifurcation cascade 440

that is observed experimentally. Moreover, the experimental 441

observation of a reduction in the number of stable regions 442

with increasing I is consistent with the LK model. Indeed, 443

LK predict that, at low I, the unstable regions correspond to 444

the LFF regime, involving a drift toward the MGM, while 445

at larger I, fully-developed CC occurs, with no drift toward 446

the MGM. The observation of a gradual disappearance of the 447

cascade with increasing L is also consistent with the model 448

which shows an increase in attractor merging as a result of 449

the increased proximity of ECMs in phase space. Our study 450

thus connects the observed experimental BDs, based on the 451

observation of the optical intensity only, with the behavior 452

in the full phase space of the LK model. Additionally, the 453

observation of differences between the forward and reverse 454

diagrams is a clear illustration of the multistability of the 455

ECSL. Finally, the good reproducibility of the experimental 456

results, combined with their good match with a deterministic 457

model, within a large range of continuously varied parameters, 458

supplies global evidence for the deterministic origin of the 459

salient aspects of ECSL dynamics. 460
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Bifurcation-Cascade Diagrams of an External-Cavity
Semiconductor Laser: Experiment and Theory

Byungchil (Bobby) Kim, Alexandre Locquet, Member, IEEE, Nianqiang Li,
Daeyoung Choi, and David S. Citrin, Senior Member, IEEE

Abstract— We report detailed experimental bifurcation1

diagrams of an external-cavity semiconductor laser. We have2

focused on the case of a DFB laser biased up to 1.6 times3

the threshold current and subjected to feedback from a distant4

reflector. We observe bifurcation cascades resulting from the5

destabilization of external-cavity modes that appear successively6

when the feedback is increased, and explain, in light of the7

Lang and Kobayashi (LK) model, how the cascading is influenced8

by various laser operating parameters (current, delay, and9

feedback phase) and experimental conditions. The qualitative10

agreement between experiments and simulations validates over a11

large range of operating parameters, the LK model as a tool for12

reproducing the salient aspects of the dynamics of a DFB laser13

subjected to external optical feedback.14

Index Terms— Bifurcation diagrams, dynamical regimes,15

external-cavity semiconductor laser.16

I. INTRODUCTION17

AN EXTERNAL-CAVITY semiconductor laser (ECSL),18

which utilizes the external cavity to provide time-delayed19

optical feedback into the gain region of the laser diode (LD),20

displays various dynamical behaviors depending on the oper-21

ating and design parameters. In particular, delayed feedback22

induces an infinite-dimentional phase space and allows for23

chaotic behavior in ESCLs [1], [2]. More broadly, the dynam-24

ics of ECSLs has been extensively studied [3]–[8] and they25

are expected to be employed for numerous applications such26

as secure communication [9]–[12], light detection and rang-27

ing (LIDAR) [13], random-number generation [12], [14], [15],28

and reservoir computing [16]. Despite years of interest in these29

systems, experimental investigations on ECSLs have suffered30

from a lack of detailed knowledge of the various dynamical31

regimes that can be accessed as a function of the various32

operating parameters, such as the feedback strength, the injec-33

tion current I, and the external cavity length L (creating a34
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delay τ ), for example. Valuable information concerning the 35

detailed dynamical regimes, and transitions between them, can 36

be conveniently summarized in easily visualized bifurcation 37

diagrams (BDs). Several theoretical and numerical works 38

have studied in detail the BDs of ECSLs as a function of 39

the feedback strength [17]–[19]. Experimentalist investigated 40

changes in intensity time series or in the optical/RF spectra 41

for a discrete set of operating parameters but before our 42

recent work [20], no BD based on a continuous tuning of a 43

parameter had been obtained. In this article, we seek to further 44

to elucidate the dynamics of ECSLs by means of BDs. 45

The chaotic transitions in long-cavity ECSLs for given L, I, 46

and feedback strength fall under a rich range of types, and 47

various routes to chaos have been observed. A common one 48

is the quasi-periodic route [21], in which a stable external- 49

cavity mode (ECM) is replaced by a periodic oscillation at 50

a frequency close to the relaxation-oscillation frequency fRO 51

of the solitary LD, then quasi-periodicity, involving a second 52

frequency close to 1/τ , and chaos are observed. A period- 53

doubling route to chaos has also been observed [22], in which 54

a cascade of period-doubling bifurcations creates oscillations 55

at frequencies close to sub-multiples of fRO . Other possibil- 56

ities also exist. When the conditions are such that several 57

ECMs are destabilized simultaneously, generalized multista- 58

bility ensues as several attractors or attractor ruins coexist 59

in phase space [4], [23]. In this case, numerous phenomena 60

related to attractor switching may be expected in a BD. One 61

remarkable example is the switching between a low-frequency- 62

fluctuations (LFF) state and a state of stable emission as was 63

observed in [24]–[26]. 64

Considerable and systematic information concerning the 65

dynamical regimes and the bifurcations between them is con- 66

veyed by the BD obtained by fixing all but one parameter and 67

then mapping out the extremal values of a conveniently mea- 68

sured dynamical variable as the parameter varies. Investigation 69

of BDs therefore provides new vantage point from which to 70

view ECSLs. In particular, BDs provide clear and systematic 71

experimental evidence of the way in which instabilities of vari- 72

ous nature develop in an ECSL. There are two important moti- 73

vations to the further investigation of ECSL BDs that reveal 74

links between various types of dynamical behavior. The first 75

is that it provides a global picture of the dynamical system. 76

Second, and more important, it enables systematic investi- 77

gations of the rich variety of dynamical behavior observed 78

in ECSLs, including LD stationary dynamics, multistability, 79

intermittency between stable states, and various routes to 80

chaos, in terms of transitions between these types of behavior. 81

0018-9197 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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By way of providing context for our work, a number82

of theoretical studies of ECSL BDs as a function of the83

feedback strength have been presented [1], [2]. Experimen-84

tal BDs have been obtained for other kinds of lasers such85

as erbium-doped fiber lasers subjected to pump modula-86

tion [27], optically injected solid-state lasers [28], q-switched87

gas lasers [29], [30], and bifurcations transitions have been88

identified in LDs subjected to optical injection [31], [32].89

In our recent paper [20], we overcame the experimental90

difficulties, prevented the existence of BDs for ECSLs, which91

η is controlled in small steps by means of a motorized rotation92

stage in high-stability conditions which allows for very good93

horizontal resolution of the BDs.94

In this article, we present a more systematic investigation,95

in light of experimental BDs, of the influence of operational96

parameters (current, length, feedback level, feedback phase)97

and conditions (forward and reverse BDs, influence of noise)98

on ECSL dynamics. Furthermore, to elucidate the underly-99

ing dynamics observed experimentally, we provide extensive100

theoretical studies based on the Lang and Kobayashi (LK)101

model. It is worth noting here that in the simulation we102

have identified the dynamical regimes and the instabilities103

involved in the cascade of bifurcations, as well as the influence104

of I and L on the cascade thus illustrating the dynamical105

regimes and their bifurcations over a wide range of parameters.106

More importantly, our numerical results show good qualita-107

tive agreement with the experimental results, validating the108

effectiveness of the BDs obtained experimentally. Our work109

thus connects the measured experimental BDs with theoretical110

phase-space trajectories, i.e., the multidimensional dynamics111

of the system. The agreement between experiment and simu-112

lation validates, within the boundary of the parameters range113

considered and of the examined phenomena, but over a large114

range of continuously tuned parameters, the LK model as a115

tool for reproducing the salient aspects of the dynamics of a116

DFB laser subjected to coherent optical feedback.117

II. THEORETICAL FRAMEWORK118

The LK model provides a single-longitudinal-mode descrip-119

tion of a semiconductor laser in terms of rate equations.120

It must be born in mind that this approach integrates out spa-121

tial degrees of freedom; nonetheless, while obtaining perfect122

agreement between theory and experiment is not expected,123

the LK equations reliably predict some dynamical trends as a124

function of various parameters [1], [2]. They are thus widely125

used. In the LK model, the external cavity is described by three126

parameters: theoretical feedback strength κ (proportional to127

experimental feedback strength η), delay time τ (proportional128

to L), and the feedback phase ωoτ , with the solitary laser129

angular frequency ωo. The (complex) electric-field amplitude130

E(t) and the carrier density N(t) are the solutions of131

dE

dt
= 1+iα

2

(
G− 1

τp

)
E(t) + κ

τin
E(t − τ )e−iωoτ + FE , (1)132

dN

dt
= pJth − N(t)

τs
− G|E|2. (2)133

with G = G[N(t) − No] being the optical gain where G is the134

gain coefficient and No is the carrier density at transparency.135

Fig. 1. Ellipse structure of fixed points in the phase-difference-vs.-N plane
for κ = 0.007 and τ = 1 ns. Circles represent ECMs; crosses represent
antimodes.

In addition, τp is the photon lifetime, τs the carrier life- 136

time, τin the optical round-trip time within the laser cavity, 137

α the linewidth-enhancement factor, p the pumping factor, and 138

Jth the threshold current. The spontaneous-emission noise is 139

modeled by a term FE = √
2βNξ , where β is a spontaneous- 140

emission noise factor and ξ is a complex Gaussian white noise 141

of zero and auto-covariance function Cx (t−t ′) = 〈ξ(t)ξ(t ′)〉 = 142

2ξ(t − t ′). We numerically integrated Eqs. (1) and (2) 143

with the following parameters: G = 8.1 × 10−13 m3s−1, 144

No = 1.1 × 1024 m−3, τp = 1 ps, τs = 1 ns, τin = 8 ps, 145

α = 3, and ωoτ = 0. Other parameters will be specified in 146

the context. 147

A steady-state analysis shows that two types of equilibrium 148

solutions of Eqs. (1) and (2) exist. The first is the possibly 149

stable ECMs, while the second are the unstable antimodes that 150

correspond to saddle points [4]. These solutions, when plotted 151

in the N(t) versus phase-difference 	φ(t) = φ(t) − φ(t − τ ) 152

plane, lie on an ellipse [33] as shown in Fig. 1, where the 153

ECMs are indicated by circles while antimodes are represented 154

by crosses. 155

Two specific ECMs are worthy of comment: the minimum 156

linewidth mode (MLM) and the maximum gain mode (MGM). 157

The MGM is the ECM with the lowest frequency (high- 158

gain end of the ellipse), and is typically stable [4], [24]. The 159

MLM is the ECM most proximate in frequency to the solitary 160

laser mode. In the general time-dependent case, a trajectory 161

in the space shown in Fig. 1 is traced out parametrically 162

in time, indicating the detailed evolution of all dynamical 163

variables of the system. The time-dependent intensity can be 164

extracted from the phase-space trajectory and used to construct 165

a theoretical BD which in turn can be compared with the 166

experimental BD. Thus the connection between dynamical 167

regime as manifested in the BD and the detailed dynamics 168

can be made. 169

III. EXPERIMENTAL SETUP 170

The experimental setup is shown in Fig. 2. Light from 171

the LD is split into two free-space optical paths using a 172

beam splitter (BS). One optical path is used for feedback 173

into the LD and the other is for coupling and/or observing 174

the dynamics of the intensity detected at the photodiode. The 175

semiconductor laser used in our experiments is an intrinsically 176

single-longitudinal mode InGaAsP DFB laser that oscillates 177
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Fig. 2. Experimental setup. LD : laser diode, PD : photodiode, L : collimation
lens, M : mirror, BS : beam splitter, P : linear polarizer, QWP : quarter-wave
plate, OI : optical isolator.

Fig. 3. Experimental BD for I = 10.54 mA and L = 15 cm.

at wavelength 1550 nm with maximum power of 15 mW.178

The free-running threshold current (Ith ) is 9.27 mA. A real-179

time oscilloscope with 12 GHz bandwidth is employed to180

capture the time series of the optical-intensity time series.181

In addition, we measure the RF spectrum of the optical182

intensity with a spectrum analyzer with a 23 GHz bandwidth.183

The optical spectrum is measured with a scanning Fabry-Perot184

interferometer of 10 GHz free spectral range and finesse equal185

to 150. L is variously chosen to be 15, 30, or 65 cm which186

corresponds to external-cavity round time τ = 1, 2, or 4.3 ns,187

respectively.188

It is essential to have highly stabilized temperature (tem-189

perature stability/24 hours < 0.002 °C) and current I (drift/190

24 hours < 100 μA) to ensure reproducibility. In addition,191

η is controlled in small steps by slowly changing the angle192

of the quarter-wave plate (QWP) in the external cavity by193

means of a motorized rotation stage. This allows for very good194

horizontal resolution of the BDs; indeed, the rotation velocity195

is 0.01 degree/minute and the resolution of the angle of QWP196

is 1/100 degree, leading to a 4500 possible different values of197

the feedback in a BD. The maximum feedback attainable in198

our experiment, corresponding to η = 0.8, is reached when199

the QWP is such that the polarization is not subjected to any200

rotation. Then, approximately 20% of the optical power is fed201

back onto the collimating lens.202

IV. EXPERIMENTAL BIFURCATION DIAGRAM203

An example of an experimental BD is shown in Fig. 3204

for I = 10.54 mA with L = 15 cm, corresponding to a205

frequency spacing between ECMs of ∼1 GHz. The BD is 206

obtained by taking the local extrema of the intensity time series 207

from the high-bandwidth oscilloscope used in the experiment 208

as a function of η. A probability density function of the 209

extrema of the intensity time series is obtained and plotted 210

with a color map, in which density is high in white (blue 211

in the color figure) but low in black regions. A bifurcation 212

cascade between apparently stable and unstable regions is 213

observed. 214

Because of the low current chosen, the photodetected optical 215

intensity is weak and does not always stand out of system 216

noise. Consequently, the thinner regions in the optical inten- 217

sity, that we call stable regions, do not necessarily correspond 218

to stable CW behavior but also contain regimes in which 219

instabilities around a single ECM have developed. The wider 220

regions in the optical intensity, referred to as unstable regions, 221

typically correspond to regimes in which trajectories wander 222

around several ECMs as a result of chaotic itinerancy and thus 223

clearly stand out of noise. The first experimental report of a 224

cascade of bifurcations is due to Hohl and Gavrielides [3]. This 225

observation was mainly based on an analysis of the optical 226

spectrum. A detailed study of the optical spectrum can also 227

be found in our previous work [20]. 228

A. Varying the Current 229

In order to analyze the effect of I, we compare the exper- 230

imentally observed bifurcation cascades for I = 11.84 mA, 231

12.70 mA, 14.67 mA, and 16.01 mA [Fig. 4]. We observe three 232

marked phenomena with increasing I. The first is that alter- 233

nating stable and unstable regions are observed, but no longer 234

a systematically cascade involving the successive MGMs that 235

appear when η increased. The second is that as I is increased, 236

the BD tends to exhibit large regions of uninterrupted chaotic 237

behavior. The third is that for larger I, the stable regions, 238

though limited in number, persist for a larger range of feedback 239

levels than is the case for low I. 240

The first observation shows the relative experimental robust- 241

ness of the bifurcation cascade. Indeed, we have observed 242

consistently the presence of alternating stable and unstable 243

regions for all values of the current between Ith and ∼1.6Ith . 244

However, when I >∼1.6Ith , we cannot observe any stable 245

region in the entire BD; we conclude that in this case, our 246

laser never lies on or in the vicinity of a single ECM and 247

therefore its dynamics necessarily involves attractor ruins of 248

several ECMs. The analysis of the time series, RF, and optical 249

spectra [20] also reveals that the dynamical behavior in the 250

first few unstable regions of the cascade is typically LFF for 251

currents up to 1.2Ith , while larger feedback and current levels 252

lead to fully-developed coherence collapse (CC). 253

To help us interpret different parts of the experimental BDs, 254

the intensity time series and the corresponding RF spectra 255

both in LFF and CC regimes are shown in Fig. 5, which 256

includes the results for η = 0.11 and 0.35 at I = 11.84 mA 257

corresponding to the BD of Fig. 4(a). In order to clearly 258

characterize the power dropouts during LFF, a low pass filter 259

with a bandwidth of 350 MHz was used to filter out the 260

high-frequency components of the time series. As discussed 261
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Fig. 4. Experimental BDs for L = 30 cm with (a) I = 11.84 mA,
(b) 12.70 mA, (c) 14.67 mA, and (d) 16.01 mA.

in previous work [20], in the unstable regions for low η,262

we systematically identify LFF [Figs. 5(a) and (b)], and in263

particular its typical random power dropouts. In contrast, for264

higher η, we do not observe LFF but a regime of fully265

developed CC [Figs. 5(c) and (d)]. We systematically identify266

LFF until η ∼0.18 is reached in Fig. 4(a) while for larger I, we267

do not observe LFF. A detailed study of the optical spectrum268

related to LFF and CC is presented in [20].269

Fig. 5. Experimental intensity time series after applying a 350 MHz low-pass
filter (first column) and RF spectrum (second column) for I = 11.84 mA;
(a)(b) η = 0.11 and (c)(d) η = 0.35.

B. Varying the External Cavity Length 270

The dependence of the BD on L is explored in Fig. 6. The 271

experiment is executed for 4 different cavity lengths L = 10, 272

30, 50, and 65 cm, at I = 11 mA. For a short cavity with 273

small L, we again observe a cascade of bifurcations, but with 274

significantly longer stable regions during which the laser- 275

output power dwells on a single ECM before moving into 276

the subsequent unstable regime, itself followed by the next 277

ECM [Fig. 6(a)]. Moreover, we also observe a well-resolved 278

experimental Hopf bifurcation of the first ECM that appears in 279

the cascade, thanks to the increased stability of short cavities. 280

In Fig. 6(d), when L = 65 cm, we barely observe a cascade of 281

bifurcations for small η (0.05 ≤ η ≤ 0.08). The laser-output 282

power remains briefly on a single ECM, then moves into an 283

unstable regime followed by the next stable ECM over a small 284

range of η and we cannot observe any cascading behavior by 285

further increasing η. The absence of a cascade in such case 286

is consistent with the numerical results, as will be shown in 287

section V. 288

C. Effect of the Feedback Phase 289

The feedback phase ωoτ can be varied by changing the 290

cavity length on the sub-wavlength scale. The change is so 291

small that, in terms of its dynamical effects, the delay itself can 292

be considered to be constant. We experimentally control the 293

optical feedback phase of the reflected light by a piezoactuated 294

translation stage. Figure 7 shows the BDs for I = 10.88 mA 295

and L = 13 cm, when the feedback phases differ by 1.22 rad. 296

We observe that the essential features of the BD, namely the 297

presence of a cascade between stable and unstable states and 298

the number of elements in the cascade, are preserved when 299

ωoτ is changed. 300

D. Forward and Reverse Bifurcation Diagrams 301

We compared both forward (increasing η) and reverse 302

(decreasing η) BDs. The corresponding results are shown in 303

Fig. 8 for (a) increasing η and (b) decreasing η. Although we 304

can observe the cascade behavior in both cases, the transitions 305

between stable and unstable regions typically occur at smaller 306
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Fig. 6. Experimental BDs for I = 11 mA with (a) L = 10 cm, (b) 30 cm,
(c) 50 cm, and (d) 65 cm.

η in the reverse cascade. These differences are an illustration307

of the generalized multistabilty of the system: as several308

attracting steady-states coexist for a given set of parameters,309

the initial state will influence the observed steady-state. In the310

forward BDs, the state of the ECM, as η increased, results311

from lower feedback, while in reverse BDs, the state results312

from higher-feedback attractors. It is thus normal to observe313

a shift to the left of the switching points between stable and314

unstable regimes, in the reverse BDs.315

Fig. 7. Experimental BD for I = 10.88 mA and L = 13 cm. The values of
the feedback phase in (a) and (b) differ by 1.22 rads. The vertical dotted line
corresponds to identical feedback strengths.

Fig. 8. Experimental BD of (a) increasing the feedback strength
(Forward BD) and (b) decreasing the feedback strength (Reverse BD) for
I = 11.03 mA and L = 15 cm. The vertical dotted lines correspond to
identical feedback strengths.

V. NUMERICAL BIFURCATION DIAGRAM 316

Figure 9(a) presents a simulated BD of the optical intensity 317

as a function of the theoretical feedback strength κ having 318

first subtracted off the time-averaged intensity, as is done 319

by the photodetector in the experiments. To further reflect 320

our experiments where η is gradually ramped up, the initial 321

state, for a given κ , is taken to be equal to the final state of 322

the simulation corresponding to the previous, smaller value 323

of κ . It is evident from the plot that alternating stable and 324
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Fig. 9. Numerical BD for (a) L = 15 cm and (b) L = 65 cm at p = 1.03.

Fig. 10. Numerical BD for p = 1.03 and L = 15 cm (0 ≤ κ ≤ 5.5×10−3).

unstable regions occur. Such numerical simulations facilitate325

the interpretation of the influence of L and I on the BD.326

A. Varying the Operating Parameters: External Cavity327

Length, Current, and Feedback Phase328

Figures 9(a) and (b) show the simulated BDs for different329

external cavity lengths (L = 15 cm and 65 cm). With330

short L, we observe a cascade of bifurcations, but with331

significantly longer stable regions during which the laser-332

output power dwells on a single ECM before moving into the333

subsequent unstable regime, itself followed by the next ECM.334

As explained in [4], we observe that the chaotic behavior335

initially develops around a single ECM and then extends to336

several ECMs as the ruins of neighboring attractors merge337

through an attractor-merging crisis (region ϕ of Fig. 10) [34].338

This crisis leads to an abrupt change in the optical intensity339

range. We interpret the unstable regions we observe in the340

experiments as corresponding to the onset of these crises that341

make the amplitude jump above the noise level.342

When L is large, the spectral separation between ECMs343

is reduced (e.g., 1 GHz→15 cm, 500 MHz→30 cm,344

233 MHz→65 cm) in the optical spectrum. Therefore, each345

participating mode being close in phase space, large-amplitude346

itinerancy between several modes is easily observed. In the347

limit of a very long L, Ruiz-Oliveras and Pisarchik have348

observed numerically that the laser is always unstable [35].349

Indeed, numerical observation of the trajectories on the ellipse350

shows that the proximity to the ECMs impedes the devel-351

opment of independent stable attractors and thus prevents352

the existence of a cascade of stable and unstable regions,353

as confirmed by our experimental observations. Conversely,354

increased distance between the ECMs for shorter L means355

that larger η is needed before attractor merging occurs,356

thus explaining the longer stable regions as observed in the357

experimental BDs of Fig. 6.358

Fig. 11. Numerical BD for (a) p = 1.02 and (b) p = 1.04 at L = 15 cm.

Fig. 12. Trajectory in phase space with pumping currents (a) p = 1.03 and
(b) p = 1.05 at τ = 2 ns and κ = 0.0025.

Small variations of L lead to changes in the feedback phase. 359

It is known that this in turn changes the stability conditions of 360

the ECMs [36], thus affecting the duration and location of the 361

stable regions. The global picture of the successive appearance 362

of MGMs and their destabilization is though not affected by 363

the value of the feedback phase, as is observed experimentally 364

in Fig. 7. 365

Figures 11(a) and (b) show simulated BDs for different 366

normalized pumping currents (p = 1.02 and 1.04) and Fig. 12 367

presents the trajectory in phase space for identical parameters 368

except for the current level p. 369

These help us interpret the influence of I on the BD. 370

Larger I leads to larger changes in the optical intensity and 371

thus to trajectories that explore a larger region of phase space. 372

Also, at low I, the unstable regions typically correspond to 373

the LFF regime, within which a drift toward the MGM is 374

observed. At larger I, the unstable regions typically correspond 375

to fully-developed CC in which chaotic itinerancy between 376

ruins of ECMs is observed, with no drift toward the MGM. 377

This behavior explains the increased difficulty in reaching 378

the MGM as I is increased. In particular, it explains why 379

we observe numerically that at larger I, either larger κ is 380

needed to get out of an unstable region and reach the MGM, 381

or the MGM is not reached at all. This in turn explains 382

the perturbed aspect of the bifurcation cascades observed 383

experimentally for larger I, in which some stable regions do 384

not appear in the BD because the trajectory never settles 385

on the MGM, and in which long uninterrupted regions of 386

chaotic itinerancy are observed. We also observe numerically 387

that above a certain feedback level, the dynamic regimes only 388

correspond to chaotic itinerancy among ECMs that are far 389

away from the MGM, with no drift toward the MGM, making 390

the MGM inaccessible [1], [2]. This explains the experimental 391
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Fig. 13. Numerical BD of p = 1.03 and L = 15 cm with β = 100.

observation of the total absence of stable regions when the392

I is larger than 1.6Ith .393

Finally, we interpret the experimental observation that long394

stable regions can be observed at larger I as being linked to395

the fact that larger κ is needed to destabilize the MGM when396

I is increased. This interpretation has a good agreement with397

the [21, eq. 21] giving an approximated value for κ at which398

Hopf instability sets in. Thus, when the trajectory reaches the399

MGM, which happens rarely for large I, larger κ is needed400

to destabilize it, a phenomenon which is consistent with the401

longer stable regions observed for relatively large currents402

(but smaller than 1.6 Ith). We have also observed that another403

phenomenon can contribute to explain the long stable regions.404

Indeed, we have determined experimentally that what appears405

to be a single stable region can sometimes correspond, espe-406

cially for large values of I, to two or more successive stable407

regions linked to different, successively appearing, ECMs.408

Thus long stable regions can be due to the slipping of the409

dynamics from one ECM to the next, without ever going410

through a phase of itinerancy around several ECMs.411

B. Effect of Noise412

We observe that the inclusion of noise in the LK model,413

through the addition of a Langevin noise source, tends to blur414

the low amplitude signal variations appearing when the laser415

bifurcates out of a CW state, making the simulated BDs closer-416

looking to the experimental ones.417

The effect of noise is illustrated by the comparison of418

Fig. 13, in which a spontaneous noise level β = 100 is419

used, with Fig. 9(a), which does not include noise. Qualitative420

features such as the feedback level at which the laser jumps to421

the MGM does not seem to change significantly when noise422

is included. This observation, combined with the resemblance423

of the noisy simulated BDs with the experimental ones,424

corroborates the fact that noise does not seem to induce the425

qualitative features of the cascade. Therefore, this observation426

is in favor of a deterministic origin of bifurcation cascades427

in ECSLs.428

VI. CONCLUSION429

A global experimental-based understanding of the various430

dynamical regimes is essential to gain a fundamental appre-431

hension the dynamics of an ECSL. In this regard, we have432

examined several aspects of fundamental importance for the433

dynamics of ECSLs using BDs based on experimental time434

series of the optical intensity of a DFB laser subjected to 435

coherent optical feedback. 436

In order to validate our interpretation of the experimental 437

results, we have carried out theoretical calculations based 438

on the well known LK model. Despite its simplifications, 439

this model can successfully reproduce the bifurcation cascade 440

that is observed experimentally. Moreover, the experimental 441

observation of a reduction in the number of stable regions 442

with increasing I is consistent with the LK model. Indeed, 443

LK predict that, at low I, the unstable regions correspond to 444

the LFF regime, involving a drift toward the MGM, while 445

at larger I, fully-developed CC occurs, with no drift toward 446

the MGM. The observation of a gradual disappearance of the 447

cascade with increasing L is also consistent with the model 448

which shows an increase in attractor merging as a result of 449

the increased proximity of ECMs in phase space. Our study 450

thus connects the observed experimental BDs, based on the 451

observation of the optical intensity only, with the behavior 452

in the full phase space of the LK model. Additionally, the 453

observation of differences between the forward and reverse 454

diagrams is a clear illustration of the multistability of the 455

ECSL. Finally, the good reproducibility of the experimental 456

results, combined with their good match with a deterministic 457

model, within a large range of continuously varied parameters, 458

supplies global evidence for the deterministic origin of the 459

salient aspects of ECSL dynamics. 460
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