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Statistical Properties of an External-Cavity
Semiconductor Laser: Experiment and Theory

Nianqiang Li, Wei Pan, Alexandre Locquet, Member, IEEE, V. N. Chizhevsky, and D. S. Citrin,
Senior Member, IEEE

Abstract—We experimentally and numerically study the sta-
tistical properties of a semiconductor laser with time-delayed
optical feedback. Our systematic analyses show that the statistical
distribution of the raw intensity obtained from experiments is
better fitted by a Laplacian distribution; both in experiments
and simulations, the distribution pattern of the differential signal
obtained from two independent intensities, as well as of that
computed from its high-order finite differences, converges to a
well-fitted Gaussian profile for high pump currents. This helps us
understand the changes in statistical properties of the intensity
with varying control parameters and achieve desired entropy
sources for random number generators. Furthermore, in numer-
ical simulations, we find the distribution of the differential signal
undergoes a marked transition from a Gaussian to Laplacian
profile as the feedback rate increases at low to moderate pump
currents.

Index Terms—Chaos, data fitting, semiconductor laser, statis-
tical properties.

I. INTRODUCTION

SEMICONDUCTOR lasers show a rich variety of dynam-
ical behaviors when they are subject to external pertur-

bations [1]–[4]. Time-delayed optical feedback is one of the
simplest methods to generate a chaotic signal in semiconductor
lasers [5], [6]. Laser chaos has attracted considerable inter-
est for a range of applications and quite recently has been
proposed as a promising candidate for high-speed physical
random-number generators (RNGs) [7]–[14]. A crucial issue
in RNGs is that the maximum rate of randomness extractible
is closely related to the statistical properties of the entropy
sources [8], [9], [11], [13]. In order to improve the bit rates of
the generated random bit sequences, mirror symmetry of the
statistical distribution of the chaotic output intensity is highly
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desired. That is, the statistical distribution of the intensity
time series (sampled at some specified rate) is desired to
be symmetrical with respect to the mean value (equal to
the median for a symmetric distribution). Unfortunately, the
distribution of the raw time series (RTS) obtained from the
light intensity generated by semiconductor lasers with time-
delayed optical feedback [external-cavity semiconductor lasers
(ECLs)] is never ideally symmetric, and in many cases the
departure from symmetry is quite strong.

Much research has been devoted to understanding the
intensity statistics of ECLs operating in the low-frequency-
fluctuations (LFF) regime [15]–[17], where the average laser
intensity shows repetitive dropouts and gradually recovers
on a very long timescale (typically tens of external-cavity
round-trip times). This dropout behavior skews the intensity
distribution toward zero intensity, leading to an extremely
asymmetric probability-density function (PDF) of the laser
intensity. Previous experimental studies have shown that,
for truly single-mode emission, PDFs peak just above the
spontaneous-emission level and decrease monotonically with
increasing intensity [16], [17]. These investigations have also
shown that numerical simulations of the conventional single-
mode Lang-Kobayashi (LK) model [16], [17] are sufficient
to reproduce the main features of the experimental PDFs.
Studies of the intensity statistics of ECLs in the coherence-
collapse (CC) regime are scarce [18], [19], in contrast to those
of LFF dynamics. CC means the laser linewidth broadens
drastically from a few MHz to typically 10-25 GHz, which
is a particular interesting feature of an ECL [20]. During the
past few years a few experimental works aiming at ultrafast
RNG using chaotic lasers in the CC regime have reported that
the distribution of the ac component of the intensity in some
cases appears roughly Gaussian, but slightly skewed [8], [13],
[14]. Moreover, it has been numerically demonstrated that the
intensity PDF converges to a unique distribution for chaotic
lasers with specified parameters [21], and the distribution does
not necessarily have Gaussian statistics due to the physical
constraints of the working points and laser parameters [22].
In the above cited reports, the ECL operates in either the LFF
or CC regime for a fixed optical feedback level. However,
it is still unclear whether the statistical properties of chaotic
ECLs will change when varying the control parameters, i.e.,
injection current J and feedback rate. For example, in a certain
time-delayed chaotic system, the PDFs for the outputs evolved
from non-Gaussian to Gaussian-like profile with increasing
feedback rate [23] or J [18].

On the other hand, based on the preceding literature review,
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it would appear problematic to obtain a symmetric intensity
PDF without introducing any post-treatment of the chaotic
signals generated by ECLs. Fortunately, several efficient gen-
eral approaches for transforming the raw asymmetric PDF into
a highly symmetric one have been developed [8], [24]–[27].
Among them, differential comparison is commonly employed
to symmetrize the intensity statistics [24], [25]. To be pre-
cise, let X1, X2 (RTS) be independent, identically distributed
(i.i.d.) random variables, then the difference Y=X1−X2 has
a symmetric PDF [26]. [Note that the differential signal Y
is termed as the post-processed time series (PTS) throughout
this paper.]. So far however, to our knowledge, there are
no detailed studies of this procedure applied to ECLs that
output fully developed chaos, nor comparisons of experimental
and numerical results over a wide range of tunable system
parameters. The comparison between theoretical and experi-
mental results is particularly important for understanding and
tailoring the intensity statistics of the chaotic laser sources, so
as to develop chaotic laser-based RNGs. Furthermore, it is no
surprise that enhancement of the symmetry of the PDF can
lead to substantial increase in the rate at which the random
bits can be generated when multi-bit extraction schemes are
adopted [9], [26], [27].

In this paper, we investigate experimentally and numeri-
cally the statistical properties of the intensity fluctuations of
ECLs operating in the chaotic regime, the external cavity
supplying the (optical) time-delayed feedback. To demonstrate
the robustness and the generality of the observations, two
independent experiments are performed with two different
single-mode distributed feedback (DFB) lasers subject to free
space-optic feedback provided by a mirror and to fiber-
optic feedback, respectively. Numerical simulations of the
single-mode LK model are used to confirm the observations.
Throughout the study, two standard statistics, i.e., Gaussian
and Laplacian, are utilized to fit the PDFs of the experimental
and theoretical intensity time series generated by the chaotic
ECLs, except for theoretical RTS. We show that simulations
of the LK model are in good qualitative agreement with
experiments. Specifically, we identify that the PDF of the
theoretical PTS undergoes a notable transition from a Gaussian
to a Laplacian profile as the feedback level increases at low to
moderate J , and reveal changes in the underlying dynamics
based on the time series and its phase-space trajectory.

II. EXPERIMENT

We perform two independent experiments, using different
single-mode DFB lasers emitting at 1550 nm, under different
feedback conditions, and two data-acquisition systems. One
employs freespace components to provide the external cavity.
The other uses an external cavity consisting of fiber-optic
components. The former is termed as experiment 1 and the
latter as experiment 2.

A. Experiment 1: Freespace

The setup for experiment 1 is depicted in Fig. 1(a). It
consists of an intrinsically single-longitudinal-mode MQW
InGaAsP DFB laser, exhibiting maximum cw power of 15

Fig. 1. Schematic of the experiment: (a) freespace (experiment 1), (b) fiber-
based (experiment 2). LD stands for laser diode, CL for collimator lens, BS
for beam splitter, LP for linear polarizer, QWP for quarter-wave plate, M
for mirror, OI for optical isolator, PD for photodiode, OSC for oscilloscope,
COM for personal computer, PC for polarization controller, OC for optical
circulator, Att for optical attenuator, TC for temperature controller and CS for
current supply.

mW. The free-running laser threshold current Jth ∼ 9.27
mA. The laser diode (LD) receives delayed feedback from
a mirror (M), via a beam splitter (BS). The BS divides the
light intensity equally to two freespace paths: one is used
for feedback into the LD and the other for detecting the
optical intensity. The position of M determines the feedback
time delay for the LD and is set to 65 cm, corresponding
to external-cavity round-trip time of ∼4.3 ns. With the help
of a motorized rotation stage, the angle of a quarter-wave
plate (QWP) is controlled in small steps. The maximum
feedback (experimental feedback rate η = 1.0) is reached
when the QWP is such that the polarization is not subject to
any rotation. In this experiment, ∼20% of the optical power
is fed back onto the collimating lens for η = 1.0. J is
held well above Jth throughout this study. A fast PD (New
focus 1544-B Multimode ) with 12 GHz bandwidth is used
to convert the optical intensity fluctuations into an electrical
signal. A 12 GHz bandwidth, 40 GS/s real-time OSC (Agilent
DSO80804B) is employed to capture the resulting time series
for analysis.

B. Experiment 2: Fiber-based

The setup for experiment 2 is depicted in Fig. 1(b). The
LD used in this experiments is another intrinsically single-
longitudinal-mode DFB laser that is connected by fiber pigtails
and has Jth ∼ 10 mA. The output light is fed back into
the laser facet after it passes through a fiber ring cavity
that consists of an optical circulator (OC), a variable optical
attenuator (Att), a polarization controller, and a 50:50 fiber
coupler. The feedback delay is estimated to be ∼ 79 ns
and originates from the fiber-optic components used in the
experiment. The feedback power is controlled by the Att. The
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experimental feedback rate is estimated as the ratio of the
feedback power and the output power of the stand-alone LD.
The feedback power is measured just before the feedback light
enters the LD and is larger than the actual feedback level
because the coupling efficiency of which we are uncertain is
not included. Likewise, the maximum feedback power attained
in this experiment is ∼ 14% of the solitary laser output power,
corresponding to experimental feedback rate η = 1.0. The
ECL output is captured by high-speed PD (HP 11982A) with
a bandwidth of 10 GHz. The resulting electrical signal is then
sent to a digital OSC (LeCroy WaveMaster 813 zi, 13 GHz)
and recorded at the sampling rate of 40 GS/s.

III. NUMERICAL MODEL

A well verified model to describe single-mode ECLs is the
LK equations for the complex slowly varying amplitude of the
electric field E(t) and carrier number inside the cavity N(t)
[6], [28], [29]. These equations are given by

Ė(t) =
(1 + iα)

2

[
G(t)− 1

τp

]
E(t) + γE (t− τ) e−iΨ, (1)

Ṅ(t) =
J

e
− N (t)

τN
−G(t) |E(t)|2 , (2)

where G(t) = g(N(t) − N0)/(1 + s |E(t)|2) is the optical
gain (with g being the differential gain coefficient and s the
saturation coefficient), N0 the carrier density at transparency,
α the linewidth-enhancement factor, Ψ optical feedback phase,
τp the photon lifetime, τN the carrier lifetime, γ the theoretical
feedback rate, τ the feedback time delay, and J = qJth the
pump current(with q being the pump factor). We consider the
following values for the above parameters: α = 5, τp = 2
ps, τN = 2 ns, g = 1.5 × 10−8 ps−1, N0 = 1.5 × 108,
Ψ = 0, τ = 1 ns. With these parameter values, the threshold
current Jth of the solitary laser is 14.7 mA. The two control
parameters γ and q are varied in our simulations. We omit
spontaneous emission noise not only for simplicity but also
because we find numerically that the inclusion of the noise
term does not significantly modify the dynamics, especially
for the relatively large J considered here.

Eqs. (1) and (2) are integrated with a fourth-order Runge-
Kutta algorithm with a time step of 1 ps, and the corresponding
numerical results will be presented in Sec. IV. Unless explicitly
stated, the sampling rate is set to 40 GS/s, corresponding to
the experimental condition.

IV. RESULTS

In this section, we present the experimental and numerical
results of the intensity statistics of the RTS and PTS generated
by a single-mode ECL. We compare the experimental results
obtained from both experiments to those obtained from nu-
merical simulations of the LK model. Note that all PDFs are
derived from 3.9 × 104 data points for both experiments and
simulations, unless otherwise specified.

Figure 2 (a) shows an example of the temporal waveform
observed in experiment 1 and (b) presents the corresponding
autocorrelation, with J = 1.4Jth and η = 0.41. The first peak
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Fig. 2. Experiment 1: (a) Intensity time series, (b) autocorrelation, and PDFs
of (c) RTS and (d) PTS. The dashed and solid lines are fitted Laplacian and
Gaussian curves. LA stands for Laplacian, and GA for Gaussian.
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Fig. 3. Same as in Fig. 2, but for Experiment 2.

of the autocorrelation appears at ∼4.3 ns, corresponding to the
round-trip time of the external cavity [30], [31].

Figures 2(c) and (d) show the PDFs of the RTS and PTS.
Here, the PTS (Y) is obtained by subtracting the RTS (X1)
of the laser from the same output (X2) numerically delayed
by 5.1 ns. Note that in our experiment only one PD was
used so we numerically shifted the chaotic output, but the
difference between intensity time series can also be realized
physically by having two PDs with an electrical time delay
as would be desirable for practical RNGs. The two temporal
waveforms are effectively independent since the correlation
is only ∼ 3.696 × 10−3 at 5.1 ns (which is intentionally
not a multiple of the optical time delay 4.3 ns), as shown
in Fig. 2(b). Therefore, a symmetric distribution of the PTS
(Y=X1−X2) can be expected. A casual perusal of the two
histograms shows that the PDF of the PTS is much more
symmetric, which is quantitatively confirmed by calculating
the skewness S = µ3/σ

3 [26], where µ3 and σ the third
central moment and the standard deviation, respectively, i.e.,
|S| ≈ 1.4 × 10−4 for the PTS which is near the ideally
symmetric distribution.

A Gaussian profile is desirable for RNG [18]. Despite the
fact that the PDF of the ECL is not Gaussian, it is still of
interest to explore how the actual PDFs deviate from the
desired statistics. We note that some previous reports have
shown that the PDF of unprocessed experimental time series
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appears roughly Gaussian or Laplacian [8], [11], [13], [14],
[18], [19]. Therefore, to gain more insight into the statistics
of the chaotic ECLs, Gaussian and Laplacian distributions
are utilized to fit the calculated PDFs. Fig. 2 (c) shows the
histogram of the RTS is better fitted by a Laplacian. In contrast
to the statistics of the RTS, it is interesting to observe that
the PDF of the PTS in this experiment is highly Gaussian
[Fig. 2 (d)], whereas the best Laplacian fit is quite poor.
This could be expected, since the distribution of the RTS
already has certain features of Gaussian statistics and the
standard deviation is increased by performing the differential
comparison. The larger the standard deviation, the flatter and
broader the PDF we can obtain. Consequently, the obtained
PDF more closely resembles a Gaussian. In fact, the density
of the sum of two independent real-valued random variables
equals the convolution of the density functions of the original
variables. Therefore, X1−X2 can be regarded as the sum of
independent random variables X1 and −X2. The convolution
of these, then, is the autocorrelation of the distribution of the
RTS. Upon successive convolutions, it is not surprising that
the resulting distribution tends to a Gaussian, as stated in the
central limit theorem.

The above procedures are applied to the data obtained from
experiment 2 and similar phenomenon can be observed. An
example of the results for experiment 2 is displayed in Fig. 3,
where J = 1.4Jth and η = 0.2. As can be seen, the first peak
of the autocorrelation appears at ∼ 79 ns, corresponding to
the round-trip time of the external cavity. Indeed, we confirm
that the PDF of the RTS is better fitted by a Laplacian, while
that of the PTS is closer to a Gaussian.

The Gaussian and Laplacian fits are further quantified by an
R2 test [18]. To be precise, R2 is the square of the correlation
between the observed data and the expected or fitted values.
This metric can take any value between 0 and 1, with a value
closer to 1 indicating a better fit.
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Fig. 4. R2 comparison as a function of η for the RTS in both experiments.
(a, d) Results for J = 1.4Jth; (b, e) for J = 1.7Jth; and (c, f) for J =
2.4Jth. (a-c) Experiment 1 and (d-f) experiment 2. Open squares correspond
to Laplacian; open diamonds to Gaussian.

Figure 4 shows R2 for the RTS as a function of η in
both experiments. Three pump values J ≫ Jth are chosen:
J = 1.4Jth (a, d), J = 1.7Jth (b, e), and J = 2.4Jth
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(c, f). The feedback rate η is such that the ECL operates
in the chaotic regime. It is apparent that the Laplacian fit
is substantially better for all operating J and η considered
in the experiments, when compared with the Gaussian fit.
This indicates that the PDFs of chaotic optical intensity of
ECLs, subject to optical feedback either provided by freespace
or fiber-based optical components, more closely resembles a
Laplacian. It is worth emphasizing that, for the case of the
RTS, numerical simulations of the LK model do not reproduce
these behaviors due to several uncertain physical constraints,
such as the bandwidth of the experimental detection system,
the laser parameters and limitations intrinsic to the LK model.
Although the above constraints were taken fully into account,
we did not obtain a Laplacian shape for the PDF of the RTS
obtained from the LK model as described in our recent paper
[19]; hence these numerical PDFs are not fitted and compared
to the experiments.

In Fig. 5, we show an example of the PDFs of the RTS
obtained from the LK model for four values of γ, when J =
1.4Jth. This figure summarizes the transition from Gaussian-
shaped statistics of the RTS when γ is small to long-tailed
statistics with increasing probability for high-frequency, low-
amplitude components when γ is sufficiently larger.

In the following we choose to make detailed comparisons
between experiments and simulations based on the PTS. In the
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same way as we did for the experiments, we now examine the
PDFs of the PTS obtained from the LK model. Here the PTS
is obtained by taking the difference between the RTS and itself
offset (numerically) by a time delay of 3.65 ns, consistent with
the process in our experiments. The numerical time delay is
chosen to ensure that the chaotic time series and its delayed
replica are effectively independent. Fig. 6 (a) shows the typical
RTS obtained from the LK model and (b) is the corresponding
PDF of the PTS. We find that, in this numerical case, the PDF
of the PTS is also better fitted by a Gaussian, which is in
very good agreement with the experimental results presented
in Figs. 2 and 3.
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Fig. 8. |S| comparison as a function of η (γ) for the RTS and PTS in both
experiments as well as in the LK model. (a, d, g) J = 1.4Jth; (b, e, h)
J = 1.7Jth; and (c, f, i) J = 2.4Jth. (a-c) Experiment 1; (d-f) experiment
2: and (g-i) LK. Open squares correspond to |S| for the RTS; open diamonds
to |S| for the PTS.

We now evaluate R2 for the PTS as a function of η (γ)
in both experiments and LK model, as shown in Fig. 7.
Similarly to what we obtained for the RTS case, three values
of J ≫ Jth are considered: J = 1.4Jth (a, d, g), J = 1.7Jth
(b, e, h), and J = 2.4Jth (c, f, i). In all cases, the features

of these experimental data are in good agreement with the
numerical findings: the statistics of the PTS are more Gaussian
than Laplacian for the considered J and η (γ). A careful
analysis of Fig. 7 allows us, however, to notice quantitative
discrepancies among numerics and both experiments for the
absolute value of R2, possibly related to the influence of noise,
to the uncertain calibration of experimental parameters, as well
as to the limitations intrinsic to the model.

Comparison between Figs. 4 and 7 shows, over a wide range
of control parameters, the PDFs computed from the RTS are
better characterized by Laplacian statistics, whereas those from
the PTS are better fitted by Gaussian statistics. The central
limit theorem helps to understand the convergence toward a
Gaussian due to the post-treatment. In addition, we turn to
quantify the great improvement in the degree of symmetry
in the distribution. To this end, the statistical properties of
the RTS and PTS are evaluated in terms of another metric,
i.e., the skewness of the PDF S. The results are shown in
Fig. 8. As expected, we observe that |S| of the PTS in both
experiments and LK model tends to zero, the RTS always
exhibits pronounced asymmetry depending on J and η (γ).
In addition, it is also shown in simulations that |S| computed
from the RTS is small for small to moderate γ [e.g., see Figs. 8
(h) and (i)]. This is because gain saturation in the LK model
with small to moderate γ can suppress strong pulsations of
laser intensity which are seen for large γ. In this case, the
resulting PDF looks more symmetric and the peak value is
located at around the average intensity [e.g., see Fig. 5 (a)],
resulting in small values of S.
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Fig. 9. R2 comparison as a function of γ for the PTS in LK model. (a)
J = 1.05Jth and (b) J = 1.1Jth. Open squares correspond to Laplacian;
open diamonds to Gaussian. LA stands for Laplacian, and GA for Gaussian.

In Figs. 7 and 8, there is a good qualitative agreement
between experiments and simulations. The filtering effect due
to the PD and OSC bandwidth is not taken into account.
More specifically, the theoretical time traces are not filtered
by using a low-pass filter of narrow bandwidth, as we did in
[19]. However, we have confirmed that it has no significant
impact on the results obtained here because of the presence
of post-processing.

In addition to these consistent experimental and numerical
results, Fig. 9 studies lower values of the current and shows
a transition from Gaussian statistics of the PTS in the sim-
ulations when γ is small to moderate to Laplacian statistics
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when γ is larger, for low values of J [e.g., J = 1.05Jth in
Fig. 9 (a) and J = 1.1Jth in Fig. 9 (b)]. That is, as provided
by the curves of R2, the Gaussian fit is better for small values
of γ; instead, when γ is increased above a critical value, the
Laplacian fit is better. Moreover, comparison between Figs. 9
(a) and (b) shows that the critical value of γ related to the
transition increases with increasing J .
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Fig. 10. (a-c) Intensity time series and (d-f) the projection on the plane of
carrier number and phase difference Φ(t)−Φ(t− τ) for J = 1.05Jth with
(a, d) γ = 2.5 ns−1, (b, e) γ = 5 ns−1, and (e, f) γ = 35 ns−1. MGM:
maximum gain mode. Crosses mark the unstable fixed points (antimodes),
circles indicate the stable fixed points (ECMs). The inset shows intensity at
1 GHz obtained from numerical simulations.
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Fig. 11. (a-c) Intensity time series and (d-f) the projection on the plane of
carrier number and phase difference Φ(t) − Φ(t− τ) for J = 1.5Jth with
(a, d) γ = 10 ns−1, (b, e) γ = 35 ns−1, and (e, f) γ = 50 ns−1.

To gain more insight into the above transition, we show in
Figs. 10 and 11 the intensity time series (RTS) corresponding
to qualitatively different PDFs as well as the trajectory pro-
jected on the plane of carrier number versus phase difference
Φ(t)−Φ(t−τ) [32]. In this plane, the two types of stationary
solutions of the LK equations, namely the external-cavity
modes (ECMs) and unstable antimodes, which are saddle
points, are known to lie on an ellipse.

We find that the above transition is associated with the pre-
dominant dynamical behaviors obtained from the LK model.

It is clear that, as γ is increased, the optical intensity tends
to pulsate. This means the intensity time series has a more
spiky appearance and shows more small-amplitude fluctuations
for larger γ, which is evident in Figs. 10 (a)-(c). Thus, at
moderately strong γ, higher sporadic peaks combined with the
large amount of low-intensity components constitute a single-
sided PDF with a long tail on high intensities.

We would like to stress that the underlying dynamics can
be related to the phase-space trajectory that moves amongst
the ECMs and antimodes. When J is fixed, increasing γ,
several ECMs may become unstable and participate in the
dynamics [32]. As an example, one can clearly see that more
neighboring attractors begin to join the merged global attractor
for larger γ based on the comparison between Figs. 10 (d)
and (e) for J = 1.05Jth, as well as the results in Figs. 11
(d)-(f) for J = 1.5Jth. This results in the trajectory reaching
regions of higher intensity [33], as well as more frequently
visiting the low-intensity region of phase space, which in
turn determines the PDF. We point out that for a small J
(J = 1.05Jth), when γ is increased to a moderate level the
system operates in the LFF regime [see Fig. 10 (c)], where the
dynamics are characterized by chaotic itinerancy with a drift
towards the MGM. In this regime, the intensity time series
can be characterized by randomly occurring sudden drops and
subsequent stepwise buildup [see the inset in Fig. 10 (c), in
which we filtered the intensity with a 1-GHz Butterworth low-
pass filter]. Moreover, pronounced pulsating dynamics occur in
the LFF regime as can be seen in Fig. 10 (c). More generally,
as long as the ECL does not produce pronounced pulsating
dynamics, the PDF has a maximum at well above zero level.
In this case, a Gaussian for the PTS is expected. On the other
hand, when pulsating dynamics occur, in between two pulses
the intensity of the ECL is nearly zero. These small-amplitude
components of the intensity contribute to the appearance of
a roughly exponential distribution for the RTS (not shown),
where the probability for low intensity is extremely high. As
a result, the transition to Laplacian statistics for the PTS is
expected, since the difference between two i.i.d. exponential
random variables is governed by a Laplacian distribution
which can indeed be identified based on larger values of R2

for Laplacian statistics in Fig. 9.
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Fig. 12. PDFs of 1st-4th HFD of the PTS computed from (a) experimental
and (b) numerical data. HFD represents high-order finite differences. Sampling
rate: 20 GHz; the used data points: 106.
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Finally, we consider another post-treatment of the inten-
sity time series by computing consecutively the difference
sequence between two neighboring samples in the PTS to
further achieve consistent results between experiments and
simulations. This post-processing method, called high-order
finite differences (HFD) [26], [27], allows one to transform
asymptotically any nonsymmetrical distribution into a per-
fectly symmetrical one. Fig. 12 displays the evolution of the
PTS statistics when the HFD processing is iterated several
times: (a) corresponds to experiment and (b) to simulation.
Again, the trends in experiment are in good agreement with the
theoretical expectations based on the LK model; by increasing
the number of difference operations performed, the PDF
becomes more symmetric, more closely resembling a Gaussian
distribution; the changes in its width and height also exhibit
similar behaviors. It should be noted, however, that we have
considered a lower sample rate (20 GHz) in our experiment
and simulation to achieve the consistency shown in Fig. 12.
The detailed analysis of this issue is an objective for future
studies.

V. CONCLUSION

In summary, we have studied experimentally and numeri-
cally the statistical properties of a chaotic ECL when η (γ)
is varied, for several J . Two types of experimental setups
based on two different DFB lasers were considered: in one,
a DFB laser is subject to freespace feedback provided by
a mirror and, in the other, another DFB laser is subject to
feedback provided by an optical fiber loop. We have shown
that, in both experiments, the PDFs of the RTS generated by
the ECLs operating in a CC regime are better characterized
by Laplacian statistics. For the case of the PTS, the PDFs
are better fitted by Gaussian statistics in both experiments as
well as in the LK model when J ≫ Jth. When compared
with the PDFs computed from the RTS, the PDFs computed
from the PTS always show significantly higher degree of
symmetry, as characterized by the skewness coefficient S.
Additionally, numerical simulations of the LK model show
that, at low J , a pronounced transition from Gaussian to
Laplacian is identified for the PDFs computed from the PTS
as γ is increased above a critical value. This, however, is
explained based on the intensity time series as well as the
trajectories in phase space. Finally, the widely used post-
treatment method called HFD has been performed for the
PTS and consistency between the experiments and simulations
has been achieved. These findings also confirm that the post-
processing can substantially improve the dynamical properties
at the expense of additional numerical processing, especially
when HFD is used. We expect this deeper understanding of the
statistical properties of the ECLs may have broad applicability
and lead to improvements of chaos-based RNGs.
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