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AbstractIn some configurations, dispersion effects must be taken into account to improve the simulation ofcomplex fluid flows. A family of free-surface dispersive models has been derived in [24]. The hierarchyof models is based on a Galerkin approach and parametrised by the number of discrete layers alongthe vertical axis. In this paper we propose some numerical schemes designed for these models in a1D open channel. The cornerstone of this family of models is the Serre – Green-Naghdi model whichhas been extensively studied in the literature from both theoretical and numerical points of view. Moreprecisely, the goal is to propose a numerical method for LDNH2 model that can be defined in termsof a projection method for the one-layer case, despite the number of layers. To do so, the monolayercase is addressed by means of a projection-correction method applied to a non-standard differentialoperator. A special attention is paid to boundary conditions. This case is extended to several layersthanks to an original relabelling of the unknowns. In the numerical tests we show the converge of themethod and its accuracy in comparison with LDNH0 model.

∗Dpto. de Matemáticas. Universidad de Córdoba. Campus de Rabanales. 14071 Córdoba, Spain. (cescalante@uco.es)†Dpto. Matemática Aplicada I. ETS Arquitectura - Universidad de Sevilla. Avda. Reina Mercedes N. 2. 41012-Sevilla, Spain.
(edofer@us.es)‡Dpto. de Matemáticas. Universidad de Córdoba. Campus de Rabanales. 14071 Córdoba, Spain. (tomas.morales@uco.es)§CEREMA, Sorbonne Université, Université Paris-Diderot Sorbonne Paris Cité, CNRS, INRIA, Laboratoire Jacques-LouisLions, Paris, France (yohan.penel@inria.fr)¶Inria Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France & Sorbonne Université, Université de Paris, CNRS,Laboratoire Jacques-Louis Lions, LJLL, F-75005 Paris, France (Jacques.Sainte-Marie@inria.fr)

1



Contents

1 Introduction 2

2 Analysis and numerical method for the LDNH2(1) model 52.1 Properties of the model at the continuous level . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Splitting strategy at the semi-discrete level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.3 Numerical method at the discrete level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.3.1 Hyperbolic step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.3.2 Non-hydrostatic step: numerical scheme for the velocity-pressure problem . . . . . 102.3.3 Numerical scheme for the pressure problem . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Numerical scheme for the LDNH2(L) model 143.1 Notations and model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.2 Differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.3 Structure of the fully discretised equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.4 Iterative scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Numerical simulations 194.1 Convergence test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.2 Solitary wave propagation over reefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.3 Wave propagation over a submerged bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.4 Shoaling of a solitary wave on a plane beach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Conclusion 22

6 Acknowledgements 27

1 Introduction

Water waves and more generally water flows are of great interest in several scientific fields with appli-cations to society issues such as protection of populations (tsunamis, floods, . . . ) or energy production(water-turbines, . . . ). Depending on the accuracy that is required in the applications, more or less complexmodels are used, from fully resolved to averaged equations.In order to simulate the behaviour of free-surface fluid flows, let us consider the 2D Euler equations foran incompressible free-surface flow under gravity:{ ∇ · û = 0, (1a)
∂tû + (û · ∇)û +∇p̂ = (0,−g), (1b)

set in the moving domain (see Figure 1)
Ω(t) =

{
(x, z) ∈ R2

∣∣ x ∈ I, zb(x) ≤ z ≤ η̂(t, x)
}
.

Here, I = (x`, xr) is a bounded interval of R and zb is the given topography (independent from time). Theunknowns are the velocity field û = (û, ŵ), the pressure field p̂ and the water elevation η̂. The waterheight is deduced from ĥ(t, x) = η̂(t, x) − zb(x). Viscosity effects are not taken into account in this workbut we refer to [9] for instance to deal with such terms.
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Figure 1: Fluid domain for the Euler equations (1)
The model is supplemented with kinematic boundary conditions:{

∂tη̂ + ûs∂xη̂ − ŵs = 0,

ûb∂xzb − ŵb = 0,
(2)

as well as
p̂
(
t, x, η̂(t, x)

)
= patm(t, x), (3)for some given atmospheric pressure patm(t, x) > 0. Classically, the pressure field is decomposed intothree parts:

p̂(t, x, z) = g (η̂(t, x)− z)) + patm(t, x) + q̂(t, x, z)where q̂ is the hydrodynamic pressure field – or commonly referred to as the non-hydrostatic compo-nent. The hydrostatic part is g(η̂(t, x) − z). Hydrostatic models such as the nonlinear shallow waterequations [14] or the hydrostatic Navier-Stokes equations [3] are based on the assumption q̂ ≡ 0.Given this decomposition, BC (3) is equivalent to
q̂
(
t, x, η̂(t, x)

)
= 0. (4)

In addition to its complex mathematical structure (see e.g. [7, 27, 37]), Model (1) coupled to (2-4) is a realchallenge owing to the fact the domain is moving: the water elevation is an unknown in itself. That iswhy, in spite of the increase of computer performance, reduced-complexity models have been introduced,analysed and discretised. There exists an extensive literature about models approximating the Eulerequations under simplifying hypotheses. Depending on the physical phenomena at stake and thus thefluid regime under study, some models turn out to be more accurate than others.For example, the nonlinear shallow water equations (NLSW) [14, 25, 26, 41] provide relevant results forlarge wavelengths but seem restrictive in other regimes, in particular due to the absence of dispersiveeffects. To go further, models were derived in a given regime of magnitude for the nonlinearity (ε: waveamplitude/water depth ratio) and for the frequency dispersion (µ: water depth/wavelength ratio). Thecompetition between the two phenomena is responsible for the shape of water waves. Dispersion isnecessary for instance for stratified flows or close to coastal areas. Different regimes lead to weakly/fullynonlinear – weakly/fully dispersive models. For example, the NLSW equations correspond to µ = 0 forany ε = O(1).We may refer to pioneering works e.g. Boussinesq [8] and Peregrine [44], models obtained to improvelinear dispersion properties e.g. Madsen & Sorensen [40] and Nwogu [42], models suitable for deepwaters [34], . . . For reviews of dispersive models, see [31, 33]. A focus will be made below on two systems:the Depth-Averaged Euler (DAE) system (5) described in [1] and the Serre – Green-Naghdi equations (6)(see [28,47]).
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It is worth noticing that classically dispersive models, usually written under a Boussinesq form, introducehigh order derivatives for two unknowns, namely water height and velocity). Contrary to them, non-hydrostatic pressure models introduce such effects by means of the non-hydrostatic component of thepressure. The latter is the strategy used here. Classical dispersive systems, and in particular (5) and (6),may be written under the form of non-hydrostatic system. We refer the reader to [20] for the link betweenthe two approaches. Non-hydostatic formulation has several advantages from the numerical point of view,especially regarding boundary conditions. Notice that they do not rely on any irrotational assumption.Moreover, both (5) and (6) are proven in [24] to belong to the same hierarchy of models depending onsome orders of approximation for the set of unknowns1. Indeed, the key point is the dependence of thesolution on the vertical coordinate z.More precisely, Equations (5) are referred to as LDNH0(1) as an approximation of the Euler equationswhere (u,w, q) is a (P0,P0,P1) Galerkin approximation of (û, ŵ, q̂). Likewise, Equations (6) are referredto as LDNH2(1) and (u,w, q) is a (P0,P1,P2) Galerkin approximation of (û, ŵ, q̂). In particular, (6) has amore accurate linear dispersion relation than (5) for large wavelengths [24, Fig. 2].To go further into details, when the frequency dispersion is small, the Euler equations can be approximatedby the following non-hydrostatic model [1] named DAE
∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + hq) = −γ2

2 q∂xzb − gh∂xη − h∂xp
atm,

∂t(hw) + ∂x(huw) = γq,

γw + h∂xu− γ2

2 u∂xzb = 0,

(5)
where (u,w) is an approximation of (û, ŵ) along the water column, q is the non-hydrostatic componentof the pressure field and γ > 0 a parameter. The case γ = 2 was derived in [10] and simulated in [2] andcorresponds to LDNH0(1) in [24]. For a flat topography ∂xzb ≡ 0, γ =

√
3 corresponds to the Serre –

Green-Naghdi equations.Another shallow water model is investigated in the present work. More precisely, we consider the dis-persive model: 

∂th+ ∂x(hu) = 0, (6a)
∂t(hu) + ∂x(hu2) + ∂x(hq) + qb∂xzb = −gh∂x(zb + h)− h∂xpatm, (6b)
∂t(hw) + ∂x(huw)− qb = 0, (6c)
∂t(hσ) + ∂x(hσu)− 2

√
3
(
q − qb

2

)
= 0, (6d)

w − u∂xzb −
√

3σ = 0, (6e)
2
√

3σ + h∂xu = 0. (6f)System (6) is made of first-order PDEs which account for conservation of mass (6a) and of momentum(6b-6d). (6e-6f) are diagnostic equations deduced from the incompressibility constraint (1a). There areseveral equivalent ways to write down the diagnostic equations (6e) and (6f) but this definition is the onlychoice that provides the duality relation (9) between the modified “pressure gradient” and the modified“velocity divergence” (8b).This duality property is crucial from both theoretical and numerical points of view as highlighted in thefollowing. It also allows to specify the boundary conditions:
¬ From the weak formulation associated to the underlying elliptic equation, we deduce the boundaryconditions for the pressure fields (see Remark 3);
 We then infer from the numerical point of view how boundary conditions should be naturally imposedby symmetry in the resulting linear system (see § 2.3.2).
1The models of the hierarchy are denoted LDNHk(L) where LDNH stands for Layerwise Discretisation Non-Hydrostatic,

k is the order of approximation and L the number of layers.
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For the sake of simplicity and without restrictions2, we will consider in this paper a subcritical flow(which corresponds to the hyperbolic regime3 in the Euler system (1)). Hence we prescribe the dischargeon the left (x = xl) – see (7c) and the water height on the right (x = xr) – see (7d). Then, Model (6) issupplemented with the following boundary conditions:• For the non-hydrostatic pressure, we impose:At x = x`, ∂x(hq) = χ`; (7a)At x = xr, q = 0, (7b)for some flux χ` ∈ R. The choice of these boundary conditions relies on the weak formulationassociated to the underlying elliptic problem (see Remark 3) and on the boundary condition for thetopography (7e).• For the velocity field and the water height, it depends on the underlying hyperbolic regime. Asmentioned above, we consider a subcritical flow so that, following the investigations of § 2.3.2, weimpose
At x = x`, hu = Qu, hw = Qw, hσ =

Qw√
3

; (7c)
At x = xr, h = hr; (7d)for some constants Qu > 0, Qw ≥ 0 and hr > 0.We also assume that the topography satisfies the following boundary condition:

∂xzb(x`) = 0. (7e)It is shown in § 2.1 that System (6) can be rewritten under three different other formulations (Props. 1,2 and 3). In particular, Proposition 1 shows that (6) is equivalent to the Serre – Green-Naghdi equa-tions under Boussinesq form, as presented in [33]. Then, from now on, System (6) coupled to boundaryconditions (7) will be referred to indifferently as SGN or LDNH2(1).Although Model LDNH2(1) has a larger number of unknowns than LDNH0(1) (which may provide aricher modelling), the first goal of this paper is to design a numerical method for (6) with a reducedadditional computational complexity compared to (5). See [43] for another strategy. The second goal ofthis paper is to extend the aforementioned numerical method designed for LDNH2(1) to its multilayercounterpart LDNH2(L) (for some number of layers L > 1) as derived in [24]. Indeed, LDNH2(1) relieson the approximation that the horizontal component of the velocity field does not depend on z, i.e. itis constant along the water column. In some cases (for instance when the flow is not shallow), it isnecessary to add more degrees of freedom. The Galerkin method used for the semi-discretisation in zleads to LDNH2(L) where L is the number of vertical cells.The paper is organised as follows: in Section 2, we first show some properties of the LDNH2(1) model:equivalent formulations (including the relationship with the Serre – Green-Naghdi equations) and asso-ciated energy. Secondly, a numerical strategy to solve the monolayer model LDNH2(1) is presented:it consists in an iterative algorithm taking into account the gradient-divergence duality. In Section 3,the layer-averaged extension LDNH2(L) is reformulated with similar differential operators. The previousnumerical method is then extended to the multilayer case, still based on the gradient-divergence duality.In Section 4, some classic numerical tests are presented to assess these strategies for LDNH2(1) and
LDNH2(L), in particular in terms of accuracy with respect to LDNH0(L).
2 Analysis and numerical method for the LDNH2(1) model

In this section we first study some of the properties of Model (6), such as some reformulations and itsassociated energy. Secondly, the design of a numerical discretisation of the model is presented.
2The location of the boundary condition upon the water height does not interfere with the projection step.3The hyperbolic part is not the core of this paper which is rather the elliptic part.
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2.1 Properties of the model at the continuous level

Let us set
X =

uw
σ

 , Q =

(
q
qb

)
, and Sh =

−gh∂x(zb + h)− h∂xpatm,
0
0

 . (8a)
Let us also define the operators

∇sgn Q =

∂x(hq) + qb∂xzb
−qb

−2
√

3
(
q − qb

2

)
 and ∇sgn·X =

(
2
√

3σ + h∂xu

w − u∂xzb −
√

3σ

) (8b)
and notice that the following duality relation holds

X · ∇sgn Q = ∂x(hqu)−Q · (∇sgn·X). (9)
Given these notations, System (6) reads in a compact form

∂th+ ∂x(hu) = 0, (10a)
∂t(hX) + ∂x(huX) +∇sgn Q = Sh, (10b)
∇sgn·X = 0. (10c)

System (10) has the same mathematical structure as the incompressible Euler equations with variabledensity except that differential operators are non-standard. Hence, this remark will help to design asimilar numerical strategy.It is shown below that this system can be rewritten under three different other forms (Props. 1, 2 and 3).First, let us remark that System (10) is nothing but the Serre – Green-Naghdi equations as presentedin [33]:
Proposition 1. System (10) can be rewritten under the Boussinesq formulation{

∂th+ ∂x(hu) = 0,(
Id + T [h, zb]

)
(∂tu+ u∂xu) + g∂x(h+ zb) +Q[h, zb]u = −∂xpatm,

(11)
where

T [h, zb]v = R1[h, zb](∂xv) +R2[h, zb](v∂xzb),

Q[h, zb]v = −2R1[h, zb]
(

(∂xv)2
)

+R2[h, zb](v
2∂2
xxzb),

R1[h, zb]w = − 1

3h
∂x(h3w)− h

2
w∂xzb,

R2[h, zb]w =
1

2h
∂x(h2w) + w∂xzb.

Proof. Indeed, we deduce from (6) that
σ = −h∂xu

2
√

3
, w = −h∂xu

2
+ u∂xzb,

qb = −h
2

2

[
∂x (∂tu+ u∂xu)− 2(∂xu)2

]
+ h

[
∂xzb (∂tu+ u∂xu) + u2∂2

xxzb
]
,

q = −h
2

3

[
∂x (∂tu+ u∂xu)− 2(∂xu)2

]
+
h

2

[
∂xzb (∂tu+ u∂xu) + u2∂2

xxzb
]
.

Inserting the two last equalities into (6b) leads to the expected result.
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The main difference between the non-hydrostatic formulation (6) and the Boussinesq formulation givenin Proposition 1 lies in the order of spatial derivatives (1 vs. 3). The consequence is a larger number ofunknowns in (6) (6 vs. 2) but with at most first order derivatives. One key advantage of (6) is that thetreatment of boundary conditions is easier as it will be shown later. Moreover, a smaller stencil is neededwhen one has to approach numerically first order compared to higher order derivatives.A numerical algorithm to simulate (11) is designed in [6] by introducing a second-order parametrisedperturbation and based on the inversion of Id + T . The parameter is set so that the linear dispersionrelation is optimised with respect to the Airy relation. The numerical technique consists of a splittingmethod between the hyperbolic Saint-Venant equations (solved with a finite-volume scheme) and thedispersive part (solved with a finite-difference scheme). An extension to dimension 2 is provided in [35]by replacing the differential operator Id + T by a time independent “diagonal” approximation. In [16], aDiscontinuous Galerkin Finite-Element method is applied.We also mention the following formulation with high order derivatives of h:
Proposition 2. System (10) also reads

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 + g

h2

2
+
h2ḧ

3
+
h2u̇

2
∂xzb +

h2u2

2
∂2
xxzb

)

+h

(
g +

ḧ

2
+ u̇∂xzb + u2∂2

xxzb

)
∂xzb = −h∂xpatm.

Here we used the standard notation ξ̇ := ∂tξ + u∂xξ.

Proof. We deduce from (6)
ḣ = −h∂xu = 2

√
3σ = 2(w − u∂xzb),

qb = hẇ =
hḧ

2
+ h [∂t(u∂xzb) + u∂x(u∂xzb)] ,

q =
qb
2

+
hḧ

12
=
hḧ

3
+
h

2
[∂t(u∂xzb) + u∂x(u∂xzb)] .

Inserting the two latter equalities into (6b), we obtain the expected result.
Remark 1. For a flat topography, we recover the model studied in [22,36]. In [36], the model is reformulated
by means of the change of variable (h, hu) 7→

(
h, u+ ∂x(h2ḣ)

3h

)
and solved using a finite-difference method.

The numerical technique used in [22] is based on an augmented-Lagrangian approach.

In the framework of projection methods, we exhibit another formulation. The two constraints (10c) can bereplaced by applying the divergence (8b) to the momentum equation (10b) (initially divided by h):
Proposition 3. System (10) can be rewritten under the reduced formulation

∂th+ ∂x(hu) = 0, (12a)
∂t(hX) + ∂x(huX) +∇sgn Q = Sh, (12b)
−∇sgn·

(
∇sgn Q

h

)
= −∇sgn·

(
Sh
h

)
+∇sgn·(u∂xX). (12c)

Eq. (12c) reads
12
q

h
− h∂x

(
∂x(hq)

h

)
− 6

qb
h
− h∂x

(qb
h
∂xzb

)
= 2h(∂xu)2 + h∂x

(
g∂x(zb + h) + ∂xp

atm
)
, (13a)

(
4 + (∂xzb)

2
) qb
h
− 6

q

h
+ ∂xzb

∂x(hq)

h
= u2∂2

xxzb −
(
g∂x(zb + h) + ∂xp

atm
)
∂xzb. (13b)
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Well-posedness of this system is studied in [4].
Remark 2. Notice that only h and u are involved (not w nor σ) in the right hand side of (13).
Moreover, we also notice that qb can be expressed directly from (13b)

qb
h

=
1

4 + (∂xzb)2

[
6
q

h
− ∂xzb

∂x(hq)

h
+ u2∂2

xxzb −
(
g∂x(zb + h) + ∂xp

atm
)
∂xzb

]
. (14)

Inserting the latter expression into (13a) provides a unique equation for q:

12
1 + (∂xzb)

2

4 + (∂xzb)2

q

h
− h∂x

(
4

4 + (∂xzb)2

∂x(hq)

h

)
+

6∂xzb
4 + (∂xzb)2

∂x(hq)

h
− h∂x

(
6∂xzb

4 + (∂xzb)2

q

h

)
= 2h(∂xu)2 + h∂x

(
g∂x(zb + h) + ∂xp

atm
)

+ h∂x

(
∂xzb

4 + (∂xzb)2

(
u2∂2

xxzb −
(
g∂x(zb + h) + ∂xp

atm
)
∂xzb

))
.

However, the complexity of the operators in the latter equation made us prefer working with (13).
Remark 3. Whether it be from the theoretical or numerical points of view, the equation of interest is

−∇sgn·
(

1

h
∇sgn Q

)
= f (15)

for some right hand side f . The well-posedness of Eq. (15) is proven in [4] by means of the Lax-Milgram
theorem applied under some smoothness hypotheses on the water height h. In particular, straightfoward
computations show that

−
∫
I
∇sgn·

(
1

h
∇sgn Q

)
· Q̃ dx = − [q̃ (∂x(hq) + qb∂xzb)]∂I +

∫
I

1

h
∇sgn Q · ∇sgn Q̃ dx,

which explains the present choice of boundary conditions (7a-7b).

Finally, we show that thanks to the correct formulation of diagnostic equations (6e) and (6f), associatedto the definition (8b) of ∇sgn·X that provides the duality relation (9) we can deduce an associated energyfor SGN model. It is crucial from both theoretical and numerical points of view as highlighted in thefollowing section, corresponding to the definition of the numerical method.
Proposition 4. Smooth solutions of System (10) satisfy the following energy equality provided patm and
zb do not depend on time:

∂t

[
h

(
|X|2

2
+ g

(
zb(x) +

h

2

)
+ patm(x)

)]
+ ∂x

[
hu

(
|X|2

2
+ g (zb(x) + h) + patm(x) + q

)]
= 0.

Proof. Let us multiply (6b) by u, (6c) by w and (6d) by σ so that
∂t

(
h
|X|2

2

)
+ ∂x

(
hu
|X|2

2

)
+
|X|2

2
[∂th+ ∂x(hu)] + X · ∇sgn Q + hu∂x(g(h+ zb) + patm) = 0.

Using the duality relation (9) as well as Eq. (6a) leads to the expected result.
2.2 Splitting strategy at the semi-discrete level

Let us write a semi-discretisation of System (10) based on a classic splitting technique for some time step
∆t > 0, like e.g. in [1, 18,21,35,43]. We first consider the hyperbolic step4

hn+1/2 − hn

∆t
+ ∂x(hnun) = 0,

(hX)n+1/2 − (hX)n

∆t
+ ∂x (hnunXn) = Shn ,

(16)
4An explicit scheme is presented but an implicit strategy can also be chosen. It does not interfere with the second step.
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coupled to boundary conditions (7c) and (7d). Any classic numerical method dedicated to the ShallowWater equations (including well-balanced schemes) can be used to solve it.Then the dispersive step reads
hn+1 − hn+1/2

∆t
= 0, (17a)

(hX)n+1 − (hX)n+1/2

∆t
+∇sgn Qn+1 = 0, (17b)

∇sgn·Xn+1 = 0, (17c)which reads as a mixed velocity-pressure Darcy problem. Boundary conditions (7c), (7a) and (7b) areconsidered. In this paper we investigate a projection-correction approach.To increase the order of the method, we can consider the incremental method (see e.g. [29]) which consistsof the following modified first step
hn+1/2 − hn

∆t
+ ∂x(hnun) = 0,

(hX)n+1/2 − (hX)n

∆t
+ ∂x (hnunXn) +∇sgn Qn = Shn ,(which requires an initialisation of the pressure unlike the non-incremental version) and the modifiedsecond step 

hn+1 − hn+1/2

∆t
= 0,

(hX)n+1 − (hX)n+1/2

∆t
+∇sgn

(
Qn+1 −Qn

)
= 0,

∇sgn·Xn+1 = 0.This approach does not raise any additional issues, therefore for the sake of simplicity we present theresults by considering the splitting strategy (16)-(17).To make the notation easier, we shall denote from now on: X = Xn+1 and X∗ = Xn+1/2. System (17)implies
−∇sgn·

(
1

h∗
∇sgn Q

)
= −∇sgn·X∗

∆t
, (18)

or equivalently, expanding the non-classic operators:
12

q

h∗
− h∗∂x

(
∂x(h∗q)

h∗

)
− 6

qb
h∗
− h∗∂x

( qb
h∗
∂xzb

)
= −2

√
3σ∗ + h∗∂xu

∗

∆t
,

(
4 + (∂xzb)

2
) qb
h∗
− 6

q

h∗
+ ∂xzb

∂x(h∗q)

h∗
= −w

∗ − u∗∂xzb −
√

3σ∗

∆t
.

(18’)
We recover the same operators as in the continuous case – see (13), only the right hand side is modifieddue to the splitting method. Hence the well-posedness investigated in [4] still holds.
Remark 4. The right hand side in (18’) is not of order O(∆t−1) but of order O(1). Indeed, inserting the
values from the hyperbolic step (16), we get

2
√

3σ∗ + h∗∂xu
∗

∆t
=

2
√

3σn + hn∂xu
n

∆t
+O(1) = O(1),

w∗ − u∗∂xzb −
√

3σ∗

∆t
=
wn − un∂xzb −

√
3σn

∆t
+O(1) = O(1),

since 2
√

3σn+hn∂xu
n = 0 and wn−un∂xzb−

√
3σn = 0, provided initial conditions satisfy the divergence

constraints, i.e. initial conditions are well-prepared.Once Equation (18) is solved for Q, the velocity field is updated using (17b)
X = X∗ − ∆t

h∗
∇sgn Q.
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2.3 Numerical method at the discrete level

We focus in this section on the discretisation in space of the non-incremental version (16-17). Theincremental version does not raise major additional difficulties.Let us consider a homogeneous Cartesian grid of interval I = [x`, xr] with mesh size ∆x = xr−x`
N for someinteger N > 0 (see Figure 2).Standard approaches for Stokes-like problems rely on a staggered grid with velocity fields at the centreof the cells and pressure fields at the interfaces. A similar approach is also followed in [21]. The specificexpression of ∇sgn Q in the present problem – see (8b) – induced a different choice, namely a colocatedapproach with all variables (X and Q) at the centres of the cells. This choice makes a discrete energyestimate easier to derive.

x1/2

x`

xN+1/2

xr

x1

x3/2

xi−1

xi−1/2

xi

xi+1/2

xi+1

Figure 2: Colocated mesh

2.3.1 Hyperbolic step

System (16) consists of the classic shallow water part and two transport equations for w and σ. Afinite-volume numerical scheme reads like this:
(hX̃)

n+1/2
i − (hX̃)ni

∆t
+

Fn
i+1/2 −Fn

i−1/2

∆x
=
(

0,SThni

)T
,

where X̃ =
(
1,XT

)T . The eigenvalues of the hyperbolic operator in (16) are un±√ghn and un (transportequations for w and σ).We have considered a high order Polynomial Viscosity Matrix finite-volume method using a second-order MUSCL state reconstruction operator similar to those proposed in [18, 21]. Moreover, a third-orderCWENO – [13] reconstruction has been implemented as well. The considered explicit high-order methodsare well-balanced for water at rest solutions
η = cst, u = w = σ = 0,

and linearly L∞ stable provided the following condition holds
∆t ≤ CCFL

∆x

maxi
(
|uni |+

√
ghni

) . (19)
Moreover, the schemes are positive preserving for the total water depth in the sense that if hni > 0 then
hn+1
i > 0 for all i.

2.3.2 Non-hydrostatic step: numerical scheme for the velocity-pressure problem

We could have directly discretised Eqs. (18’). However, in order to recover a discrete energy, we firstdiscretise the velocity-pressure problem (17) and we then deduce a discretisation for (18’) mimicking thecontinuous level. Finite differences are applied in the present work.Let us first consider the mixed formulation (17). Denote by H ∈MN,N (R) the diagonal matrix with entries
Hi,i = h∗i .

10



We expect that the discretisation of System (17) has the form(
H/∆t B
BT 0

)(
X

Q

)
=

(
HX∗/∆t− 0̂

0̃

)
. (20)

where
• H ∈M3N,3N (R) is block-diagonal with block entries H ∈MN,N (R);
• B ∈M3N,2N (R) is an rectangular matrix to be specified;
• U = (ui)i∈{1,...,N}, W = (wi)i∈{1,...,N}, Σ = (σi)i∈{1,...,N} and X =

U
W
Σ

;
• 0ij = 0 for (i, j) ∈ {1, . . . , 2N}2;
• 0̂ ∈ R3N and 0̃ ∈ R2N account for boundary conditions as detailed below.

The matrix in (20) is symmetric due to the duality relation (9). However, a naive approach where Eqs. (17b)and (17c) are discretised independently from each other would lead to a non-symmetric matrix. Hencewe first discretise Eq. (17b) as
1

∆t
HX + BQ =

1

∆t
HX∗ − 0̂.

Once B is built, BTX = 0 should be a consistent discretisation of (17c) up to boundary terms.More precisely, Equation (17b) is discretised for inner cells:
h∗iXi

∆t
+

 1
∆x

(
h∗i+1/2

qi+1+qi
2 − h∗i−1/2

qi+qi−1

2

)
+ qbi(∂xzb)i

−qbi
−2
√

3
(
qi − qbi

2

)
 =

h∗iX
∗
i

∆t
, i ∈ {2, . . . , N − 1}.

which leads to
B =

 B11 B12

0 −IN
−2
√

3IN
√

3IN

 . (21)
B12 is diagonal with entries (∂xzb)i while B11 is tridiagonal:

B11 =
1

∆x


. . . . . . . . .
−
h∗
i−1/2

2

h∗
i+1/2

−h∗
i−1/2

2

h∗
i+1/2

2. . . . . . . . .
 (22)

Hence, for inner nodes xi:
(BTX)i = −

[
1

2

(
h∗i−1/2

ui − ui−1

∆x
+ h∗i+1/2

ui+1 − ui
∆x

)
+ 2
√

3σi

]
,

(BTX)N+i = −
[
wi − (∂xzb)iui −

√
3σi

]
,

which is consistent with (17c).

11



Boundary conditions. Let us now specify how boundary conditions are incorporated by means of ghostcells. BC (7a) at x = x1/2 = x` is discretised by
h∗1q1 − h∗0q0

∆x
= χ` =⇒ q0 =

h∗1q1 − χ`∆x
h∗0

.

Hence, the momentum equation for u is discretised in the first cell by:
h∗1u1

∆t
+

1

∆x

[
h∗3/2

q1 + q2

2
− h∗1/2

q0 + q1

2

]
+ qb1(∂xzb)1 =

h∗1u
∗
1

∆t

=⇒ h∗1u1

∆t
+
h∗3/2

2∆x
q2 +

1

2∆x

[
h∗3/2 − h

∗
1/2

(
1 +

h∗1
h∗0

)]
q1 + qb1(∂xzb)1 =

h∗1u
∗
1

∆t
−
h∗1/2

2h∗0
χ`.

This provides the first line of Matrix B11 as well as 0̂1 = −
h∗1/2

2h∗0
χ`. It remains to specify h∗0. Given that noboundary condition is imposed on h at x = x`, we set h∗0 = 2h∗1 − h∗2.We then observe that

(BTX)1 = −1

2

(
h∗3/2

u2 − u1

∆x
+ h∗1/2

(
1 +

h∗1
h∗0

)
u1

∆x

)
.

We remark that if we discretise BC (7c) by
Qu =

h∗1u1 + h∗0u0

2
=⇒ u1 − u0

∆x
=

(
1 +

h∗1
h∗0

)
u1

∆x
− 2Qu
h∗0∆x

.

We deduce 0̃1 =
h∗1/2

h∗0

Qu
∆x

.As for the boundary conditions at x = xN+1/2 = xr , BC (7b) is discretised by
qN + qN+1

2
= 0,

which means that the momentum equation for u in the last cell becomes
h∗NuN

∆t
−
h∗N−1/2

2∆x
(qN + qN−1) + qbN (∂xzb)N =

h∗Nu
∗
N

∆t
.

This yields the last line of B11 and 0̂N = 0. It implies that
(BTX)N = −h∗N−1/2

uN−1 − uN
2∆x

= −1

2

(
h∗N−1/2

uN − uN−1

∆x
+ h∗N+1/2

uN+1 − uN
∆x

)
provided that uN+1 = uN , which is equivalent to imposing

∂xu = 0 at x = xr,

and 0̃N = 0.Let us comment the latter result. Imposing q = 0 at some boundary is consistent with imposing ∂xu = 0at the same location. Even if there is no BC required in the hyperbolic problem, it is necessary from thenumerical point of view in order to compute the flux at the corresponding interface. We mention that theBC handled in the first step of the algorithm must not be damaged by the second step. Likewise, still fornumerical purposes, we impose
∂xw = 0, ∂xσ = 0 at x = xr.
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2.3.3 Numerical scheme for the pressure problem

For a resolution of the mixed velocity-pressure problem (20) by means of the Uzawa method, see [4]. Inthe present paper, we rather combine both equations in (20) to obtain
BTH−1BQ = f :=

BTX∗ − 0̃

∆t
− BTH−1

0̂, (23)
which is nothing but a consistent discretisation of the velocity-correction approach (18).
Remark 5. It is crucial that the initial data satisfy at the discrete level BTX∗− 0̃ = 0 in order to prevent
the propagation of errors of order O(∆t−1) as explained in Remark 4

Notice that Matrix C = BTH−1B has the following structure:
C =

(
C11 C12

CT12 C22

)
=

(
BT

11H−1B11 + 12H−1 BT
11H−1B12 − 6H−1

BT
12H−1B11 − 6H−1 BT

12H−1B12 + 4H−1

)
. (24)

Lemma 1. Matrix C is symmetric positive-definite.

Proof. The symmetry comes from the definition C = BTH−1B. Moreover, we have
〈CQ,Q〉 =

〈
H−1BQ,BQ

〉
≥ 0

since H is a diagonal matrix with positive entries provided the hyperbolic scheme is positive. Then
BQ = 0 =⇒ Q = 0 as B is one-to-one – see (21).More precisely, (24) provides the following discrete energy

〈CQ,Q〉 =
〈
H−1qb, qb

〉
+ 12

〈
H−1

(
q − qb

2

)
, q − qb

2

〉
+
〈
H−1(B11q +B12qb), B11q +B12qb

〉
,

which is consistent with∫
I

1

h∗
| ∇sgn Q|2 dx =

∫
I

1

h∗

[
q2
b + 12

(
q − qb

2

)2
+ (∂x(h∗q) + qb∂xzb)

2

]
dx.

To solve (23), one may apply different strategies. One of them is to apply a direct resolution inverting
C. Another variant is to use the Uzawa method. Here, we shall propose to follow an iterative process ofGauss-Seidel type:

1. C11q
k+1 = 1

∆tf − C12q
k
b ;2. C22q

k+1
b = 1

∆tf b − C
T
12q

k+1.
This method converges due to Lemma 1. This is the latter method which has been chosen in the presentwork. Matrix C11 is more or less the same matrix as for the DAE model (5). The extra additional timethen corresponds to the iterative process (C11 is factorised once and C22 is diagonal).
Remark 6. Notice that we could explicitly solve the second block of (23):

qb = C−1
22

(
1

∆t
f b − CT12q

)
=⇒ (C11 − C12C

−1
22 C

T
12)q =

1

∆t

(
f − C12C

−1
22 f b

)
,

which corresponds to a discretisation of (14).
Remark 7. The final numerical scheme proposed here is well-balanced for the water at rest solution, and
positive preserving for the total water depth provided the hyperbolic scheme is well-balanced and positive
preserving.
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z = zb(x) = z1/2(x)

z = η(t, x) = zL+1/2(t, x)

z = zα−1/2(t, x)

z = zα+1/2(t, x)

h(t, x) hα(t, x)

x

z

(a) Layers

qα−1/2, ũα−1/2, w̃α−1/2

qα+1/2, ũα+1/2, w̃α+1/2

z = zα−1/2

z = zα

z = zα+1/2
wα

uα, qα

(b) Unknown locations
Figure 3: Multilayer description

3 Numerical scheme for the LDNH2(L) model

3.1 Notations and model

Without any assumption on the shallowness of the flow, we can also approximate the Euler equations (1)by means of a “multilayer” model. The flow is split into arbitrary layers of constant height hα = h
L forsome integer L > 0 (see Fig. 3). We consider the dispersive layer-averaged model derived in [24] underthe following reformulation:

∂th+ ∂x
(
hu
)

= 0, u =
L∑
α=1

`αuα,

and for α ∈ {1, . . . , L}
∂t(hαuα) + ∂x

(
hαu

2
α + hαqα

)
+ ũα+1/2Γα+1/2 − ∂xzα+1/2qα+1/2

− ũα−1/2Γα−1/2 + ∂xzα−1/2qα−1/2 = −ghα∂xη,

∂t(hαwα) + ∂x (hαuαwα) + w̃α+1/2Γα+1/2 + qα+1/2 − w̃α−1/2Γα−1/2 − qα−1/2 = 0,

∂t(hασα) + ∂x(hασαuα) = 2
√

3

[
qα −

qα+1/2 + qα−1/2

2

−Γα+1/2

(
hα∂xuα

12
+
w̃α+1/2 − wα

2

)
+ Γα−1/2

(
hα∂xuα

12
+
wα − w̃α−1/2

2

)]
,

together with diagnostic equations
2
√

3σα + hα∂xuα = 0, α ∈ {1, . . . , L},
wα − wα−1 − (uα − uα−1)∂xzα−1/2 −

√
3(σα−1 + σα) = 0, α ∈ {2, . . . , L},

w1 − u1∂xzb −
√

3σ1 = 0,
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and the boundary condition
qL+1/2 = 0.The mass transfer term is given by

Γα+1/2 =
L∑

β=α+1

∂x
(
hβ
(
uβ − u

))
.

To close the model, we define
• ũα+1/2 = (1− γα+1/2)uα+1 + γα+1/2uα;
• w̃α+1/2 = (1− γα+1/2)

(
wα+1 + hα+1

2 ∂xuα+1

)
+ γα+1/2

(
wα − hα

2 ∂xuα
);

for any γα+1/2 ∈ [0, 1] such that [24, Prop. 1](
γα+1/2 −

1

2

)
Γα+1/2 ≥ 0. (25)

Let us recall the properties of this system:
• Let us set Kα =

u2
α + w2

α + σ2
α

2
. If (H,uα, wα, qα) are smooth solutions to the multlilayer model, wehave under (25)

∂t

(
L∑
α=1

hα
(
Kα + gzα + patm(x)

))
+ ∂x

(
L∑
α=1

hαuα
(
Kα + qα + gη + patm(x)

))
≤ 0. (26)

Moreover, if we take γα+1/2 = 1
2 , then (26) is an equality.

• The monolayer case L = 1 reduces to the Serre – Green-Naghdi equations (6).
3.2 Differential operators

Let us introduce the operators
Xα =

uαwα
σα

 , Qα =

(
qα

qα−1/2

)
,

and
∇αldnh Qα =


∂x(h∗qα)

L − qα+1/2∂xz
∗
α+1/2 + qα−1/2∂xz

∗
α−1/2

qα+1/2 − qα−1/2

−2
√

3
(
qα −

qα+1/2+qα−1/2

2

)
 , α ∈ {1, . . . , L},

∇αldnh·Xα =

(
2
√

3σα + h∗

L ∂xuα
wα − wα−1 − (uα − uα−1)∂xz

∗
α−1/2 −

√
3(σα−1 + σα)

)
, α ∈ {2, . . . , L},

∇1
ldnh ·X1 =

(
2
√

3σ1 + h∗

L ∂xu1

w1 − u1∂xzb −
√

3σ1

)
.

We get a global duality relation
L∑
α=1

Qα · (∇αldnh·Xα) =
1

L
∂x(hqαuα)−

L∑
α=1

Xα · ∇αldnh Qα. (27)
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It is worth noticing that
∇αldnh Qα =


∂x(h∗qα)

L

0

−2
√

3qα

+

qα−1/2∂xz
∗
α−1/2

−qα+1/2√
3qα+1/2

−
qα+1/2∂xz

∗
α+1/2

−qα−1/2√
3qα−1/2

+

 0
0

2
√

3qα+1/2

 , (28a)
and
∇αldnh·Xα =

(
2
√

3σα + h∗

L ∂xuα
wα − uα∂xz∗α−1/2 −

√
3σα

)
−

(
0

wα−1 − uα−1∂xz
∗
α−1/2 −

√
3σα−1

)
−
(

0

2
√

3σα−1

)
. (28b)

We mention that the divergence operator stated in the present work is not the same as in [24]. We ratherprovide an equivalent formulation that satisfies the duality relation (27). In particular, σα is involvedinstead of ∂xuα which is important for the order of derivatives.Let us proceed as in the single layer case with a splitting strategy between hyperbolic terms and non-hydrostatic terms. The latter part reads
h∗Xα − h∗X∗α

L∆t
+∇αldnh Qα = 0,

∇αldnh·Xα = 0,
(29)

which implies
−∇αldnh·

(
∇αldnh Qα

h∗

)
= − 1

L∆t
∇αldnh·X∗.The latter equation is expanded as, for α ∈ {1, . . . , L}

− h∗∂x
(
∂x(h∗qα)

h∗

)
+ 12L2 qα

h∗
= − L

∆t

(
2
√

3σ∗α +
h∗

L
∂xu

∗
α

)
− Lh∗∂x

(
qα+1/2∂xz

∗
α+1/2 − qα−1/2∂xz

∗
α−1/2

h∗

)
+ 6L2 qα+1/2 + qα−1/2

h∗
, (30a)

then for α ∈ {2, . . . , L}(
2− ∂xz∗α+1/2∂xz

∗
α−1/2

) qα+1/2

h∗
+ 2

(
4 + (∂xz

∗
α−1/2)2

) qα−1/2

h∗
+
(

2− ∂xz∗α−1/2∂xz
∗
α−3/2

) qα−3/2

h∗

= − 1

L∆t

(
w∗α − w∗α−1 − (u∗α − u∗α−1)∂xz

∗
α−1/2 −

√
3(σ∗α−1 + σ∗α)

)
−
∂xz
∗
α−1/2

L

∂x
(
h∗(qα − qα−1)

)
h∗

+ 6
qα−1 + qα

h∗
, (30b)

and finally
(2− ∂xz∗3/2∂xz

∗
1/2)

q3/2

h∗
+
(

4 + (∂xz
∗
1/2)2

) q1/2

h∗

= − 1

L∆t

(
w∗1 − u∗1∂xzb −

√
3σ∗1

)
− ∂xzb

L

∂x(h∗q1)

h∗
+ 6

q1

h∗
. (30c)

Let us remark is that the differential operator for qα in (30a) is independent from index α. Moreover, upto a coefficient L2, this operator is the same as in the monolayer case – see (18’).
3.3 Structure of the fully discretised equations

Our goal is to produce an algorithm that only relies on tools designed for the monolayer case. Let ussplit the gradient matrix B = B1/2 from (21) into:
Bα−1/2 = B1 + Bα−1/2

2 , where B1 =

 B11 0

0 0

−2
√

3IN 0

 and Bα−1/2
2 =

 0 B
α−1/2
12

0 −IN
0
√

3IN

 ,
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B11 is defined in equation (22) and Bα−1/2
12 is a N ×N diagonal matrix with entries (∂xz

∗
α−1/2)

i
. The factthat B1 is independent from layer α (and exactly the same as in the monolayer case) is crucial for whatis following.Hence ∇αldnh Qα is approximated according to (28a)

B1Qα + Bα−1/2
2 Qα − B

α+1/2
2 Qα+1 +RQα+1 = Bα−1/2Qα − B

α+1/2
2 Qα+1 +RQα+1,where

R =

 0 0

0 0

0 2
√

3IN

 and Qα =



qα,1...
qα,N

qα−1/2,1...
qα−1/2,N


.

The last two terms account for interactions between layers: the model under investigation does not reduceto a monolayer model in each layer. Hence System (29) is approximated by H/(L∆t) B +R(
B +R

)T
0

( X

Q

)
=

(
HX

∗
/(L∆t)− 0̂

0̃

)
.

where

B =



B1/2 −B3/2
2 0. . . . . .

Bα−1/2 −Bα+1/2
2. . . . . .

0 BL−1/2


∈M3NL,2NL(R), R =


0 R 0. . . . . .. . . R
0 0

 ∈M3NL,2NL(R),

X =



...
Uα

Wα

Σα...

 , Uα =

uα,1...
uα,N

 , Q =


...

Qα...
 .

It is easy to verify that (B +R
)T

X = 0̃ is consistent with (28b). For the treatment of boundary conditionswhich are incorporated in vectors 0̂ and 0̃, we refer to the monolayer case (§ 2.3.2). As previously, thesymmetry of the global matrix is due to the duality relation (27).From the discrete velocity-pressure problem, we deduce as previously a discrete pressure problem whichreads (
B +R

)T H−1 (B +R
)
Q =

1

L∆t

[(
B +R

)T
X
∗ − 0̃

]
−
(
B +R

)T H−1
0̂. (31)

Let us set
• C =

(
B +R

)T H−1 (B +R
)
∈ M2NL,2NL(R) which is blockwise tridiagonal, symmetric positive-definite;

• Cα−1/2 =
(
Bα−1/2

)T H−1Bα−1/2 which has exactly the same structure as C in (24) with B12 replacedby Bα−1/2
12 .

The blockwise components of C are then:
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• C1,1 = C1/2;• For α ∈ {2, . . . , L}:
Cα,α = Cα−1/2 +

(
R− Bα−1/2

2

)T
H−1

(
R− Bα−1/2

2

)T
=

 C11 C
α−1/2
12(

C
α−1/2
12

)T
2C

α−1/2
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and
Cα−1,α = CTα,α−1 =

(
Bα−3/2

)T
H−1

(
R− Bα−1/2

2

)
=

 0 −6H−1 −BT
11H−1B

α−1/2
12

0 2H−1 −
(
B
α−3/2
12

)T
H−1B

α−1/2
12

 .

(31) is a consistent discretisation of (30).
3.4 Iterative scheme

To solve the 2NL×2NL linear system (31), we apply an alternating direction-type method. More precisely,it amounts to solving iteratively:
x-direction For each layer α, (30a) in qα knowing qα+1/2 which corresponds to a linear system with matrix

C11 given in (24) (the same for all layers which requires a single factorisation for all iterates at eachtime step):
C11q

p+1
α =

1

L∆t

(
BT

11U
∗
α − 2

√
3Σ∗α

)
− Cα−1/2

12 qpα−1/2;

z-direction For each node xi, (30b-30c) in qα+1/2 knowing qα. It is a tridiagonal system with matrix
S(i) solved by means of the Thomas’ algorithm [48]. Matrix S(i) is a L × L tridiagonal symmetricpositive-definite matrix with

• S
(i)
1,1 = 4 + (∂xz

∗
1/2)2

i
;• For α ≥ 2, S(i)

α,α = 2
(

4 + (∂xz
∗
α−1/2)2

i

) and S(i)
α,α−1 = S

(i)
α−1,α = 2− (∂xz

∗
α−1/2)

i
(∂xz

∗
α−3/2)

i
.

Indeed, we check that
〈S(i)x,x〉 = 2x2

1 +
(

2 + (∂xzL−1/2)2
i

)
x2
L

+
L−1∑
α=2

[
4x2

α + 2(xα + xα−1)2 +
(

(∂xz
∗
α−1/2)

i
xα − (∂xz

∗
α−3/2)

i
xα−1

)2
]
≥ 0.

This strategy is equivalent to solving the following system by means of a Gauss-Seidel iterative procedure:

C11 0. . . E
0 C11

S(1) 0

ET
. . .

0 S(N)


where unknowns have been re-labelled as

q̂α=1...
q̂α=L

q̌i=1...
q̌i=N


, with q̂α =

 qα,1...
qα,N

 and q̌i =

 q1/2,i...
qL−1/2,i

 .
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Remark 8. It must be underlined that this algorithm can be easily parallelised insofar as each direction
(x and z) involves a blockwise diagonal matrix.

4 Numerical simulations

Let us recall that the stability condition is prescribed by the hyperbolic part of the splitting strategy –see (19) with a CFL number CCFL to be specified.The numerical schemes presented in this paper, namely the resolution of (23) for NHML2(L = 1) andthe resolution of (31) for NHML2(L), L ≥ 1, are assessed by means of 4 classic test cases and comparedto numerical results obtained with the DAE model (5) and its multilayer counterpart described in [24]:
• Propagation of the Euler solitary wave;
• Comparisons with 3 sets of experimental data.

Let us mention that in order to ensure the robustness of the algorithm for wet/dry transitions, the term
1
hni

is approximated by [38]
hni
√

2√
(hni )4 + max

{
(hni )4, ε

} ,
for some threshold ε > 0, as it is usually done in shallow waters (see [32]).
4.1 Convergence test

Let us start by a convergence test for both models, LDNH0 and LDNH2, in order to assess the numericalstrategy and the code used. To do so, we consider the propagation of a soliton (specific to each model)in a rectangular channel with constant topography. This solitary wave is given by
h(t, x) = H∗ +A sech2

(
1

H∗

√
Aγ

2(A+H∗)
(x− ct)

)
, u(t, x) = c

(
1− H∗

h(t, x)

)
,

w(t, x) = − cA

h(t, x)

√
Aγ

2(A+H∗)
sech3

(
1

H∗

√
Aγ

2(A+H∗)
(x− ct)

)
sinh

(
1

H∗

√
Aγ

2(A+H∗)
(x− ct)

) (32)

where A and H∗ are constant fixed values, c =
√
g(A+H∗) and

• γ = 2 in the case of LDNH0,
• γ = 3/2 in the case of LDNH2.

Here we set H∗ = 1, A = 0.1, g = 1 and zb = 0.The propagation of a solitary wave over a long distance is a standard assessment of stability and con-servative properties of numerical schemes for Boussinesq-type equations [45, 46, 49]. A solitary wavepropagates at constant speed and without change of shape over a horizontal bottom.The domain is [−20, 20]. We perform the simulation with different numbers of volume cells at time t = 0.2with a second-order scheme. The results are compared to the reference solution and the errors are shownin Tables 1 and 2. These results show the convergence towards the reference solution at second-order.
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No. of cells h hu hw
L1 error order L1 error order L1 error order50 3.04e-03 0.00 1.81e-03 0.00 2.17e-03 0.00100 9.26e-04 1.72 5.17e-04 1.81 5.97e-04 1.86200 2.57e-04 1.85 1.39e-04 1.89 1.88e-04 1.67400 6.96e-05 1.88 4.22e-05 1.72 8.44e-05 1.15

Table 1: Test 4.1 – L1 errors with the LDNH0-soliton and numerical orders of accuracy.
No. of cells h hu hw

L1 error order L1 error order L1 error order50 1.21e-02 0.00 1.72e-02 0.00 1.22e-02 0.00100 4.51e-03 1.42 4.02e-03 2.10 3.28e-03 1.89200 1.33e-03 1.76 1.12e-03 1.85 8.50e-04 1.95400 3.80e-04 1.80 3.24e-04 1.79 2.39e-04 1.83
Table 2: Test 4.1 – L1 errors with the LDNH2-soliton and numerical orders of accuracy.

4.2 Solitary wave propagation over reefs

A test case propagating a solitary wave over an idealised fringing reef assesses the ability of the model tohandle nonlinear dispersive waves, breaking waves and bore propagation. The test configuration includesa fore reef, a flat reef, and an optional reef crest to represent fringing reefs commonly found in a tropicalenvironment. Figure 4 shows a sketch of the laboratory experiments carried out at the O.H. HinsdaleWave Research Laboratory of Oregon State University. See for instance [50] for more details. The 1Ddomain [0, 45] is discretised with ∆x = 0.045 m.
1.0 m

17.0 m 5.0 m 23.0 m

0.5 m

Figure 4: Test 4.2 – sketch of the topography
A solitary wave of amplitude 0.5 m is placed at point x = 10 m. Finally CFL = 0.9 and g = 9.81 m · s−2.Free outflow boundary conditions are imposed.Figure 5 shows snapshots at different times, t√g/H∗ = t0 where H∗ = 1 m. Comparisons between ex-perimental and simulated data allow to validate the numerical approach presented in this paper. Resultsare shown for LDNH0(L = 1) and LDNH2(L = 1) models. The water rushes over the flat reef withoutproducing a pronounced bore-shape. The simulation also captures the offshore component of the rarefac-tion falls, exposing the reef edge, below the initial water level. The simulations match with experimentaldata and the LDNH2 provides slightly better results.
4.3 Wave propagation over a submerged bar

The Dingemans experiment [15] of plunging breaking periodic waves over a submerged bar is considered.This case allows to study frequency dispersion characteristics and non-linear interactions. As wavespropagate over a submerged bar, multiple phenomena occur, like the appearance of higher harmonics.
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Figure 5: Test 4.2 – comparison between experimental data (red points) and numerical results (solid blueline for LDNH0 and dashed pink line for LDNH2) at times t√g/H∗ = 0, 7.8, 10, 13, 17, 20.5 s

The 1D domain [0, 30] is discretised with ∆x = 0.005 and the bathymetry is defined on Fig. 6. Locationsof the measurement points are specified in Table 3. The CFL number is set to CCFL = 0.9 and the gravityfield to g = 9.81 m · s−2. We run the numerical test from the “lake at rest” steady state as an initialcondition. Boundary conditions correspond to free outflow at x = 30 and a sinusoidal wave train for ηgenerated at x = 0. This is done as in [18] imposing in a relaxation zone:
η`(t) = A sin

(
2π

T
t

)
,

where A = 0.01 and T = 2.02 denote resp. amplitude and period.This test produces, up to the front slope, waves with wavenumbers k ≈ 0.63/H∗ and k ≈ 1.58H∗ respec-tively, where H∗ = 0.4 is the typical depth. Fig. 7 shows numerical results of time series of the free surfacefor Model LDNH0(L), for L ∈ {1, 2, 4}, while Fig. 8 concerns LDNH2(L) and Fig. 9 shows comparisonsbetween LDNH0(L = 4) and LDNH2(L = 4).

Figure 6: Test 4.3 – sketch of the bathymetry
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Label 1 2 3 4 5 6 7 8Location 10.5 12.5 13.5 14.5 15.7 17.3 19 21

Table 3: Test 4.3 – wave gauge locations
A x1 x2 x3 x4 x50.289 23.520 23.735 23.990 24.210 24.448
Table 4: Test 4.4 – position of the wave probes.

Good agreements with experimental data are observed for all models up to Gauge #4. Beyong the bar,higher harmonics are released which explains discrepancies. We recover observations from the literature,such as [39] where σ-coordinates are used, or [18] where an enhanced two-layer version of the non-hydrostatic pressure system LDNH0 is used. The results in [11] with a three-parameter Green-Naghdimodel optimised for uneven bottoms, show the same level of agreement. Here, we would like to stressthe ability of the proposed models to deal with a wide range of dispersive waves. The main differencebetween LDNH0(4) and LDNH2(4), as pictured on Fig. 9, can be seen for gauges #6 to #8 where the
LDNH2 model is more accurate.
4.4 Shoaling of a solitary wave on a plane beach

We finally consider the shoaling of a solitary wave on a beach with a constant slope (1 : 30) as describedby Guibourg in [30] and then investigated in [6, 16].A sketch of the geometry is described on Fig. 10. The initial condition is a solitary wave at location x = 10with amplitude A = 0.298, as described in [12,17]. The computational domain Ω = [0, 27.5] is divided intocells of length ∆x = 0.01. Free-outflow boundary conditions are considered and the CFL number is setto CCFL = 0.9.We compare Models LDNH0(L) and LDNH2(L) for L ∈ {1, 2, 4}. Some temporal series of the free-surface elevation are measured at various locations (see Table 4) and compared with the correspondingnumerical results.Results are shown on Figs. 11. Numerical outputs for A = 0.289 predict the shoaling phenomenon duringthe wave run-up satisfactorily. The output clearly shows better performance for Model LDNH2, which isexpected according to the linear dispersion relation of the continuum models.
5 Conclusion

This paper deals with the numerical approach for the models LDNH0 and LDNH2 introduced in [24].The main objective is to compare their accuracy when applied to different standard test case scenarios.
LDNH2 model presented in [24] may be seen as a multilayer extension of the Serre – Green-Naghdiequations. The model was derived from Euler equations assuming linear and quadratic vertical profilesfor the vertical velocity and pressure. LDNH0 model presented in [24] differs from LDNH2 on theassumption of a linear vertical profile for pressure. One of the most attractive properties of the modelsrelies on the increasing accuracy of the linear dispersion relation as the number of layers increases,whereas the model LDNH2 shows better accuracy than LDNH0 for the same number of layers.The LDNH0 model is solved by using a projection technique similar to the one introduced in [18]. Theextension of this technique to LDNH2 is not straightforward. We have proposed a numerical methodbased on this projection technique to approximate the solution of the LDNH2 model.The complexity of the model LDNH2 requires the design of an efficient strategy to solve it numerically for
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Figure 7: Test 4.3 – comparison of experiment data (red points) and simulated ones with the model LDNH0setting 1 layer (green), 2 layers (blue) and 4 layers (black).
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Figure 8: Test 4.3 – comparison of experiment data (red points) and simulated ones with the model LDNH2setting 1 layer (green), 2 layers (blue) and 4 layers (black).
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Figure 9: Test 4.3 – comparison of experiment data (red points) and simulated ones with the model LDNH0(blue) and LDNH2 (black) setting 4 layers.
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Figure 10: Test 4.4 – sketch of the bathymetry used for the shoaling of a solitary wave test problem.
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Figure 11: Test 4.4 with A = 0.289 – blue lines indicate the numerical solution with models LDNH0 (a)and LDNH2 (b) for different layers; red points represent the experimental measurements at the probepositions
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an increasing number of layers. To this aim, we have exploited here a duality relation at the continuouslevel. This allows to design an algorithm relying on an iterative process that solves a monolayer case ineach iteration.In particular, the algorithm may be decomposed into two different problems: The first one correspondsto a discrete parabolic problem per layer and the second to a tridiagonal linear system at each pointof the horizontal discretization that couples each layer. Moreover, (i) the matrix of the linear system ofthe parabolic problem per layer is the same for all layers, and (ii) each tridiagonal linear system at eachpoint of the horizontal discretization is independent. Then, we can observe that (i) since we have the samematrix for all layers, we may consider, for example, an LU factorization to diminish the computational timein all layers and (ii) this implies that, although in the paper this is not done, the proposed technique iseasily parallelizable, especially when the number of layers increases.Moreover, the final numerical scheme proposed here is also high-order, well-balanced for the water atrest solution, and positive preserving for the total water depth. That results in an efficient and robustnumerical scheme, even in the presence of wet/dry transitions. It is worth mentioning that, while anextensive literature is dedicated to the numerical resolution of shallow water flows such as the Depth-Averaged Euler equations or the Serre – Green-Naghdi equations, this is the first attempt, up to ourknowledge, of designing a robust and efficient numerical strategy for the multilayer extension of the SGNequations.The proposed numerical scheme has been carefully validated, showing the second order of accuracyand comparing it with available experimental data. The obtained results exhibit an excellent fit withthe experiments and show that the proposed strategy is well-suited for most coastal processes: wavepropagation, shoaling of the waves, run-up of waves onto a beach, higher dispersive harmonic waves,among others.In the numerical tests presented in the paper, we can also see that for a fixed number of layers, the LDNH2is in many situations more accurate than LDNH0. This result shows that the LDNH2 is of interest sincethe accuracy of both models has been compared by using a generalization of classic projection techniques.One should take into account that LDNH2 has twice more pressure unknowns with respect to LDNH0.Therefore, if we apply a projection method to approximate the solution of LDNH2, it results in a moreexpensive algorithm, from the computational point of view, than for LDNH0. Hence, a fair comparison ofboth models from the computational point of view is beyond the scope of this paper.Nevertheless, it is worth mentioning that this paper was aimed to analyse and propose a projectiontechnique as a starting point for designing efficient and robust numerical methods of high-order for mul-tilayer non-hydrostatic systems. As further research, it will be interesting to investigate the developmentof other numerical strategies for the LDNH2 model and compare it with the one proposed here. Forexample, it may be of interest to consider relaxation techniques or rapid numerical methods and pseudo-compressibility approximations, as the ones proposed for one-layer dispersive shallow models in [19], [23]and [5], respectively.
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