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Numerical simulations of a dispersive model approximating free-surface Euler equations

. The hierarchy of models is based on a Galerkin approach and parametrised by the number of discrete layers along the vertical axis. In this paper we propose some numerical schemes designed for these models in a 1D open channel. The cornerstone of this family of models is the Serre -Green-Naghdi model which has been extensively studied in the literature from both theoretical and numerical points of view. More precisely, the goal is to propose a numerical method for LDN H 2 model that can be defined in terms of a projection method for the one-layer case, despite the number of layers. To do so, the monolayer case is addressed by means of a projection-correction method applied to a non-standard differential operator. A special attention is paid to boundary conditions. This case is extended to several layers thanks to an original relabelling of the unknowns. In the numerical tests we show the converge of the method and its accuracy in comparison with LDN H 0 model.

Introduction

Water waves and more generally water flows are of great interest in several scientific fields with applications to society issues such as protection of populations (tsunamis, floods, . . . ) or energy production (water-turbines, . . . ). Depending on the accuracy that is required in the applications, more or less complex models are used, from fully resolved to averaged equations.

In order to simulate the behaviour of free-surface fluid flows, let us consider the 2D Euler equations for an incompressible free-surface flow under gravity:

∇ • û = 0, (1a) 
∂ t û + (û • ∇)û + ∇p = (0, -g), (1b) 
set in the moving domain (see Figure 1)

Ω(t) = (x, z) ∈ R 2 x ∈ I, z b (x) ≤ z ≤ η(t, x) .
Here, I = (x , x r ) is a bounded interval of R and z b is the given topography (independent from time). The unknowns are the velocity field û = (û, ŵ), the pressure field p and the water elevation η. The water height is deduced from ĥ(t, x) = η(t, x) -z b (x). Viscosity effects are not taken into account in this work but we refer to [START_REF] Bristeau | Layer-averaged Euler and Navier-Stokes equations[END_REF] for instance to deal with such terms. The model is supplemented with kinematic boundary conditions:

∂ t η + ûs ∂ x η -ŵs = 0, ûb ∂ x z b -ŵb = 0, (2) 
as well as p t, x, η(t, x) = p atm (t, x),

for some given atmospheric pressure p atm (t, x) > 0. Classically, the pressure field is decomposed into three parts: p(t, x, z) = g (η(t, x) -z)) + p atm (t, x) + q(t, x, z)

where q is the hydrodynamic pressure field -or commonly referred to as the non-hydrostatic component. The hydrostatic part is g(η(t, x) -z). Hydrostatic models such as the nonlinear shallow water equations [START_REF] Barré De Saint-Venant | Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits[END_REF] or the hydrostatic Navier-Stokes equations [START_REF] Allgeyer | Numerical approximation of the 3d hydrostatic Navier-Stokes system with free surface[END_REF] are based on the assumption q ≡ 0.

Given this decomposition, BC (3) is equivalent to q t, x, η(t, x) = 0.

In addition to its complex mathematical structure (see e.g. [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and wellbalanced schemes for sources[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF][START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF]), Model (1) coupled to [START_REF] Aïssiouene | A combined finite volume-finite element scheme for a dispersive shallow water system[END_REF][START_REF] Allgeyer | Numerical approximation of the 3d hydrostatic Navier-Stokes system with free surface[END_REF][START_REF] Benyo | Simulation of complex free surface flows[END_REF] is a real challenge owing to the fact the domain is moving: the water elevation is an unknown in itself. That is why, in spite of the increase of computer performance, reduced-complexity models have been introduced, analysed and discretised. There exists an extensive literature about models approximating the Euler equations under simplifying hypotheses. Depending on the physical phenomena at stake and thus the fluid regime under study, some models turn out to be more accurate than others.

For example, the nonlinear shallow water equations (NLSW) [START_REF] Barré De Saint-Venant | Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits[END_REF][START_REF] Ferrari | A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography[END_REF][START_REF] Gerbeau | Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation[END_REF][START_REF] Marche | Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects[END_REF] provide relevant results for large wavelengths but seem restrictive in other regimes, in particular due to the absence of dispersive effects. To go further, models were derived in a given regime of magnitude for the nonlinearity (ε: wave amplitude/water depth ratio) and for the frequency dispersion (µ: water depth/wavelength ratio). The competition between the two phenomena is responsible for the shape of water waves. Dispersion is necessary for instance for stratified flows or close to coastal areas. Different regimes lead to weakly/fully nonlinear -weakly/fully dispersive models. For example, the NLSW equations correspond to µ = 0 for any ε = O(1).

We may refer to pioneering works e.g. Boussinesq [8] and Peregrine [START_REF] Peregrine | Long waves on a beach[END_REF], models obtained to improve linear dispersion properties e.g. Madsen & Sorensen [START_REF] Madsen | A new form of the Boussinesq equations with improved linear dispersion characteristics[END_REF] and Nwogu [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF], models suitable for deep waters [START_REF] Lannes | Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation[END_REF], . . . For reviews of dispersive models, see [START_REF] Kirby | Boussinesq models and their application to coastal processes across a wide range of scales[END_REF][START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF]. A focus will be made below on two systems: the Depth-Averaged Euler (DAE) system [START_REF] Bonnet-Ben Dhia | Pseudo-compressibility, dispersive model and acoustic waves in shallow water flows[END_REF] described in [START_REF] Aïssiouene | A two-dimensional method for a family of dispersive shallow water models[END_REF] and the Serre -Green-Naghdi equations [START_REF] Bonneton | A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model[END_REF] (see [START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF][START_REF] Serre | Contribution à l'étude des écoulements permanents et variables dans les canaux[END_REF]).

It is worth noticing that classically dispersive models, usually written under a Boussinesq form, introduce high order derivatives for two unknowns, namely water height and velocity). Contrary to them, nonhydrostatic pressure models introduce such effects by means of the non-hydrostatic component of the pressure. The latter is the strategy used here. Classical dispersive systems, and in particular [START_REF] Bonnet-Ben Dhia | Pseudo-compressibility, dispersive model and acoustic waves in shallow water flows[END_REF] and [START_REF] Bonneton | A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model[END_REF], may be written under the form of non-hydrostatic system. We refer the reader to [START_REF] Escalante | A general non-hydrostatic hyperbolic formulation for boussinesq dispersive shallow flows and its numerical approximation[END_REF] for the link between the two approaches. Non-hydostatic formulation has several advantages from the numerical point of view, especially regarding boundary conditions. Notice that they do not rely on any irrotational assumption. Moreover, both [START_REF] Bonnet-Ben Dhia | Pseudo-compressibility, dispersive model and acoustic waves in shallow water flows[END_REF] and [START_REF] Bonneton | A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model[END_REF] are proven in [START_REF] Fernández-Nieto | A hierarchy of dispersive layeraveraged approximations of Euler equations for free surface flows[END_REF] to belong to the same hierarchy of models depending on some orders of approximation for the set of unknowns 1 . Indeed, the key point is the dependence of the solution on the vertical coordinate z.

More precisely, Equations ( 5) are referred to as LDN H 0 (1) as an approximation of the Euler equations where (u, w, q) is a (P 0 , P 0 , P 1 ) Galerkin approximation of (û, ŵ, q). Likewise, Equations ( 6) are referred to as LDN H 2 (1) and (u, w, q) is a (P 0 , P 1 , P 2 ) Galerkin approximation of (û, ŵ, q). In particular, (6) has a more accurate linear dispersion relation than [START_REF] Bonnet-Ben Dhia | Pseudo-compressibility, dispersive model and acoustic waves in shallow water flows[END_REF] for large wavelengths [24, Fig. 2].

To go further into details, when the frequency dispersion is small, the Euler equations can be approximated by the following non-hydrostatic model [START_REF] Aïssiouene | A two-dimensional method for a family of dispersive shallow water models[END_REF] named DAE

           ∂ t h + ∂ x (hu) = 0, ∂ t (hu) + ∂ x (hu 2 + hq) = -γ 2 2 q∂ x z b -gh∂ x η -h∂ x p atm , ∂ t (hw) + ∂ x (huw) = γq, γw + h∂ x u -γ 2 2 u∂ x z b = 0, (5) 
where (u, w) is an approximation of (û, ŵ) along the water column, q is the non-hydrostatic component of the pressure field and γ > 0 a parameter. The case γ = 2 was derived in [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems[END_REF] and simulated in [START_REF] Aïssiouene | A combined finite volume-finite element scheme for a dispersive shallow water system[END_REF] and corresponds to LDN H 0 (1) in [START_REF] Fernández-Nieto | A hierarchy of dispersive layeraveraged approximations of Euler equations for free surface flows[END_REF]. For a flat topography ∂ x z b ≡ 0, γ = √ 3 corresponds to the Serre -Green-Naghdi equations. Another shallow water model is investigated in the present work. More precisely, we consider the dispersive model:

                     ∂ t h + ∂ x (hu) = 0, (6a) 
∂ t (hu) + ∂ x (hu 2 ) + ∂ x (hq) + q b ∂ x z b = -gh∂ x (z b + h) -h∂ x p atm , (6b) 
∂ t (hw) + ∂ x (huw) -q b = 0, (6c) 
∂ t (hσ) + ∂ x (hσu) -2 √ 3 q - q b 2 = 0, (6d) 
w -u∂ x z b - √ 3σ = 0, (6e) 2 
√ 3σ + h∂ x u = 0. (6f) 
System ( 6) is made of first-order PDEs which account for conservation of mass (6a) and of momentum (6b-6d). (6e-6f) are diagnostic equations deduced from the incompressibility constraint (1a). There are several equivalent ways to write down the diagnostic equations (6e) and (6f) but this definition is the only choice that provides the duality relation ( 9) between the modified "pressure gradient" and the modified "velocity divergence" (8b).

This duality property is crucial from both theoretical and numerical points of view as highlighted in the following. It also allows to specify the boundary conditions:

x From the weak formulation associated to the underlying elliptic equation, we deduce the boundary conditions for the pressure fields (see Remark 3);

y We then infer from the numerical point of view how boundary conditions should be naturally imposed by symmetry in the resulting linear system (see § 2.3.2).

For the sake of simplicity and without restrictions2 , we will consider in this paper a subcritical flow (which corresponds to the hyperbolic regime3 in the Euler system (1)). Hence we prescribe the discharge on the left (x = x l ) -see (7c) and the water height on the right (x = x r ) -see (7d). Then, Model ( 6) is supplemented with the following boundary conditions:

• For the non-hydrostatic pressure, we impose:

At x = x , ∂ x (hq) = χ ; (7a) At x = x r , q = 0, (7b) 
for some flux χ ∈ R. The choice of these boundary conditions relies on the weak formulation associated to the underlying elliptic problem (see Remark 3) and on the boundary condition for the topography (7e).

• For the velocity field and the water height, it depends on the underlying hyperbolic regime. As mentioned above, we consider a subcritical flow so that, following the investigations of § 2.3.2, we impose

At x = x , hu = Q u , hw = Q w , hσ = Q w √ 3 ; (7c) At x = x r , h = h r ; (7d) 
for some constants Q u > 0, Q w ≥ 0 and h r > 0.

We also assume that the topography satisfies the following boundary condition:

∂ x z b (x ) = 0. (7e) 
It is shown in § 2.1 that System (6) can be rewritten under three different other formulations (Props. 1, 2 and 3). In particular, Proposition 1 shows that ( 6) is equivalent to the Serre -Green-Naghdi equations under Boussinesq form, as presented in [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF]. Then, from now on, System (6) coupled to boundary conditions [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and wellbalanced schemes for sources[END_REF] will be referred to indifferently as SGN or LDN H 2 (1).

Although Model LDN H 2 (1) has a larger number of unknowns than LDN H 0 (1) (which may provide a richer modelling), the first goal of this paper is to design a numerical method for (6) with a reduced additional computational complexity compared to [START_REF] Bonnet-Ben Dhia | Pseudo-compressibility, dispersive model and acoustic waves in shallow water flows[END_REF]. See [START_REF] Parisot | Entropy-satisfying scheme for a hierarchy of dispersive reduced models of free surface flow[END_REF] for another strategy. The second goal of this paper is to extend the aforementioned numerical method designed for LDN H 2 (1) to its multilayer counterpart LDN H 2 (L) (for some number of layers L > 1) as derived in [START_REF] Fernández-Nieto | A hierarchy of dispersive layeraveraged approximations of Euler equations for free surface flows[END_REF]. Indeed, LDN H 2 (1) relies on the approximation that the horizontal component of the velocity field does not depend on z, i.e. it is constant along the water column. In some cases (for instance when the flow is not shallow), it is necessary to add more degrees of freedom. The Galerkin method used for the semi-discretisation in z leads to LDN H 2 (L) where L is the number of vertical cells.

The paper is organised as follows: in Section 2, we first show some properties of the LDN H 2 (1) model: equivalent formulations (including the relationship with the Serre -Green-Naghdi equations) and associated energy. Secondly, a numerical strategy to solve the monolayer model LDN H 2 (1) is presented: it consists in an iterative algorithm taking into account the gradient-divergence duality. In Section 3, the layer-averaged extension LDN H 2 (L) is reformulated with similar differential operators. The previous numerical method is then extended to the multilayer case, still based on the gradient-divergence duality.

In Section 4, some classic numerical tests are presented to assess these strategies for LDN H 2 (1) and LDN H 2 (L), in particular in terms of accuracy with respect to LDN H 0 (L).

Analysis and numerical method for the LDN H (1) model

In this section we first study some of the properties of Model [START_REF] Bonneton | A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model[END_REF], such as some reformulations and its associated energy. Secondly, the design of a numerical discretisation of the model is presented.

Properties of the model at the continuous level

Let us set

X =   u w σ   , Q = q q b , and S h =   -gh∂ x (z b + h) -h∂ x p atm , 0 0   . (8a) 
Let us also define the operators

∇ sgn Q =   ∂ x (hq) + q b ∂ x z b -q b -2 √ 3 q -q b 2   and ∇ sgn • X = 2 √ 3σ + h∂ x u w -u∂ x z b - √ 3σ (8b) 
and notice that the following duality relation holds

X • ∇ sgn Q = ∂ x (hqu) -Q • (∇ sgn • X). (9) 
Given these notations, System (6) reads in a compact form

     ∂ t h + ∂ x (hu) = 0, (10a) 
∂ t (hX) + ∂ x (huX) + ∇ sgn Q = S h , (10b) 
∇ sgn • X = 0. (10c) 
System [START_REF] Bristeau | Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems[END_REF] has the same mathematical structure as the incompressible Euler equations with variable density except that differential operators are non-standard. Hence, this remark will help to design a similar numerical strategy.

It is shown below that this system can be rewritten under three different other forms (Props. 1, 2 and 3).

First, let us remark that System (10) is nothing but the Serre -Green-Naghdi equations as presented in [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF]:

Proposition 1. System (10) can be rewritten under the Boussinesq formulation

∂ t h + ∂ x (hu) = 0, I d + T [h, z b ] (∂ t u + u∂ x u) + g∂ x (h + z b ) + Q[h, z b ]u = -∂ x p atm , (11) 
where

T [h, z b ]v = R 1 [h, z b ](∂ x v) + R 2 [h, z b ](v∂ x z b ), Q[h, z b ]v = -2R 1 [h, z b ] (∂ x v) 2 + R 2 [h, z b ](v 2 ∂ 2 xx z b ), R 1 [h, z b ]w = - 1 3h ∂ x (h 3 w) - h 2 w∂ x z b , R 2 [h, z b ]w = 1 2h ∂ x (h 2 w) + w∂ x z b .
Proof. Indeed, we deduce from (6) that

σ = - h∂ x u 2 √ 3 , w = - h∂ x u 2 + u∂ x z b , q b = - h 2 2 ∂ x (∂ t u + u∂ x u) -2(∂ x u) 2 + h ∂ x z b (∂ t u + u∂ x u) + u 2 ∂ 2 xx z b , q = - h 2 3 ∂ x (∂ t u + u∂ x u) -2(∂ x u) 2 + h 2 ∂ x z b (∂ t u + u∂ x u) + u 2 ∂ 2 xx z b .
Inserting the two last equalities into (6b) leads to the expected result.

The main difference between the non-hydrostatic formulation [START_REF] Bonneton | A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model[END_REF] and the Boussinesq formulation given in Proposition 1 lies in the order of spatial derivatives (1 vs. 3). The consequence is a larger number of unknowns in (6) (6 vs. 2) but with at most first order derivatives. One key advantage of ( 6) is that the treatment of boundary conditions is easier as it will be shown later. Moreover, a smaller stencil is needed when one has to approach numerically first order compared to higher order derivatives.

A numerical algorithm to simulate [START_REF] Chazel | Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model[END_REF] is designed in [START_REF] Bonneton | A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model[END_REF] by introducing a second-order parametrised perturbation and based on the inversion of I d + T . The parameter is set so that the linear dispersion relation is optimised with respect to the Airy relation. The numerical technique consists of a splitting method between the hyperbolic Saint-Venant equations (solved with a finite-volume scheme) and the dispersive part (solved with a finite-difference scheme). An extension to dimension 2 is provided in [START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations[END_REF] by replacing the differential operator I d + T by a time independent "diagonal" approximation. In [START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF], a Discontinuous Galerkin Finite-Element method is applied.

We also mention the following formulation with high order derivatives of h: Proposition 2. System (10) also reads

               ∂ t h + ∂ x (hu) = 0, ∂ t (hu) + ∂ x hu 2 + g h 2 2 + h 2 ḧ 3 + h 2 u 2 ∂ x z b + h 2 u 2 2 ∂ 2 xx z b +h g + ḧ 2 + u∂ x z b + u 2 ∂ 2 xx z b ∂ x z b = -h∂ x p atm .
Here we used the standard notation ξ := ∂ t ξ + u∂ x ξ.

Proof. We deduce from ( 6)

ḣ = -h∂ x u = 2 √ 3σ = 2(w -u∂ x z b ), q b = h ẇ = h ḧ 2 + h [∂ t (u∂ x z b ) + u∂ x (u∂ x z b )] , q = q b 2 + h ḧ 12 = h ḧ 3 + h 2 [∂ t (u∂ x z b ) + u∂ x (u∂ x z b )] .
Inserting the two latter equalities into (6b), we obtain the expected result.

Remark 1. For a flat topography, we recover the model studied in [START_REF] Favrie | A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves[END_REF][START_REF] Métayer | A numerical scheme for the Green-Naghdi model[END_REF]. In [START_REF] Métayer | A numerical scheme for the Green-Naghdi model[END_REF], the model is reformulated by means of the change of variable (h, hu) → h, u + ∂x(h 2 ḣ) 3h and solved using a finite-difference method. The numerical technique used in [START_REF] Favrie | A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves[END_REF] is based on an augmented-Lagrangian approach.

In the framework of projection methods, we exhibit another formulation. The two constraints (10c) can be replaced by applying the divergence (8b) to the momentum equation (10b) (initially divided by h): Proposition 3. System (10) can be rewritten under the reduced formulation

         ∂ t h + ∂ x (hu) = 0, (12a) 
∂ t (hX) + ∂ x (huX) + ∇ sgn Q = S h , (12b) 
-∇ sgn • ∇ sgn Q h = -∇ sgn • S h h + ∇ sgn •(u∂ x X). ( 12c 
)
Eq. (12c) reads

       12 q h -h∂ x ∂ x (hq) h -6 q b h -h∂ x q b h ∂ x z b = 2h(∂ x u) 2 + h∂ x g∂ x (z b + h) + ∂ x p atm , (13a) 4 + (∂ x z b ) 2 q b h -6 q h + ∂ x z b ∂ x (hq) h = u 2 ∂ 2 xx z b -g∂ x (z b + h) + ∂ x p atm ∂ x z b . (13b) 
Well-posedness of this system is studied in [START_REF] Benyo | Simulation of complex free surface flows[END_REF].

Remark 2. Notice that only h and u are involved (not w nor σ) in the right hand side of [START_REF] Cravero | CWENO: uniformly accurate reconstructions for balance laws[END_REF].

Moreover, we also notice that q b can be expressed directly from (13b)

q b h = 1 4 + (∂ x z b ) 2 6 q h -∂ x z b ∂ x (hq) h + u 2 ∂ 2 xx z b -g∂ x (z b + h) + ∂ x p atm ∂ x z b . ( 14 
)
Inserting the latter expression into (13a) provides a unique equation for q:

12 1 + (∂ x z b ) 2 4 + (∂ x z b ) 2 q h -h∂ x 4 4 + (∂ x z b ) 2 ∂ x (hq) h + 6∂ x z b 4 + (∂ x z b ) 2 ∂ x (hq) h -h∂ x 6∂ x z b 4 + (∂ x z b ) 2 q h = 2h(∂ x u) 2 + h∂ x g∂ x (z b + h) + ∂ x p atm + h∂ x ∂ x z b 4 + (∂ x z b ) 2 u 2 ∂ 2 xx z b -g∂ x (z b + h) + ∂ x p atm ∂ x z b .
However, the complexity of the operators in the latter equation made us prefer working with [START_REF] Cravero | CWENO: uniformly accurate reconstructions for balance laws[END_REF].

Remark 3. Whether it be from the theoretical or numerical points of view, the equation of interest is

-∇ sgn • 1 h ∇ sgn Q = f ( 15 
)
for some right hand side f . The well-posedness of Eq. ( 15) is proven in [START_REF] Benyo | Simulation of complex free surface flows[END_REF] by means of the Lax-Milgram theorem applied under some smoothness hypotheses on the water height h. In particular, straightfoward computations show that

- I ∇ sgn • 1 h ∇ sgn Q • Q dx = -[ q (∂ x (hq) + q b ∂ x z b )] ∂I + I 1 h ∇ sgn Q • ∇ sgn Q dx,

which explains the present choice of boundary conditions (7a-7b).

Finally, we show that thanks to the correct formulation of diagnostic equations (6e) and (6f), associated to the definition (8b) of ∇ sgn • X that provides the duality relation [START_REF] Bristeau | Layer-averaged Euler and Navier-Stokes equations[END_REF] we can deduce an associated energy for SGN model. It is crucial from both theoretical and numerical points of view as highlighted in the following section, corresponding to the definition of the numerical method.

Proposition 4. Smooth solutions of System (10) satisfy the following energy equality provided p atm and z b do not depend on time:

∂ t h |X| 2 2 + g z b (x) + h 2 + p atm (x) + ∂ x hu |X| 2 2 + g (z b (x) + h) + p atm (x) + q = 0.
Proof. Let us multiply (6b) by u, (6c) by w and (6d) by σ so that

∂ t h |X| 2 2 + ∂ x hu |X| 2 2 + |X| 2 2 [∂ t h + ∂ x (hu)] + X • ∇ sgn Q + hu∂ x (g(h + z b ) + p atm ) = 0.
Using the duality relation ( 9) as well as Eq. (6a) leads to the expected result.

Splitting strategy at the semi-discrete level

Let us write a semi-discretisation of System (10) based on a classic splitting technique for some time step ∆t > 0, like e.g. in [START_REF] Aïssiouene | A two-dimensional method for a family of dispersive shallow water models[END_REF][START_REF] Escalante | An efficient two-layer non-hydrostatic approach for dispersive water waves[END_REF][START_REF] Escalante | Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme[END_REF][START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations[END_REF][START_REF] Parisot | Entropy-satisfying scheme for a hierarchy of dispersive reduced models of free surface flow[END_REF]. We first consider the hyperbolic step4 

       h n+1/2 -h n ∆t + ∂ x (h n u n ) = 0, (hX) n+1/2 -(hX) n ∆t + ∂ x (h n u n X n ) = S h n , (16) 
coupled to boundary conditions (7c) and (7d). Any classic numerical method dedicated to the Shallow Water equations (including well-balanced schemes) can be used to solve it.

Then the dispersive step reads

             h n+1 -h n+1/2 ∆t = 0, (17a) 
(hX) n+1 -(hX) n+1/2 ∆t + ∇ sgn Q n+1 = 0, (17b) 
∇ sgn • X n+1 = 0, (17c) 
which reads as a mixed velocity-pressure Darcy problem. Boundary conditions (7c), (7a) and (7b) are considered. In this paper we investigate a projection-correction approach.

To increase the order of the method, we can consider the incremental method (see e.g. [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF]) which consists of the following modified first step

       h n+1/2 -h n ∆t + ∂ x (h n u n ) = 0, (hX) n+1/2 -(hX) n ∆t + ∂ x (h n u n X n ) + ∇ sgn Q n = S h n ,
(which requires an initialisation of the pressure unlike the non-incremental version) and the modified second step

             h n+1 -h n+1/2 ∆t = 0, (hX) n+1 -(hX) n+1/2 ∆t + ∇ sgn Q n+1 -Q n = 0, ∇ sgn • X n+1 = 0.
This approach does not raise any additional issues, therefore for the sake of simplicity we present the results by considering the splitting strategy ( 16)- [START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF].

To make the notation easier, we shall denote from now on: X = X n+1 and X * = X n+1/2 . System [START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF] implies

-∇ sgn • 1 h * ∇ sgn Q = - ∇ sgn • X * ∆t , (18) 
or equivalently, expanding the non-classic operators:

       12 q h * -h * ∂ x ∂ x (h * q) h * -6 q b h * -h * ∂ x q b h * ∂ x z b = - 2 √ 3σ * + h * ∂ x u * ∆t , 4 + (∂ x z b ) 2 q b h * -6 q h * + ∂ x z b ∂ x (h * q) h * = - w * -u * ∂ x z b - √ 3σ * ∆t . ( 18') 
We recover the same operators as in the continuous case -see [START_REF] Cravero | CWENO: uniformly accurate reconstructions for balance laws[END_REF], only the right hand side is modified due to the splitting method. Hence the well-posedness investigated in [START_REF] Benyo | Simulation of complex free surface flows[END_REF] still holds.

Remark 4. The right hand side in (18') is not of order O(∆t -1 ) but of order O(1). Indeed, inserting the values from the hyperbolic step (16), we get

2 √ 3σ * + h * ∂ x u * ∆t = 2 √ 3σ n + h n ∂ x u n ∆t + O(1) = O(1), w * -u * ∂ x z b - √ 3σ * ∆t = w n -u n ∂ x z b - √ 3σ n ∆t + O(1) = O(1), since 2 √ 3σ n + h n ∂ x u n = 0 and w n -u n ∂ x z b - √ 3σ n = 0
, provided initial conditions satisfy the divergence constraints, i.e. initial conditions are well-prepared.

Once Equation ( 18) is solved for Q, the velocity field is updated using (17b)

X = X * - ∆t h * ∇ sgn Q.

Numerical method at the discrete level

We focus in this section on the discretisation in space of the non-incremental version [START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF][START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF]. The incremental version does not raise major additional difficulties.

Let us consider a homogeneous Cartesian grid of interval I = [x , x r ] with mesh size ∆x = xr-x N for some integer N > 0 (see Figure 2).

Standard approaches for Stokes-like problems rely on a staggered grid with velocity fields at the centre of the cells and pressure fields at the interfaces. A similar approach is also followed in [START_REF] Escalante | Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme[END_REF]. The specific expression of ∇ sgn Q in the present problem -see (8b) -induced a different choice, namely a colocated approach with all variables (X and Q) at the centres of the cells. This choice makes a discrete energy estimate easier to derive. 16) consists of the classic shallow water part and two transport equations for w and σ. A finite-volume numerical scheme reads like this:

x 1/2 x x N +1/2 xr x1 x 3/2 xi-1 x i-1/2 xi x i+1/2 xi+1
(h X) n+1/2 i -(h X) n i ∆t + F n i+1/2 -F n i-1/2 ∆x = 0, S T h n i T
, where X = 1, X T T . The eigenvalues of the hyperbolic operator in ( 16) are u n ± √ gh n and u n (transport equations for w and σ).

We have considered a high order Polynomial Viscosity Matrix finite-volume method using a secondorder MUSCL state reconstruction operator similar to those proposed in [START_REF] Escalante | An efficient two-layer non-hydrostatic approach for dispersive water waves[END_REF][START_REF] Escalante | Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme[END_REF]. Moreover, a third-order CWENO - [START_REF] Cravero | CWENO: uniformly accurate reconstructions for balance laws[END_REF] reconstruction has been implemented as well. The considered explicit high-order methods are well-balanced for water at rest solutions η = cst, u = w = σ = 0, and linearly L ∞ stable provided the following condition holds

∆t ≤ C CF L ∆x max i |u n i | + gh n i . (19) 
Moreover, the schemes are positive preserving for the total water depth in the sense that if h n i > 0 then h n+1 i > 0 for all i.

Non-hydrostatic step: numerical scheme for the velocity-pressure problem

We could have directly discretised Eqs. (18'). However, in order to recover a discrete energy, we first discretise the velocity-pressure problem [START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF] and we then deduce a discretisation for (18') mimicking the continuous level. Finite differences are applied in the present work.

Let us first consider the mixed formulation [START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF]. Denote by H ∈ M N,N (R) the diagonal matrix with entries

H i,i = h * i .
We expect that the discretisation of System [START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF] has the form

H/∆t B B T 0 X Q = HX * /∆t -0 0 . ( 20 
)
where

• H ∈ M 3N,3N (R) is block-diagonal with block entries H ∈ M N,N (R); • B ∈ M 3N,2N ( 
R) is an rectangular matrix to be specified;

• U = (u i ) i∈{1,...,N } , W = (w i ) i∈{1,...,N } , Σ = (σ i ) i∈{1,...,N } and X =   U W Σ   ;
• 0 ij = 0 for (i, j) ∈ {1, . . . , 2N } 2 ;

• 0 ∈ R 3N and 0 ∈ R 2N account for boundary conditions as detailed below.

The matrix in ( 20) is symmetric due to the duality relation [START_REF] Bristeau | Layer-averaged Euler and Navier-Stokes equations[END_REF]. However, a naive approach where Eqs. (17b) and (17c) are discretised independently from each other would lead to a non-symmetric matrix. Hence we first discretise Eq. (17b) as

1 ∆t HX + BQ = 1 ∆t HX * -0.
Once B is built, B T X = 0 should be a consistent discretisation of (17c) up to boundary terms.

More precisely, Equation (17b) is discretised for inner cells:

h * i X i ∆t +    1 ∆x h * i+1/2 q i+1 +q i 2 -h * i-1/2 q i +q i-1 2 + q bi (∂ x z b ) i -q bi -2 √ 3 q i -q bi 2    = h * i X * i ∆t , i ∈ {2, . . . , N -1}.
which leads to

B =     B 11 B 12 0 -I N -2 √ 3I N √ 3I N     . ( 21 
)
B 12 is diagonal with entries (∂ x z b ) i while B 11 is tridiagonal:

B 11 = 1 ∆x     . . . . . . . . . - h * i-1/2 2 h * i+1/2 -h * i-1/2 2 h * i+1/2 2 . . . . . . . . .     (22) 
Hence, for inner nodes x i :

(B T X) i = - 1 2 h * i-1/2 u i -u i-1 ∆x + h * i+1/2 u i+1 -u i ∆x + 2 √ 3σ i , (B T X) N +i = -w i -(∂ x z b ) i u i - √ 3σ i ,
which is consistent with (17c).

Boundary conditions. Let us now specify how boundary conditions are incorporated by means of ghost cells. BC (7a) at x = x 1/2 = x is discretised by

h * 1 q 1 -h * 0 q 0 ∆x = χ =⇒ q 0 = h * 1 q 1 -χ ∆x h * 0 .
Hence, the momentum equation for u is discretised in the first cell by:

h * 1 u 1 ∆t + 1 ∆x h * 3/2 q 1 + q 2 2 -h * 1/2 q 0 + q 1 2 + q b1 (∂ x z b ) 1 = h * 1 u * 1 ∆t =⇒ h * 1 u 1 ∆t + h * 3/2 2∆x q 2 + 1 2∆x h * 3/2 -h * 1/2 1 + h * 1 h * 0 q 1 + q b1 (∂ x z b ) 1 = h * 1 u * 1 ∆t - h * 1/2 2h * 0 χ .
This provides the first line of Matrix B 11 as well as

0 1 = - h * 1/2 2h * 0 χ . It remains to specify h * 0 . Given that no boundary condition is imposed on h at x = x , we set h * 0 = 2h * 1 -h * 2 .
We then observe that

(B T X) 1 = - 1 2 h * 3/2 u 2 -u 1 ∆x + h * 1/2 1 + h * 1 h * 0 u 1 ∆x .
We remark that if we discretise BC (7c) by

Q u = h * 1 u 1 + h * 0 u 0 2 =⇒ u 1 -u 0 ∆x = 1 + h * 1 h * 0 u 1 ∆x - 2Q u h * 0 ∆x . We deduce 0 1 = h * 1/2 h * 0 Q u ∆x .
As for the boundary conditions at x = x N +1/2 = x r , BC (7b) is discretised by

q N + q N +1 2 = 0,
which means that the momentum equation for u in the last cell becomes

h * N u N ∆t - h * N -1/2 2∆x (q N + q N -1 ) + q bN (∂ x z b ) N = h * N u * N ∆t .
This yields the last line of B 11 and 0 N = 0. It implies that

(B T X) N = -h * N -1/2 u N -1 -u N 2∆x = - 1 2 h * N -1/2 u N -u N -1 ∆x + h * N +1/2 u N +1 -u N ∆x provided that u N +1 = u N , which is equivalent to imposing ∂ x u = 0 at x = x r ,
and 0 N = 0.

Let us comment the latter result. Imposing q = 0 at some boundary is consistent with imposing ∂ x u = 0 at the same location. Even if there is no BC required in the hyperbolic problem, it is necessary from the numerical point of view in order to compute the flux at the corresponding interface. We mention that the BC handled in the first step of the algorithm must not be damaged by the second step. Likewise, still for numerical purposes, we impose ∂ x w = 0, ∂ x σ = 0 at x = x r .

Numerical scheme for the pressure problem

For a resolution of the mixed velocity-pressure problem [START_REF] Escalante | A general non-hydrostatic hyperbolic formulation for boussinesq dispersive shallow flows and its numerical approximation[END_REF] by means of the Uzawa method, see [START_REF] Benyo | Simulation of complex free surface flows[END_REF]. In the present paper, we rather combine both equations in [START_REF] Escalante | A general non-hydrostatic hyperbolic formulation for boussinesq dispersive shallow flows and its numerical approximation[END_REF] to obtain

B T H -1 BQ = f := B T X * -0 ∆t -B T H -1 0, (23) 
which is nothing but a consistent discretisation of the velocity-correction approach (18).

Remark 5. It is crucial that the initial data satisfy at the discrete level B T X * -0 = 0 in order to prevent the propagation of errors of order O(∆t -1 ) as explained in Remark 4

Notice that Matrix C = B T H -1 B has the following structure:

C = C 11 C 12 C T 12 C 22 = B T 11 H -1 B 11 + 12H -1 B T 11 H -1 B 12 -6H -1 B T 12 H -1 B 11 -6H -1 B T 12 H -1 B 12 + 4H -1 . ( 24 
)
Lemma 1. Matrix C is symmetric positive-definite.

Proof. The symmetry comes from the definition C = B T H -1 B. Moreover, we have

CQ, Q = H -1 BQ, BQ ≥ 0
since H is a diagonal matrix with positive entries provided the hyperbolic scheme is positive. Then BQ = 0 =⇒ Q = 0 as B is one-to-one -see [START_REF] Escalante | Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme[END_REF]. More precisely, [START_REF] Fernández-Nieto | A hierarchy of dispersive layeraveraged approximations of Euler equations for free surface flows[END_REF] provides the following discrete energy

CQ, Q = H -1 q b , q b + 12 H -1 q - q b 2 , q - q b 2 + H -1 (B 11 q + B 12 q b ), B 11 q + B 12 q b ,
which is consistent with

I 1 h * | ∇ sgn Q| 2 dx = I 1 h * q 2 b + 12 q - q b 2 2 + (∂ x (h * q) + q b ∂ x z b ) 2 dx.
To solve [START_REF] Favrie | A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves[END_REF], one may apply different strategies. One of them is to apply a direct resolution inverting C. Another variant is to use the Uzawa method. Here, we shall propose to follow an iterative process of Gauss-Seidel type:

1. C 11 q k+1 = 1 ∆t f -C 12 q k b ; 2. C 22 q k+1 b = 1 ∆t f b -C T 12 q k+1 .
This method converges due to Lemma 1. This is the latter method which has been chosen in the present work. Matrix C 11 is more or less the same matrix as for the DAE model [START_REF] Bonnet-Ben Dhia | Pseudo-compressibility, dispersive model and acoustic waves in shallow water flows[END_REF]. The extra additional time then corresponds to the iterative process (C 11 is factorised once and C 22 is diagonal).

Remark 6. Notice that we could explicitly solve the second block of [START_REF] Favrie | A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves[END_REF]:

q b = C -1 22 1 ∆t f b -C T 12 q =⇒ (C 11 -C 12 C -1 22 C T 12 )q = 1 ∆t f -C 12 C -1 22 f b ,
which corresponds to a discretisation of [START_REF] Barré De Saint-Venant | Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits[END_REF].

Remark 7. The final numerical scheme proposed here is well-balanced for the water at rest solution, and positive preserving for the total water depth provided the hyperbolic scheme is well-balanced and positive preserving. 

z = z b (x) = z 1/2 (x) z = η(t, x) = z L+1/2 (t, x) z = z α-1/2 (t, x) z = z α+1/2 (t, x) h(t, x) hα(t, x) x z (a) Layers q α-1/2 , u α-1/2 , w α-1/2 q α+1/2 , u α+1/2 , w α+1/2 z = z α-1/2 z = zα z = z α+1/2 wα uα, q α (b) Unknown locations

Notations and model

Without any assumption on the shallowness of the flow, we can also approximate the Euler equations (1) by means of a "multilayer" model. The flow is split into arbitrary layers of constant height h α = h L for some integer L > 0 (see Fig. 3). We consider the dispersive layer-averaged model derived in [START_REF] Fernández-Nieto | A hierarchy of dispersive layeraveraged approximations of Euler equations for free surface flows[END_REF] under the following reformulation:

∂ t h + ∂ x hu = 0, u = L α=1 α u α ,
and for α ∈ {1, . . . , L}

∂ t (h α u α ) + ∂ x h α u 2 α + h α q α + u α+1/2 Γ α+1/2 -∂ x z α+1/2 q α+1/2 -u α-1/2 Γ α-1/2 + ∂ x z α-1/2 q α-1/2 = -gh α ∂ x η, ∂ t (h α w α ) + ∂ x (h α u α w α ) + w α+1/2 Γ α+1/2 + q α+1/2 -w α-1/2 Γ α-1/2 -q α-1/2 = 0, ∂ t (h α σ α ) + ∂ x (h α σ α u α ) = 2 √ 3 q α - q α+1/2 + q α-1/2 2 -Γ α+1/2 h α ∂ x u α 12 + w α+1/2 -w α 2 + Γ α-1/2 h α ∂ x u α 12 + w α -w α-1/2 2 ,
together with diagnostic equations

2 √ 3σ α + h α ∂ x u α = 0, α ∈ {1, . . . , L}, w α -w α-1 -(u α -u α-1 )∂ x z α-1/2 - √ 3(σ α-1 + σ α ) = 0, α ∈ {2, . . . , L}, w 1 -u 1 ∂ x z b - √ 3σ 1 = 0,
and the boundary condition

q L+1/2 = 0.
The mass transfer term is given by

Γ α+1/2 = L β=α+1 ∂ x h β u β -u .
To close the model, we define

• u α+1/2 = (1 -γ α+1/2 )u α+1 + γ α+1/2 u α ; • w α+1/2 = (1 -γ α+1/2 ) w α+1 + h α+1 2 ∂ x u α+1 + γ α+1/2 w α -hα 2 ∂ x u α ;
for any γ α+1/2 ∈ [0, 1] such that [24, Prop. 1]

γ α+1/2 - 1 2 Γ α+1/2 ≥ 0. ( 25 
)
Let us recall the properties of this system:

• Let us set K α = u 2 α + w 2 α + σ 2 α 2
. If (H, u α , w α , q α ) are smooth solutions to the multlilayer model, we have under ( 25)

∂ t L α=1 h α K α + gz α + p atm (x) + ∂ x L α=1 h α u α K α + q α + gη + p atm (x) ≤ 0. (26) 
Moreover, if we take γ α+1/2 = 1 2 , then ( 26) is an equality. • The monolayer case L = 1 reduces to the Serre -Green-Naghdi equations (6).

Differential operators

Let us introduce the operators

X α =   u α w α σ α   , Q α = q α q α-1/2 ,
and

∇ α ldnh Q α =    ∂x(h * q α ) L -q α+1/2 ∂ x z * α+1/2 + q α-1/2 ∂ x z * α-1/2 q α+1/2 -q α-1/2 -2 √ 3 q α - q α+1/2 +q α-1/2 2    , α ∈ {1, . . . , L}, ∇ α ldnh • X α = 2 √ 3σ α + h * L ∂ x u α w α -w α-1 -(u α -u α-1 )∂ x z * α-1/2 - √ 3(σ α-1 + σ α ) , α ∈ {2, . . . , L}, ∇ 1 ldnh •X 1 = 2 √ 3σ 1 + h * L ∂ x u 1 w 1 -u 1 ∂ x z b - √ 3σ 1 .
We get a global duality relation

L α=1 Q α • (∇ α ldnh • X α ) = 1 L ∂ x (hq α u α ) - L α=1 X α • ∇ α ldnh Q α . ( 27 
)
It is worth noticing that

∇ α ldnh Q α =    ∂x(h * q α ) L 0 -2 √ 3q α    +   q α-1/2 ∂ x z * α-1/2 -q α+1/2 √ 3q α+1/2   -   q α+1/2 ∂ x z * α+1/2 -q α-1/2 √ 3q α-1/2   +   0 0 2 √ 3q α+1/2   , (28a) 
and

∇ α ldnh • X α = 2 √ 3σ α + h * L ∂ x u α w α -u α ∂ x z * α-1/2 - √ 3σ α - 0 w α-1 -u α-1 ∂ x z * α-1/2 - √ 3σ α-1 - 0 2 √ 3σ α-1 . (28b)
We mention that the divergence operator stated in the present work is not the same as in [START_REF] Fernández-Nieto | A hierarchy of dispersive layeraveraged approximations of Euler equations for free surface flows[END_REF]. We rather provide an equivalent formulation that satisfies the duality relation [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]. In particular, σ α is involved instead of ∂ x u α which is important for the order of derivatives.

Let us proceed as in the single layer case with a splitting strategy between hyperbolic terms and nonhydrostatic terms. The latter part reads

   h * X α -h * X * α L∆t + ∇ α ldnh Q α = 0, ∇ α ldnh • X α = 0, (29) 
which implies

-∇ α ldnh • ∇ α ldnh Q α h * = - 1 L∆t ∇ α ldnh • X * .
The latter equation is expanded as, for α ∈ {1, . . . , L}

-h * ∂ x ∂ x (h * q α ) h * + 12L 2 q α h * = - L ∆t 2 √ 3σ * α + h * L ∂ x u * α -Lh * ∂ x q α+1/2 ∂ x z * α+1/2 -q α-1/2 ∂ x z * α-1/2 h * + 6L 2 q α+1/2 + q α-1/2 h * , (30a) 
then for α ∈ {2, . . . , L}

2 -∂ x z * α+1/2 ∂ x z * α-1/2 q α+1/2 h * + 2 4 + (∂ x z * α-1/2 ) 2 q α-1/2 h * + 2 -∂ x z * α-1/2 ∂ x z * α-3/2 q α-3/2 h * = - 1 L∆t w * α -w * α-1 -(u * α -u * α-1 )∂ x z * α-1/2 - √ 3(σ * α-1 + σ * α ) - ∂ x z * α-1/2 L ∂ x h * (q α -q α-1 ) h * + 6 q α-1 + q α h * , (30b) 
and finally

(2 -∂ x z * 3/2 ∂ x z * 1/2 ) q 3/2 h * + 4 + (∂ x z * 1/2 ) 2 q 1/2 h * = - 1 L∆t w * 1 -u * 1 ∂ x z b - √ 3σ * 1 - ∂ x z b L ∂ x (h * q 1 ) h * + 6 q 1 h * . (30c)
Let us remark is that the differential operator for q α in (30a) is independent from index α. Moreover, up to a coefficient L 2 , this operator is the same as in the monolayer case -see (18').

Structure of the fully discretised equations

Our goal is to produce an algorithm that only relies on tools designed for the monolayer case. Let us split the gradient matrix B = B 1/2 from (21) into:

B α-1/2 = B 1 + B α-1/2 2 , where B 1 =     B 11 0 0 0 -2 √ 3I N 0     and B α-1/2 2 =     0 B α-1/2 12 0 -I N 0 √ 3I N     ,
B 11 is defined in equation ( 22) and B

α-1/2 12 is a N × N diagonal matrix with entries (∂ x z * α-1/2 ) i
. The fact that B 1 is independent from layer α (and exactly the same as in the monolayer case) is crucial for what is following.

Hence ∇ α ldnh Q α is approximated according to (28a)

B 1 Q α + B α-1/2 2 Q α -B α+1/2 2 Q α+1 + RQ α+1 = B α-1/2 Q α -B α+1/2 2 Q α+1 + RQ α+1 , where R =     0 0 0 0 0 2 √ 3I N     and Q α =           q α,1 . . . q α,N q α-1/2,1
. . .

q α-1/2,N          
.

The last two terms account for interactions between layers: the model under investigation does not reduce to a monolayer model in each layer. Hence System ( 29) is approximated by

  H/(L∆t) B + R B + R T 0   X Q = HX * /(L∆t) -0 0 .
where

B =          B 1/2 -B 3/2 2 0 . . . . . . B α-1/2 -B α+1/2 2 . . . . . . 0 B L-1/2          ∈ M 3N L,2N L (R), R =       0 R 0 . . . . . . . . . R 0 0       ∈ M 3N L,2N L (R), X =         . . . U α W α Σ α . . .         , U α =    u α,1 . . . u α,N    , Q =     . . . Q α . . .     .
It is easy to verify that B + R T X = 0 is consistent with (28b). For the treatment of boundary conditions which are incorporated in vectors 0 and 0, we refer to the monolayer case ( § 2.3.2). As previously, the symmetry of the global matrix is due to the duality relation [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF].

From the discrete velocity-pressure problem, we deduce as previously a discrete pressure problem which reads

B + R T H -1 B + R Q = 1 L∆t B + R T X * -0 -B + R T H -1 0. ( 31 
)
Let us set .

• C = B + R T H -1 B + R ∈ M 2N L,2N L (R) which is blockwise tridiagonal, symmetric positive- definite; • C α-1/2 = B α-1/2 T H -1 B α-
The blockwise components of C are then:

• C 1,1 = C 1/2 ;
• For α ∈ {2, . . . , L}:

C α,α = C α-1/2 + R -B α-1/2 2 T H -1 R -B α-1/2 2 T =   C 11 C α-1/2 12 C α-1/2 12 T 2C α-1/2 22   and C α-1,α = C T α,α-1 = B α-3/2 T H -1 R -B α-1/2 2 =   0 -6H -1 -B T 11 H -1 B α-1/2 12 0 2H -1 -B α-3/2 12 T H -1 B α-1/2 12   .
(31) is a consistent discretisation of (30).

Iterative scheme

To solve the 2N L×2N L linear system (31), we apply an alternating direction-type method. More precisely, it amounts to solving iteratively:

x-direction For each layer α, (30a) in q α knowing q α+1/2 which corresponds to a linear system with matrix C 11 given in (24) (the same for all layers which requires a single factorisation for all iterates at each time step):

C 11 q p+1 α = 1 L∆t B T 11 U * α -2 √ 3Σ * α -C α-1/2 12
q p α-1/2 ; z-direction For each node x i , (30b-30c) in q α+1/2 knowing q α . It is a tridiagonal system with matrix S (i) solved by means of the Thomas' algorithm [START_REF] Thomas | Elliptic problems in linear differential equations over a network[END_REF]. Matrix S (i) is a L × L tridiagonal symmetric positive-definite matrix with

• S (i) 1,1 = 4 + (∂ x z * 1/2 ) 2 i ; • For α ≥ 2, S (i) 
α,α = 2 4 + (∂ x z * α-1/2 ) 2 i and S (i) α,α-1 = S (i) α-1,α = 2 -(∂ x z * α-1/2 ) i (∂ x z * α-3/2 ) i .
Indeed, we check that

S (i) x, x = 2x 2 1 + 2 + (∂ x z L-1/2 ) 2 i x 2 L + L-1 α=2 4x 2 α + 2(x α + x α-1 ) 2 + (∂ x z * α-1/2 ) i x α -(∂ x z * α-3/2 ) i x α-1 2 ≥ 0.
This strategy is equivalent to solving the following system by means of a Gauss-Seidel iterative procedure:

          C 11 0 . . . E 0 C 11 S (1) 0 E T . . . 0 S (N )          
where unknowns have been re-labelled as

          qα=1 . . . qα=L qi=1 . . . qi=N           , with qα =    q α,1 . . . q α,N    and qi =    q 1/2,i . . . q L-1/2,i    .
Remark 8. It must be underlined that this algorithm can be easily parallelised insofar as each direction (x and z) involves a blockwise diagonal matrix.

Numerical simulations

Let us recall that the stability condition is prescribed by the hyperbolic part of the splitting strategysee [START_REF] Escalante | An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its solution with high order discontinuous Galerkin schemes[END_REF] with a CFL number C CF L to be specified.

The numerical schemes presented in this paper, namely the resolution of ( 23) for N HM L 2 (L = 1) and the resolution of (31) for N HM L 2 (L), L ≥ 1, are assessed by means of 4 classic test cases and compared to numerical results obtained with the DAE model ( 5) and its multilayer counterpart described in [START_REF] Fernández-Nieto | A hierarchy of dispersive layeraveraged approximations of Euler equations for free surface flows[END_REF]:

• Propagation of the Euler solitary wave;

• Comparisons with 3 sets of experimental data.

Let us mention that in order to ensure the robustness of the algorithm for wet/dry transitions, the term

1 h n i is approximated by [38]
h n i √ 2 (h n i ) 4 + max (h n i ) 4 , ε ,
for some threshold ε > 0, as it is usually done in shallow waters (see [START_REF] Kurganov | A second-order well-balanced positivity preserving central-upwind scheme for the saint-venant system[END_REF]).

Convergence test

Let us start by a convergence test for both models, LDN H 0 and LDN H 2 , in order to assess the numerical strategy and the code used. To do so, we consider the propagation of a soliton (specific to each model) in a rectangular channel with constant topography. This solitary wave is given by

h(t, x) = H * + A sech 2 1 H * Aγ 2(A + H * ) (x -ct) , u(t, x) = c 1 - H * h(t, x) , w(t, x) = - cA h(t, x) Aγ 2(A + H * ) sech 3 1 H * Aγ 2(A + H * ) (x -ct) sinh 1 H * Aγ 2(A + H * ) (x -ct) (32) 
where A and H * are constant fixed values, c = g(A + H * ) and

• γ = 2 in the case of LDN H 0 , • γ = 3/2 in the case of LDN H 2 .
Here we set

H * = 1, A = 0.1, g = 1 and z b = 0.
The propagation of a solitary wave over a long distance is a standard assessment of stability and conservative properties of numerical schemes for Boussinesq-type equations [START_REF] Ricchiuto | Upwind residual discretization of enhanced boussinesq equations for wave propagation over complex bathymetries[END_REF][START_REF] Roeber | Shock-capturing boussinesq-type model for nearshore wave processes[END_REF][START_REF] Yamazaki | Depth-integrated, non-hydrostatic model for wave breaking and run-up[END_REF]. A solitary wave propagates at constant speed and without change of shape over a horizontal bottom.

The domain is [-20, 20]. We perform the simulation with different numbers of volume cells at time t = 0.2 with a second-order scheme. The results are compared to the reference solution and the errors are shown in Tables 1 and2. These results show the convergence towards the reference solution at second-order.

No. of cells h hu hw L 1 error order L 1 error order L 1 error order [START_REF] Yao | Large eddy simulation modeling of tsunami-like solitary wave processes over fringing reefs[END_REF] 3.04e-03 0.00 

Solitary wave propagation over reefs

A test case propagating a solitary wave over an idealised fringing reef assesses the ability of the model to handle nonlinear dispersive waves, breaking waves and bore propagation. The test configuration includes a fore reef, a flat reef, and an optional reef crest to represent fringing reefs commonly found in a tropical environment. Figure 4 

Wave propagation over a submerged bar

The Dingemans experiment [START_REF] Dingemans | Comparison of computations with boussinesq-like models and laboratory measurements[END_REF] of plunging breaking periodic waves over a submerged bar is considered. This case allows to study frequency dispersion characteristics and non-linear interactions. As waves propagate over a submerged bar, multiple phenomena occur, like the appearance of higher harmonics. The 1D domain [0, 30] is discretised with ∆x = 0.005 and the bathymetry is defined on Fig. 6. Locations of the measurement points are specified in Table 3. The CFL number is set to C CF L = 0.9 and the gravity field to g = 9.81 m • s -2 . We run the numerical test from the "lake at rest" steady state as an initial condition. Boundary conditions correspond to free outflow at x = 30 and a sinusoidal wave train for η generated at x = 0. This is done as in [START_REF] Escalante | An efficient two-layer non-hydrostatic approach for dispersive water waves[END_REF] imposing in a relaxation zone:

η (t) = A sin 2π T t ,
where A = 0.01 and T = 2.02 denote resp. amplitude and period.

This test produces, up to the front slope, waves with wavenumbers k ≈ 0.63/H * and k ≈ 1.58H * respectively, where H * = 0.4 is the typical depth. Fig. 7 shows numerical results of time series of the free surface for Model LDN H 0 (L), for L ∈ {1, 2, 4}, while Fig. 8 concerns LDN H 2 (L) and Fig. 9 shows comparisons between LDN H 0 (L = 4) and LDN H 2 (L = 4). Good agreements with experimental data are observed for all models up to Gauge #4. Beyong the bar, higher harmonics are released which explains discrepancies. We recover observations from the literature, such as [START_REF] Ma | Shock-capturing non-hydrostatic model for fully dispersive surface wave processes[END_REF] where σ-coordinates are used, or [START_REF] Escalante | An efficient two-layer non-hydrostatic approach for dispersive water waves[END_REF] where an enhanced two-layer version of the nonhydrostatic pressure system LDN H 0 is used. The results in [START_REF] Chazel | Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model[END_REF] with a three-parameter Green-Naghdi model optimised for uneven bottoms, show the same level of agreement. Here, we would like to stress the ability of the proposed models to deal with a wide range of dispersive waves. The main difference between LDN H 0 (4) and LDN H 2 (4), as pictured on Fig. 9, can be seen for gauges #6 to #8 where the LDN H 2 model is more accurate.

Shoaling of a solitary wave on a plane beach

We finally consider the shoaling of a solitary wave on a beach with a constant slope (1 : 30) as described by Guibourg in [START_REF] Guibourg | Modèlisation numèrique et expèrimentale des houles bidimensionnelles en zone cotière[END_REF] and then investigated in [START_REF] Bonneton | A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model[END_REF][START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF].

A sketch of the geometry is described on Fig. 10. The initial condition is a solitary wave at location x = 10 with amplitude A = 0.298, as described in [12,[START_REF] Dutykh | Efficient computation of steady solitary gravity waves[END_REF]. The computational domain Ω = [0, 27.5] is divided into cells of length ∆x = 0.01. Free-outflow boundary conditions are considered and the CFL number is set to C CF L = 0.9.

We compare Models LDN H 0 (L) and LDN H 2 (L) for L ∈ {1, 2, 4}. Some temporal series of the freesurface elevation are measured at various locations (see Table 4) and compared with the corresponding numerical results.

Results are shown on Figs. 11. Numerical outputs for A = 0.289 predict the shoaling phenomenon during the wave run-up satisfactorily. The output clearly shows better performance for Model LDN H 2 , which is expected according to the linear dispersion relation of the continuum models.

Conclusion

This paper deals with the numerical approach for the models LDN H 0 and LDN H 2 introduced in [START_REF] Fernández-Nieto | A hierarchy of dispersive layeraveraged approximations of Euler equations for free surface flows[END_REF]. The main objective is to compare their accuracy when applied to different standard test case scenarios. LDN H 2 model presented in [START_REF] Fernández-Nieto | A hierarchy of dispersive layeraveraged approximations of Euler equations for free surface flows[END_REF] may be seen as a multilayer extension of the Serre -Green-Naghdi equations. The model was derived from Euler equations assuming linear and quadratic vertical profiles for the vertical velocity and pressure. LDN H 0 model presented in [START_REF] Fernández-Nieto | A hierarchy of dispersive layeraveraged approximations of Euler equations for free surface flows[END_REF] differs from LDN H 2 on the assumption of a linear vertical profile for pressure. One of the most attractive properties of the models relies on the increasing accuracy of the linear dispersion relation as the number of layers increases, whereas the model LDN H 2 shows better accuracy than LDN H 0 for the same number of layers.

The LDN H 0 model is solved by using a projection technique similar to the one introduced in [START_REF] Escalante | An efficient two-layer non-hydrostatic approach for dispersive water waves[END_REF] an increasing number of layers. To this aim, we have exploited here a duality relation at the continuous level. This allows to design an algorithm relying on an iterative process that solves a monolayer case in each iteration.

In particular, the algorithm may be decomposed into two different problems: The first one corresponds to a discrete parabolic problem per layer and the second to a tridiagonal linear system at each point of the horizontal discretization that couples each layer. Moreover, (i) the matrix of the linear system of the parabolic problem per layer is the same for all layers, and (ii) each tridiagonal linear system at each point of the horizontal discretization is independent. Then, we can observe that (i) since we have the same matrix for all layers, we may consider, for example, an LU factorization to diminish the computational time in all layers and (ii) this implies that, although in the paper this is not done, the proposed technique is easily parallelizable, especially when the number of layers increases. Moreover, the final numerical scheme proposed here is also high-order, well-balanced for the water at rest solution, and positive preserving for the total water depth. That results in an efficient and robust numerical scheme, even in the presence of wet/dry transitions. It is worth mentioning that, while an extensive literature is dedicated to the numerical resolution of shallow water flows such as the Depth-Averaged Euler equations or the Serre -Green-Naghdi equations, this is the first attempt, up to our knowledge, of designing a robust and efficient numerical strategy for the multilayer extension of the SGN equations.

The proposed numerical scheme has been carefully validated, showing the second order of accuracy and comparing it with available experimental data. The obtained results exhibit an excellent fit with the experiments and show that the proposed strategy is well-suited for most coastal processes: wave propagation, shoaling of the waves, run-up of waves onto a beach, higher dispersive harmonic waves, among others.

In the numerical tests presented in the paper, we can also see that for a fixed number of layers, the LDN H 2 is in many situations more accurate than LDN H 0 . This result shows that the LDN H 2 is of interest since the accuracy of both models has been compared by using a generalization of classic projection techniques.

One should take into account that LDN H 2 has twice more pressure unknowns with respect to LDN H 0 . Therefore, if we apply a projection method to approximate the solution of LDN H 2 , it results in a more expensive algorithm, from the computational point of view, than for LDN H 0 . Hence, a fair comparison of both models from the computational point of view is beyond the scope of this paper.

Nevertheless, it is worth mentioning that this paper was aimed to analyse and propose a projection technique as a starting point for designing efficient and robust numerical methods of high-order for multilayer non-hydrostatic systems. As further research, it will be interesting to investigate the development of other numerical strategies for the LDN H 2 model and compare it with the one proposed here. For example, it may be of interest to consider relaxation techniques or rapid numerical methods and pseudocompressibility approximations, as the ones proposed for one-layer dispersive shallow models in [START_REF] Escalante | An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its solution with high order discontinuous Galerkin schemes[END_REF], [START_REF] Favrie | A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves[END_REF] and [START_REF] Bonnet-Ben Dhia | Pseudo-compressibility, dispersive model and acoustic waves in shallow water flows[END_REF], respectively.

Figure 1 :

 1 Figure 1: Fluid domain for the Euler equations (1)

Figure 2 :

 2 Figure 2: Colocated mesh

Figure 3 :

 3 Figure 3: Multilayer description

Figure 4 :

 4 Figure 4: Test 4.2 -sketch of the topography A solitary wave of amplitude 0.5 m is placed at point x = 10 m. Finally CF L = 0.9 and g = 9.81 m • s -2 . Free outflow boundary conditions are imposed.

Figure 5

 5 Figure5shows snapshots at different times, t g/H * = t 0 where H * = 1 m. Comparisons between experimental and simulated data allow to validate the numerical approach presented in this paper. Results are shown for LDN H 0 (L = 1) and LDN H 2 (L = 1) models. The water rushes over the flat reef without producing a pronounced bore-shape. The simulation also captures the offshore component of the rarefaction falls, exposing the reef edge, below the initial water level. The simulations match with experimental data and the LDN H 2 provides slightly better results.

Figure 5 :

 5 Figure 5: Test 4.2 -comparison between experimental data (red points) and numerical results (solid blue line for LDN H 0 and dashed pink line for LDN H 2 ) at times t g/H * = 0, 7.8, 10, 13, 17, 20.5 s

Figure 6 :

 6 Figure 6: Test 4.3 -sketch of the bathymetry

Figure 9 :

 9 Figure 9: Test 4.3 -comparison of experiment data (red points) and simulated ones with the model LDN H 0 (blue) and LDN H 2 (black) setting 4 layers.

Figure 10 :

 10 Figure 10: Test 4.4 -sketch of the bathymetry used for the shoaling of a solitary wave test problem.
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Figure 11 :

 11 Figure 11: Test 4.4 with A = 0.289 -blue lines indicate the numerical solution with models LDN H 0 (a) and LDN H 2 (b) for different layers; red points represent the experimental measurements at the probe positions

Table 1 :

 1 Test 4.1 -L 1 errors with the LDN H 0 -soliton and numerical orders of accuracy.

		1.81e-03 0.00 2.17e-03 0.00
	100	9.26e-04 1.72 5.17e-04 1.81 5.97e-04 1.86
	200	2.57e-04 1.85 1.39e-04 1.89 1.88e-04 1.67
	400	6.96e-05 1.88 4.22e-05 1.72 8.44e-05 1.15
	No. of cells	h L 1 error order L 1 error order L 1 error order hu hw
	50	1.21e-02 0.00 1.72e-02 0.00 1.22e-02 0.00
	100	4.51e-03 1.42 4.02e-03 2.10 3.28e-03 1.89
	200	1.33e-03 1.76 1.12e-03 1.85 8.50e-04 1.95
	400	3.80e-04 1.80 3.24e-04 1.79 2.39e-04 1.83

Table 2 :

 2 Test 4.1 -L 1 errors with the LDN H 2 -soliton and numerical orders of accuracy.

Table 3 :

 3 Test 4.3 -wave gauge locations

	A	x 1	x 2	x 3	x 4	x 5
	0.289 23.520 23.735 23.990 24.210 24.448

Table 4 :

 4 Test 4.4 -position of the wave probes.

The models of the hierarchy are denoted LDN H k (L) where LDN H stands for Layerwise Discretisation Non-Hydrostatic, k is the order of approximation and L the number of layers.

The location of the boundary condition upon the water height does not interfere with the projection step.

The hyperbolic part is not the core of this paper which is rather the elliptic part.

An explicit scheme is presented but an implicit strategy can also be chosen. It does not interfere with the second step.
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