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Abstract

In some configurations, dispersion effects must be taken into account to improve the simulation of
complex fluid flows. A family of free-surface dispersive models has been derived in [24]. The hierarchy
of models is based on a Galerkin approach and parametrised by the number of discrete layers along
the vertical axis. In this paper we propose some numerical schemes designed for these models in a
1D open channel. The cornerstone of this family of models is the Serre — Green-Naghdi model which
has been extensively studied in the literature from both theoretical and numerical points of view. More
precisely, the goal is to propose a numerical method for LDN Hs model that can be defined in terms
of a projection method for the one-layer case, despite the number of layers. To do so, the monolayer
case is addressed by means of a projection-correction method applied to a non-standard differential
operator. A special attention is paid to boundary conditions. This case is extended to several layers
thanks to an original relabelling of the unknowns. In the numerical tests we show the converge of the
method and its accuracy in comparison with LDN Hy model.
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1 Introduction

Water waves and more generally water flows are of great interest in several scientific fields with appli-
cations to society issues such as protection of populations (tsunamis, floods, ...) or energy production
(water-turbines, ...). Depending on the accuracy that is required in the applications, more or less complex
models are used, from fully resolved to averaged equations.

In order to simulate the behaviour of free-surface fluid flows, let us consider the 2D Euler equations for
an incompressible free-surface flow under gravity:

{ V-a=0, (1a)
o+ (u-V)u + Vp = (0, —g), (1b)
set in the moving domain (see Figure 1)

Qt)={(z,2) eR?* |z €1, z(z) <2 <At z)}.

Here, I = (x4, z,) is a bounded interval of R and z; is the given topography (independent from time). The
unknowns are the velocity field @ = (u,w), the pressure field p and the water elevation 7. The water
height is deduced from h(t,z) = 7j(t, z) — z(z). Viscosity effects are not taken into account in this work
but we refer to [9] for instance to deal with such terms.



Figure 1: Fluid domain for the Euler equations (1)

The model is supplemented with kinematic boundary conditions:

Oy} + U50,1) — s = 0,
(2)

fbbag;zb — ’LZJb = O,

as well as
ﬁ(t,fﬁ,ﬁ(t,lﬂ)) :patm(tax)v (3)

for some given atmospheric pressure p®™(t,z) > 0. Classically, the pressure field is decomposed into
three parts:

pt,z,2) = g (i(t,x) — 2)) + p™" (t,2) + 4(t, 7, 2)

where ¢ is the hydrodynamic pressure field — or commonly referred to as the non-hydrostatic compo-
nent. The hydrostatic part is g(7(t,z) — z). Hydrostatic models such as the nonlinear shallow water
equations [14] or the hydrostatic Navier-Stokes equations [3] are based on the assumption ¢ = 0.

Given this decomposition, BC (3) is equivalent to
q(t,z,q(t,x)) = 0. (4)

In addition to its complex mathematical structure (see e.g. [7,27,37]), Model (1) coupled to (2-4) is a real
challenge owing to the fact the domain is moving: the water elevation is an unknown in itself. That is
why, in spite of the increase of computer performance, reduced-complexity models have been introduced,
analysed and discretised. There exists an extensive literature about models approximating the Euler
equations under simplifying hypotheses. Depending on the physical phenomena at stake and thus the
fluid regime under study, some models turn out to be more accurate than others.

For example, the nonlinear shallow water equations (NLSW) [14, 25,26, 41] provide relevant results for
large wavelengths but seem restrictive in other regimes, in particular due to the absence of dispersive
effects. To go further, models were derived in a given regime of magnitude for the nonlinearity (e: wave
amplitude/water depth ratio) and for the frequency dispersion (u: water depth/wavelength ratio). The
competition between the two phenomena is responsible for the shape of water waves. Dispersion is
necessary for instance for stratified flows or close to coastal areas. Different regimes lead to weakly/fully
nonlinear — weakly/fully dispersive models. For example, the NLSW equations correspond to o = 0 for
any e = O(1).

We may refer to pioneering works e.g. Boussinesq [8] and Peregrine [44], models obtained to improve
linear dispersion properties e.g. Madsen & Sorensen [40] and Nwogu [42], models suitable for deep
waters [34], ... For reviews of dispersive models, see [31,33]. A focus will be made below on two systems:
the Depth-Averaged Euler (DAE) system (5) described in [1] and the Serre — Green-Naghdi equations (6)
(see [28,47]).



It is worth noticing that classically dispersive models, usually written under a Boussinesq form, introduce
high order derivatives for two unknowns, namely water height and velocity). Contrary to them, non-
hydrostatic pressure models introduce such effects by means of the non-hydrostatic component of the
pressure. The latter is the strategy used here. Classical dispersive systems, and in particular (5) and (6),
may be written under the form of non-hydrostatic system. We refer the reader to [20] for the link between
the two approaches. Non-hydostatic formulation has several advantages from the numerical point of view,
especially regarding boundary conditions. Notice that they do not rely on any irrotational assumption.
Moreover, both (5) and (6) are proven in [24] to belong to the same hierarchy of models depending on
some orders of approximation for the set of unknowns'. Indeed, the key point is the dependence of the
solution on the vertical coordinate z.

More precisely, Equations (5) are referred to as LDN H(1) as an approximation of the Euler equations
where (u,w,q) is a (Py,Py,P;) Galerkin approximation of (u,w,§). Likewise, Equations (6) are referred
to as LDN Hs(1) and (u,w,q) is a (P, P1,Py) Galerkin approximation of (a,w, §). In particular, (6) has a
more accurate linear dispersion relation than (5) for large wavelengths [24, Fig. 2].

To go further into details, when the frequency dispersion is small, the Euler equations can be approximated
by the following non-hydrostatic model [1] named DAE

Oth + 0, (hu) =0,

Oy (hu) + 8y (hu® + hq) = =5 gDz, — ghdyn — hdp™™,
Or(hw) + 0, (huw) = vq,

Yw 4+ hOyu — guamzb =0,

()

where (u,w) is an approximation of (u,w) along the water column, ¢ is the non-hydrostatic component
of the pressure field and v > 0 a parameter. The case v = 2 was derived in [10] and simulated in [2] and
corresponds to LDN Hy(1) in [24]. For a flat topography 9,2, = 0, v = v/3 corresponds to the Serre —
Green-Naghdi equations.

Another shallow water model is investigated in the present work. More precisely, we consider the dis-
persive model:

Oh + 0y (hu) =0, (6a)
Or(hu) 4 9p(hu?) 4 95(hq) + @Opzy = —ghdp(z + h) — hdp™™, (6b)
O(hw) + 0z (huw) — ¢, = 0, (6¢)
Ou(ha) + Ou(how) = 2v/3 (g - %) — 0, (6d)
w — udypzy — V30 =0, (6e)
2V/30 + hdu = 0. (6)

System (6) is made of first-order PDEs which account for conservation of mass (6a) and of momentum
(6b-0d). (be-6f) are diagnostic equations deduced from the incompressibility constraint (1a). There are
several equivalent ways to write down the diagnostic equations (6e) and (6f) but this definition is the only
choice that provides the duality relation (9) between the modified “pressure gradient” and the modified
“velocity divergence” (8h).

This duality property is crucial from both theoretical and numerical points of view as highlighted in the
following. It also allows to specify the boundary conditions:

® From the weak formulation associated to the underlying elliptic equation, we deduce the boundary
conditions for the pressure fields (see Remark 3);

@ We then infer from the numerical point of view how boundary conditions should be naturally imposed
by symmetry in the resulting linear system (see § 2.3.2).

"The models of the hierarchy are denoted LDN Hy (L) where LDN H stands for Layerwise Discretisation Non-Hydrostatic,
k is the order of approximation and L the number of layers.



For the sake of simplicity and without restrictions?, we will consider in this paper a subcritical flow

(which corresponds to the hyperbolic regime? in the Euler system (1)). Hence we prescribe the discharge
on the left (z = x;) — see (7¢) and the water height on the right (z = z,) — see (7d). Then, Model (6) is
supplemented with the following boundary conditions:

e For the non-hydrostatic pressure, we impose:
At x = xy, Oz (hq) = xv; (7a)
At x = x,, q=0, (7b)
for some flux x, € R. The choice of these boundary conditions relies on the weak formulation

associated to the underlying elliptic problem (see Remark 3) and on the boundary condition for the
topography (7e).

e For the velocity field and the water height, it depends on the underlying hyperbolic regime. As
mentioned above, we consider a subcritical flow so that, following the investigations of § 2.3.2, we

impose
At x = xy, hu = Qy, hw = Qu, ho = Qw; (7¢)
V3
At ¢ = z,, h = hy; (7d)
for some constants Q, > 0, Q,, > 0 and h, > 0.
We also assume that the topography satisfies the following boundary condition:
axzb(SUg) =0. (7@)

It is shown in § 2.1 that System (6) can be rewritten under three different other formulations (Props. 1,
2 and 3). In particular, Proposition 1 shows that (6) is equivalent to the Serre — Green-Naghdi equa-
tions under Boussinesq form, as presented in [33]. Then, from now on, System (6) coupled to boundary
conditions (7) will be referred to indifferently as SGN or LDN Hy(1).

Although Model LDN Hs(1) has a larger number of unknowns than LDN Hy(1) (which may provide a
richer modelling), the first goal of this paper is to design a numerical method for (6) with a reduced
additional computational complexity compared to (5). See [43] for another strategy. The second goal of
this paper is to extend the aforementioned numerical method designed for LDN H»(1) to its multilayer
counterpart LDN Hy(L) (for some number of layers L > 1) as derived in [24]. Indeed, LDN Hy(1) relies
on the approximation that the horizontal component of the velocity field does not depend on z, ie. it
is constant along the water column. In some cases (for instance when the flow is not shallow), it is
necessary to add more degrees of freedom. The Galerkin method used for the semi-discretisation in z
leads to LDN Hy(L) where L is the number of vertical cells.

The paper is organised as follows: in Section 2, we first show some properties of the LDN Hs(1) model:
equivalent formulations (including the relationship with the Serre — Green-Naghdi equations) and asso-
ciated energy. Secondly, a numerical strategy to solve the monolayer model LDN H»(1) is presented:
it consists in an iterative algorithm taking into account the gradient-divergence duality. In Section 3,
the layer-averaged extension LDN Hs(L) is reformulated with similar differential operators. The previous
numerical method is then extended to the multilayer case, still based on the gradient-divergence duality.
In Section 4, some classic numerical tests are presented to assess these strategies for LDN H(1) and
LDN Hy(L), in particular in terms of accuracy with respect to LDN Hy(L).

2 Analysis and numerical method for the LDN H5(1) model

In this section we first study some of the properties of Model (6), such as some reformulations and its
associated energy. Secondly, the design of a numerical discretisation of the model is presented.

>The location of the boundary condition upon the water height does not interfere with the projection step.
3The hyperbolic part is not the core of this paper which is rather the elliptic part.



2.1 Properties of the model at the continuous level

Let us set
u —gh0y(zp + h) — hdyp™™,
X=w], Q:(q), and S, = 0 : (8a)
o @ 0
Let us also define the operators
890““]) + Qbaazzb 2\/30_ + hou
Veen Q = —qp and Vgn: X = <w B — 3\”/§U> (8b)
~2V3(¢- %) o
and notice that the following duality relation holds
X - Veen Q = 0z (hqu) — Q - (Vegn- X). 9)
Given these notations, System (0) reads in a compact form
Oth + 0, (hu) =0, (10a)
O (hX) + 0z (huX) + Vgen Q = Sy, (10b)
vsgn' X =0. (1 OC)

System (10) has the same mathematical structure as the incompressible Euler equations with variable
density except that differential operators are non-standard. Hence, this remark will help to design a
similar numerical strategy.

It is shown below that this system can be rewritten under three different other forms (Props. 1, 2 and 3).
First, let us remark that System (10) is nothing but the Serre — Green-Naghdi equations as presented
in [33]:

Proposition 1. System (10) can be rewritten under the Boussinesq formulation

Oth + 0z (hu) = 0, (11)
(Zg + Tlh, ) (Oru + udpu) + g0z (h + 2) + Qlh, 2Ju = —Dyp™™,
where
Th, zpJv = Ri[h, 2] (0zv) + Ra[h, 2] (vOy2p),
Qlh, zpfo = ~2Ra [h, 5] ((20)?) + Ralh, 2] (202,24,
1 h
Rilh, zplw = —g—hﬁm(h?’w) — §w8mzb,
1
Ralh, zp)w = ﬁﬁx(th) + w0y 2p.
Proof. Indeed, we deduce from (6) that
U__hazu w——hamu—l—uﬁz
- 2\/57 - 9 T<bs
h2
w=" [ax (Bt + udyt) — z(axuﬂ + h [0z (Ou + udyu) + 202, 2]
h? 2 h 292
q= ey [836 (Opu + udyu) — 2(0pu) } + 5 [&Ezb (Opu + udyu) + u ﬁmzb} .
Inserting the two last equalities into (6b) leads to the expected result. O



The main difference between the non-hydrostatic formulation (6) and the Boussinesq formulation given
in Proposition 1 lies in the order of spatial derivatives (1 vs. 3). The consequence is a larger number of
unknowns in (6) (6 vs. 2) but with at most first order derivatives. One key advantage of (6) is that the
treatment of boundary conditions is easier as it will be shown later. Moreover, a smaller stencil is needed
when one has to approach numerically first order compared to higher order derivatives.

A numerical algorithm to simulate (11) is designed in [6] by introducing a second-order parametrised
perturbation and based on the inversion of Z; + 7. The parameter is set so that the linear dispersion
relation is optimised with respect to the Airy relation. The numerical technique consists of a splitting
method between the hyperbolic Saint-Venant equations (solved with a finite-volume scheme) and the
dispersive part (solved with a finite-difference scheme). An extension to dimension 2 is provided in [35]
by replacing the differential operator Z; + 7 by a time independent “diagonal” approximation. In [16], a
Discontinuous Galerkin Finite-Element method is applied.

We also mention the following formulation with high order derivatives of h:

Proposition 2. System (10) also reads

Bih + 8, (hu) = 0,

h?  hh k% h2u2
e (h“2+gz + g Ot 8§x%>

hoo
+h <g + 5 + 102y + u285x2b> Opzp = —hOyp™™.
Here we used the standard notation & := 8, + ud,E.

Proof. We deduce from (6)

h = —hdyu = 2v30 = 2(w — udyz),

hh
qp = hw = o + h [0 (u0z2p) + 0y (u0z2)]
@ hh _hh h
= 9 + 12 = 3 + 9 [at(uaxzb) +uax(ua:czb)] .
Inserting the two latter equalities into (6b), we obtain the expected result. O

Remark 1. For a flat topography, we recover the model studied in [22,306]. In [36], the model is reformulated
by means of the change of variable (h, hu) — (h, U+ %}jh)) and solved using a finite-difference method.

The numerical technique used in [22] is based on an augmented-Lagrangian approach.

In the framework of projection methods, we exhibit another formulation. The two constraints (10c) can be
replaced by applying the divergence (8b) to the momentum equation (10b) (initially divided by h):

Proposition 3. System (10) can be rewritten under the reduced formulation

Oth + 0y (hu) = 0, (12a)
0y(hX) + 9y (huX) + Vegn Q = S, (12b)
— Vgen® (ng]; Q> = — Vgen- <Shh> + Vgn- (u0,X). (12¢)

Eq. (12¢) reads

124 o, <‘9“3<h‘”> 6L _po, (@81«%) = 2h(0p1)? + hs (90226 + h) + Bup™™),  (13a)

h h
B 4 9z (hq)
(4 + (022)°) ; 6h + 0p2p ;

= u?0? 2z — (g@x(zb +h)+ axp“tm)axzb. (13h)



Well-posedness of this system is studied in [4].

Remark 2. Notice that only h and w are involved (not w nor o) in the right hand side of (13).
Moreover, we also notice that q, can be expressed directly from (13b)

h 4+ Opm)? | b h

+ u28§$zb — (g@x(zb +h)+ arpatm)@mzb] . (14)
Inserting the latter expression into (13a) provides a unique equation for q:

1+ (8rzb)2g Y 4 0 (hq) 60,2,  O0x(hq) Y 60,2 q
4+ (8mzb)2 h "\ 4 + (szb)Q h 4+ (8mzb)2 h “\ 4 + (8mzb)2 h

= 2h(0pu)? + ho, (g@x(zb +h)+ 8xpatm) + ho; <

12

Oz 2p
4+ (8:13212)2

However, the complexity of the operators in the latter equation made us prefer working with (13).

(u28§x2b — (g(‘)x(zb +h)+ 3xp“tm)3xzb)> .

Remark 3. Whether it be from the theoretical or numerical points of view, the equation of interest is

Ve (3 V0 Q) = (19

for some right hand side f. The well-posedness of Eq. (15) is proven in [4] by means of the Lax-Milgram
theorem applied under some smoothness hypotheses on the water height h. In particular, straightfoward
computations show that

1 ~ - 1 ~
- /I ngn' <h ngn Q) -Qdzr = — [q (8:c(hQ) + Qbaxzb)]al + /I E ngn Q- ngn Qdz,
which explains the present choice of boundary conditions (7a-7b).

Finally, we show that thanks to the correct formulation of diagnostic equations (6e) and (6f), associated
to the definition (8b) of Vg,- X that provides the duality relation (9) we can deduce an associated energy
for SGN model. It is crucial from both theoretical and numerical points of view as highlighted in the
following section, corresponding to the definition of the numerical method.

Proposition 4. Smooth solutions of System (10) satisfy the following energy equality provided p™™ and
zp do not depend on time:

O [h <|X2|2 +g <zb(:c) + Z) +p“tm(3:)>] + 0y [hu (’X2|2 + g (2p(x) + ) + p™™(z) + q>] =0.
Proof. Let us multiply (6b) by u, (6¢) by w and (6d) by o so that

Oy <h|X2|2> + 0z <hu|X2|2> + ‘XQP [Och + O (hu)] + X - Vegn Q + hudy(g(h + 2) + p™™) = 0.
Using the duality relation (9) as well as Eq. (6a) leads to the expected result. O

2.2 Splitting strategy at the semi-discrete level

Let us write a semi-discretisation of System (10) based on a classic splitting technique for some time step
At > 0, like e.g. in [1,18,21,35,43]. We first consider the hyperbolic step*

pnt1l/2 _ pn
T + ax(h”u”) = 0,

(hX)"+1/2 — (hX)"
At

*An explicit scheme is presented but an implicit strategy can also be chosen. It does not interfere with the second step.

(16)

+ 3y (h"u"X") = Spn,




coupled to boundary conditions (7c) and (7d). Any classic numerical method dedicated to the Shallow
Water equations (including well-balanced schemes) can be used to solve it.

Then the dispersive step reads

prtl hn+l/2

A =0, (17a)
X))+l _ (pX)nt1/2

(hX) AE ) + Veen Q"1 =0, (17b)

Vegn X"t =0, (17¢)

which reads as a mixed velocity-pressure Darcy problem. Boundary conditions (7c), (7a) and (7b) are
considered. In this paper we investigate a projection-correction approach.

To increase the order of the method, we can consider the incremental method (see e.g. [29]) which consists
of the following modified first step

hn+1/2 — pn .
O =0,
AX)t+/2 (X))
( ) At ( ) + 893 (hnunxn) + vsgn Qn — Shn,

(which requires an initialisation of the pressure unlike the non-incremental version) and the modified

second step
pntl _ pn+1/2

At =0
AKX\t — (X n+1/2
( ) Al(f ) + ngn (Qn—H - Qn) = 07
Vsgn X" = 0.

This approach does not raise any additional issues, therefore for the sake of simplicity we present the
results by considering the splitting strategy (16)-(17).
To make the notation easier, we shall denote from now on: X = X"*! and X* = X**1/2. System (17)
implies
1 Visgn- X*
- ngn' (h* ngn Q) = _Tt’ (18)
or equivalently, expanding the non-classic operators:
0z (h* 2v30* + h* O u*
19L _ g, (ZWDN @ _pep (Dg Y V3 iy
h* h* h* h* At
o b q Oz(h*q)  w* —uOpzp — V3c*
We recover the same operators as in the continuous case — see (13), only the right hand side is modified
due to the splitting method. Hence the well-posedness investigated in [4] still holds.

(18)

Remark 4. The right hand side in (18') is not of order O(At=1) but of order O(1). Indeed, inserting the
values from the hyperbolic step (16), we get

2v/30* + h*Oyu :2\/§O' + h"0u +o(1) = 0(1),

At At
w* — u*yzp — V30" wt —u" Oz — V/3o™ B
At = AL +0(1) =0(),

since 2v/30™ + h"9,u™ = 0 and w"™ — u"dy 2z, —\/30™ = 0, provided initial conditions satisfy the divergence
constraints, i.e. initial conditions are well-prepared.

Once Equation (18) is solved for Q, the velocity field is updated using (17h)
At

X=X~ Vi Q.

9



2.3 Numerical method at the discrete level

We focus in this section on the discretisation in space of the non-incremental version (16-17). The
incremental version does not raise major additional difficulties.

Let us consider a homogeneous Cartesian grid of interval I = [z, 2,] with mesh size Az = **5** for some
integer N > 0 (see Figure 2).

Standard approaches for Stokes-like problems rely on a staggered grid with velocity fields at the centre
of the cells and pressure fields at the interfaces. A similar approach is also followed in [21]. The specific
expression of Vg, Q in the present problem — see (8b) — induced a different choice, namely a colocated
approach with all variables (X and Q) at the centres of the cells. This choice makes a discrete energy
estimate easier to derive.

Z3/2 Ti—1/2 Tit1/2 TN+1/2

l/ J}1‘71l X; i$¢+1
'l 1

Figure 2: Colocated mesh

2.3.1 Huyperbolic step

System (16) consists of the classic shallow water part and two transport equations for w and o. A
finite-volume numerical scheme reads like this:

(BX); 2 —(h Xy Flap — Fiye r\T
At + Az - (0’ Sh”) ’

where X = (1,XT)T. The eigenvalues of the hyperbolic operator in (16) are u"™ + /gh™ and u™ (transport
equations for w and o).

We have considered a high order Polynomial Viscosity Matrix finite-volume method using a second-
order MUSCL state reconstruction operator similar to those proposed in [18,21]. Moreover, a third-order
CWENO - [13] reconstruction has been implemented as well. The considered explicit high-order methods
are well-balanced for water at rest solutions

n=cst, u=w=o0=0,

and linearly L* stable provided the following condition holds

A

x
max; (Jul’| + \/gh)

Moreover, the schemes are positive preserving for the total water depth in the sense that if A} > 0 then
A > 0 for all 4.

At < Ccorr, (19)

2.3.2 Non-hydrostatic step: numerical scheme for the velocity-pressure problem

We could have directly discretised Egs. (18'). However, in order to recover a discrete energy, we first
discretise the velocity-pressure problem (17) and we then deduce a discretisation for (18') mimicking the
continuous level. Finite differences are applied in the present work.

Let us first consider the mixed formulation (17). Denote by H € My nv(R) the diagonal matrix with entries
Hii = hi.

10



We expect that the discretisation of System (17) has the form
/At | B\ (( X\ _ ( AX/At-0 20)
8" [0 )\ q 0 '

e 7 € M3y sn(R) is block-diagonal with block entries H € My n(R);

where

o B e Msnan(R) is an rectangular matrix to be specified;

U
o U= (w)icp,. vy W= (Wi)icpy, vy = (0i)ieqn, vy and X = [ W I
3

e 0;; =0 for (i,5) € {1,...,2N}%
e 0 cR* and 0 € R2V account for boundary conditions as detailed below.

The matrix in (20) is symmetric due to the duality relation (9). However, a naive approach where Egs. (17b)
and (17c) are discretised independently from each other would lead to a non-symmetric matrix. Hence
we first discretise Eq. (17b) as

1 1, =
A HX +BQ = HX" 0.

Once B is built, BYX = 0 should be a consistent discretisation of (17c) up to boundary terms.

More precisely, Equation (17b) is discretised for inner cells:

1 * i+11+9i * i+qi—
hX; Az (hi+1/2q+12 - hi71/2q g*1> + Qbi(axzb)i hX:
+ . —
At Tvi At
—2v3 (4 = %)

€{2,...,N—-1}.

which leads to
By By
B= 0 —In . (21)
—2/3Zxn | V3Iy

By is diagonal with entries (0,2); while By is tridiagonal:

hf—1/2 h:+1/2_h:—1/2 h:+1/2 (22)

1
Bu =77 T2 P 2

Hence, for inner nodes z;:

L/ ui—ui w Uipl — U
(BTX)i - [2 < =127 Ay + hi+1/2 7+Ax ) + 2\/§Ui:| )
(BTX)N_H' = — [wi — ((‘Lzb)luz - \/§0Z:| s

which is consistent with (17¢).

11



Boundary conditions. Let us now specify how boundary conditions are incorporated by means of ghost
cells. BC (7a) at z = 1/, = xy is discretised by

hiq1 — h{qo hiq — xeAz
— —_ -— .
A X¢e = qo hEF)

Hence, the momentum equation for u is discretised in the first cell by:

* kX, 0k
1u1 I o a+q . @ot+taq _ hjug
A Az Ty TMheT ]Jrq“(a’”zb)l_ At
1u1 3/2 X * 1 141 1/2
At "o ® T oAs [ 32 1/2< + hg)} 0¥ (Dez)y = TG e
hia

This provides the first line of Matrix By as well as 61 = —

o7,x Xb- It remains to specify hg. Given that no
0
boundary condition is imposed on h at x = x4, we set h§ = 2h] — h3.

We then observe that

1 Uy — U hi\ wu
T _ * 2 1 * 1 1
(B'X)1 = 2( 327 Ay T /2 (H h;;) Am>‘

We remark that if we discretise BC (7c) by

hiuy + hiug U1 — U hi\ ui  2Qy
@u 2 Ax + hi) Az hiAz
h*
~ 1/2 Qu
We ded 0 = -
e deduce 01 ho Aa
As for the boundary conditions at z = z /5 = @, BC (7b) is discretised by
N +gN+1 _ 0
2 )

which means that the momentum equation for u in the last cell becomes

hyun Wn_1/0

_ hyuy
At 2Ax ’

(gv +av-1) + aon(022) y = Al

This yields the last line of By and 6N = 0. It implies that

T o unv—1—uy 1 [, UN —UN-1 4 UN+1 — UN
B X)v=-hy1p—ox =73 <hN—1/2Ax + hN+1/2A$)

provided that uny11 = uy, which is equivalent to imposing
Oyu=0 at z =z,

and 6]\; =0.

Let us comment the latter result. Imposing ¢ = 0 at some boundary is consistent with imposing d,u =0
at the same location. Even if there is no BC required in the hyperbolic problem, it is necessary from the
numerical point of view in order to compute the flux at the corresponding interface. We mention that the
BC handled in the first step of the algorithm must not be damaged by the second step. Likewise, still for
numerical purposes, we impose

O,w=0, 0y,o=0 atx=ux,.

12



2.3.3 Numerical scheme for the pressure problem

For a resolution of the mixed velocity-pressure problem (20) by means of the Uzawa method, see [4]. In
the present paper, we rather combine both equations in (20) to obtain

BTX* -0
At

which is nothing but a consistent discretisation of the velocity-correction approach (18).

BTH 'BQ = f = ~BTH 0, (23)

Remark 5. It is crucial that the initial data satisfy at the discrete level BTX* — 0 = 0 in order to prevent
the propagation of errors of order O(At—1) as explained in Remark 4

. . -1 .
Notice that Matrix C = BTH B has the following structure:

o (CnlCn ) _ ([ BLH By 12 | BLH By, — 61!
oL | Cu BLH 1By — 6H~1 | BLH 1Byy + 4H !

Lemma 1. Matrix C is symmetric positive-definite.

L ——1
Proof. The symmetry comes from the definition C = BTH ~B. Moreover, we have

€Q,Q) = (H'BQ,BQ) >0

since ‘H is a diagonal matrix with positive entries provided the hyperbolic scheme is positive. Then
BQ =0 = Q =0 as B is one-to-one — see (21).
More precisely, (24) provides the following discrete energy

€Q,Q) = (H 'qy.q,) + 12 <H71 (q - %) ,q — %> + (H ' (Bi1q + Bi2qy), Buiig + Bi2qy)

which is consistent with

1 ) o 1 2 dy 2 * 2
/Ih*]VSgnQ] dz = /Ih* [qb + 12 (q 5) + (0. (h*q) + qpOz2p)” | dx.

O

To solve (23), one may apply different strategies. One of them is to apply a direct resolution inverting
C. Another variant is to use the Uzawa method. Here, we shall propose to follow an iterative process of
Gauss-Seidel type:

1. C11q"™ = & f — Craq);
2. Corqy ™ = 2 fp — Clag"th.

This method converges due to Lemma 1. This is the latter method which has been chosen in the present
work. Matrix C1; is more or less the same matrix as for the DAE model (5). The extra additional time
then corresponds to the iterative process (C1; is factorised once and Cs; is diagonal).

Remark 6. Notice that we could explicitly solve the second block of (23):
_ 1 _ 1 _
q, = 0221 <Atfb - 01T2q> = (Cu— 01202210:?2)(1 N (f - ClQCQQIfb) J

which corresponds to a discretisation of (14).

Remark 7. The final numerical scheme proposed here is well-balanced for the water at rest solution, and
positive preserving for the total water depth provided the hyperbolic scheme is well-balanced and positive
preserving.
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z=mn(t,x) = z11/2(t, )

S - 2= Zaq1/2(t,T)
h(t,l‘) 771]7‘0‘(’27) Tt //fZ:Za_l/Q(t,CL’)

-

e N 7 Qa—1/2;Ua—1/2, Wa—1/2

(b) Unknown locations
Figure 3: Multilayer description

3 Numerical scheme for the LDN H5(L) model

3.1 Notations and model

Without any assumption on the shallowness of the flow, we can also approximate the Euler equations (1)
by means of a “multilayer” model. The flow is split into arbitrary layers of constant height h, = % for
some integer L > 0 (see Fig. 3). We consider the dispersive layer-averaged model derived in [24] under
the following reformulation:

L
Oih + 0y (hT) =0, U= Lola,
a=1

and forae {1,...,L}
O (halia) + Or (haliz + haly) + Uat1/2lat1/2 — OrZat1/2at1)2
- ﬂa—l/zFa—l/Q + axza—l/?Qa—1/2 = —gha 0.7,
Ot(haWa) + Oz (haUaWa) + Wat1/2l at1/2 + dat1/2 — Wa—1/2la—1/2 = da—1/2 = 0,
. da+1/2 + da—-1/2

O1(hata) + 0p(hatalia) = 2V3 [qa

2
o0 tg, @a—&-l/Q — Wq haOplig Wy — wa_l/g
_Pa+1/2 < 12 + 2 I\0171/2 12 + 2 )
together with diagnostic equations
2304 + haOylia = 0, ac{l,.. . L},
Wo — Wa—1 — (o — Ua—1)0224-1/2 — V3(Taz1 + 0a) =0, ac{2. .. L}

wy — u10yz, — V301 =0,
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and the boundary condition

qr4+1/2 = 0.
The mass transfer term is given by
L
Poy12 = Z 9y (hs (up — 1)) -
B=a+1

To close the model, we define
® Uy i1/2 = (1 = Yasr1/2)Uat1 + Yat1/2Ua;
—~ - hoz a7 an o a7 .
® Wyt1/2 = (1- ’7a+1/2) (wa+1 + %&cuaH) + Ya+1/2 (wa - %@cua)'

for any v441/2 € [0, 1] such that [24, Prop. 1]

1
(’Ya+1/2 - 2) Fay12 2 0. (25)
Let us recall the properties of this system:

2 2 2
= Uy, + Wy, + 0 . .
o Letusset Ky = —2>—2 If (H,Uqy,Wq,q,) are smooth solutions to the multlilayer model, we

have under (25)

L L
O (Z ha (Ko + g2a + p“’”(l’))) + 0, <Z hatia (Ko + Qo + gn + p‘”’”(ﬂf))) <0. (26

a=1 a=1

Moreover, if we take vq41/2 = % then (26) is an equality.

e The monolayer case L =1 reduces to the Serre — Green-Naghdi equations (6).

3.2 Differential operators

Let us introduce the operators

U, q
Xa: Wa | Qa:< o )7

Oa do—1/2
and
Oz (h*q, * *
% - qa+1/28wza+1/2 + Qa71/2aff»‘2a—1/2
Vidnn Qo = Qo+1/2 ~ da—1/2 : ae{l,...,L},
_ ot 1/2 00
72\/3 <Qa 4 +1/22q 1/2)
2v300 + 0,7,
Voo Xa=1_ _ _ L, e{2,...,L},
ldnh™ >« (wa — Wa—1 — (U — ua,l)&rza_l/z — \/3(0'0[,1 +04) « { }
2301 + 0,1
1 . — 1 T, Yzl
vldnh X <w1 — U10p2p — \/501> ’
We get a global duality relation
L L
a 1 = = a
Z Qo - (Vignn Xa) = E(?m(hqaua) - Z Xa * Vignn Qa- (27)
a=1 a=1

15



It is worth noticing that

% Ga—1/2022,_1 5 Gat1/20225 1172 0
v?:inh Qo = 0 + —Ga+1/2 - —Ga—1/2 + 0 ’ (286\)
—2V/3q, \/§Q(x+1/2 \/gqa—m 2\/§Qa+1/z

and

a 2\/30-04 + %axﬂa 0 0
vldnh‘ Xa a (ZU& - ﬂaaxz;oszl/Z - \/§Ua> B ('U)a—l - Ha_lamz:;fl/Z - \/30'01—1> B (2\/30'0[—1) ‘ (28b)

We mention that the divergence operator stated in the present work is not the same as in [24]. We rather
provide an equivalent formulation that satisfies the duality relation (27). In particular, o, is involved
instead of 9,%, which is important for the order of derivatives.

Let us proceed as in the single layer case with a splitting strategy between hyperbolic terms and non-
hydrostatic terms. The latter part reads

h*Xo — B X2
T LAy Vi Q=0 (29)
vloélnh' X_a - O,
which implies
Vin Qa 1
— Ve L Sk =) g XK
Vidnh ( B > AL Vidnh
The latter equation is expanded as, for a € {1,...,L}
0. (h*q,,) 2q. L h*
— h*o, el ) pqop2ie — 2 (9/36% 4 —g,ut
a< z >+ i R A
Qot1/2022% 1 19 = Ga—1/2022) 0t1/2 + Qo
_Lh*8, +1/2 +1/2 1/2 1/2 n GLQCI +1/2 T 4. 1/2’ (30a)
h* h*
then for a € {2,...,L}
* " da+1/2 % 9o—1/2 « % do—3/2
<2 - 833,2&_,’_1/28;52&_1/2) T + 2 <4 + (8332’&_1/2)2) T + (2 — 8xza_1/23xza_3/2> T
1 * * * * * * *
= _m (wa —Wo—1— (ua - uafl)axza—l/Q - \/g(o-afl + Ua))
ey 12 00 (B (@0 — Ta1)) . Tus +1
a—1/2 Uz Ao, — 4a—1 Go—1 1 4o
- [
i3 e +6 e (30b)
and finally
% « +43/2 " q1/2
(2 - 8xz3/23x21/2)h71 + (4 + (8x21/2)2> hi
_ 1 * * * 83921) 8$(h*ql) al
- (wl W By — \/§a1) - mEEs A el (300

Let us remark is that the differential operator for g, in (30a) is independent from index . Moreover, up
to a coefficient L2, this operator is the same as in the monolayer case — see (18').

3.3 Structure of the fully discretised equations

Our goal is to produce an algorithm that only relies on tools designed for the monolayer case. Let us
split the gradient matrix B = B'/2 from (21) into:

_ Bu |0 oy
Bo12 = By 4 BV where By — 0 |0 | and BeU2 0| Iy |-
—2\/§IN 0 0 \/§IN
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: . : . —-1/2 . : o .
Bi; is defined in equation (22) and By, PisaNxN diagonal matrix with entries (sz;_lm)_. The fact
7
that B; is independent from layer o (and exactly the same as in the monolayer case) is crucial for what
is following.

Hence V7, ; Q. is approximated according to (28a)

B1Q, + Bgil/zaa - Bg+1/26a+1 +RQui1 = Bail/QQa - Bg+1/260¢+1 +RQu1,

where
qa,l
o] o
R=|0 0 and Q, = Qo.N
—_t Qa—1/2,1
0| 2V3Zy .
9o—1/2,N

The last two terms account for interactions between layers: the model under investigation does not reduce
to a monolayer model in each layer. Hence System (29) is approximated by

H/(LAY |B+R (X) _ ( 7—[X*/(LAt)—ﬁ>

(B+R)" \ 0 Q 0
where
1/2  _13/2 0 _ _
B B, 0 0 R 0
B = Bo—12 _pgtt? | e Manpann(R), R= € MsnranL(R),
. R
0 BL—'1/2 0 0
Ija ﬂa,l
X=|Wal|l., Ua=| : |, Q=1|Q,
Ya Ua, N

It is easy to verify that (B + ﬁ)TX = 0 is consistent with (28b). For the treatment of boundary conditions
which are incorporated in vectors 0 and 0, we refer to the monolayer case (§ 2.3.2). As previously, the
symmetry of the global matrix is due to the duality relation (27).
From the discrete velocity-pressure problem, we deduce as previously a discrete pressure problem which
reads

B+R)H ' (B+R)Q= 1, [B+R)'X 0] - B+R)"H 0. 31)
Let us set

o C = (E+ﬁ)Tﬁ_l (E—kﬁ) € Manranrn(R) which is blockwise tridiagonal, symmetric positive-
definite;

T : . :
o COT1/2 = (Ba_1/2) H~1B>1/2 which has exactly the same structure as C in (24) with By, replaced

by 3?271/2.

The blockwise components of C are then:
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[ ] Cl,l = 61/2;
e Forae{2,...,L}:

cn | oy
(i) | acg

Coer = co-1/2 4 (R _ 33_1/2>T7-L_1 (R _ 33—1/2>T _

and

| —6n - BLH B

_ NG o
0| oM ! - (B;g 3/2) H1Bo 2

Ql

T
Cafl,oz = CZ{,CM—l — (BCM—3/2) /}_[—1 <R o 83*1/2) —
(31) is a consistent discretisation of (30).

3.4 lterative scheme

To solve the 2N L x2N L linear system (31), we apply an alternating direction-type method. More precisely,
it amounts to solving iteratively:

z-direction For each layer o, (30a) in g, knowing g, 1/2 which corresponds to a linear system with matrix
C11 given in (24) (the same for all layers which requires a single factorisation for all iterates at each
time step):

1 * * a—
Cngh™ = TA; <B1T1Ua - 2\/§2a) - O 1/2‘12_1/23

z-direction For each node z;, (30b-30c) in g4 1/2 knowing g,. It is a tridiagonal system with matrix
S@ solved by means of the Thomas' algorithm [48]. Matrix S® is a L x L tridiagonal symmetric
positive-definite matrix with

o S} =44 (9u2} )"
i (@ _ * 2 (4) _ o(® o * *
e Fora>2 Son=2(4+ (amza71/2)~ and Sp5 1 =84 14 =2 (8mza71/2)(61za73/2),
Indeed, we check that

8V, &) = 222 + (2 + (aIZL_l/Q)?> z?

L—1 )
+ Z [4302[ 4+ 2(zq + Ta_1) + ((8a;z;71/2)ixa — (8562273/2)51:06_1) } > 0.

a=2

This strategy is equivalent to solving the following system by means of a Gauss-Seidel iterative procedure:

CH 0
0 Cn
s 0
ET
0 SIV)
where unknowns have been re-labelled as
cA|oz:1
. : qa,1 d1/2,i
qvo‘:L , with g = : and q; = :
Ji= ’
. qdo,N dr—1/2,i

di=N
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Remark 8. It must be underlined that this algorithm can be easily parallelised insofar as each direction
(x and z) involves a blockwise diagonal matrix.

4 Numerical simulations

Let us recall that the stability condition is prescribed by the hyperbolic part of the splitting strategy —
see (19) with a CFL number Ccory, to be specified.

The numerical schemes presented in this paper, namely the resolution of (23) for NHM Ly(L = 1) and
the resolution of (31) for NHM Lo(L), L > 1, are assessed by means of 4 classic test cases and compared
to numerical results obtained with the DAE model (5) and its multilayer counterpart described in [24]:

e Propagation of the Euler solitary wave;
o Comparisons with 3 sets of experimental data.

Let us mention that in order to ensure the robustness of the algorithm for wet/dry transitions, the term
1 . .
pE S approximated by [38]

hi /2
eyt ma {0t}

for some threshold € > 0, as it is usually done in shallow waters (see [32]).

9

4.1 Convergence test

Let us start by a convergence test for both models, LDN Hg and LD N Hy, in order to assess the numerical
strategy and the code used. To do so, we consider the propagation of a soliton (specific to each model)
in a rectangular channel with constant topography. This solitary wave is given by

B (L] Ay —e(1- M
h(t,z) = H, + A sech (H 2(A+H*)(a? c) ], wult,z)=cll o))
cA A

2 1 Ay . 1 Ay
w(t,z) = "o\ 2T ) sech® (H*’ / m(m — ct)) sinh (H* m(m — ct))

where A and H, are constant fixed values, ¢ = \/g(A + H,) and

(32)

e v =2 in the case of LDN Hy,

e v =3/2 in the case of LDN Hj.

Here we set H, =1, A=0.1,g =1 and z, = 0.

The propagation of a solitary wave over a long distance is a standard assessment of stability and con-
servative properties of numerical schemes for Boussinesqg-type equations [45, 46,49]. A solitary wave
propagates at constant speed and without change of shape over a horizontal bottom.

The domain is [-20, 20]. We perform the simulation with different numbers of volume cells at time ¢t = 0.2
with a second-order scheme. The results are compared to the reference solution and the errors are shown
in Tables 1 and 2. These results show the convergence towards the reference solution at second-order.
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h hu hw
LY error order LT error order LT error order

No. of cells

50 3.04e-03 0.00 1.81e-03 0.00 217e-03 0.00
100 9.26e-04 172 517e-04 181 597e-04 1.806
200 257e-04 185 139e-04 1.89 1.88e-04 1.67
400 6.96e-05 1.88 4.22e-05 172 8.44e-05 1.15

Table 1: Test 4.1 — L' errors with the LDN Hy-soliton and numerical orders of accuracy.

No. of cells h fru o
L' error order L' error order L' error order
50 1.21e-02 000 1.72e-02 0.00 1.22e-02 0.00
100 451e-03 142 4.02e-03 210 3.28e-03 1.89
200 133e-03 176 1.12e-03 1.85 850e-04 1.95
400 3.80e-04 180 3.24e-04 179 239e-04 1.83

Table 2: Test 4.1 — L' errors with the LDN H-soliton and numerical orders of accuracy.

4.2 Solitary wave propagation over reefs

A test case propagating a solitary wave over an idealised fringing reef assesses the ability of the model to
handle nonlinear dispersive waves, breaking waves and bore propagation. The test configuration includes
a fore reef, a flat reef, and an optional reef crest to represent fringing reefs commonly found in a tropical
environment. Figure 4 shows a sketch of the laboratory experiments carried out at the O.H. Hinsdale
Wave Research Laboratory of Oregon State University. See for instance [50] for more details. The 1D
domain [0,45] is discretised with Az = 0.045 m.

/\ 0.5m

1.0m /

17.0 m 5.0m 23.0m

Figure 4: Test 4.2 — sketch of the topography

A solitary wave of amplitude 0.5 m is placed at point z = 10 m. Finally CFL =0.9 and g = 9.81 m -s~2.
Free outflow boundary conditions are imposed.

Figure 5 shows snapshots at different times, t\/g/H,. = ty where H, = 1 m. Comparisons between ex-
perimental and simulated data allow to validate the numerical approach presented in this paper. Results
are shown for LDN Hy(L = 1) and LDN Hy(L = 1) models. The water rushes over the flat reef without
producing a pronounced bhore-shape. The simulation also captures the offshore component of the rarefac-
tion falls, exposing the reef edge, below the initial water level. The simulations match with experimental
data and the LDN H; provides slightly better results.

4.3 Wave propagation over a submerged bar

The Dingemans experiment [15] of plunging breaking periodic waves over a submerged bar is considered.
This case allows to study frequency dispersion characteristics and non-linear interactions. As waves
propagate over a submerged bar, multiple phenomena occur, like the appearance of higher harmonics.

20



0.6

—— LDNH,
0.4
i ---- LDNH,

0.2 e FEap.data
0.01 e oo /. s a o a

0 5 10 15 20 25 30 35 40 45
0.6
0.4
0.2
0.0

0 5 35 40 45
0.6
0.4
0.2
0.0

0 5 35 40 45
0.6
0.4
0.2
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Figure 5: Test 4.2 — comparison between experimental data (red points) and numerical results (solid blue
line for LDN Hy and dashed pink line for LDN Hs) at times t/g/H, =0, 7.8, 10, 13, 17, 20.5 s

The 1D domain [0, 30] is discretised with Az = 0.005 and the bathymetry is defined on Fig. 6. Locations
of the measurement points are specified in Table 3. The CFL number is set to Ccrr, = 0.9 and the gravity
field to ¢ = 9.81 m - s~2. We run the numerical test from the “lake at rest” steady state as an initial
condition. Boundary conditions correspond to free outflow at x = 30 and a sinusoidal wave train for n
generated at x = 0. This is done as in [18] imposing in a relaxation zone:

2
ne(t) = Asin <;t> ,

where A = 0.01 and T" = 2.02 denote resp. amplitude and period.

This test produces, up to the front slope, waves with wavenumbers k =~ 0.63/H, and k ~ 1.58H, respec-
tively, where H, = 0.4 is the typical depth. Fig. 7 shows numerical results of time series of the free surface
for Model LDN Hy(L), for L € {1,2,4}, while Fig. 8 concerns LDN Hy(L) and Fig. 9 shows comparisons
between LDNHy(L =4) and LDNHy(L = 4).

z(m)

10 11 12 13 14 15 16 17 18 19 20 21

0.4m
1:20 1:10
0.3 m

6.0 m 20m 3.0m

Figure 6: Test 4.3 — sketch of the bathymetry
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Label 1 2 3 4 ) 6 7T 8
Location 10.5 125 13.5 14,5 157 173 19 21

Table 3: Test 4.3 — wave gauge locations

A X1 i) I3 T4 xTs5

0.289 23520 23.735 23990 24210 24.448

Table 4: Test 4.4 — position of the wave probes.

Good agreements with experimental data are observed for all models up to Gauge #4. Beyong the bar,
higher harmonics are released which explains discrepancies. We recover observations from the literature,
such as [39] where o-coordinates are used, or [18] where an enhanced two-layer version of the non-
hydrostatic pressure system LDN Hy is used. The results in [11] with a three-parameter Green-Naghdi
model optimised for uneven bottoms, show the same level of agreement. Here, we would like to stress
the ability of the proposed models to deal with a wide range of dispersive waves. The main difference
between LDN Hy(4) and LDN H»(4), as pictured on Fig. 9, can be seen for gauges #6 to #8 where the
LDN Hy model is more accurate.

4.4 Shoaling of a solitary wave on a plane beach

We finally consider the shoaling of a solitary wave on a beach with a constant slope (1 : 30) as described
by Guibourg in [30] and then investigated in [6,16].

A sketch of the geometry is described on Fig. 10. The initial condition is a solitary wave at location z = 10
with amplitude A = 0.298, as described in [12,17]. The computational domain © = [0,27.5] is divided into
cells of length Az = 0.01. Free-outflow boundary conditions are considered and the CFL number is set
to Copr, = 0.9.

We compare Models LDNHy(L) and LDNHy(L) for L € {1,2,4}. Some temporal series of the free-
surface elevation are measured at various locations (see Table 4) and compared with the corresponding
numerical results.

Results are shown on Figs. 11. Numerical outputs for A = 0.289 predict the shoaling phenomenon during
the wave run-up satisfactorily. The output clearly shows better performance for Model LDN Hs, which is
expected according to the linear dispersion relation of the continuum models.

5 Conclusion

This paper deals with the numerical approach for the models LDN Hy and LDN H, introduced in [24].
The main objective is to compare their accuracy when applied to different standard test case scenarios.
LDN Hy model presented in [24] may be seen as a multilayer extension of the Serre — Green-Naghdi
equations. The model was derived from Euler equations assuming linear and quadratic vertical profiles
for the vertical velocity and pressure. LDN Hy model presented in [24] differs from LDNH, on the
assumption of a linear vertical profile for pressure. One of the most attractive properties of the models
relies on the increasing accuracy of the linear dispersion relation as the number of layers increases,
whereas the model LDN Hs shows better accuracy than LDN Hy for the same number of layers.

The LDN Hj model is solved by using a projection technique similar to the one introduced in [18]. The
extension of this technique to LDN Hs is not straightforward. We have proposed a numerical method
based on this projection technique to approximate the solution of the LDN Hy model.

The complexity of the model LD N Hs requires the design of an efficient strategy to solve it numerically for
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Figure 7: Test 4.3 — comparison of experiment data (red points) and simulated ones with the model LDN H|
setting 1 layer (green), 2 layers (blue) and 4 layers (black)
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Figure 8: Test 4.3 — comparison of experiment data (red points) and simulated ones with the model LDN H,
setting 1 layer (green), 2 layers (blue) and 4 layers (black).

24



0.02 . 0.02 .
0.015 0.015
0.01 0.01
0.005 0.005
& =
0 0
-0.005 -0.005
-0.01 -0.01
-0.015 -0.015
0.03 0.025
0.025 0.02
0.02 0015
0.015
0.01
0.01
= = 0.005
0.005
0
0
0,005 -0.005
0.01 -0.01
-0.015 -0.015
0.035 0.025
0.03 0.02
0.025
0.015
0.02
0.015 0.01
= 001 = 0.005
0.005 0
0
-0.005
-0.005
-0.01 -0.01
-0.015 -0.015
0.03 0.015
0.025
0.01
0.02
0.005
0.015
= 0.01 = 0
0.005
-0.005
0
-0.01
-0.005
0,01 , , , , , , 0015 , , , , , ,
43 44 45 46 47 48 43 44 45 46 47 48
xT x

Figure 9: Test 4.3 — comparison of experiment data (red points) and simulated ones with the model LDN H|,
(blue) and LDN H» (black) setting 4 layers.

25



Ao

0.25 m

20 m 7.5 m

Figure 10: Test 4.4 — sketch of the bathymetry used for the shoaling of a solitary wave test problem.

01 T
=005 - 1L

0 |

7

0.1 .
=005 2L

0 |

7

0.1 .
=0.05 4L

0 |

7

0.1 .
=0.05 1L

0 )

7

0.1 .
=0.05 - 2L

0 |

7

0.1 |
=005 4L

0 |

Figure 11: Test 4.4 with A = 0.289 — blue lines indicate the numerical solution with models LDN Hy (a)
and LDN H» (b) for different layers; red points represent the experimental measurements at the probe
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an increasing number of layers. To this aim, we have exploited here a duality relation at the continuous
level. This allows to design an algorithm relying on an iterative process that solves a monolayer case in
each iteration.

In particular, the algorithm may be decomposed into two different problems: The first one corresponds
to a discrete parabolic problem per layer and the second to a tridiagonal linear system at each point
of the horizontal discretization that couples each layer. Moreover, (i) the matrix of the linear system of
the parabolic problem per layer is the same for all layers, and (ii) each tridiagonal linear system at each
point of the horizontal discretization is independent. Then, we can observe that (i) since we have the same
matrix for all layers, we may consider, for example, an LU factorization to diminish the computational time
in all layers and (ii) this implies that, although in the paper this is not done, the proposed technique is
easily parallelizable, especially when the number of layers increases.

Moreover, the final numerical scheme proposed here is also high-order, well-balanced for the water at
rest solution, and positive preserving for the total water depth. That results in an efficient and robust
numerical scheme, even in the presence of wet/dry transitions. It is worth mentioning that, while an
extensive literature is dedicated to the numerical resolution of shallow water flows such as the Depth-
Averaged Euler equations or the Serre — Green-Naghdi equations, this is the first attempt, up to our
knowledge, of designing a robust and efficient numerical strategy for the multilayer extension of the SGN
equations.

The proposed numerical scheme has been carefully validated, showing the second order of accuracy
and comparing it with available experimental data. The obtained results exhibit an excellent fit with
the experiments and show that the proposed strategy is well-suited for most coastal processes: wave
propagation, shoaling of the waves, run-up of waves onto a beach, higher dispersive harmonic waves,
among others.

In the numerical tests presented in the paper, we can also see that for a fixed number of layers, the LDN H,
is in many situations more accurate than LDN Hy. This result shows that the LDN Hj is of interest since
the accuracy of both models has been compared by using a generalization of classic projection techniques.

One should take into account that LDN Hs has twice more pressure unknowns with respect to LDN H.
Therefore, if we apply a projection method to approximate the solution of LDN H, it results in a more
expensive algorithm, from the computational point of view, than for LDN Hy. Hence, a fair comparison of
both models from the computational point of view is beyond the scope of this paper.

Nevertheless, it is worth mentioning that this paper was aimed to analyse and propose a projection
technique as a starting point for designing efficient and robust numerical methods of high-order for mul-
tilayer non-hydrostatic systems. As further research, it will be interesting to investigate the development
of other numerical strategies for the LDN H; model and compare it with the one proposed here. For
example, it may be of interest to consider relaxation techniques or rapid numerical methods and pseudo-
compressibility approximations, as the ones proposed for one-layer dispersive shallow models in [19], [23]
and [5], respectively.
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