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Abstract. Human subsurface activities induce significant
hazard by (re-)activating slip on faults, which are ubiquitous
in geological reservoirs. Laboratory and field (decametric-
scale) fluid injection experiments provide insights into the re-
sponse of faults subjected to fluid pressure perturbations, but
assessing the long-term stability of fault slip remains chal-
lenging. Numerical models offer means to investigate a range
of fluid injection scenarios and fault zone complexities and
require frictional parameters (and their uncertainties) con-
strained by experiments as an input. In this contribution, we
propose a robust approach to extract relevant microphysical
parameters that govern the deformation behaviour of labora-
tory samples. We apply this Bayesian approach to the fluid
injection experiment of Cappa et al. (2019) and examine
the uncertainties and trade-offs between parameters. We then
continue to analyse the field injection experiment reported by
Cappa et al. (2019), from which we conclude that the fault-
normal displacement is much larger than expected from the
adopted microphysical model (the Chen—Niemeijer—Spiers
model), indicating that fault structure and poro-elastic effects
dominate the observed signal. This demonstrates the impor-
tance of using a microphysical model with physically mean-
ingful constitutive parameters, as it clearly delineates scenar-
ios where additional mechanisms need to be considered.

1 Introduction

Induced seismicity is of primary concern in human sub-
surface activities, including geothermal energy production,
wastewater and CO, injection, and hydrocarbon extrac-

tion (Ellsworth, 2013). Seismicity triggered around injection
sites is generally attributed to elevated pore fluid pressures,
which lower the clamping stress that keeps the fault locked
(Elsworth et al., 2016). Additionally, recent field injection
tests at a decametric scale reveal the importance of aseismic
creep in driving seismicity (Duboeuf et al., 2017), and long-
range poro-elastic effects and earthquake interactions have
been inferred to trigger seismicity well beyond the extent of
the stimulated region (Catalli et al., 2016; Goebel and Brod-
sky, 2018; Schoenball and Ellsworth, 2017). To better assess
the earthquake hazard associated with the injection and ex-
traction of geo-fluids, potential mechanisms underlying the
nucleation of induced seismic events need to be identified.
Laboratory experiments provide the means to investigate
the mechanisms for (unstable) fault slip at high resolution
under well-controlled conditions (e.g. Kaproth et al., 2016;
Scuderi et al., 2016, 2017; Tenthorey et al., 2003). Many
laboratory studies report their results in terms of rate-and-
state friction (RSF; Dieterich, 1979; Ruina, 1983) param-
eters, which may serve as input for numerical modelling
studies (Cubas et al., 2015; Kroll et al., 2017; McClure and
Horne, 2011; Noda et al., 2017). Unfortunately, it is well-
established that the RSF parameters depend on a plethora of
thermodynamic conditions (Blanpied et al., 1998; Boulton
et al., 2019; Chester, 1994; He et al., 2016; Hunfeld et al.,
2017), including fluid pressure (Cappa et al., 2019; Sawai
et al., 2016; Scuderi et al., 2016), which needs to be ac-
counted for when attempting to extrapolate laboratory mea-
surements to nature through RSF-based numerical models.
The relationships between RSF parameters and observable
quantities (such as porosity, grain size, or fluid chemistry) are

Published by Copernicus Publications on behalf of the European Geosciences Union.



2246

not well understood, and so great care must be taken when
generalising laboratory results to natural systems.

As an alternative approach, decametric-scale fluid injec-
tion tests allow one to probe the response of a tectonic fault to
fluid pressure perturbations under in situ conditions (Derode
et al., 2015; Duboeuf et al., 2017; Guglielmi et al., 2015;
Rivet et al., 2016). While these tests provide more direct in-
sights into the (potentially seismic) behaviour of the fault,
they are also more complicated to interpret owing to the com-
plexity inherent to natural faults. Generalisation of the re-
sults and extrapolation to other fault or reservoir conditions
is therefore challenging. Moreover, fluid injection rates and
volumes are limited by regulatory restrictions, which inhibits
a comparison with systems characterised by larger injection
volumes and rates. Numerical models remain essential to in-
vestigate faults in this context (e.g. Dempsey and Riffault,
2019; Rutqvist et al., 2007; Wynants-Morel et al., 2020),
which in turn rely on constraints offered by laboratory ex-
periments.

In the present study, we reinterpret the laboratory and
decametric-scale fluid injection experiments reported by
Cappa et al. (2019) in the framework of the Chen—Niemeijer—
Spiers (CNS) microphysical model (Chen and Spiers, 2016;
Niemeijer and Spiers, 2007). To this end, we propose a robust
approach for the extraction of the CNS microphysical param-
eters from laboratory or field observations based on the rela-
tion between fault dilatancy and shear slip and the temporal
evolution of the slip rate. In this Bayesian approach, we ex-
amine the uncertainties associated with each parameter, and
the trade-offs between parameters, which are both important
for choosing suitable parameter ranges for numerical mod-
elling efforts. Lastly, we discuss the limitations of and per-
spectives offered by the adopted microphysical model in the
context of induced seismicity modelling.

2 Methods
2.1 The Chen—Niemeijer—Spiers model

To describe the observed laboratory observations of Cappa
et al. (2019) in terms of micro-physical quantities, we
adopt the Chen—Niemeijer—Spiers (CNS) model proposed
by Niemeijer and Spiers (2007) and extended by Chen and
Spiers (2016). In the following section, we briefly summarise
the basic mechanics of this microphysical model and the nu-
merical implementation adopted in this study. For a detailed
derivation and discussion of this model, we refer to the orig-
inal works of Niemeijer and Spiers (2007) and Chen and
Spiers (2016) (see also Verberne et al., 2020, this special is-
sue).

Firstly, the CNS model considers a representative elemen-
tary volume of fault gouge of thickness L and porosity ¢,
which is subjected to an effective normal stress o, (i.e. to-
tal normal stress minus the fluid pressure) and shear stress 7.
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In response to this state of stress, the gouge deforms inter-
nally through parallel operation of dilatant granular flow and
one or more non-dilatant creep mechanisms. The timescales
considered in the present study are too short (of the order
of seconds to minutes) to justify a detailed consideration of
the non-dilatant creep component, and hence we focus purely
on the granular flow component. As will be shown later, this
simplification is well-warranted by the laboratory observa-
tions. In line with this assumption, the shear and volumetric
deformation of the fault gouge can be described as

dé .

E =V = Lygh (la)
do . .
a:—(1—qb)ggr:tanlp(l—q&)ygr. (1b)

Here, V denotes the rate of slip on the fault § and y,; and &g,
are the shear and volumetric strain rate of granular flow, re-
spectively (compression defined positive). We consider only
fault-normal volumetric strains (i.e. no fault-parallel expan-
sion/contraction). The amount of volumetric deformation as-
sociated with an increment of shear strain is described by the
dilatancy angle tan, i.e. degr = —tanydy,y, and is given by
(Niemeijer and Spiers, 2007)

tanyy =2H (¢ — @), 2

where H is a geometric constant of order 1 and ¢, is referred
to as the “critical-state” porosity, i.e. the maximum attainable
porosity of the gouge. The parameter H represents how much
dilatancy is involved when grains are sliding past one another
and is likely affected by grain shape, angularity, and size dis-
tribution. Based on a first-order geometric analysis, Niemei-
jer and Spiers (2007) estimated that the maximum dilatancy
angle at zero porosity is tany = +/3, which puts an upper
bound on H < +/3/2¢.. Likewise, the critical-state porosity
¢, is likely not a universal constant. Nonetheless, in the ab-
sence of tight theoretical constraints on H and ¢, we treat
these quantities as constant parameters.

The rate of granular flow is itself a function of stress and
porosity and can be written as (Chen and Spiers, 2016)

1—p*tanyr | —oe | 1™ n
e = y‘g’;exp(f[ irany ) —oe [t ‘/’]>. 3
aloe + ttany/]
The reference grain boundary friction coefficient ii* corre-
sponds with a shear strain rate )}g*r, and a is a proportionality
constant for the logarithmic velocity dependence of the grain
boundary friction i, given by

ﬁ:ﬁ*+&ln<%>. )
gr

We highlight that y,, is exponentially sensitive to the fluid
pressure p through the effective stress o, = o — p, and so the
CNS model predicts an acceleration of V upon an increase
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in the fluid pressure. Moreover, the experiments analysed in
this study are conducted at constant shear stress, so that a
force balance (which typically takes the place of Eq. 1a) is
not required.

In the present study, we treat the laboratory sample as a
single degree-of-freedom (spring block) system, with uni-
form porosity and an internal state of stress. This implies that
the fluid pressure is considered to be uniform and constant
throughout the sample, with no coupling between volumet-
ric deformation and fluid pressure. This assumption is valid
for samples with sufficiently high permeability, such that the
characteristic timescale of fluid diffusion is smaller than the
timescale of deformation. In other words, the sample is as-
sumed to be in equilibrium with the externally applied fluid
pressure (‘“drained”) at all times. In the laboratory experi-
ments of Cappa et al. (2019), the gouge permeability was
estimated to be above the intrinsic permeability of the ap-
paratus (10™'%m?), so the sample can be considered to be
drained. For low-permeability gouges, such as shales (Scud-
eri and Collettini, 2018), coupling between volumetric defor-
mation and fluid pressure needs to be considered (e.g. Segall
and Rice, 1995).

2.2 Microphysical parameter inversion procedure

In the simplified CNS framework laid out above, the dynam-
ics of the system are fully governed by L, H, ¢., a, and
* (which simultaneously constrains ))g*r), for a given state
of stress and initial porosity. In principle, the forward model
given by Eqs. (1a) and (1b) can be solved iteratively and used
to invert laboratory measurements for these constitutive pa-
rameters. However, owing to the exponential sensitivity of V
to ¢ through yg,, such inversion procedure is unstable and
ill-posed. As an alternative, we propose a two-step inversion
procedure that robustly constrains the constitutive parame-
ters. Firstly, we rewrite Eq. (1b) as

2H
dp = —— (¢ —#) (1 —¢)ds, ®

where dé = Vdt is an increment of slip across the fault.
While we recognise that L varies with ¢, integration of
Eq. (5) does not yield an analytical solution when taking
L = f(¢). Fortunately, as will be shown later, we find that
the inferred variations in L are of the order of 10 %-20 %
of the absolute value of L, warranting a first-order approx-
imation of a constant value of L. By integrating the above
relation from the initial porosity ¢ up to ¢ (cf. van den Ende
etal., 2018) and recognising that AL /L = (¢ — ) / (1 — ¢)
(for L =~ L), we obtain an expression for the dilatancy AL
as a function of slip §:

AL _de=¢o |, _ ol amln_
- = s [1 exp( ZHL[I d)c])]. (6)

This expression already provides sufficient means to con-
strain the constitutive parameters L, H, ¢, and the initial
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condition ¢o without numerically solving the full forward
model given by Egs. (1a) and (1b). The second step of the
inversion involves constraining the remaining parameters a
and * by comparing Eq. (1a) with the laboratory measured
slip rate. Since the slip rate can span orders of magnitude, we
perform the inversion in terms of In ())gr) (and correspond-
ingly In (V) measured during the experiment), which renders
a more stable inversion task.

Since the proposed inversion protocol does not involve
numerically solving a forward model, a single evaluation
of either Eqgs. (6) or (3) yields a sample of the poste-
rior distribution, hence permitting extensive random sam-
pling. To inspect the trade-offs between parameter val-
ues and their uncertainties, we cast the protocol above
in a Bayesian inversion procedure, in which we estimate
the posterior distributions P (m = {L, H, ¢o, ¢} |5, AL) and
P(a,pn*|8,V,0e,t,m) separately. We assume a uniform
prior distribution over a bounded range of admissible param-
eter values, and a Gaussian likelihood with an unknown data
variance v that is simply treated as a nuisance parameter and
co-inverted. The posterior distributions are sampled using an
affine invariant Markov chain Monte Carlo ensemble sam-
pler as implemented in the Python emcee package (Foreman-
Mackey et al., 2013). While it is also possible to estimate the
posterior distributions from numerically solving the forward
problem, each forward model evaluation from # = 0 up to the
point where V > 1 mms~! takes several tens of seconds on
a single CPU. The practical reason for this is that the fault is
critically stressed and hence requires small time step evalua-
tions to ensure sufficient numerical accuracy and stability.

3 Analysis of fluid injection tests of Cappa et al. (2019)
3.1 Laboratory experiment

We apply the above procedure to the laboratory fluid in-
jection experiment performed by Cappa et al. (2019) — see
Fig. 1. In this experiment, a carbonate gouge sample was
subjected to a constant shear stress of 7 = 1.2 MPa and a to-
tal normal stress of 0 =5 MPa. The fluid pressure was in-
creased step-wise every 150s with steps of 0.5 MPa, until
the sample “failed” macroscopically at a fluid pressure of
p = 3.5MPa. Prior to the final stage of pressurisation, only
negligible amounts of slip were measured, and hence we fo-
cus our inversion efforts on the final stage of the experiment
in which the sample measurably accelerated. Additionally,
through the stage of fluid injection, no gouge compaction was
measured, supporting our assumption made prior to Egs. (1a)
and (1b) that the time-dependent creep rate is negligible com-
pared to the rate of granular flow.

We first fit Eq. (6) to the measured dilatancy as a func-
tion of slip. Since the data are sampled uniformly in time
but not in slip (as the sample deformation is accelerating),
we interpolate the slip data to assign uniform weight to each

Solid Earth, 11, 2245-2256, 2020
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Figure 1. Overview of laboratory measurements of Cappa et al. (2019). The fault slip and dilatancy recorded over the full creep stage of the
experiment are shown in (a) and (c), respectively, along with the fluid pressure for reference. The final stage of the experiment (grey-shaded
area of a and c¢) is enlarged in (b) and (d).
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Figure 2. Lower triangle (blue graphs and those below them): corner plot of the posterior distributions of the inverted parameters L, H, ¢,

and ¢ (marginalised over the nuisance parameter v2) for the laboratory injection experiment. The main diagonal panels show the posterior

probability density distribution of each parameter, whereas the off-diagonal panels show the co-variance of posterior samples. The black

dashed lines in the distribution plots (main diagonal) indicate the median value. Upper triangle (green graphs and the one above them):

corner plot of the posterior distributions of A and B (see main text).
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measurement during the inversion. The bounds on the prior
distribution are given by 10 < L < 100um, 0.1 < H < 1,
0.1 <¢p < ¢, and 0.2 < ¢, < 0.4. The resulting posterior
distributions are presented in a corner plot (Fig. 2), show-
ing appreciable trade-offs between L and H and between ¢q
and ¢.. Nonetheless, the parameters L and H are reasonably
well resolved as L = 64.3£8.9 um and H = 0.45+0.06 (me-
dian & 1 SD). And while ¢ and ¢ trade off almost perfectly
and hence span a near-uniform distribution over the permit-
ted parameter range, their difference is well resolved as ¢, —
¢o = 0.09 £ 0.01. These parameter values are perfectly con-
sistent with previous studies (e.g. Chen and Spiers, 2016; van
den Ende et al., 2018). Although the inferred layer thickness
L is much less than the total thickness of the sample (initially
around 5 mm), one should keep in mind that deformation lo-
calises in a much narrower zone, so that the effective thick-
ness of the actively deforming region of the gouge is much
less than the total sample thickness. In similar experiments
conducted by Scuderi et al. (2017), the localised region was
observed to have a thickness of 10-20 um, which was in-
evitably affected by post-experiment compaction. Moreover,
the experiment was performed in a double-direct shear con-
figuration, so that the total thickness inferred here repre-
sents the thickness of localised regions on both sides of the
central forcing block. In other words, the total layer thick-
ness inferred from the post-mortem microstructural observa-
tions would be at least 20-40 um. Hence, our inferred es-
timate of 64 um seems appropriate for an actively deform-
ing localised gouge layer. Niemeijer and Spiers (2007) de-
rived a theoretical lower bound on H > +/3/2¢. 2 0.96 for
a dense 2D packing of hexagonal grains. Since the third di-
mension plays an important role in strain accommodation
within granular media (Frye and Marone, 2002; Hazzard
and Mair, 2003), we expect this lower bound to be lower
in a 3D system with more degrees of freedom. Upon in-
spection of Eq. (6), we can formulate the mapping between
layer thickness and slip as AL =A [1 —exp (—236)] and
infer A=L(¢pc—¢0)/(1—¢;) and B=H (1 —¢.)/L as
lumped parameters (upper triangle of Fig. 2). Since A and
B are the only parameters directly constrained by the data,
the original four parameters depend on them and show strong
trade-offs.

We continue by fitting the (logarithm of) measured slip
rate based on Eq. (3), using the parameter values inferred
in the previous step to compute the time evolution of tan1).
Without loss of generality, we define ))g*r =1ums~! L7, so0
that i* represents the grain boundary friction coefficient at
a slip rate of V = 1ums~!. Since ¢ and ¢, individually are
ambiguous, we take ¢9 = 0.25 and increment this value by
the inverted ¢. — ¢ to obtain ¢. = 0.34. The slip rate param-
eters are extremely well resolved (see Fig. 3), and found to be
d = (10.26+0.15) x 1072 and i* = 0.6852=0.00028, with
minimal trade-off between the two parameters. With these
parameters, the fit to the slip rate data is excellent (Fig. 4b).
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Figure 3. Panel (b) of the posterior distributions of the inverted pa-
rameters a and {1 (marginalised over the nuisance parameter v2) for
the laboratory injection experiment. Panels (a) and (¢) show the pos-
terior probability density distribution of each parameter, whereas
(b) shows the co-variance of posterior samples. The black dashed
lines in the distribution plots (a, ¢) indicate the median value.

Finally, for verification, we numerically solve the forward
model given by Egs. (1a) and (1b) with the parameters ob-
tained in the inversion procedure (Fig. 4c and d). While we
obtain an excellent fit with the observed time evolution of
slip and dilatancy, we also find that the forward model is ex-
tremely sensitive to the initial condition ¢y. While the overall
features of the simulated sample response are similar, the ex-
ponential sensitivity to porosity leads to critical behaviour
and strong variations in the timing of the sample failure.
Since the rate of increase in porosity is proportional to the
shear strain rate, which in turn is an exponential function of
porosity (refer to Eqgs. 1b and 3), the positive feedback loop
leads to an extremely rapidly diverging state. This is high-
lighted in Fig. 4c and d, where we vary the initial porosity
between 0.2491 and 0.2514 (—1.5% and +1 % around the
reference value of 0.25). The initial condition that gives the
best match in terms of the onset of accelerated slip is close
to the initially chosen value of ¢y = 0.25, although we as-
sign no significance to tiny deviations in the initial porosity.
In a laboratory setting, the sensitivity of the modelled slip
rate falls well within the measurement resolution of the sam-
ple porosity (typically of the order of several percent of units
of porosity), so verification of this sensitivity would be chal-
lenging.

Solid Earth, 11, 2245-2256, 2020
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Figure 4. Results of the inversion procedure. (a) Dilatancy versus slip, with the inversion curve given by Eq. (6); (b) slip rate versus time,
with the inversion curve given by Eq. (1a); (¢, d) forward model results of slip and dilatancy for a (narrow) range of initial porosity ¢q (as
indicated in the legend). The reference value of ¢ is obtained from the inversion of Eq. (6).

3.2 Field experiment

Encouraged by the results of the proposed inversion method
for the laboratory experiment, we continue to apply the same
procedure to the field injection test of Cappa et al. (2019).
Like in the laboratory experiment, the in situ pressurisation
of a tectonic fault triggered accelerating slip and, associated
with it, fault opening (dilatancy) — see Fig. 5a. While the ac-
celeration of shear and normal displacement on the fault was
more gradual than in the laboratory experiment, a phase of
rapidly accelerating slip at # > 800 s can be clearly seen. The
amount of dilatancy measured as a function of slip (Fig. 5b)
was proportionally more than in the laboratory experiment
by at least 1 order of magnitude, so we expect a priori that
the frictional parameters inferred from the laboratory can-
not immediately describe the behaviour of the fault in situ.
Indeed, when we perform the inversion of the dilatancy-slip
data from the field experiment, we find median values of L =
49+£1.0mm, H=13.0%£2.5, and ¢ — o = 0.082 £0.016
(Fig. 6).

Solid Earth, 11, 2245-2256, 2020

While these other values seem entirely reasonable, the in-
ferred value of H is well above the estimated upper bound
of v/3/2¢ ~2.9. This suggests that the CNS model is un-
able to explain the relationship between fault slip and fault
opening in this experiment. In the CNS model, dilatancy is
envisioned to originate from grain sliding and rolling, neigh-
bour swapping, and “jostling”, which requires a volume in-
crease of the gouge to accommodate. However, the model
fault itself is mathematically planar, and so no dilatancy oc-
curs due to geometric constraints. In the case of a macro-
scopically non-planar fault geometry (as is inevitable for tec-
tonic faults; Candela et al., 2012), additional dilatancy (with
associated permeability changes) at the onset of slip is nec-
essary. Moreover, poro-elastic effects (elastic fault opening)
due to fluid pressure changes are not considered here. The in-
ability of the CNS model to describe the fault opening with
a reasonable choice of parameters is therefore not a short-
coming of the CNS model (which describes the mechanics
of a small representative volume element), but is rather due
to an incomplete coupling with processes that transcend the

https://doi.org/10.5194/se-11-2245-2020
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Figure 5. (a) Measurements of fault shear and normal displacement and fluid pressure during the field injection test of Cappa et al. (2019);
(b) inversion of the dilatancy measured during the field injection experiment. To produce a reasonable fit to the data, an unrealistically high

value of the dilatancy parameter H = 6.4 was required.
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Figure 6. Corner plot of the posterior distributions of the inverted parameters L, H, ¢, and ¢ (marginalised over the nuisance parameter )
for the field injection experiment. The main diagonal panels show the posterior probability density distribution of each parameter, whereas

the off-diagonal panels show the co-variance of posterior samples.

scale envisioned by the CNS model. For simple, spatially
uniform relationships between geometric fault opening and
fault slip, this first-order contribution to the fault dilatation
may be incorporated into Eq. (1b). However, for more realis-
tic (i.e. spatially heterogeneous) fault opening, a multi-scale
numerical extension of the adopted model is required.

Since the CNS model fault strength (and therefore the fault
slip rate) is directly controlled by the dilatancy parameter
H, it is unwarranted to attempt to infer a and ii* based on

https://doi.org/10.5194/se-11-2245-2020

the parameters inferred from the dilatancy. While this may
seem like a severe limitation of the CNS model, it actually
serves as an important indication of the applicability of the
model, and the validity of its parameters, when attempting to
extrapolate to nature. Moreover, the basic mechanics of the
CNS model are still expected to govern the strength and slip
rate of the fault, even though part of the model predictions
(the dilatancy) cannot be constrained by independent mea-
surements. By numerically solving the forward model, the
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fault slip as a function of time and fluid pressure may be re-
produced within a reasonable range of parameter values, for
which the predicted fault opening would likely be much less
than measured by Cappa et al. (2019).

4 Discussion

4.1 Comparison with rate-and-state friction

Traditionally, laboratory experiments are interpreted within
the framework of rate-and-state friction (RSF), commonly
presented as (Dieterich, 1979; Ruina, 1983)

(V,0) =u*+aln 4 +bln T (7a)
pAVE =1 Vv A
l Ve 3 M 1 29
a0 -, ageing law
=1 Vo' (ve : (7b)
dr N H th]
——1In (—) ,  “slip law
D. '\ D.

where w(V,0) is the macroscopic friction coefficient at slip
rate V and “state” 6, u* is a reference friction coefficient at
sliprate V*, and a, b, and D, are empirical constants. As has
been shown by Chen et al. (2017), the CNS model is asymp-
totically identical to RSF for small departures from steady
state, for which the CNS equivalents of the RSF parame-
ters a, b, and D, can be treated as constants. For large de-
partures from steady state, the behaviours predicted by CNS
and RSF diverge, as the aforementioned parameters can no
longer be considered to be constant (van den Ende et al.,
2018). Nonetheless, because of their similarity, the limita-
tions of the CNS model also apply to rate-and-state friction.
One advantage of using the CNS microphysical model over
traditional RSF, is that the governing parameters have a more
physically meaningful interpretation. Even though numerous
studies have attempted to elucidate the physical origin of
RSF (Aharonov and Scholz, 2018; Brechet and Estrin, 1994;
Ikari et al., 2016; Putelat et al., 2011), in practice these theo-
retical constraints are not considered. Instead, it is more con-
venient to constrain the RSF parameters empirically through
laboratory velocity-step experiments (Blanpied et al., 1998;
Carpenter et al., 2016; Chester, 1994; Hunfeld et al., 2017,
Reinen and Weeks, 1993). With these laboratory measure-
ments of the RSF parameters, fault slip observed during
decametric-scale fluid injection tests can be accurately mod-
elled (Cappa et al., 2019), although the same behaviour can
be obtained for a wide range of parameter values: in the study
of Cappa et al. (2019) a similar fit to the data was obtained for
velocity-weakening ((a — b) < 0) and velocity-strengthening
((a — b) > 0) friction, even though seismic slip can only be
produced in the former case of velocity-weakening friction.
Hence, more observational constraints are required to distin-
guish between the different types of behaviour.

Aside from the fault-parallel slip, the fault opening poten-
tially provides a second prominent constraint. In the classi-
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cal RSF framework, volumetric deformation is not explic-
itly accounted for. Traditionally, the state parameter 6 has
been interpreted as encoding the average lifetime of asper-
ity contacts (at steady state) or the relative area of asperity
contacts (Dieterich, 1994; Scholz, 2019), both of which do
not entail volumetric deformation of the fault gouge. Empiri-
cal relations between the state parameter 6 and porosity have
also been proposed (Segall and Rice, 1995; Sleep, 2005) and
used in hydro-mechanical modelling (Jeanne et al., 2018),
but these relations are typically not employed as additional
constraints of the RSF constitutive parameters. Moreover, re-
lations between the steady-state coefficient of friction (and its
velocity dependence) have been established based on energy
balance considerations (Beeler et al., 1996; Marone et al.,
1990). Since these relations pertain to the steady-state coeffi-
cient of friction, they do not apply to non-steady-state condi-
tions (for which dV /dr # 0 and d¢/d¢ # 0) and do not offer
additional insight on the relationship between 6 and ¢. On
the other hand, volumetric deformation is an integral part of
the CNS model, hence allowing (and requiring) us to incor-
porate these measurements to arrive at a better constrained
set of parameters.

4.2 Relationships between experiments and nature

While the CNS microphysical parameters can be directly es-
timated from laboratory experiments, their incorporation into
numerical models of tectonic faults may be subject to moder-
ation based on geological or physical considerations. In lab-
oratory experiments conducted at room ambient conditions
and comparatively high deformation rates (of the order of
micrometres per second up to millimetres per second), the
gouge porosity remains close to the critical-state porosity.
Likewise, in the laboratory experiment of Cappa et al. (2019),
the initial porosity was estimated to be less than 0.1 units
of porosity below the critical-state porosity. Given longer
timescales and higher temperatures, compaction induced by
one or more time-dependent creep mechanisms (such as pres-
sure solution creep or subcritical crack growth) would grad-
ually reduce the porosity of the gouge, thereby increasing its
strength and critical fluid pressure at which the fault slip rates
become appreciable. In numerical simulations of fault slip,
the initial state of a tectonic fault is likely not the same as
for the laboratory fault. Fortunately, this initial state could be
estimated from microstructural analyses of drill cores. More-
over, the choice of the initial state of the fault does not affect
any of the other frictional parameters of the CNS model. This
is in contrast to rate-and-state friction, where the initial value
of the state parameter (6 at t = 0) should also affect the mag-
nitude of b, which has been found to increase with decreasing
porosity (or increasing 8; Chen et al., 2015, 2017).

The property that b (or more precisely: b/ D.) is sensitive
to the gouge porosity can also be derived from stability anal-
ysis of the CNS model. Consider the general criterion for
unstable slip of a spring block:
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dr 1 /ot do
aV dt

ot dV
— = (=t <K, @®)
ds V \d¢ dt
where K is the shear stiffness of the fault. For an instanta-
neous step change in velocity, dV /dt =0 for t > 0. Assum-
ing that unstable slip is governed by the onset of granular
flow, the shear strength is given by the CNS model as (Chen
and Spiers, 2016)

(L + tan
AL ©)
1— fitanyr
Hence, using Eq. (1b), the stability criterion can be expressed
in terms of microstructural quantities as (van den Ende et al.,
2018)

14 2 Oe

K <2H( - —_—
=2H( ¢)tan¢(1_'atanw)2 3

(10)
In the vicinity of steady state, the above statement should be
identical to the stability criterion derived from rate-and-state
friction, i.e. (Rubin and Ampuero, 2005)

K§Kb=D. (11
C

Here, K}, is a critical stiffness value that facilitates accel-
eration of slip (seismic or aseismic). From the comparison
of the two inequalities, it can be concluded that the Ky
therefore must increase with decreasing porosity. This was
also observed in the discrete element model simulations of
van den Ende and Niemeijer (2018), which were conducted
completely independently of the assumptions and limitations
of the CNS model. We note that the comparison between
Egs. (10) and (11) only holds in the vicinity of steady state.
Nonetheless, Eq. (10) can be used to describe the stability
of fault slip far from steady state, circumventing the issue
of the velocity and state dependence of a, b, and D, (as ob-
served by Cappa et al., 2019; den Hartog and Spiers, 2013;
Reinen et al., 1992; Takahashi et al., 2017, and many others).
For a more detailed analysis of the frictional stability of a
model fault governed by the CNS model, we refer to Chen
and Niemeijer (2017).

Combining now the observations made in Sect. 3 with the
discussion above, we propose that the seismogenic potential
of faults subjected to fluid pressure perturbations is best de-
scribed in terms of the dilatant behaviour of the fault and its
initial degree of compaction. One can infer the microphysi-
cal parameters H, ¢, a, and i* from laboratory experiments,
and assume reasonable in situ values of ¢ and L for the tec-
tonic fault to simulate its response to a changing stress field
(fluid pressure). If permitted by the numerical method, fault
non-planarity, permeability changes, and elastic moduli re-
duction may be introduced to add further complexity, as an-
ticipated based on the results of Sect. 3.2. In this way, the ev-
ident pressure and velocity dependence of the rate-and-state
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friction parameters can directly be accounted for in a self-
consistent and transparent manner and the model outcomes
interpreted in terms of physical observables.

5 Conclusions

In this work, we analysed the fluid injection experiments con-
ducted by Cappa et al. (2019) in the laboratory and in situ,
in terms of the Chen—Niemeijer—Spiers (CNS) microphysi-
cal model. We proposed a Bayesian inversion approach to
extract the governing parameters without the need for nu-
merically solving the forward problem, while elucidating the
uncertainties and trade-offs between the model parameters.
We showed that while the localised gouge layer thickness
L and the dilatancy parameter H can be well resolved, the
initial and critical-state porosities trade off perfectly, so that
only their difference ¢. — ¢ can be resolved in the exper-
iments. When numerically solving the forward model with
the inferred parameter values, we obtained almost perfect
agreement with the measurements, indicating that the CNS
model accurately describes fault deformation in response to
a fluid pressure perturbation. When the same inversion ap-
proach was applied to a decametric-scale field injection ex-
periment, we found that the inferred parameters fell outside
of the feasible range of values, highlighting the relevance of
other mechanisms, such as fault structure and poro-elastic ef-
fects, in this scenario.

The excellent agreement between the CNS model and the
laboratory data allows us to interpret the dynamics of the
fault in terms of volumetric deformation (porosity changes).
By doing so, we circumvent the velocity dependence of the
rate-and-state friction parameters a, b, and D., which in-
creases the predictive power of numerical models of natural
faults. Adopting the CNS model expedites the extrapolation
of laboratory results to nature and permits better assessment
of the applicability of the model and accuracy of the param-
eter values.

Code and data availability. A Python script that reproduces the re-
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