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Introduction

The very last decade has seen the birth of a true research outburst on so-called mechanical metamaterials which are able to show exotic mechanical properties both in the static and dynamic regime. Theoretical, experimental and numerical studies have flourished all around the world providing new insights in the domain of materials' properties manipulation which, only few years ago, was thought far from being prone to possible ground-breaking evolutions. We are today seeing the conception and subsequent realization of new materials which, simply thanks to their internal architecture, go beyond the materials' properties that we are used to know and which, for this reason, are called metamaterials. It is thus possible today to see 3D-printed pyramids connected by hinges giving rise to a block that is hard like a brick on one side but soft like a sponge on the other [START_REF] Bilal | Intrinsically polar elastic metamaterials[END_REF], "unfeelability" cloaks hiding to the touch objects put below them [START_REF] Kadic | Pentamode metamaterials with independently tailored bulk modulus and mass density[END_REF][START_REF] Milton | Which elasticity tensors are realizable[END_REF], plastic cubes made out of smaller plastic cubes giving rise to bizarre deformations when squeezed [START_REF] Coulais | Combinatorial design of textured mechanical metamaterials[END_REF], or even metamaterials exploiting microstructural instabilities to change their mechanical response depending on the level of externally applied load [START_REF] Kochmann | Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions[END_REF]. When considering the dynamical behaviour of mechanical metamaterials, things become even more impressive, given the unorthodox responses that such metamaterials can provide when coming in contact with elastic waves [START_REF] Deymier | Acoustic Metamaterials and Phononic Crystals[END_REF][START_REF] Hussein | Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook[END_REF]. It is today possible to find researchers designing metamaterials exhibiting band-gaps [START_REF] Bilal | Architected lattices for simultaneous broadband attenuation of airborne sound and mechanical vibrations in all directions[END_REF][START_REF] Celli | Bandgap widening by disorder in rainbow metamaterials[END_REF][START_REF] Liu | Locally resonant sonic materials[END_REF][START_REF] Wang | Harnessing buckling to design tunable locally resonant acoustic metamaterials[END_REF], cloaking [START_REF] Bückmann | Mechanical cloak design by direct lattice transformation[END_REF][START_REF] Misseroni | Cymatics for the cloaking of flexural vibrations in a structured plate[END_REF], focusing [START_REF] Cummer | Controlling sound with acoustic metamaterials[END_REF][START_REF] Guenneau | Acoustic metamaterials for sound focusing and confinement[END_REF], channelling [START_REF] Bordiga | Prestress tuning of negative refraction and wave channeling from flexural sources[END_REF][START_REF] Kaina | Slow waves in locally resonant metamaterials line defect waveguides[END_REF][START_REF] Tallarico | Edge waves and localization in lattices containing tilted resonators[END_REF], negative refraction [START_REF] Bordiga | Prestress tuning of negative refraction and wave channeling from flexural sources[END_REF][START_REF] Willis | Negative refraction in a laminate[END_REF], etc., as soon as they interact with mechanical waves.

Notwithstanding this success on unveiling always new metamaterials' performances, their application is still drastically limited. This is because we lack models that can predict how metamaterials' properties are modified when different metamaterials' bricks are combined together and when they are combined to bricks of homogeneous materials. It is clear that we need to know what happens when these bricks are combined and which proprieties are enhanced, if we want to use metamaterials to build realistic devices for wave manipulation and control. The step from the conception of new metamaterials to their use in metastructural design cannot be realistically accomplished using direct Finite Element simulations accounting for all the details of the underlying microstructures. This would lead to unaffordable computational costs already for structures counting few dozens of unit cells. The awareness of this limitation triggered all the recent advances on dynamical homogenization methods [START_REF] Boutin | Large scale modulation of high frequency waves in periodic elastic composites[END_REF][START_REF] Chen | A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales[END_REF][START_REF] Craster | High-frequency homogenization for periodic media[END_REF][START_REF] Sridhar | A general multiscale framework for the emergent effective elastodynamics of metamaterials[END_REF][START_REF] Willis | Exact effective relations for dynamics of a laminated body[END_REF][START_REF] Willis | Effective constitutive relations for waves in composites and metamaterials[END_REF][START_REF] Willis | The construction of effective relations for waves in a composite[END_REF]. Such methods share the idea that a periodic infinite-size metamaterial can be replaced by a homogenized continuum, mimicking its response without accounting for all the microstructures' details. This leads to an important simplification of metamaterials' description at the macroscopic scale. Unfortunately, homogenization methods cannot describe the response of finite-size metamaterials because the "average operations", on which they are built, make strong use of projection functions (e.g., Bloch-Floquet ones) that are defined in unbounded domains.

In the recent past some of the authors suggested that the correct framework to deal with finitesize metamaterials modelling at the macroscopic scale is micromorphic continuum mechanics. In [START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF] the relaxed micromorphic model has been introduced and used to describe the dynamical behaviour of band-gap metamaterials. Optimized relaxed-micromorphic constitutive laws [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF] were then proposed to characterize realistic 1D metamaterials [START_REF] Madeo | Relaxed micromorphic modeling of the interface between a homogeneous solid and a band-gap metamaterial: New perspectives towards metastructural design[END_REF][START_REF] Madeo | First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF] and semi-analytical solutions for the frequency-dependent scattering of a relaxed micromorphic half-plane were found [START_REF] Aivaliotis | Microstructure-related stoneley waves and their effect on the scattering properties of a 2d cauchy/relaxed-micromorphic interface[END_REF], thus providing deeper understanding on the fundamental problem of establishing well-posed boundary conditions in micromorphic media. The relaxed micromorphic model was also calibrated to describe the average behaviour of certain infinite-size 2D metamaterials [START_REF] Barbagallo | Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures[END_REF][START_REF] Madeo | Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia[END_REF]. Finally, some of the authors investigated how boundary conditions should be introduced in micromorphic media to provide well-posed boundary value problems for 2D finite-size tetragonal metamaterials [START_REF] Aivaliotis | Microstructure-related stoneley waves and their effect on the scattering properties of a 2d cauchy/relaxed-micromorphic interface[END_REF][START_REF] Aivaliotis | Frequency-and angle-dependent scattering of a finite-sized meta-structure via the relaxed micromorphic model[END_REF][START_REF] Madeo | Relaxed micromorphic modeling of the interface between a homogeneous solid and a band-gap metamaterial: New perspectives towards metastructural design[END_REF]. Thanks to these preliminary works, it was established that the micromorphic modelling of finite-size metamaterials can indeed open new perspectives towards the conception and design of complex meta-structures that can control elastic waves and recover energy. To further demonstrate the effectiveness of the proposed micromorphic approach to design useful metamaterials' devices we focus in this paper to what is known as a mechanical diode, i.e., a device that allows elastic wave transmission when the wave propagates in one direction, while preventing it when considering the opposite direction of propagation.

In the literature, scientist are mainly focusing on trying to engineer the internal metamaterial's architecture following non-homogeneous patterns (see e.g. [START_REF] Baz | Active nonreciprocal acoustic metamaterials using a switching controller[END_REF][START_REF] Bennett | Acoustic diode metamaterial for sound absorption[END_REF][START_REF] Fu | High efficiency and broadband acoustic diodes[END_REF][START_REF] Gliozzi | Proof of concept of a frequency-preserving and time-invariant metamaterial-based nonlinear acoustic diode[END_REF][START_REF] Grinberg | Acoustic diode: Wave non-reciprocity in nonlinearly coupled waveguides[END_REF][START_REF] Li | Diode behavior and nonreciprocal transmission in nonlinear elastic wave metamaterial[END_REF][START_REF] Maznev | Reciprocity in reflection and transmission: What is a 'phonon diode[END_REF][START_REF] Parnell | Antiplane elastic wave cloaking using metamaterials, homogenization and hyperelasticity[END_REF][START_REF] Popa | Non-reciprocal and highly nonlinear active acoustic metamaterials[END_REF][START_REF] Wang | Broadband acoustic diode by using two structured impedancematched acoustic metasurfaces[END_REF][START_REF] Wei | Nonreciprocal transmission of nonlinear elastic wave metamaterials by incremental harmonic balance method[END_REF]) or non-elastic constitutive laws [START_REF] Nadkarni | Unidirectional transition waves in bistable lattices[END_REF] so as to create these diodes.

We show in the present paper that these desired properties can indeed be achieved by suitably embedding a metamaterial's slab between two homogeneous elastic half-spaces with different material properties.

Specifically, we suggest that the fact of combining a given metamaterial with classical homogeneous materials can drastically enhance the metamaterial's original properties. This opens the way to the conception of meta-structures with many extra possible functionalities with respect to those that could be possible by simply considering the metamaterial alone.

In this paper we present simple meta-structures that can act as protection tools if placed around an object (complete reflection if the incident wave comes from the exterior of the domain that we want to preserve) while they allow transmission when the incident wave comes from the protected environment itself.

This diode functions for a very wide range of small-medium frequencies, basically thanks to the difference in stiffness of the two homogeneous materials. For higher frequencies (compatible to the metamaterial's band gap) the structure's behaviour drastically changes and it prevents propagation of both waves coming from the interior and the exterior.

It is evident that the possibilities of realistic metamaterials' use in real meta-structures is multiplied by the fact of combining them with classical materials (and, in general, with other metamaterials) so as to create complex meta-structures.

For example, simpler meta-structures similar to those presented in this paper could be used as a basis to conceive a railway station that is protected from exterior seismic waves and that is able to control higher-frequencies waves caused by vibrations coming from the interior.

The present paper opens completely new perspective for the use of metamaterials in meta-structural design, even if the proposed relaxed micromorphic model will need considerable extension to provide broadband quantitative accuracy.

Notation

We recall here the notation that we will use throughout the paper. Let R 3×3 be the set of all real 3 × 3 second order tensors which we denote by capital letters. A simple and a double contraction between tensors of any suitable order is denoted by • and : respectively, while the scalar product of tensors of suitable order is denoted by •, • . 1 The Einstein sum convention is implied throughout this text unless otherwise specified. The standard Euclidean scalar product on R 3×3 is given by X, Y = tr(X • Y T ) and consequently the Frobenius tensor norm is X 2 = X, X . The identity tensor on R 3×3 will be denoted by 1; then, tr(X) = X, 1 . We denote by B L a bounded domain in R 3 , by δB L its regular boundary and by Σ any material surface embedded in B L . The outward unit normal to δB L will be denoted by ν as will the outward unit normal to a surface Σ embedded in B L . Given a field a defined on the surface Σ, we define the jump of a through the surface Σ as

a = a + -a -, with a -:= lim x∈B - L \Σ x→Σ a,
and a + := lim

x∈B + L \Σ x→Σ a, (1) 
where B - L , B + L are the two subdomains which result from splitting B L by the surface Σ. Classical gradient ∇ and divergence Div operators are used throughout the paper. 2 The subscript , j indicates derivation with respect to the j-th component of the space variable, while the subscript , t denotes derivation with respect to time. 3 Given a time interval [0, t 0 ], the classical macroscopic displacement field is denoted by u(x, t) ∈ R 3 , with x ∈ B L , t ∈ [0, t 0 ]. In the framework of enriched continuum models of the micromorphic type, extra degrees of freedom are added through the introduction of the non-symmetric micro-distortion tensor P denoted by

P (x, t) ∈ R 3×3 , with x ∈ B L , t ∈ [0, t 0 ].

Equilibrium equations, constitutive relations, and energy flux

In this section, we present a brief summary of the governing equations and energy conservation law describing the macroscopic mechanical behaviour of both Cauchy and relaxed micromorphic media. The classical Cauchy setting will be used to model the response of homogeneous materials, while the relaxed micromorphic model will be adopted to describe the metamaterial's response.

Isotropic Cauchy continuum

The equilibrium equations for the Cauchy continuum are

ρ u ,tt = Div [σ] , with σ = 2µ sym∇u + λ tr (sym∇u) 1 (2) 
where σ is the Cauchy stress tensor, λ and µ are the Lamé parameters and sym∇u is the strain tensor.

When dissipative phenomena can be neglected, the following flux equation must hold

E ,t + DivH = 0 , (3) 
where E is the total energy of the system and H is the energy flux vector, whose explicit expression is given by (see e.g. [START_REF] Aivaliotis | Low-and high-frequency stoneley waves, reflection and transmission at a cauchy/relaxed micromorphic interface[END_REF] for a detailed derivation)

H = -σ • u ,t . (4) 

Relaxed micromorphic continuum

The equilibrium equations for the relaxed micromorphic continuum are obtained by looking for stationary points of the following action functional

A = t0 0 B L (J -W ) dXdt (5) 1 For example, (A • v) i = A ij v j , (A • B) ik = A ij B jk , , (C • B) ijk = C ijp B pk , (C : B) i = C ijp B pj , v, w = v • w = v i w i , A, B = A ij B ij , etc.
2 The operators ∇, curl and Div are the classical gradient, curl and divergence operators. In symbols, for a field u of any order, (∇u) i = u ,i , for a vector field v, (curlv) i = ijk v k,j and for a field w of order k > 1, (Div w)

i 1 i 2 ...i k-1 = w i 1 i 2 ...i k ,i k .
3 Being reserved to the time variable, the index t is treated separately and does not comply with Einstein notation.

where J is the kinetic energy density and W is the strain energy density of the considered micromorphic continuum.

In particular, the expression of the kinetic energy density takes the form [START_REF] Agostino | Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model[END_REF][START_REF] Romano | Micromorphic continua: non-redundant formulations[END_REF] 

where u is the macroscopic displacement field, P ∈ R 3×3 is the non-symmetric micro-distortion tensor, ρ is the macroscopic apparent density, and J micro , J c , T e , T c are 4th order micro-inertia tensors whose form will be specified in the following subsection.

The expression of the strain energy density without curvature effects ( [START_REF] Agostino | Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model[END_REF][START_REF] Romano | Micromorphic continua: non-redundant formulations[END_REF]:

µ L 2 c 2 CurlP 2 = 0, L c = 0) is
W (∇u, P ) = 1 2 C e sym (∇u -P ) , sym (∇u -P ) + 1 2 C micro sym P, sym P + 1 2 C c skew (∇u -P ) , skew (∇u -P ) , (7) 
where C e , C micro , and C c are 4th order tensors whose characteristic will be given in Sec. 2.3. The minimization of the Action functional, eq. ( 5), while using eq. ( 6)-( 7) provides the following equilibrium equations

ρ u ,tt -Div ( σ ,tt ) = Div ( σ) , (J micro + J c ) P ,tt = σ -s, (8) 
where σ := T e sym∇u + T c skew∇u,

s := C micro sym P, σ := C e sym (∇u -P ) + C c skew (∇u -P ) . (9) 
The flux equation for the relaxed micromorphic continuum is formally the same as eq. ( 3), but H has now the following expression (see [START_REF] Aivaliotis | Relaxed micromorphic broadband scattering for finite-size meta-structures-a detailed development[END_REF] for more details):

H = -( σ + σ ,tt ) T • u ,t . (10) 

Particularization of the relaxed micromorphic model to plane strain and tetragonal symmetry

We now focus on finding solutions in a plane strain framework. This means that we constrain the displacement field u and the micro-distortion P to depend only on the first two components x 1 and x 2 of the space variable x:

u(x 1 , x 2 ) =   u 1 (x 1 , x 2 ) u 2 (x 1 , x 2 ) 0   , P (x 1 , x 2 ) =   P 11 (x 1 , x 2 ) P 12 (x 1 , x 2 ) 0 P 21 (x 1 , x 2 ) P 22 (x 1 , x 2 ) 0 0 0 0   . (11) 
The plane-strain hypothesis on the displacement field is retained also for Cauchy media. On the other hand, Cauchy media are considered to be isotropic thorough the paper. Given the metamaterial targeted in this paper (see Fig. 2), we particularise the equilibrium equations to the tetragonal case. This means that the elastic and micro inertia tensors appearing in eq. ( 6)-( 7) can be represented in the Voigt form as 

C e =      λ e +
• • µ * e      , C c =    • • . . . . . . • . . . 4µ c    , C micro =      λ micro + 2µ micro λ micro . . . • λ micro λ micro + 2µ micro . . . • . . . . . . . . . • • µ * micro      , (12) 
J micro = ρ      L 2 3 + 2L 2 1 L 2 3 . . . • L 2 3 L 2 3 + 2L 2 1 . . . • . . . . . . . . . • • • • L * 2 1      , J c = ρ    • • . . . . . . • . . . 4L 2 2    , T e = ρ       L 2 3 + 2L 2 1 L 2 3 . . . • L 2 3 L 2 3 + 2L 2 1 . . . • . . . . . . . . . • • L * 2 1       , T c = ρ    • • . . . . . . • . . . 4L 2 2    , (13) 
where only the coefficients involved in a plane strain problem are reported (the dots represent components acting on out-of plane variables and are not specified here).

In the definition (13) of the micro-inertia tensors appearing in the kinetic energy [START_REF] Baz | Active nonreciprocal acoustic metamaterials using a switching controller[END_REF], it is underlined the fact that they introduce dynamic internal lengths that can be directly related to the dispersion behaviour of the metamaterial at very small (in the limit vanishing) wavenumbers (J micro ,J c ), as well as at very large (in the limit infinite) wavenumbers (T e , T c ). As it can be seen in [START_REF] Aivaliotis | Low-and high-frequency stoneley waves, reflection and transmission at a cauchy/relaxed micromorphic interface[END_REF][START_REF] Aivaliotis | Microstructure-related stoneley waves and their effect on the scattering properties of a 2d cauchy/relaxed-micromorphic interface[END_REF][START_REF] Madeo | Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model[END_REF] there are two boundary conditions which can be imposed at a Cauchy/relaxed-micromorphic interface if the static characteristic length (L c ) is zero (our case here): the continuity of displacement and continuity of generalized traction.

In the considered 2D case, there are then eight sets of scalar conditions, four on each interface. The finite slab has width h and we assume that the two interfaces are positioned at x 1 = -h/2 and x 1 = h/2, respectively (see Fig. 1). The continuity of displacement conditions to be satisfied at the two interfaces of the slab are

u - c = u m on x 1 = - h 2 , u m = u + c on x 1 = h 2 , ( 14 
)
where u - c and u + c are the displacement of the "minus" (x 1 < 0) and "plus"(x 1 > 0) Cauchy half-space, respectively while u m is the displacement field in the relaxed micromorphic model slab. As for the continuity of generalized traction, we have

t - c = t m on x 1 = - h 2 , t m = t + c on x 1 = h 2 , (15) 
where t ± c = σ ± • ν ± are classical Cauchy tractions, t s = ( σ + σ ,tt ) • ν is the generalized traction in the relaxed micromorphic medium, with ν being the outward unit normal to the surface considered (see [START_REF] Aivaliotis | Frequency-and angle-dependent scattering of a finite-sized meta-structure via the relaxed micromorphic model[END_REF][START_REF] Agostino | Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model[END_REF] and eq. ( 9) for details about the definitions of generalized tractions).

Relaxed micromorphic modelling of a 2D tetragonal metamaterial for acoustic control

We briefly recall in this section how the relaxed micromorphic model can be used to model the broadband response of a tetragonal 2D metamaterial that was recently conceived for acoustic control [START_REF] Rizzi | Exploring metamaterials' structures through the relaxed micromorphic model: switching an acoustic screen into an acoustic absorber[END_REF]. The relaxed micromorphic model calibrated on this metamaterial will be used in the reminder of this paper to conceive a simple classical-material/metamaterial structure that works as a mechanical diode at lowmedium frequencies and as an acoustic screen in both propagation directions at higher frequencies.

To conceive our diodes, we consider here a particular metamaterial that we introduced in [START_REF] Rizzi | Exploring metamaterials' structures through the relaxed micromorphic model: switching an acoustic screen into an acoustic absorber[END_REF] for applications in acoustics. It is generated by periodic repetition in space of the unit cell whose elastic and geometric properties are shown in Fig. 2. We also briefly recall the values of the relaxed micromorphic parameters obtained in [START_REF] Rizzi | Exploring metamaterials' structures through the relaxed micromorphic model: switching an acoustic screen into an acoustic absorber[END_REF] (see Table 1) as the result of the dispersion curves fitting shown in Fig. 3. Table 1: Panel (a) shows the values of the relaxed micromorphic static and dynamic parameters for the metamaterial MM1 determined via the fitting procedure given in [START_REF] Aivaliotis | Frequency-and angle-dependent scattering of a finite-sized meta-structure via the relaxed micromorphic model[END_REF][START_REF] Agostino | Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model[END_REF]. The apparent density ρ is computed based on the titanium microstructure of Fig. 2. Panel (b) shows the values of the equivalent Cauchy continuum elastic coefficients corresponding to the long-wave limit of MM1 computed with the procedure explained in [START_REF] Neff | Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization[END_REF]. 

L 1 [m] L 2 [m] L 3 [m] L * 1 [m] 0.100 1.24908 × 10 -3 2.02572 × 10 -2 2.44985 × 10 -2 L 1 [m] L 2 [m] L 3 [m] L * 1 [m] 4.5639 × 10 -

Metastructure's refractive behaviour

In this section we will show how the relaxed micromorphic model can be suitably used to describe the reflective properties of a metamaterial's slab embedded between two different homogeneous materials (see Fig. 4). In particular, we start by showing the reflection coefficient for the meta-structure of Fig. 4 in the two cases for which the incident wave travels on one Cauchy material or in the other. To this aim, we report the elastic properties of the two used Cauchy materials CM1 and CM2 (see Table 2).

µ CM 1 [Pa] λ CM 1 [Pa] ρ CM 1 [kg/m 3 ]
1.32 × 10 10 -1.31 × 10 10 4400

(a) µ CM2 [Pa] λ CM2 [Pa] ρ CM2 [kg/m 3 ]
0.32 × 10 10 0.68 × 10 10 4400 The reflection coefficient of the considered meta-structure is derived using both the relaxed micromorphic model (by using the energy flux expression of eq.( 10)) and the full microstructured simulation (by using the well-known formulas of classical elasticity). More details about the explicit calculation of the reflection coefficient in both these cases can be found in [START_REF] Aivaliotis | Low-and high-frequency stoneley waves, reflection and transmission at a cauchy/relaxed micromorphic interface[END_REF][START_REF] Aivaliotis | Frequency-and angle-dependent scattering of a finite-sized meta-structure via the relaxed micromorphic model[END_REF]. Figures 5 and6 show that the relaxed micromorphic model describes well the refractive behaviour of the considered structures for frequencies up to the upper band-gap limit and for all the considered directions of propagation. Thanks to the reduced relaxed micromorphic model's structure we were able to test different variants of the meta-structure shown in Fig. 1 (changing the relative stiffness between the two Cauchy materials) and find the configurations shown in the present section. As it results clearly form Fig. 5, 6, 7, and 8, this meta-structure's configuration allows low-medium frequency transmission when both pressure and shear incident waves come from the side of the CM1, while transmission is almost completely prevented when a shear incident wave comes from the CM2 side. This meta-structure thus acts as a diode for shear-incident waves for a very wide range of frequencies and angles of incidence. In the reminder of this paper, we will show that this behaviour can be enhanced by simply acting on the relative stiffness of the two Cauchy materials, thus giving rise to diodes both for pressure and shear incident waves.

(b)
6 Optimization of the considered meta-structure: conception of an effective low-medium-frequency diode/high-frequency screen

µ CM3 [Pa] λ CM3 [Pa] ρ CM3 [kg/m 3 ]
5.52 × 10 10 -5.33 × 10 10 4400

(a) µ CM4 [Pa] λ CM4 [Pa] ρ CM4 [kg/m 3 ]
2.66 × 10 8 -2.57 × 10 8 4400

(b)
Table 3: Values of the Lamé constant for (a) the isotropic Cauchy material CM3 and (b) the isotropic Cauchy material CM4.

Thanks to the computational advantages given by the relaxed micromorphic model's reduced structure, we can efficiently explore a wide range of stiffnesses around the values given in Table 2 for the two Cauchy materials. This allowed us to find an optimized combination such that the structure acts as a diode for low-medium frequencies for both pressure and shear incident waves.

We will show at the end of this section that the diode's response is basically determined by the difference of stiffnesses between the two Cauchy materials. Using the elastic values given in Table 3, we show in Fig. 11 and Fig. 12 that the refractive behaviour of the considered meta-structure drastically changes if the incident wave comes from the side of the "softer" or the "stiffer" material, especially when considering the "shear" incident wave. 12, we can remark that in the low-medium frequency range the structure acts as an almost perfect diode in which both pressure and shear waves are able to travel if they come from the side of the "stiffer" Cauchy materials, while are completely blocked if they come from the side of the "softer" material.

As we already remarked, this diode behaviour is mainly due to the difference of stiffness of the two Cauchy materials given in Table 3. To clearly explain this claim, we show in Fig. 13 and Fig. 14 the behaviour of the considered meta-structure when we embed the metamaterial's slab between two layers of the Cauchy material CM3 of Table 3(a), or between two layers of the Cauchy material CM4 given in Table 3(b), respectively. It is clear that, when no difference of stiffness exist between the two homogeneous layers, then transmission occurs for any direction of the incident wave and for any angle of incidence as far as low-medium frequencies are considered (see Fig. 13 and Fig. 14 We finally show that, even if the diode-behaviour observed at low-medium frequencies is mainly driven by the relative stiffness of the two homogenous materials, the fact of having a metamaterial's slab in the middle of them drastically changes the meta-structure's medium-high frequency response.

To better explain this claim, we show in Fig. 15 and Fig. 16 the meta-structure's refractive behaviour, when the interior slab is modelled via a tetragonal Cauchy model, instead that via the relaxed micromorphic model. This tetragonal Cauchy material (see Table 1(b)) has macroscopic stiffnesses derived as the longwave limit of the relaxed micromorphic material presented in 1(a)). It is clear from Fig. 15 and Fig. 16 that, if the low-frequency diode response is well described, the medium-higher frequency response is not. This calls for the need of using the relaxed micromorphic model to well describe the meta-structure's behaviour for all the possible frequencies.

As a limit case, we also present in Fig. 17 and Fig. 18 the behaviour of a single interface separating two Cauchy materials CM3 and CM4 (no metamaterial's slab).

From Fig. 17 and Fig. 18, we can once again retrieve the fact that the diode behaviour is effectively driven by the relative stiffness of the two homogeneous layers, while the embedded metamaterial slab has little effect on that.

However, except for this driving effect on the diode behaviour, the structure's refractive response is completely different from that obtained in presence of the embedded metamaterial's slab.

By comparison with Fig. 11 and Fig. 12, we instead remark that the presence of the metamaterial's slab strongly influence the medium-high frequency behaviour, transforming the diode in an acoustic screen that reflects waves independently of the direction of the incident wave. This switch in the metastructures reflective properties is clearly driven by the metamaterial's band-gap. 

Conclusions

In this paper we show the importance of disposing of a reduced model to enable the effective use of metamaterials in meta-structural design. Indeed, the use of metamaterials for the conception of realistic structures is currently prevented by i) the computational impossibility of simulating the response of large-scale structures while coding all the microstructure's details and ii) the unsuitability of classical homogenization methods to deal with specimens of finite size (well-posed boundary conditions unavailable). We show here that an enriched continuum model of the micromorphic type (Relaxed Micromorphic Model) can be effectively used to model metamaterials' response, even for specimens of finite size. The reduced model's structure, coupled with the introduction of well-posed interface conditions allows us to unveil the response of meta-structures combining metamaterials and classical-materials bricks. In particular, we are able to conceive a simple metamaterial/classical-material structure that acts as a mechanical diode for low/medium frequencies and as a total screen for higher frequencies. This could have, for exam-ple, drastic applications for the conception of large-scale structures that are protected from seismic waves coming from the exterior and that control vibrations coming from the interior. While current studies mainly focus on the design of complex heterogeneous, asymmetric microstructures to obtain a mechanical diode, we show here that such a diode can be also obtained embedding metamaterials with symmetric microstructures between two homogeneous materials with different stiffness. This paper lays the basis to open our knowledge towards the conception of more and more complex, large-scale meta-structures that can control elastic waves and recover energy. It is clear that to reach a refined quantitative prediction of metamaterials' response, the Relaxed Micromorphic model will need considerable extension to increase its precision up to very small wavenumbers and to enable a refined description of static and dynamic size effects.

Figure 1 :

 1 Figure 1: Schematic representation of a wave with wavenumber k hitting at angle θ a relaxed micromorphic slab of thickness h embedded between two isotropic Cauchy media that can have different stiffnesses.

Figure 2 :

 2 Figure 2: (a) unit cell whose periodic repetition in space gives rise to the metamaterial 1, or in short MM1. (b) Table geometry and material properties of the unit cell: ρ Ti , λ Ti , and µ Ti stand for the density and the Lamé constants of titanium, respectively.

  4 2.28195 × 10 -3 1.44323 × 10 -3 4.84074 × 10 -3

Figure 3 :

 3 Figure 3: Fitting of the dispersion curves for the metamaterial MM1 obtained via the relaxed micromorphic model on those obtained via Block-Floquet analysis. The two figures correspond to different direction of propagation (a) θ = 0 • , (b) θ = 45 • .

Figure 4 :

 4 Figure 4: Schematic representation of a wave with wavenumber k hitting at angle θ a microstructured material slab of thickness h embedded between two different isotropic Cauchy media.

Figure 5 :

 5 Figure 5: Comparison of the microstructure's (black line) and micromorphic (green line) reflection coefficient as a function of frequency for a 20 unit cells slab of MM1 embedded between the CM1 Cauchy (blue in Fig. 4(a)) and CM2 (green in Fig. 4(a)). (a) "Pressure" normal incident wave with respect to the slab's interface. (b) "Pressure" 45 • incident wave with respect to the slab's interface. (c) "Shear" incident wave normal to the slab's interface. (d) "Shear" 45 • incident wave with respect to the slab's interface.

Figure 6 :

 6 Figure 6: Comparison of the microstructure's (black line) and micromorphic (green line) reflection coefficient as a function of frequency for a 20 unit cells slab of MM1 embedded between the CM2 Cauchy (green in Fig. 4(b)) and CM1 (blue in Fig. 4(b)). (a) "pressure" normal incident wave with respect to the slab's interface. (b) "pressure" 45 • incident wave with respect to the slab's interface. (c) "shear" incident wave normal to the slab's interface. (d) "shear" 45 • incident wave with respect to the slab's interface.

Figure 7 :

 7 Figure 7: Analytical plot of the micromorphic reflection coefficient for a 20 unit cells thick slab made up of MM1 material and embedded between the CM1 Cauchy (blue in Fig. 4(a)) and CM2 (green in Fig. 4(a)) as function of the angle of incidence and of the wave-frequency -(left): incident pressure wave; (right) incident shear wave.

Figure 8 :

 8 Figure 8: Analytical plot of the micromorphic reflection coefficient for a 20 unit cells thick slab made up of MM1 material and embedded between the CM2 Cauchy (green in Fig. 4(b)) and CM1 (blue in Fig. 4(b)) as function of the angle of incidence and of the wave-frequency -(left): incident pressure wave; (right) incident shear wave.

Figure 9 :

 9 Figure 9: Comparison of the microstructure's (black line) and micromorphic (green line) reflection coefficient as a function of frequency for a 20 unit cells slab of MM1 embedded between the CM3 Cauchy (green in Fig. 4(a)) and CM4 (blue in Fig. 4(a)). (a) "pressure" normal incident wave with respect to the slab's interface. (b) "pressure" 45 • incident wave with respect to the slab's interface. (c) "shear" incident wave normal to the slab's interface. (d) "shear" 45 • incident wave with respect to the slab's interface.

Figure 10 :

 10 Figure 10: Comparison of the microstructure's (black line) and micromorphic (green line) reflection coefficient as a function of frequency for a 20 unit cells slab of MM1 embedded between the CM4 Cauchy (green in Fig. 4(b)) and CM3 (blue in Fig. 4(b)). (a) "pressure" normal incident wave with respect to the slab's interface. (b) "pressure" 45 • incident wave with respect to the slab's interface. (c) "shear" incident wave normal to the slab's interface. (d) "shear" 45 • incident wave with respect to the slab's interface.

Figure 11 :

 11 Figure 11: Analytical plot of the micromorphic reflection coefficient for a 20 unit cells thick slab made up of MM1 material and embedded between the CM3 Cauchy (green in Fig. 4(a)) and CM4 (blue in Fig. 4(a)), as function of the angle of incidence and of the wave-frequency -(left): incident pressure wave; (right) incident shear wave.
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 12 Figure 12: Analytical plot of the micromorphic reflection coefficient for a 20 unit cells thick slab made up of MM1 material and embedded between the CM4 Cauchy (green in Fig. 4(b)) and CM3 (blue in Fig. 4(b)), as function of the angle of incidence and of the wave-frequency -(left): incident pressure wave; (right) incident shear wave.

Figures 9 and 10 ,

 10 Figures 9 and 10, also show that the relaxed micromorphic model catches well the meta-structure's response for a very large range of frequencies going well beyond the first band-gap. With reference to Fig.11and Fig.12, we can remark that in the low-medium frequency range the structure acts as an almost perfect diode in which both pressure and shear waves are able to travel if they come from the side of the "stiffer" Cauchy materials, while are completely blocked if they come from the side of the "softer" material.As we already remarked, this diode behaviour is mainly due to the difference of stiffness of the two Cauchy materials given in Table3. To clearly explain this claim, we show in Fig.13and Fig.14the behaviour of the considered meta-structure when we embed the metamaterial's slab between two layers of the Cauchy material CM3 of Table3(a), or between two layers of the Cauchy material CM4 given in Table3(b), respectively. It is clear that, when no difference of stiffness exist between the two homogeneous layers, then transmission occurs for any direction of the incident wave and for any angle of incidence as far as low-medium frequencies are considered (see Fig.13and Fig.14)

  Figures 9 and 10, also show that the relaxed micromorphic model catches well the meta-structure's response for a very large range of frequencies going well beyond the first band-gap. With reference to Fig.11and Fig.12, we can remark that in the low-medium frequency range the structure acts as an almost perfect diode in which both pressure and shear waves are able to travel if they come from the side of the "stiffer" Cauchy materials, while are completely blocked if they come from the side of the "softer" material.As we already remarked, this diode behaviour is mainly due to the difference of stiffness of the two Cauchy materials given in Table3. To clearly explain this claim, we show in Fig.13and Fig.14the behaviour of the considered meta-structure when we embed the metamaterial's slab between two layers of the Cauchy material CM3 of Table3(a), or between two layers of the Cauchy material CM4 given in Table3(b), respectively. It is clear that, when no difference of stiffness exist between the two homogeneous layers, then transmission occurs for any direction of the incident wave and for any angle of incidence as far as low-medium frequencies are considered (see Fig.13and Fig.14)

Figure 13 :

 13 Figure 13: Analytical plot of the micromorphic reflection coefficient for a 20 unit cells thick slab made up of MM1 material and embedded only between the CM3 Cauchy, as function of the angle of incidence and of the wave-frequency -(left): incident pressure wave; (right) incident shear wave.

Figure 14 :

 14 Figure 14: Analytical plot of the micromorphic reflection coefficient for a 20 unit cells thick slab made up of MM1 material and embedded only between the CM4 Cauchy, as function of the angle of incidence and of the wave-frequency -(left): incident pressure wave; (right) incident shear wave.

Figure 15 :

 15 Figure 15: Analytical plot of the effective Cauchy anisotropic material reflection coefficient for a 20 unit cells thick slab embedded between the CM3 Cauchy (green in Fig. 4(a)) and CM4 (blue in Fig. 4(a)), as function of the angle of incidence and of the wave-frequency -(left): incident pressure wave; (right) incident shear wave.

Figure 16 :

 16 Figure 16: Analytical plot of the effective Cauchy anisotropic material reflection coefficient for a 20 unit cells thick slab embedded between the CM4 Cauchy (green in Fig. 4(b)) and CM3 (blue in Fig. 4(b)), as function of the angle of incidence and of the wave-frequency -(left): incident pressure wave; (right) incident shear wave.

Figure 17 :

 17 Figure 17: Analytical plot of a single interface separating two Cauchy materials CM3 and CM4 (no metamaterial's slab) reflection coefficient, as function of the angle of incidence and of the wave-frequency -(left): incident pressure wave; (right) incident shear wave.

Figure 18 :

 18 Figure 18: Analytical plot of a single interface separating two Cauchy materials CM4 and CM3 (no metamaterial's slab) reflection coefficient, as function of the angle of incidence and of the wave-frequency -(left): incident pressure wave; (right) incident shear wave.

Table 2 :

 2 Values of the Lamé constant for (a) the isotropic Cauchy material CM1 and (b) the isotropic Cauchy material CM2.

The presence of curvature terms is essential to catch size-effects in the static regime that are not the target of the present paper.

Boundary conditions for a finite-size relaxed micromorphic slab embedded between two different Cauchy half-spaces Two half-spaces made up of two different homogeneous Cauchy materials are separated by a micromorphic slab of finite width h. The three materials are in perfect contact with each other: the material on the top of the first interface is a classical linear elastic isotropic Cauchy medium, the material in the middle is an anisotropic relaxed micromorphic medium, while the material on the bottom of the second interface is again a classical isotropic Cauchy medium with, a priori, different stiffness with respect to the first homogeneous material (see Fig.1).